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Abstract—Compressive sensing(CS) has drawn much attention
in recent years due to its low sampling rate as well as high
recovery accuracy. As an important procedure, reconstructing a
sparse signal from few measurement data has been intensively
studied. Many reconstruction algorithms have been proposed
and shown good reconstruction performance. However, when
dealing with large-scale sparse signal reconstruction problem,
the storage requirement will be high, and many algorithms also
suffer from high computational cost. In this paper, we propose
a novel diffusion adaptation framework for CS reconstruction,
where the reconstruction is performed in a distributed network.
The data of measurement matrix are partitioned into small parts
and are stored in each node, which assigns the storage load
in a decentralized manner. The local information interaction
provides the reconstruction ability. Then, a simple and efficient
gradient-descend based diffusion algorithm has been proposed
to collaboratively recover the sparse signal over network. The
convergence of the proposed algorithm is analyzed. To further
increase the convergence speed, a mini-batch based diffusion
algorithm is also proposed. Simulation results show that the
proposed algorithms can achieve good reconstruction accuracy
as well as fast convergence speed.

I. INTRODUCTION

Compressive sensing(CS) is a novel sampling theory, which
provides a new signal sampling (encoding) and reconstruction
(decoding) approach [1]–[5]. In detail, given a compressible
signal s = Ωx where Ω is the transform basis and x is a
sparse signal, signal s can be measured by a nonadaptive linear
projections (namely sensing matrix) Φ, i.e. ỹ = Φs = Θx
where ỹ is the measurement vector and Θ = ΦΩ is the
measurement matrix. Then, at the decoder, x (or s) can be
recovered from ỹ using reconstruction algorithms. Since CS
framework can provide far less sampling rate than Nyquist
as well as high recovery accuracy, it has been widely used
in many applications such as medical imaging [6] and radar
imaging [7].

As an important procedure in CS, recovering a sparse signal
from insufficient number of measurement data has drawn
much attention in recent years. In the last decade, many al-
gorithms have been proposed to show accurate reconstruction
performance [8]–[13]. An important theoretical guarantee that
behind CS reconstruction is the restricted isometry property
(RIP) [14]. It has been proved that if Θ obeys RIP, the sparse
signal can be recovered from small number of measurements
y. It has also been shown that random matrices such as
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Gaussian matrix and Bernoulli matrix can satisfy the RIP
condition with a high probability [15], [16].

Although CS Reconstruction problem has been intensively
studied, applying CS reconstruction to large-scale data (such
as image data) is still a challenging work. In [17], the authors
proposed a conjugate gradient orthogonal matching pursuit
(CG-OMP) algorithm. CG-OMP utilizes Structurally Random
Matrix (SRM) [18] as the sensing matrix Φ, which can
speed up the signal recovery process as well as reduce the
storage requirement. In particular, SRM is related to operator-
based approaches, and can improve all greedy algorithms and
several iterative shrinkage/threshold (IST) methods such as
gradient projection for sparse reconstruction algorithm (GPSR)
[19] and sparse reconstruction by separable approximation
(SpaRSA) [20]. However, although Φ can be fast computed,
the transform basis Ω may not always be fast computable.
Thus Ω or Θ may still need to be stored, which needs
high requirement of storage for large-scale data. To reduce
the storage of Θ, a block based compressive sensing (BCS)
method was proposed [21], [22]. In BCS, the input signal
is separated into several small block signals, each signal is
individually sensed and recovered. BCS essentially utilizes a
block diagonal matrix as the sensing matrix, which, however,
is lack of theoretical guarantee. Moreover, BCS needs to
modify the sampling strategy at the sensing procedure, and
the applicability is limited due to unclear structure.

An efficient way to solve the storage problem for large scale
data is to store the data in a distributed network, and then
optimize the problem in a distributed way. So far, several
distributed optimization algorithms have been proposed in-
cluding distributed stochastic dual coordinate ascent (DisDCA)
[23], communication-efficient distributed dual coordinate as-
cent (CoCoA) [24] and distributed stochastic variance reduced
gradient (DSVRG) [25]. These algorithms focus on solving
the optimization problem in parallel, and need to collect the
updated information from all nodes at each iteration. However,
in many distributed network such as wireless sensor network
(WSN), it is hard to gather the whole information across the
network at each iteration.

In this paper we propose a novel diffusion adaptation
framework for CS reconstruction. The measurement matrix Θ
are partitioned and stored in a decentralized manner, i.e. each
node of the network stores only a small part of Θ. Therefore,
the whole storage load is distributed to each node in the
network. Further, inspired by diffusion adaptation strategies
[26]–[30], a simple yet efficient diffusion l0-LMS algorithm
(Dl0-LMS) is proposed. Each node utilizes the finite number of
data recursively. The estimation are shared among neighbours
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at each iteration. Therefore, taking advantages of diffusion
adaptation, the Dl0-LMS algorithm can collaboratively recover
the sparse signals across the network. Utilizing l0-norm as the
regularization term can guarantee the sparse estimation. Infor-
mation exchange within network also provide ability of fast
convergence speed, thus greatly increases the computational
efficiency. Moreover, a mini-batch based Dl0-LMS (MB-Dl0-
LMS) is also proposed in this study. MB-Dl0-LMS utilizes the
mini-batch gradient descend (MBGD) method and can further
improve the convergence speed.

The proposed Dl0-LMS is a variant of traditional sparse
diffusion LMS algorithm [31], [32], which have shown abili-
ties in learning the sparse structure over distributed networks.
Actually, the formulation of the D-l0LMS algorithm for CS
is similar to traditional sparse diffusion algorithm except the
data is recursively used. However, applying sparse diffusion
algorithm to specific CS task brings more features on both
experimental results and theoretical analysis. In particular,
diffusion adaptation framework with sparsity constrain gives
ability to collaboratively estimate the sparse signal, even
though each node cannot individually reconstruct the signal
due to insufficient numbers of data. Moreover, in CS all
data has been already collected before process, thus the finite
known data offers convenience for theoretical analysis, and
also gives access to use mini-batch method in gradient estima-
tion. Besides, since the reconstruction speed is a critical issue
in evaluating the CS reconstruction algorithm, a larger step size
is preferred to achieve faster convergence speed. Obviously the
small step size assumption in analysis of traditional diffusion
algorithm [26]–[30] is not suitable for analysis for CS, thus in
this paper carry out a new theoretical analysis on the step size
condition for convergence without small step size assumption.

The proposed Dl0-LMS is also related to l0-LMS for CS
[33]. l0-LMS can be seen as a special case of Dl0-LMS
where the network contains only 1 node. By introducing
traditional sparse LMS algorithm to CS, l0-LMS algorithm has
shown great performance improvement compared with other
algorithms. In particular, l0-LMS demands less requirement
in memory, and achieves better reconstruction performance
than other existing algorithms when dealing with large-scale
CS reconstruction problem. In Dl0-LMS, each node actually
performs the same weight update process with l0-LMS, thus
the computational complexity of each node in each iteration
are the same as l0-LMS. Moreover, the diffusion algorithm
gives ability to allow much larger step size for convergence
condition, and is confirmed by experiments that the conver-
gence speed is much faster than l0-LMS. Futher, simulations
also show that Dl0-LMS can achieve similar reconstruction
accuracy with l0-LMS.

One should also distinguish our work from distributed
compressive sensing (DCS) [34]–[37]. In DCS, a number of
measurement data are recovered by a group of sensors. The
measurement data at each node are assumed to be individually
sparse in some basis and are correlated from sensor to sensor.
The DCS aims to solve the jointly sparse ensemble recon-
struction problem, which is not the topic of our work. Another
related work is the Distributed Compressed Estimation(DCE)
scheme [38]. The DCE incorporates compression and decom-

pression modules into the distributed estimation procedure.
The compressed estimator is estimated across the network
using diffusion adaptation strategy, and then the reconstruction
algorithms are employed to recover the sparse signal from
compressed estimator. In DCE, each node still need to store the
whole sensing matrix. Moreover, the reconstruction procedure
is independent of diffusion adaptation procedure, which may
still suffer from the same problem of typical reconstruction
methods when dealing with large scale CS reconstruction
problem.

