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Abstract

Hard-Output Maximum Likelihood (ML) detection for Generalized Spatial Mod-

ulation (GSM) systems involves obtaining the ML solution of a number of dif-

ferent MIMO subproblems, with as many possible antenna configurations as

subproblems. Obtaining the ML solution of all of the subproblems has a large

computational complexity, especially for large GSM MIMO systems. In this

paper, we present two techniques for reducing the computational complexity of

GSM ML detection.

The first technique is based on computing a box optimization bound for

each subproblem. This, together with sequential processing of the subproblems,

allows fast discarding of many of these subproblems. The second technique is

to use a Sphere Detector that is based on box optimization for the solution of

the subproblems. This Sphere Detector reduces the number of partial solutions

explored in each subproblem. The experiments show that these techniques are

very effective in reducing the computational complexity in large MIMO setups.
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1. Introduction

GSM (Generalized Spatial Modulation) is a recent transmission technique

in MIMO (Multiple Input-Multiple Output) systems [1, 2]. The distinguishing

feature of this technique is that only a subset of the available transmit antennas

are activated for each transmission. The subsets of antennas (named configu-5

rations in this paper) that can be used to transmit are fixed, numbered, and

known in advance by the receiver. As a consequence, the configuration of active

antennas in each transmission is used to convey extra bits.

GSM has several advantages with respect to conventional MIMO systems.

For instance, this technique alleviates the problem of hardware complexity and10

inter-antenna synchronization [3]. A drawback of GSM is that the detection pro-

cess becomes more involved. The receiver needs to detect both the transmitted

symbols and the configuration of antennas chosen for the transmission.

Most methods proposed for GSM detection have two stages. First, the an-

tenna configuration is detected. Then, the transmitted symbols can be esti-15

mated by solving a smaller MIMO detection problem, involving only the config-

uration of active antennas. Among the existing methods, several are fast (but

suboptimal) methods, like the methods proposed in [1, 4, 5, 6, 7]. Another pop-

ular idea that has sometimes been proposed in two-stage detectors is the use of

extended constellations, which include ”0” as a symbol in order to identify the20

inactive antennas. This is often used in methods that perform some kind of tree

detection, using schemes that are popular in standard MIMO detection such as

Fixed Complexity Sphere Decoding [8] or the K-best method [9].

Maximum Likelihood (ML) detection for GSM problems offers the optimum

performance in terms of detection accuracy. Thus, ML-GSM provides an upper25

bound on the attainable detection accuracy and it is of great interest for re-

searchers. However, it has been considered unfeasible for large MIMO systems

because of the high computational complexity of exhaustive detectors. One

of the known proposals for GSM-ML detection was described in [10]. In that

paper, the detection of the antenna configuration and the detection of the sym-30
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bols are carried out jointly. However, this algorithm depends on obtaining the

Cholesky decomposition of the channel matrix, which can be computed only if

the channel matrix is square. This is a serious limitation to its applicability.

Recently a new ML method for GSM problems has been proposed in [11].

That method uses successive applications of a standard MIMO ML Sphere De-35

coder (SD) (one for each valid antenna configuration). The method features

the use of an adjustable radius in all of the configurations as well as a previous

ordering of the configurations so that the ones with a higher likelihood of being

the correct configuration are processed first. This method is very efficient for

GSM-MIMO setups with moderate-size constellations (4QAM, 16QAM) and/or40

a small to moderate number of antennas (2−4 active antennas in each transmis-

sion, 4−6 receive antennas). However, as will be shown later, the computational

cost renders the method impractical for larger problems.

In this paper, we propose two techniques that are designed to be used along

with the solving strategy described in [11]. Both techniques are based on box45

optimization [12, 13, 14]. The first proposal is the computation of a new bound,

which is based on box optimization. This bound can be used to reduce the

number of subproblems/configurations that must be studied to achieve the GSM

ML solution.

The second proposal is to switch from the standard Schnorr-Euchner decoder50

used in [11] to the box optimization-based sphere decoder described in [14]. This

Sphere Decoder reduces the number of partial solutions that must be examined

in each configuration.

The proposed techniques have been tested in Matlab [15] under four large

MIMO setups. We use the number of information bits per transmission (spectral55

efficiency) as a measure of the size of the GSM-MIMO problems. The results

show that, for large GSM-MIMO problems, both proposals are necessary in

order to perform ML detection with acceptable computing times.
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2. Problem description

Let us consider a GSM-MIMO system with nT transmit antennas, nA active60

antennas, and nR receive antennas, with nA < nT . In this paper, we explore

the case nT > nR and nR ≥ nA.