The paper is organized as follows. In section II we briefly
review the concept of compressive sensing and propose the
diffusion adaptation framework for CS reconstruction. The
gradient based and the mini batch based algorithms for diffu-
sion CS reconstruction are then proposed in Section III. The
stability analysis of Dl0-LMS is carried out in Section IV.
In Section V, simulation results are presented to verify the
reconstruction performance. Finally, the conclusion is given
in Section VI.

II. DIFFUSION ADAPTATION FRAMEWORK FOR
COMPRESSIVE SENSING RECONSTRUCTION

Suppose a real valued discrete signal s ∈ RN×1 is
compressible, i.e. s can be represented as s = Ωx where
Ω ∈ RN×N is a transform basis matrix and x is a sparse
signal with sparsity K � N . In the theory of CS, the sparse
signal x can be measured by

ỹ = ΦΩs = Θx (1)

where Θ = ΦΩ is the measurement matrix, Φ ∈ RM×N is
the sensing matrix and ỹ ∈ RM×1 is the measurement vector
(M < N ). In practice, the observed measurement vector y
may be noisy, thus the observed measurement vector can be
described as

y = Θx+ v (2)

where v ∈ RM×1 is the additive noise vector. The CS
reconstruction task is to recover the sparse signal x from the
measurement matrix Θ and the corresponding noisy measure-
ment y. To successfully recover x, the measurement matrix
Θ should obey the restricted isometry property (RIP).

In practice, the CS reconstruction problem can be viewed
as solving a sparse constrained least squares problem with the
cost function

J(x) = ‖y −Θx‖2 + ξ‖x‖0 (3)

where ‖x‖0 is the l0 regularization term and ξ is regularization
parameter.

To apply CS reconstruction in a decentralized manner, one
can modify the above cost function. In particular, considering
a connected network with P nodes (i.e. the network size is P ),
we can obtain the estimation of x by minimizing the following
global cost function

Jglob(x) =

P∑
k=1

‖yk −Θkx‖2 + ξ‖x‖0 (4)
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Fig. 1. Illustration of diffusion adaptation framework for CS reconstruction
on a connected network with 7 nodes

where

Θ =


Θ1

Θ2

...
ΘP

 ,y =


y1

y2
...
yP


with Θk ∈ RLk×N , yk ∈ RLk×1 and

∑P
k=1 Lk = M . Since

Eq.(3) and Eq.(4) are essentially the same cost function, the
optimum solution will coincide.

Fig.1 shows an example of diffusion adaptation framework
for CS reconstruction. The connected network includes 7
nodes. The whole Θ is partitioned into small parts {Θk}7k=1.
Then, node k only stores a small part of the measurement
matrix Θk and receives the corresponding measurement data
yk. The information of a node can be transmitted within its
neighbourhood (denoted as red links). Although each node has
insufficient numbers of measurements and can only exchange
information within local neighbours, the information diffusion
across the whole network provides the ability to access the
whole information of Θ.

III. PROPOSED ALGORITHMS FOR COMPRESSIVE SENSING

A. Gradient descent Dl0-LMS for CS

The diffusion adaptation algorithms for stream data has been
intensively studied [28], [32], [39], [40]. Given the temporal
sparse input data sequence {uk(i)} and the corresponding
output data sequence {dk(i)} at node k, the sparse diffusion
LMS adaptation algorithm [32] obtains the estimation by
minimizing the following global cost function [32]

Jglob(w) =

P∑
k=1

E
[(
dk(i)− uTk (i)w

)2]
+ ξ‖w‖0 (5)

Intuitively, we can define {uk(i)} and {dk(i)} as

{uk(i)} = {θk(1),θk(2), ...,θk(Lk)}

{dk(i)} = {yk(1), yk(2), ..., yk(Lk)}

where θk(i) and yk(i) denote the transpose of the ith row of
Θk and the i-th scalar of yk, respectively. Thus the solution to

CS reconstruction problem in Eq.(4) can be formulated based
on the the diffusion adaptation algorithm with cost function in
Eq.(5).

In traditional diffusion algorithm, the data size Lk is always
much larger than input dimension N . However, in CS Lk is
much smaller than N . When directly apply the sparse diffusion
algorithm to CS, the adaptation process may not converge to
the steady state due to insufficient number of data. To solve
this problem, we follow the method described in [33] and use
the data recursively. In particular, the data used at i-th iteration
in node k are

uk(i) = θk(mod(i, Lk) + 1)

dk(i) = yk(mod(i, Lk) + 1)
(6)

Therefore, combining diffusion adaptation strategy and
modified data sequence in Eq.(6), we can derive two gradient-
descend based diffusion adaptive algorithms for CS, namely,
the Adapt-then-Combine (ATC) diffusion l0-LMS (ATC-Dl0-
LMS) algorithm

ψk (i+ 1) = wk (i) + µk
∑
l∈Nk

αl,kĝl (wk (i))

− µkξ∇‖wk(i)‖0
wk (i+ 1) =

∑
l∈Nk

βl,kψl (i+ 1)

(7)

and the Combine-then-Adapt (CTA) diffusion l0-LMS (CTA-
Dl0-LMS) algorithm

ϕk (i) =
∑
l∈Nk

βl,kwl (i)

wk (i+ 1) = ϕk (i) + µk
∑
l∈Nk

αl,kĝl (ϕk (i))

− µkξ∇‖ϕk(i)‖0

(8)

where ϕk(i) and ψk(i) are intermediate vectors of node k at
time i, ∇‖wk(i)‖0 is the derivation of ‖wk(i)‖0 and

ĝl (xk(i)) =
(
dl(i)− xTk (i)ul(i)

)
ul(i) (9)

is the instantaneous gradient vector. Nk is the neighbourhood
of node k and µk is the corresponding step size. αl,k, βl,k
are non-negative weights assigned to link between l and k
for adaptation and combination step, respectively. Further,
αl,k, βl,k can be seen as the {l, k}-th entries of matrices S
and A respectively. Specifically, S and A should satisfy

S1 = AT1 = 1 (10)

and
S(l, k) = A(l, k) = 0 if l /∈ Nk (11)

where 1 denotes the all one vector.
An important problem left is to calculate ∇‖w(i)‖0. Since

‖w(i)‖0 is non-differentiable, one should use an approxima-
tion instead. There are several approximations of l0 norm [41]
which can work well for sparse identification [32], [33]. In
this paper we use the zero attraction term zδ(wk(i)) similar
to l0-LMS, which is defined as [33]

−∇‖w(i)‖0 ≈ zδ(w(i))

= [zδ(w1(i)), zδ(w2(i)), ..., zδ(wN (i))]T
(12)
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where

zδ(wm(i)) =


δ2wm(i) + δ − 1/δ ≤ wm(i) < 0

δ2wm(i)− δ 0 < wm(i) ≤ 1/δ

0 |wk(i)| > 1/δ

(13)

and δ is the zero attraction parameter.
The pesudo code of ATC-Dl0-LMS is summarized in

Algorithm 1. At iteration i, each node k sends the data
pair {uk(i), dk(i)} to its neighbours. Then the adaptation is
performed at each node. After adaptation, the estimation in
each node is transferred to its neighbours for combination.
The process of CTA-Dl0-LMS is similar with ATC-Dl0-LMS
except that the order of adaptation step and combination step
are reversed.

Algorithm 1 ATC-Dl0-LMS Algorithm for CS
Initialization
Choose step-size µk for each node k, regularization param-
eter ξ, zero attraction parameter δ and maximum iteration
number C. Set initial iteration number i = 1 and weight
vector wk(1) = 0 for all node k. Select αl,k, βl,k according
to Eq.(10) and Eq.(11).
Data Partition
Assign the data of measurement matrix Θ and correspond-
ing y to each node according to partition strategy.
Computation
while i < C do

for each node k do
n = mod(i, Lk) + 1,uk(i) = θk(n), dk(i) = yk(n)
Communication 1:
Transmit {uk(i), dk(i)} to neighbour node l in Nk
Adaptation:
ψk(i+ 1) = wk(i) + µk

∑
l∈Nk

αl,kĝl(wk (i))

+ µkξzδ(w(i))
Communication 2:
Transmit ψk(i+ 1) to neighbour node l in Nk
Combination:
wk (i+ 1) =

∑
l∈Nk

βl,kψl (i+ 1)

end for
if the stop criterion is satisfied then

break
end if
%update iteration number
i = i+ 1

end while
Output: w = 1

P

∑P
k=1wk(i)

Remark 1: Consider a special case that the network size
P = 1. In this case, the reconstruction is processed in a stand-
alone manner, and Eq.(7) and Eq.(8) will be equal to

w(i+ 1)=w (i)+µ
(
d(i)−xT(i)u(i)

)
u(i)+µξzδ(w(i))

(14)
which is the typical l0-LMS for CS [33]. Therefore, l0-LMS
can be viewed as a special case of ATC-Dl0-LMS and CTA-
Dl0-LMS.

Remark 2: In a strict sense, the name Dl0-LMS is nonstan-
dard since the algorithm actually minimize an approximation
of l0 norm. In this paper, we just use the Dl0-LMS to keep
the name consistent with l0-LMS for CS [33].

Remark 3: For large scale data, to reduce the amount
of network transmission, one can put away the adaptation
information exchange, i.e. S = I [42]. That is, each node only
utilize its own data to perform adaptation, and then share its
estimation to neighbours for combination. Simulation results
in Section V will verify the feasibility of this strategy.

B. Mini-batch Dl0-LMS for CS

The proposed gradient-based Dl0-LMS is a typical exten-
sion of traditional sparse diffusion algorithm. We should notice
that unlike traditional diffusion adaptation, in CS all the data
is already known. Therefore, one can utilize more information
during each iteration. In [33], the l0 regularized exponetially
forgetting windows LMS (l0-EFWLMS) algorithm is proposed
to improve the convergence speed of l0-LMS. Extended from
affine projection algorithm(APA) [43], l0-EFWLMS utilizes
a sliding window approach to use more data to improve the
gradient estimation. However, l0-EFWLMS still follows the
traditional adaptive filtering method.

In data regression problem, mini-batch gradient descent
(MBGD) method has been widely used. MBGD selects a small
part of the sample data, computes gradient for each data, and
then calculates the average gradient as the gradient estimation.
For diffusion CS, the input data for node k at each iteration i
can be chosen as

Uk(i) = [θ(r(1)),θ(r(2)), ...,θ(r(Q))]T

Dk(i) = [y(r(1)), y(r(2)), ..., y(r(Q))]T
(15)

where r = [r(1) r(2) ... r(Q)]T ∈ NQ×1+ , Q ≤ min{Lk} is
the index vector whose elements are uniformly and randomly
chosen from [1,M ]. Then, according to MBGD method, the
average gradient Ĝl (xk(i)) is defined as

Ĝl (xk(i)) =
1

Q
U l(i)

(
Dl(i)− xTk (i)U l(i)

)
(16)

Then, the weight update of corresponding ATC mini-batch
diffusion l0-LMS algorithm (ATC-MB-Dl0-LMS) can be rep-
resented as

ψk (i+ 1) = wk (i) + µk
∑
l∈Nk

αl,kĜl (wk (i))

+ µkξzδ(w(i))

wk (i+ 1) =
∑
l∈Nk

βl,kψl (i+ 1)

(17)

where the instantaneous gradient ĝl (xk(i)) in Eq.(7) is re-
placed by Ĝl (xk(i)). The corresponding CTA mini-batch
diffusion l0-LMS algorithm (CTA-MB-Dl0-LMS) can be also
simply derived from Eq.(8).

In real application, utilizing mini-batch method gives faster
convergence speed than Dl0-LMS, but may also cause instabil-
ity when the step size is large. To alleviate the negative impact
caused by MBGD method, we optimize the iterative process
by constraining the sparsity variance during the convergence
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process. In particular, the sparsity of the estimation in at i-th
iteration is defined as

s(w(i)) =

N∑
j=1

f(wj(i)) (18)

where

f (x) =

{
1, |x| > τ
0, |x| < τ

and τ is a small positive threshold. Then, after a small number
of iterations 0.02N , if the sparsity of i+1-th iteration is larger
than 1.5 times of the sparsity at i-th iteration, the estimation
will not update.

The pesudo code of ATC-MB-Dl0-LMS is summarized in
Algorithm 2. Unlike Algorithm 1 where {uk(i), dk(i)} is
transmitted within neighbours, to alleviate the load of network
transmission, here the estimation wk(i) is transmitted to
neighbours. The gradient is computed at neighbour nodes and
then sent back. Similar to ATC-Dl0-LMS, one can also set
S = I to put away the adaptation step to save the amount of
network transmission.

C. Data Partition Strategy and Stop criterion

For a connected network, using diffusion based algorithm
allows each node to observe all the information of the data,
thus in theory for any partition strategy the sparse signal
can always be recovered. However, as discussed later in
Part E, Section IV, the data correlation may influence the
convergence condition on step size which is directly related
to reconstruction speed. Since the data is recursively used, the
data correlation may occur every Lk iterations. Therefor, to
avoid high correlation of data, the partition strategy should
selected so that Lk for each node k are as large as possible.
In practice, uniformly assign the data to each node is a proper
choice.

Although one can use the maximum iteration number C
to stop the iteration, one would like a more practical stop
criterion. In [33], the author utilizes the squared error between
adjacent estimation as the index of stop condition. However,
it is always not operational in real applications. Observing
the fact that the sparsity of the estimation will maintain as
the algorithm converges to the steady state, here we propose
a new stop criterion based on the sparsity of the estimation:
given the window length Ls and the threshold ps, by defining
the count at iteration i

Sc(i) =

i∑
j=i−Ls+1

p(s(w(j))) (19)

where

p (x) =

{
1, smin ≤ x ≤ smin + ps

0, x > smin + ps

and smin = min{s(w(j))}ij=i−Ls+1, if Sc(i) > 0.8Ls, then
the algorithm will stop.

Algorithm 2 ATC-MB-Dl0-LMS Algorithm for CS
Initialization
Choose step-size µ, regularization parameter ξ, zero attrac-
tion parameter δ, maximum iteration number C , threshold τ
and mini-batch size Q. Set initial iteration number i = 1 and
weight vector wk(1) = 0 for all node k. Select αl,k, βl,k
according to Eq.(10) and Eq.(11).
Data Partition
Assign the data of measurement matrix Θ and correspond-
ing y to each node according to partition strategy.
Computation:
while i < C do

for each node k do
Select index vector r, then generate Uk(i) and Dk(i)
from Eq.(15)
Communication 1:
Transmit wk(i) to neighbour node l in Nk
Gradient estimation:
Compute Gk (wl(i)) from Eq.(16) for all l ∈ Nk
Communication 2:
Transmit Gk (wl(i)) to neighbour node l
Adaptation:
ψk(i+ 1) = wk(i) + µk

∑
l∈Nk

αl,kGl(wk (i))

+ µkξzδ(w(i))
Communication 3:
Transmit ψk(i+ 1) to neighbour node l in Nk
Combination:
wk (i+ 1) =

∑
l∈Nk

βl,kψl (i+ 1)

if s(wk(i+1))−s(wk(i))>1.5s(wk(i)) and i>0.02N
then
wk(i+ 1) = wk(i)

end if
end for
if the stop criterion is satisfied then

break
end if
%update iteration number
i = i+ 1

end while
Output: w = 1

P

∑P
k=1wk(i)

IV. CONVERGENCE ANALYSIS

In this section, we carry out the convergence analysis of
Dl0-LMS algorithm for CS reconstruction. We first derive the
recursion form of the algorithm, and then analyze the sufficient
condition for convergence on step size under different param-
eter settings. Finally the influence of regularization term and
data reuse is also discussed.