Given that nA is the number of antennas that can be activated in each

transmission, then the total number of possible subsets of active antennas is(
nT

nA

)
. Usually, not all of the possible configurations are considered as valid65

configurations (i.e., not all possible configurations are used for transmission).

If the selection of antenna will convey nb bits, then nc = 2nb valid antenna

configurations are selected. Each configuration can be described as a set of

antenna indexes, {ik1 , ik2 , · · · , iknA
}, 1 ≤ ikj ≤ nT , j = 1, .., nA.

Let Ω be the constellation of complex symbols, of size |Ω| = L. Hence,70

each symbol carries log2 L code bits each. Thus, the bits to be transmitted

are grouped in blocks of nA · log2(L) +log2(nc). The first nA · log2(L) bits are

mapped into a symbol vector s = [s1, ..., snA
]. The remaining nb = log2(nc) bits

are used to select the antenna configuration.

Let H ∈ CnR×nT be the MIMO overall channel matrix, with indepen-75

dent elements hij ∼ N (0,1). The k-th antenna configuration (with antennas

{ik1 , ik2 , · · · , iknA
}) defines its corresponding channel submatrix Hk, which is

formed by the columns {ik1
, ik2

, · · · , iknA
} of the overall channel matrix H. If

the transmission is carried out through the k-th configuration, the received vec-

tor can be written as80

y = Hk · s + v. (1)

where v denotes a white-Gaussian noise (AWGN) complex vector with elements

vi ∼ N (0, σ2). Thus, the ML detector for the GSM problem can be described

as:

{k̂, ŝ} = arg min
k∈{1,...,nc},s∈ΩnA

‖y −Hk · s‖2. (2)
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Figure 1: GSM-ML basic detection procedure

3. GSM-ML Detection

Standard ML MIMO detection methods cannot be applied directly to GSM85

problems when nT > nR because it is not possible to obtain the required trian-

gular factorization of the channel matrix. In such cases, the only way available

for computing the ML solution (to the best of our knowledge) is to decouple

the problem in nc ML MIMO detection subproblems, one for each antenna

configuration:90

ŝk = arg min
s∈ΩnA

‖y −Hk · s‖2. (3)

Equation (3) defines the ML estimator for the k-th antenna configuration. A

trivial approach to GSM-ML detection would be to use a standard ML MIMO

SD to solve subproblems (3), for all k. By comparing the optimal Euclidean

distances dk = ‖y − Hk · ŝk‖2 for k = 1, ..., nc, we can obtain the minimal

distance, which will indicate the optimal configuration and, therefore, the ML95

solution.

However, the cost of this procedure is very high because nc different ML

subproblems must be solved.

Figure 1 illustrates the procedure. Each box represents the resolution of a

MIMO subproblem (3), returning its ML solution and the associated distance.100

The GSM-ML solution is the ML solution of the subproblem with the smallest

associated distance.
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Figure 2: Procedure of sequential detection with adjustable radius.

3.1. Sequential detection with adjustable radius and ordering

The main goal of the idea proposed in [11] is to decrease the computational

cost of GSM-ML detection through sequential detection and the use of an ad-105

justable radius across all of the subproblems (3). The idea of the adjustable

radius in GSM-ML detection comes from a similar technique that is used in

most standard MIMO SD detectors.

In MIMO SD detectors, the initial value of the radius is chosen as the squared

Euclidean distance of the best feasible solution obtained so far. MIMO SD de-110

tectors search among the possible solutions looking for the one with the smallest

Euclidean distance. When a partial solution has a larger distance than the ac-

tual radius, this partial solution is discarded. When a solution is found with a

distance that is smaller than the radius, the radius is updated as the squared

Euclidean distance of the new solution. [16, 17, 18, 19].115

The selection of the initial radius has a strong impact in the performance

of SD MIMO detectors. When the initial radius is too large, too many partial

solutions are examined, with a high computational cost; on the other hand, when

the initial radius is smaller than the distances of all of the possible solutions,

the detection ends very fast and no solution is returned. [16, 17, 18, 19]120

The technique of the adjustable radius was extended to GSM problems in

[11], combined with sequential detection. An initial radius d is considered,
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chosen initially as +∞. Then, the subproblems (3) are solved in order, using a

MIMO SD detector with adjustable radius. After the k-th subproblem is solved

(returning dk and ŝk), the radius d is compared with the radius dk. If dk < d,125

the radius is updated as dk and the best solution obtained is updated as ŝk. The

new best radius d is then used as the initial radius for the next configuration.