A. Recursion form derivation

For simplicity, similar to [28], [32], we carry out the mean-
square analysis on the following general diffusion framework
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structure
ϕk (i) =

∑
l∈Nk

βl,kwl (i)

θk (i+1)=ϕk (i)+µk
∑
l∈Nk

αl,kĝl (ϕk (i)) + µkξzδ(w(i))

wk (i+ 1) =
∑
l∈Nk

γl,kθl (i+ 1)

(20)
where αl,k, βl,k, γl,k can be seen as the {l, k}-th entries of
matrices A1 and S and A2 respectively. ATC-Dl0-LMS and
CTA-Dl0-LMS can be viewed as two special cases by setting
A1 = I and A2 = I , respectively.

Subtracting both sides of Eq.(20) from the desired sparse
vector x, we can obtain

ϕ̃k (i) =
∑
l∈Nk

βl,kw̃l (i)

θ̃k (i+1)=ϕ̃k (i)−µk
∑
l∈Nk

αl,kĝl (ϕk (i))− µkξzδ(w(i))

w̃k (i+ 1) =
∑
l∈Nk

γl,kθ̃l (i+ 1)

(21)
where ϕ̃k (i) = x − ϕk(i), w̃k(i) = x − wk(i), θ̃k (i) =
x− θk(i) are error vectors. Therefore, by defining

w(i) = col{wk(i)}Pk=1, w̃(i) = col{w̃k(i)}Pk=1

A1 = A1 ⊗ IN ,A2 = A2 ⊗ IN ,S = S ⊗ IN
D = diag{µk}Pk=1,D = D ⊗ IN

V (i) = diag{vk(i)}Pk=1,V(i) = V (i)⊗ IN

H(i) =
∑P

l=1
diag{αl,kul(i)ul(i)T }Pk=1

s(i) = STVT (i)col{uk(i)}Pk=1

one can obtain the recursion from Eq.(21)

w̃(i+1)=AT
2 [I−DH]AT

1 w̃(i)−AT
2 Ds(i)−ξA

T
2 Dzδ(w(i))

(22)

B. Sufficient condition for convergence under deterministic
measurement matrix

Based on the recursion in Eq.(22) and property that the
data is recursively used, one can further derive the following
theorem.

Proposition 1: Given a certain measurement matrix Θ and
matrices A1, S, A2, for any finite initial vector w(1) and
finite noise vector v, define the product

Γ =

Lm∏
n=1

AT
1 [I −DH (n)]A2 (23)

where Lm is the least common multiple of {Lk}Pk=1, and
define the sequence {λi}N×Pi=1 as the eigenvalues of Γ arranged
from large to small according to the modulus. For arbitrary
initial condition, in the diffusion algorithm in Eq.(22) will
converge if the step sizes µk are selected so that the modulus
of the (N −M + 1)-th eigenvalue is less than 1, i.e.

|λN−M+1| < 1 (24)

Proof 1: See Appendix A.
The above result can be used in practical since the generated

measurement matrix Θ is always fixed during the specific CS

task. Different from traditional diffusion process, once the data
has been collected, the process is deterministic and there is no
more randomness in the operation of the reconstruction.

C. Sufficient condition for convergence on random measure-
ment matrices

In many situations, the measurement matrix may not always
fixed during all reconstruction process. However, since the
measurement matrix is always selected as the random matrix,
we can follow the method of traditional diffusion algorithm
[26]–[30] and analyze the convergence of the proposed algo-
rithm in mean and mean squares sense.

Similar to traditional diffusion algorithms, for tractability
of the analysis we use the following assumptions:
A1. The elements of noise vector v are i.i.d processes and
independent of measurement matrix Θ.
A2. Lk of each node is sufficient large so that wk(i) at
arbitrary node k is independent of ul(i), l ∈ Nk.
A3. The noise has finite variance.

We should remark that in CS reconstruction, due to re-
cursively use of data, Assumption A2 may not be satisfied
in practice. Nevertheless, if Lk is sufficient large so that the
correlation is sufficient small, the independent assumption can
almost reach. This fact has been proved by simulation results
of l0-LMS for CS [33]. Moreover, one should also notice
that the small step size assumption in analysis of traditional
diffusion algorithms is removed. In [26]–[30], the analysis is
based on the assumption that the step sizes are sufficient small
so that the higher-order powers of step sizes can be ignored.
However, in CS a larger step size is preferred to achieve
faster convergence speed. Thus in this paper we eliminate
this assumption and propose a new analysis on mean and
mean squares performance. In the analysis, without loss of
generality, the variances for each element of Θ are all set to
1/M .

Postmultipling both sides of Eq.(22) with their respective
transposes, and then utilizing trace operation, we can obtain
the following weighted mean square relation

E
[
‖w̃(i+1)‖2Σ

]
=E

[
‖w̃ (i+1)‖2Λ

]
+ tr {ΣU(i)} (25)

where

U(i) =ξ2AT
2 DK (i)DA2 + AT

2 DSTP (i)SDA2

− ξAT
2

(
I − 1

M
DG

)
AT

1 J (i)DA2

− ξAT
2 DJ (i)A1

(
I − 1

M
DG

)
A2

(26)

Λ =A1

(
I − 1

M
GD

)
A2ΣAT

2

(
I − 1

M
DG

)
AT

1

+
N+1

M2

P∑
k=1

A1T kDA2ΣAT
2 DT kAT

1

(27)
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with

G =
∑P

l=1
diag{αl,k}Pk=1,G = G⊗ IN

T k = diag{αl,k}Pl=1,T k = T k ⊗ IN
J (i) = E

[
w̃ (i) zT (w (i))

]
K (i) = E

[
z (w (i)) zT (w (i))

]
P (i) = E

[
V(i)

TV (i)
]

(28)

Using the relationship of vectorization operator, matrix trace
and Kronecker product

vec{ABC} = (CT ⊗A)vec{B}
tr{ATB} = vec{B}T vec{A}

(29)

by defining σ = vec{Σ}, Eq.(25) can be derived as

E
[
‖w̃(i+1)‖2σ

]
=E

[
‖w̃ (i+1)‖2Fσ

]
+ vec{UT (i)}Tσ

(30)
where ‖w̃(i+1)‖2σ and ‖w̃(i+1)‖2Σ denotes the same quan-
tity, and

F = (A1 ⊗A1)

[(
I − 1

M
GD

)
⊗
(
I − 1

M
GD

)
+
N + 1

M2

M∑
k=1

(T kD ⊗ T kD)

)
(A2 ⊗A2)

(31)

It is easy to prove that K(i) and P (i) are always bounded.
Moreover, for J(i) one can obtain

|J(i)| = |E
[
w̃ (i) zT (w (i))

]
| ≤ 1

δ
|E
[
w̃ (i)1T

]
| (32)

Therefore, to ensure the bounded property of J(i), E [w̃ (i)]
should be always bounded. This recalls the mean recursion
relation, which is obtained by taking expectation of both sides
of Eq.(22)

E[w̃(i+ 1)] = QE[w̃(i)]− ξAT
2 DE[z(w(i))] (33)

where
Q = AT

2

(
I − 1

M
GD

)
AT

1 (34)

It is known that E [w̃ (i)] will be bounded for all i if E [w̃ (i)]
converges as i → ∞. Moreover, it has been proven that
the stability of F and Q can ensure the convergence of
Eq.(25) and Eq.(33), respectively [32]. Thus, for arbitrary ξ the
sufficient condition for both mean and mean square stability
of Eq.(25) should be

ρ(F) < 1 and ρ(Q) < 1 (35)

where ρ(X) denotes the spectral radius of matrix X .
To further simplify the condition in Eq.(35), we propose the

following theorem:
Theorem 1: For arbitrary real square matrices sequence

{Bk}tk=1 ∈ R
l×l, t, l ∈ N+, the following inequality will

always hold

ρ (B1 ⊗B1) ≤ ρ

(
t∑

k=1

(Bk ⊗Bk)

)
(36)

Proof 2: See Appendix B.

According to Theorem.1, if we set B1 = QT and Bk =√
N+1
M A1T k−1DA2 for k = 2, ..., P + 1, we can obtain

ρ(GT ⊗GT ) ≤ ρ(F) (37)

Moreover, according to eigenvalue relationship of kronecker
product, we can obtain ρ(QT ⊗ QT ) = [ρ(Q)]2. Therefore,
we have the following conditions

ρ(F) < 1 =⇒ ρ(QT ⊗QT ) < 1 =⇒ ρ(Q) < 1 (38)

Therefore, we can conclude that under Assumptions A1-A3,
the condition ρ(F) < 1 will guarantee both mean and mean-
square stability of the proposed algorithm.

For large scale data, computing the eigenvalue of F is
hard since the complexity grows significantly as N increases.
To simplify the computation of F , we further propose the
following theorem:

Theorem 2: Given sum of arbitrary real square matrices
sequence {Bk}tk=1 ∈ Rl×l, t, l ∈N+

B =

t∑
k=1

(Bk ⊗Bk) (39)

By defining

B⊗IN =

t∑
k=1

((Bk ⊗ IN )⊗ (Bk ⊗ IN )) (40)

where IN is the arbitrary identity matrix. Then, we will have

ρ(B⊗IN ) = ρ(B) (41)

Proof 3: See Appendix C.
Rewriting Eq.(31) we can obtain

F =

[
A1

(
I− 1

M
GD

)
A2⊗I

]
⊗
[
A1

(
I− 1

M
GD

)
A2⊗I

]
+
N + 1

M2

M∑
k=1

[(A1T kDA2 ⊗ I)⊗ (A1T kDA2 ⊗ I)]

(42)
Thus, according to Theorem.2, one can compute ρ(F) by
simply set I = 1. Specifically, by defining

F = (A1 ⊗A1)

[(
I − 1

M
GD

)
⊗
(
I − 1

M
GD

)
+
N + 1

M2

P∑
k=1

(T kD ⊗ T kD)

)
(A2 ⊗A2)

(43)

we will have ρ(F ) = ρ(F). Therefore, instead of calculating
the spectrum radius of F with P 2N2 × P 2N2 dimensions,
we can simplify obtain ρ(F) from F which has only
P 2 × P 2 dimensions. In practical, the F is typically a sparse
matrix. Thus we can use an computationally-efficient search
technique [44], [45] to find ρ(F ), which is easy to implement.
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D. Further analysis under general parameter settings

Under Assumption A1-A3, ρ(F ) < 1 gives the sufficient
condition for the convergence of the proposed algorithm.
Moreover, in practical diffusion adaptation, the step size of
all nodes are always set to the same value, and S is always
set to doubly stochastic matrix [26]–[30], [46]. Therefore, in
the following analysis we set D = µI where µ is the identical
step size for all nodes. The S is set to doubly stochastic such
that G = I . Without loss of generality, here we only analysis
ATC strategy, such that A1 = I . Thus Eq.(43) can be further
simplified as

F =

[(
1− µ

M

)2
I +

N + 1

M2
µ2

M∑
k=1

(T k ⊗ T k)

]
(A2 ⊗A2)

(44)
Under above parameter settings, one can further derive the
following proposition.

Proposition 2: For arbitrary column stochastic matrix A2

and doubly stochastic matrix S, the upper bound of the step
size µmax to guarantee ρ(F ) < 1 in Eq.(43) will within the
range

2M

(N + 1)ζ + 1
≤ µmax ≤

2PM

P +N + 1
(45)

where ζ = max{STS}. Specifically, the maximum µmax can
be obtained when the network is fully connected with αl,k =
1/P for all l and k.

Proof 4: See Appendix D.
Proposition 2 reveals the step size improvement introduced

by diffusion strategies. In particular, when P = 1, µmax will
be 2M/(N + 2), which coincides with the upper bound of
l0-LMS algorithm [33]. Moreover, when P > 1, ζ ≤ 1 will
always hold, and µmax will be always larger than 2M/(N+2).
While when data scale N is relatively large compared with
network size P , µmax can achieve nearly P times of the step
size upper bound of l0-LMS. Since the formulation of Dl0-
LMS and l0-LMS are similar, it can be inferred that large
step size will offer faster convergence speed. This fact will be
confirmed by simulations in Section V.

Moreover, we can also search the exact µmax based on
Eq.(44) under certainA2 and S. Actually, experimental results
show that ρ(F ) is a convex function of µ within the range
µ ∈ [ 2M

(N+1)ζ+1 ,
2PM

P+N+1 ]. Thus, we can follow the numerical
search algorithm proposed in [44] to iteratively find the exact
µmax so that ρ(F ) = 1.

E. Effect of regularization and data correlation on conver-
gence condition

In typical CS reconstruction task, apart form diffusion
strategies, regularization parameter ξ and data correlation also
affect the µmax. When ξ = 0, ρ(F ) < 1 is the necessary
and sufficient condition for the convergence of Eq.(25). While
when ξ 6= 0, we have known from analysis in [32] that
ρ(F ) < 1 is only the sufficient condition for the convergence,
so that ξ will further increase the µmax. Moreover, to ensure
the successful reconstruction of the sparse vector, one should
select proper ξ to constrain the sparsity of the estimation as
well as achieve desirable accuracy. In practice, ξ is always

selected as small values, and the increment of µmax by ξ will
be small.

On the one hand, the independent assumption A2 is hard
to satisfy in practical due to limited number of data in each
node. Therefore the effect of data correlation on convergence
should be taken into consideration. Specifically, the step size
upper bound µmax of the adaptive filter under correlation input
data has been analyzed in [44], which shows that the µmax
of LMS is more stringent than the bound predicted by the
independence regressor assumption. Since the weight update
form of each node is similar to LMS, we can deduce that the
actual upper bound µmax will also be less than that estimated
under assumption A2. In particular, different from adaptive
system analyzed in [44] where the input data is pairwise
related, the input data in CS is periodic related. When Lk is
large (i.e. each node has large number of data), the influence of
correlation will be greatly reduced. While when Lk is small,
the effect of data correlation cannot be neglected, therefore
µmax will be distinctly smaller than theoretical estimation.

V. SIMULATION

In this section we verify the performance of the proposed
algorithm in CS reconstruction task. The locations of non-zero
entries of the sparse vector x are randomly selected within
[1, N ], and the corresponding values are independently gen-
erated from uniform distribution within [−1,−0.2]

⋃
[0.2, 1].