Figure 2 describes the procedure. Let us assume that the solution of the kopt-

th configuration is the actual GSM-ML solution and has radius dkopt
. Then, the

distances of all of the possible solutions in subproblems kopt +1, ..., nc are larger130

than dkopt . Therefore, the SD detector applied to subproblems kopt + 1, ..., nc

will not return a new solution (which is correct because the GSM ML solution

has already been found) and will end very fast.

If the correct configuration (the configuration whose ML solution is the over-

all GSM-ML solution) is among the first positions on the list of configurations135

(i.e., kopt is close to 1), then only a few MIMO ML subproblems must be solved,

and the process will be quite efficient. On the other hand, if kopt is close to nc,

then many subproblems must be solved and the process will be slow. There-

fore, for the sake of efficiency, the configurations must be reordered so that the

correct configuration has a high probability of being located among the first140

positions.

The ordering method proposed in [11] depends on the QR decompositions

[20] of the channel submatrices Hk ∈ CnR×nA , k = 1, ..., nc. The QR decom-

position of Hk gives as result a unitary matrix Qk ∈ CnR×nR and an upper

triangular matrix Rk ∈ CnR×nA such that Hk = QkRk. Given that the last145

nR − nA rows of Rk are zeros, the QR decomposition is usually rewritten as:

Hk = Qk ·Rk = Qk ·

 Rk1

0

 = (Qk1Qk2) ·

 Rk1

0

 , (4)

where Rk1 ∈ CnA×nA , Qk1 ∈ CnR×nA and Qk2 ∈ CnR×(nR−nA). Given

a received signal y, for any sent signal s, the Euclidean distance in the k-

th configurations is ‖y − Hk · s‖2. Given that Qk is unitary and using the

QR decomposition for rectangular channel submatrices Hk ∈ CnR×nA , with150
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nR > nA, we have:

‖y −Hk · s‖2 = ‖QH
k · (y −Qk ·Rk · s) ‖2 = ‖

 QH
k1

QH
k2

 · y −
 Rk1

0

 · s‖2
= ‖ QH

k1 · y −Rk1 · s‖2 + ‖ QH
k2 · y‖2.

(5)

The ordering method proposed in [11] sorts the configurations depending on

the value of the term ‖ QH
k2 · y‖2. However, if nR = nA (which is a reasonable

setup), this term does not exist and therefore cannot be used for ordering.

We have preferred to use a similar ordering method, which was proposed in155

[5] as the basis of a suboptimal, non-ML GSM detection method. It amounts to

obtaining the zero-forcing (ZF) estimator of each subproblem, i.e., solving the

unconstrained versions of the problem (3),

zfk = arg min
s∈CnA

‖y −Hk · s‖2, (6)

obtaining the unconstrained solutions zfk. These solutions are readily found

using the QR decompositions of the matrices Hk (first compute zk = QH
k · y,160

and then solve the upper triangular linear system Rk1 ·zfk = zk(1 : nA), obtain-

ing zfk, the solution of (6); the unconstrained solutions zfk can be quantized,

forming the ZF estimators ẑfk). The squared Euclidean distances of these es-

timators are computed: dzk = ‖y −Hk · ẑfk‖2. Then, the configurations are

sorted according to the distances dzk, from smallest to largest. This method165

does not have any restrictions and has worked quite well in all of the tested

cases.

Next, we describe the base algorithm proposed in [11] as pseudo-code. The

first step would be to compute the QR decompositions of the matrices Hk =

Qk ·Rk. These QR decompositions can be reused as long as the channel matrix170

does not change.

Algorithm 1 implements the ordering phase and is also used to obtain an

initial radius and the vectors zk = QH
k ·y, which are needed in the search phase.
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Algorithm 1 ML GSM ordering phase

1: Input:

2: - nc ∈ N number of antenna configurations

3: - channel submatrices Hk ∈ CnR×nA , k = 1, ..., nc

4: - unitary submatrices Qk ∈ CnR×nR , k = 1, ..., nc

5: -upper triangular submatrices Rk ∈ CnR×nA , k = 1, ..., nc

6: - received signal y ∈ CnR

7: Output:

8: - ordering vector vorder ∈ Nnc

9: - initial radius r

10: - vectors zk

11: /* Start*/

12: if nR > nA then

13: for k = 1 to nc do

14: zk = QH
k · y;

15: zfk = (Rk1)−1 · zk(1 : nA);

16: ẑfk = quantized(zfk);

17: dk = ‖y −Hk · ẑfk‖2

18: end for

19: else if nR = nA then

20: for k = 1 to nc do

21: zk = QH
k · y;

22: zfk = R−1k · zk;

23: ẑfk = quantized(zfk);

24: dk = ‖y −Hk · ẑfk‖2

25: end for

26: end if

27: vorder = sort(d); /* vorder is a vector of indices that sort the vector d from

smallest to largest */

28: r = d(vorder(1));