Further, x is normalized to a unit vector. The Gaussian
measurement matrix is used in the simulations, i.e. each entry
of Θ is generated from Gaussian distribution with zero mean
and variance 1/M . The noise v is zero mean Gaussian dis-
tributed with covariance matrix σ2

M IM×M . Then, the observed
measurement y are obtained from Eq.(2).

The reconstruction of a sparse vector x is carried out by
a connected network with P nodes. The measurement matrix
Θ and corresponding measurement y are equally assigned to
each node so that Lk ∈ {bM/P c, bM/P c+1}, k = 1, 2, .., P .
In combination step, the averaging weights are used so that
βl,k = 1/|Nk| for all l. While in adaptation step, we use the
Metropolis weights defined as

αl,k =


1

max{nk,nl} , l ∈ Nk\{k}
1−

∑
l∈N−

k

αl,k, l = k

0, l /∈ Nk

Thus S is the doubly stochastic matrix.
The estimation misalignment at i-th iteration is evaluated by

mean squared deviation (MSD) in dB, which is approximated
as 10 log10{ 1

T

∑T
t=1 ‖

1
P

∑P
k=1wk(i)− x‖2} over T numbers

of Monte Carlo runs with different sparse signals, sensing
matrices and noises. Further, for each Monte Carlo run, the
reconstruction is considered successful if the average MSD
value of last iteration is less than 1× 10−2. During the whole
simulation, without mentioned, the zero attraction parameters
of the proposed algorithms are set as α = 10. The maximum
iteration number C = 105. The parameters in Eq.(19) and
Eq.(18) are set as τ = 1× 10−3, ps = 20 and Ls = 0.2N .
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Fig. 2. Average learning curves of different algorithms. (a) Original average
learning curves of different algorithms in terms of iteration i. (b) Scaled
average learning curves of different algorithms. The learning curves of ATC-
Dl0-LMS and D-l0-LMS-CTA shrink 4 times, while the learning curve of
l0-LMS shrinks 40 times.

A. Convergence performance

In this section, we investigate the convergence performance
of the proposed algorithms along with l0-LMS. The simulation
is carried by a connected network with 20 nodes. Each node is
linked to 3 nodes in average. The CS system parameters are set
as N = 20000, M = 4000 and K = 500. The noise variance
σ is set to 3 × 10−3. The regularization parameter ξ for all
algorithms are set to 5 × 10−8. The mini batch size Q is set
to 5. The step sizes are set as 0.4, 4, 16 for l0-LMS, gradient
descend diffusion algorithms (ATC-Dl0-LMS and CTA-Dl0-
LMS) and mini-batch diffusion algorithms (ATC-MB-Dl0-
LMS and CTA-MB-Dl0-LMS), respectively. Note that when
µ = 4 and 16, traditional l0-LMS and will diverge according
to the analysis in [33]. While ATC-Dl0-LMS and CTA-Dl0-
LMS will diverge when µ = 16 according to the analysis in
Section IV.

The average learning curves of all algorithms are shown in
Fig.2(a). Note that the stop criterion is not used in this sim-

ulation. One can observe that ATC-Dl0-LMS and D-l0-LMS-
CTA achieves similar reconstruction MSD with traditional l0-
LMS, while converge much faster than l0-LMS. ATC-MB-
Dl0-LMS and MB-D-l0-LMS-CTA can further converge faster
than ATC-Dl0-LMS and CTA-Dl0-LMS with a slight loss on
reconstruction accuracy. Further, one can also observe that the
convergence behaviour of ATC strategy is quite similar with
CTA.

To further investigate the relation between step size and
convergence speed, we scale down the learning curves in
Fig.2(a). The scale factors of each algorithm are obtained
according to the step sizes. The scaled learning curves are
shown in Fig.2(b). One can observe that the scaled learning
curves are similar. The results confirm that the convergence
speed is closely related to the step size under the same
regularization parameter ξ.

B. Step size upper bound

In this part, we investigate the relationship between step
size upper bound µmax and network size P . The network size
is gradually increased from 2 to 40. To ensure the continuity
of the growth of the network, we recursively generated the
network by linking a new node to p nodes of the previous
network, and the generated network set with p is represented
as Tp. The parameter p actually controls the average link
numbers of each node, a larger p indicates more information
communications across the network at each iteration. In the
following simulations, µmax is computed as the largest step
size that can reconstruct all the sparse signals under 200 Monte
carlo runs.

First, we investigate the µmax of ATC-Dl0-LMS under
different scale of data. The dimension N of the sparse vector
is set to 1000 and 20000. The number of measurement M
is set to 0.2N , and the sparsity K is set to 0.125M . The
regularization parameter ξ for all algorithms are set as 5×10−6

for N = 1000 and 5 × 10−8 for N = 20000. Fig.3(a)
depicts the curves of network size P versus µmax under
different network set T2 and T4. As can be seen, when
N = 20000, µmax can grows linearly under T2 and T4. While
for N = 1000, the growth of µmax is limited when P is large.

We also verify the theoretical analysis with above simu-
lation. The theoretical µmax corresponds to simulated µmax
with ξ = 0. Note that the reconstruction can not succeed
without ξ, thus the simulated µmax with ξ = 0 is calculated
as the largest step size that ensure the algorithms not diverge.
In Fig.4(a), the simulation is carried out with N = 1000
and the theoretical results are obtained using Proposition 1
(Eq.(23) and Eq.(24)). The measurement matrix Θ is fixed
during Monte carlo runs. One can see that the theoretical
µmax match well with simulation results. Then, the theoretical
results computed from Eq.(43) versus simulation results are
given in Fig.4(b)-(c). One can observe that for N = 20000,
the simulated and theoretical µmax are similar. While for
N = 1000, due to strong correlation of data, the simulated
µmax are much lower than theoretical analysis when network
size is large. Moreover, one can also observe from Fig.4(a)-(c)
that the curves of simulated µmax with proper ξ are always
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Fig. 3. The step size upper bound µmax under different network size P . (a) ATC-Dl0-LMS with p = 2, 4 and N = 1000, 20000. (b) ATC-MB-Dl0-LMS
with p = 2, 4 , Q = 5, 10 and N = 20000. (c) ATC-Dl0-LMS without adaptation information exchange (i.e.S=I) with p = 2, 4 and N = 1000, 20000.
(d) ATC-MB-Dl0-LMS without adaptation information exchange (i.e.S=I) with p = 2, 4 , Q = 5, 10 and N = 20000.

above the curves without ξ, which confirms the step size upper
bound improvement by ξ.

Second, the µmax of ATC-MB-Dl0-LMS under N = 20000
is performed. The curves of network size P versus µmax under
different parameter p and batch size Q are shown in Fig.3(b).
One can see that µmax is further greatly improved compared
with ATC-Dl0-LMS. Specifically, a larger batch size Q and
link parameter p allow larger µmax. Moreover, the results show
that mini-batch method gives remarkable acceleration for small
network, while the growth of µmax is limited when network
is large.

We also investigate the performance of ATC-Dl0-LMS and
ATC-MB-Dl0-LMS without adaptation information exchange.
All the parameters are the same as the first simulation in this
part except S = I . Fig.3(c) and Fig.3(d) show the curves of
µmax versus network size P for ATC-Dl0-LMS and ATC-
MB-Dl0-LMS, respectively. One can observe that without
adaptation step, µmax suffers from different degrees of decline.
Nevertheless, the acceleration is still significant compared with
l0-LMS. In general, dropping away the adaptation information

exchange reduces 50% and 66.7% of the network data trans-
mission for D-l0-LMS and MB-D-l0-LMS, respectively.

Finally, the reconstruction MSD values under different
network sizes are conducted. Fig.5 shows the reconstruction
MSD with µmax from Fig.3(a)-(d) under T2 and N = 20000.
One can observe that the different network sizes P affect
slightly on reconstruction MSD except ATC-MB-Dl0-LMS
without adaptation information exchange. Specifically, when P
is large, ATC-MB-Dl0-LMS has the performance loss of about
1.5dB when dropping away adaptation information exchange.
Further, ATC-Dl0-LMS achieves lower reconstruction MSD
compared with ATC-MB-Dl0-LMS.

C. Sensitivity of regularization parameter ξ and noise vari-
ance σ

In this part we first focus on the reconstruction MSD under
different noise variance σ. We select Gaussian noise with
different variances σ as the additive noise of the CS system.
The simulation settings are the same as in part A. For each σ,
200 Monte Carlo runs are performed. Fig.6 depicts the average
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Fig. 4. Simulated and theoretical µmax in terms of Fig.3(a) under p = 2. (a) Data dimension N = 1000. The theoretical µmax is obtained using Eq.(23)
and Eq.(24). (b) Data dimension N = 1000. The theoretical µmax is obtained using Eq.(43). (c) Data dimension N = 20000. The theoretical µmax is
obtained using Eq.(43).
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Fig. 5. Reconstruction MSD in terms of Fig.3 under p = 2 and N = 20000

MSD curves of three algorithms under different σ. One can see
that ATC-Dl0-LMS and l0-LMS achieve similar reconstruction
performance in different noise situations. ATC-MB-Dl0-LMS
achieves slightly better performance than ATC-Dl0-LMS and
l0-LMS when noise variance is larger than -24dB, while the
performance is slightly worse when noise is less than -24dB.

We further compare the reconstruction performance under
different regularization parameter ξ. The simulation settings
are the same as in part A. The maximum iteration number C
is not used in the simulation, so that all the reconstruction
MSD values are obtained at steady state. For each ξ, 200
Monte Carlo runs are performed. The curves of average MSD
versus ξ are shown in Fig.7. One can see that all algorithms
can achieve good reconstruction performance when ξ is not
too large (i.e. ξ ≤ 10−7). Further, the curve of ATC-Dl0-
LMS and l0-LMS are quite similar, while the curve of ATC-
MB-Dl0-LMS is moved from the curve of l0-LMS about
2 × 10−8 to the left. The results show that the proposed
algorithms can achieve similar reconstruction MSD with l0-
LMS. For ATC-MB-Dl0-LMS, one can adjust a slightly lower
ξ to obtain the similar performance with ATC-Dl0-LMS and
l0-LMS. Moreover, although the algorithms work well for a
wide range of ξ, one should note that smaller ξ will cause
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Fig. 6. Reconstruction MSD under different noise variance σ.
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Fig. 7. Reconstruction MSD under different regularization parameter ξ.

slow convergence speed. One should select ξ in a proper
range to make trade off between reconstruction accuracy and
convergence speed.
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VI. CONCLUSION

In this paper we propose a novel diffusion adaptation frame-
work for CS reconstruction task. Using distributed network,
the measurement matrix can be stored in a decentralized
manner, thus the storage in each node can be efficiently
reduced. Based on diffusion adaptation strategy, the gradient-
descend diffusion CS reconstruction algorithm called Dl0-
LMS is proposed. Dl0-LMS can collaboratively estimate the
sparsity and recover the sparse signal across the network.
Particularly, the convergence of Dl0-LMS is analyzed. To
further improve the convergence speed, a mini-batch based
diffusion algorithm is also proposed. Simulation results con-
firm the desirable performance of the proposed algorithms.
Compared with l0-LMS algorithm, the proposed algorithms
can achieve much faster convergence speed while obtaining
similar reconstruction accuracy.
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A. Appendix A

First we prove that for given Θ, A1, S, A2, for arbitrary
selection of µk, there must have N − M eigenvalues of Γ
with values equal to 1. For further analysis, we rewrite Γ as
the block matrix with P × P blocks {Γij} ∈ RN×N .

We also observe that I −DH (n) is the block diagonal
and Hermitian matrix with P × P blocks, and A1, A2

are also block matrices with the entries A1,ij = βi,jI ,
A2,ij = γi,jI respectively. Suppose there exists a vector
x so that uk(n)

T
x = 0 for arbitrary n ∈ {1, ..Lm} and

k ∈ {1, ..., P}, we can obtain

ΓTijx = cijx (46)

where cij is the {i, j}-th entry of matrix C = (AT
1A2)Lm .

Thus, by computing the non-vanishing vector b that satisfies
(C − I) b = 0 and constructing the column vector χ =
col{bkx}Pk=1, one can finally obtain

Γχ = χ (47)

That is, χ is the eigenvector of Γ with the corresponding
eigenvalue 1.

The left problem is to find the vector x that satisfies the
condition. Denoting {xi}Si=1 as a set of linearly independent
vectors which are orthogonal to all rows of Θ, i.e.

Θxi = 0, i = 1, .., S (48)

Since Θ is full row rank with rank M , we can derive that
S = N −M . Therefore, there are N −M numbers of vectors
x (χ) that satisfy Eq.(47) and the conclusion is proved.

Based on the above conclusion, we further analyze the
convergence of Eq.(22) without regularization term. Setting
ξ = 0, and using recursion form in Eq.(22), we can obtain

w̃(i+1)=

i∏
n=1

B(n)w̃(1)−
i−1∑
n=0

[
n−1∏
m=0

B(i−m)AT
2 Ds(i−n)

]
(49)

Where B(n) = AT
2 [I −DH (n)]A1. For simplicity, without

mentioned, we define
∏−1
m=0X = I for arbitrary X . Consider

the fact that s(i) is also recursively used with period Lm, we
write Eq.(49) at (i× Lm + 1)-th iteration as

w̃(i×Lm+1)= (ΓT )iw̃(1)

−
i−1∑
n=0

(ΓT )n
Lm∑
m=1

[
Lm−m∏
k=1

B(Lm−k+1)AT
2 Ds(m)

]
(50)

It is easy to conclude that the convergence for all i in Eq.(50)
can ensure the convergence for all i in Eq.(49). To ensure the
convergence of Eq.(50), one should make sure that both terms
on the right side of Eq.(50) converges as i tends to infinity.
Using eigendecomposition we obtain Γ = WZW−1 where
each column of W is composed by eigen vectors of Γ and
Z is a diagonal matrix with entries composed by eigenvalues
of Γ. Then Γi = WZiW−1. Therefore, to guarantee the
convergence of Γi, the modulus of diagonal entries of Z
should be no more than 1. From Eq.(47) one can obtain that
Z consists at least N−M diagonal entries with value 1. Thus
to ensure the convergence of Γi, |λ1| must be no more than
1.

To ensure the convergence of the second term on the right
side of Eq.(50), we should prove

(ΓT )n
Lm∑
m=1

[
Lm−m∏
k=1

B(Lm−k+1)AT
2 Ds(m)

]
→ 0, n→∞

(51)
Then, replacing (ΓT )n by W−TZnW T , and using the fact
that xTuk(n) = 0, one can obtain that Eq.(51) will satisfy
only if {|λi|}N×Pi=N−M+1 are all less than one. Therefore, based
on the above analysis, the convergence of Eq.(50) will be
guaranteed if |λN−M+1| < 1.

Finally, we discuss the convergence with the regularization
term zδ(w(i)). According to the definition in Eq.(13), we
can obtain zδ(w(i)) = 0 when all the absolute values of
elements ofw(i) are large than 1/δ. If adding zδ(w(i)) causes
the divergence, zδ(w(i)) will tend to zero vector and the
recursion becomes equal to Eq.(49). Therefore, the conver-
gence condition for Eq.(49) is still applicable for Eq.(22) with
regularization term.

B. Appendix B

We follow the proof in [47] and extend it to sum of arbitrary
number of matrices case. Consider a linear weight update
process defined as

w (i+ 1) =

(
N∑
k=1

θk (i)Bk

)
w (i) (52)



13

where w ∈ Rl×1. θ1(i) is fixed at 1, while θk(i) ∈
R, k = 2, ..., N are random variables with Gaussian distri-
bution N(0, 1). By defining D (i) = E

[
w (i)wT (i)

]
we can

obtain following equation

D (i+ 1) =E
[
w (i+ 1)wT (i+ 1)

]
=E

[(
N∑
k=1

θk(i)Bk

)
w(i)wT (i)

(
N∑
k=1

θk(i)BT
k

)]

=

N∑
k=1

BkD (i)BT
k

(53)
Further, using vectorization operator, we obtain

vec {D (i+ 1)} =

N∑
k=1

(Bk ⊗Bk)vec {D (i)} (54)

it is known that if ρ

(
N∑
k=1

(Bk ⊗Bk)

)
< 1, D (i) will

converge to 0 as i → ∞ in both l2 and l. Thus E [w (i)]
will also converge to 0 as i→∞. Taking expectation of both
sides of Eq.(52), we can get

E [w (i+ 1)] = B1E [w (i)] (55)

To ensure the convergence, ρ (B1) < 1 should be always
guaranteed. Therefore, we have the following relation.

ρ

(
N∑
k=1

(Bk ⊗Bk)

)
< 1⇒ ρ (B1) < 1⇒ ρ (B1 ⊗B1) < 1

(56)
Moreover, assume that

ρ

(
N∑
k=1

(Bk ⊗Bk)

)
= ς (57)

where ς is arbitrary positive value. By defining β = ς+ε with
arbitrary positive value ε, we will have

ρ

(
N∑
k=1

(
Bk√
β
⊗ Bk√

β

))
=
ς

β
< 1 (58)

Then, according to Eq.(56),

ρ

(
B1√
β
⊗ B1√

β

)
< 1 (59)

which is equivalently

ρ (B1 ⊗B1) < ς + ε (60)

Since Eq.(60) always holds for arbitrary ε, we can obtain

ρ (B1 ⊗B1) ≤ ρ

(
N∑
k=1

(Bk ⊗Bk)

)
(61)

That’s end the proof.

C. Appendix C

Rewrite B as a block matrix

B =


C11 C12 · · · C1l

C21 C22 · · ·
...

...
...

. . . Cl−1,l
Cl1 · · · Cl,l−1 Cll

 (62)

where Cij , i, j ∈ {1, 2, ..., l} are l × l matrices. Then B⊗IN
can be derived as

B⊗IN =

 IN ⊗C11 ⊗ IN · · · IN ⊗C1l ⊗ IN
...

. . .
...

IN ⊗Cl1 ⊗ IN · · · IN ⊗Cll ⊗ IN


(63)

Assume ξ is an eigenvalue of B, i.e. Bx = ξx where x is the
corresponding eigenvector. Moreover, x can be rewrote as

x =
[
xT1 xT2 · · · xTl

]T
(64)

where xi ∈ Rl×1, i = 1, 2, ..., l. We define a new vector yp

yp = vec
{[
x1 x2 · · · xl

]
⊗Zp

}
, p = 1, ..., N2

(65)
where Zp obeys that the p-th element of vec{Zp} is 1
while other elements are set to 0. Therefore, one can get that
following relation

B⊗INyp = ξyp, p = 1, ..., N2 (66)

That is, given arbitrary eigenvalue ξ of B, B⊗IN will have
N2 numbers of ξ as the eigenvalues. Moreover, since the
number of eigenvalues of B is l2 while B⊗IN is l2 × N2,
the eigenvalues of B⊗IN will be

{ξ1, ξ1, ..., ξ1︸ ︷︷ ︸
N2

, ξ2, ξ2, ..., ξ2︸ ︷︷ ︸
N2

, ..., ξl2 , ξl2 , ..., ξl2︸ ︷︷ ︸
N2

} (67)

and consequently

ρ(B⊗IN ) = ρ(B) (68)

That’s end the proof.

D. Appendix D

One can observe from of Eq.(44) that

V =
(

1− µ

M

)2
I +

N + 1

M2
µ2

M∑
k=1

(T k ⊗ T k)

=
(

1− µ

M

)2
I +

N + 1

M2
µ2diag(vec{STS})

(69)

is an diagonal matrix and A⊗2 = (A2 ⊗A2) is a column
stochastic matrix where the sum of each column is equal to 1.
Thus, according to the theorem that the spectral radius is not
more than any norms of the matrix, we will have

ρ(F ) = ρ(V A⊗2 )

= ρ(A⊗2 V )

≤ max{diag(V )}

=
(

1− µ

M

)2
I +

N + 1

M2
µ2 max{STS}

(70)
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Therefore, if max{diag(V )} < 1, then ρ(F ) < 1 will be
guaranteed. Thus the sufficient condition for ρ(F ) < 1 will
be

µ <
2M

(N + 1) max{STS}+ 1
(71)

To proof the right inequality of Eq.(45), we first propose the
following theorem

Theorem 3: For arbitrary real square matrices sequence
{Bk}tk=1 ∈ Rl×l, t, l ∈ N+, the following inequality will
always hold

ρ

(
p

N∑
k=1

Bk ⊗
N∑
k=1

Bk + q

N∑
k=1

(Bk ⊗Bk)

)

≥
(
p+

q

N

)
ρ

(
N∑
k=1

Bk ⊗
N∑
k=1

Bk

) (72)

where the equality will always hold when B1 = B2 = ... =
BN . The proof is given in Appendix D.

Since
∑P
k=1 T k = I , according to Theorem 3 we can obtain

ρ(F ) ≥
(

1− 2
µ

M
+

µ2

M2
+

(N + 1)µ2

M2P

)
ρ (A2⊗A2)

(73)
It is known that ρ (A2) = 1 since A2 are both column
stochastic matrices. Therefore ρ (A2⊗A2) = 1 and

ρ(F ) ≥ 1− 2
µ

M
+

µ2

M2
+

(N + 1)µ2

M2P
(74)

The equality will hold if T 1 = T 2 = ... = T P . If 1− 2 µ
M +

µ2

M2 + (N+1)µ2

M2P ≥ 1, ρ(F ) will always no less than 1. Thus
one can obtain the necessary condition for the convergence

µ <
2PM

P +N + 1
(75)

Combining the sufficient condition in Eq.(71) and necessary
condition in Eq.(75), we can obtain the range of upper bound
µmax

2M

(N + 1) max{STS}+ 1
≤ µmax ≤

2PM

P +N + 1
(76)

That’s end the proof.

E. Appendix D

For arbitrary real square matrices sequence {Bk}tk=1 ∈
Rl×l, t, l ∈N+, we will have

p

N∑
k=1

Bk ⊗
N∑
k=1

Bk + q

N∑
k=1

(Bk ⊗Bk)

= p

N∑
k=1

Bk ⊗
N∑
k=1

Bk

+
q

N

 N∑
k=1

Bk⊗
N∑
k=1

Bk+

N∑
i=1

N∑
j=i+1

(Bi−Bj)⊗(Bi−Bj)


=
(
p+

q

N

) N∑
k=1

Bk ⊗
N∑
k=1

Bk

+
q

N

N∑
i=1

N∑
j=i+1

(Bi −Bj)⊗ (Bi −Bj)

(77)
According to Theorem 1, we can obtain

ρ

(
p

N∑
k=1

Bk ⊗
N∑
k=1

Bk + q

N∑
k=1

(Bk ⊗Bk)

)

≥
(
p+

q

N

)
ρ

(
N∑
k=1

Bk ⊗
N∑
k=1

Bk

) (78)

Specifically, when B1 = B2 = ... = BN the equality will
hold. That’s end the proof.
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