9



For the second phase (Algorithm 2, successive search among configurations),

an implementation of an ML Sphere Decoder is needed. We used a Schnorr-175

Euchner decoder [17], named SD-SE, taking as the input arguments the trian-

gular matrix coming from the QR decomposition, the received signal (premulti-

plied by the transposed orthogonal matrix coming from the QR decomposition),

and the initial radius. The usual preprocessing (computation of the zk vectors)

is carried out in the ordering phase (Algorithm 1).180

There is an important difference between the case nR = nA and the case

nR > nA. In the case nR = nA, equation (5) simplifies to ‖y − Hk · s‖2 =

‖ QHk
1 · y − Rk1 · s‖2. In this case, the initial radius is the radius that was

computed in previous iterations. However, in the case nR > nA, an extra term

appears in equation (5), ‖ QH
k2 ·y‖2. This term is fixed in the sense that it does185

not depend on the sent signal (it does not depend on the solution of the sphere

decoder). Then, this fixed amount can be subtracted from the radius, obtaining

a tighter bound. This is done in line 18 of Algorithm 2. After including these

details, Algorithm 2 is as follows:
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Algorithm 2 ML GSM search phase

1: Input:

2: - channel submatrices Hk ∈ CnR×nA , k = 1, ..., nc

3: - unitary submatrices Qk ∈ CnR×nT , k = 1, ..., nc

4: - square upper triangular submatrices Rk1 ∈ CnA×nA , k = 1, ..., nc

5: - received signal y ∈ CnR

6: - ordering vector vorder ∈ Nnc

7: - initial radius r

8: - vectors zk = QH
k · y

9: Output:

10: - index of optimal configuration iopt

11: - ML solution sol optim

12: /*Start*/

13: rad = r;

14: for k = 1 to nc do

15: i = vorder(k)

16: if nR > nA then

17: dist extra = ‖zi(nA + 1 : nR)‖2 /* = ‖ QH
k 2 · y‖

2 */

18: dist aux = rad− dist extra

19: end if

20: x = SD SE(Ri1, zi(1 : nA), dist aux)

21: new rad = ‖y −Hi · x‖2

22: if new rad <= rad then

23: rad = new rad

24: sol optim = x

25: iopt = i

26: end if

27: end for

Algorithms 1 and 2 describe the method proposed in [11], with only the190

modification of the ordering phase, using the ZF-based ordering described above.
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4. Proposed Techniques

In this section, we describe our two proposals for improving the computa-

tional cost of Algorithms 1 and 2 in large GSM-MIMO problems.

4.1. Box optimization bound195

Box optimization has been proposed as a help for MIMO detection in dif-

ferent papers [12, 13, 14]. Here we have adapted some of the proposals in those

papers to the GSM problem.

The first proposal is to compute the solution of the continuous least squares

problem for each configuration k:200

ŝrk = arg min
s∈CnA

‖Hk · s− y‖2 ,

min(Re(Ω))≤Re(si)≤max(Re(Ω)) ,1≤i≤m

min(Im(Ω))≤Im(si)≤max(Im(Ω)) ,1≤i≤m

(7)

where si, 1 ≤ i ≤ nA are the components of the vector s. This problem is

derived from (3), discarding the condition that the components of the solution

belong to the constellation Ω.

Compared to (3), this is a continuous problem. The components of the

solution vector do not need to belong to Ω; the only restriction is that the205

search zone be bounded. The limits of the search zone are [min (Re(Ω)) ,

max (Re(Ω))] for the real part of the components of the solution vector s, and

[min (Im(Ω)) ,max (Im(Ω))] for the imaginary part. This search zone has the

form of a box, hence the name of box optimization. An efficient algorithm

for solving this problem, which has been adapted to the MIMO problem, was210

proposed in [14].

The box defined by the constellation and used in (7) contains, by definition,

all of the possible solutions of the MIMO problem, i.e., all vectors s ∈ ΩnA .

Therefore, for each configuration k, the distance drk = ‖y −Hk · ŝrk‖2 (where

ŝrk is the solution of the minimization problem (7) ) is a lower bound of the215

minimum Euclidean distance ‖y −Hk · s‖2 for all of the possible transmitted

signals s in configuration k. Consequently, drk is a lower bound of the distance
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Figure 3: Proposal 1, use of distances drk to discard configurations

dk obtained solving subproblems (3). The cost of the computation of the drk

distances is smaller than the cost of solving subproblems (3). Moreover, the

difference between these two costs is more pronounced when the size of the220

MIMO systems increases.

We propose computing the distances drk prior to the start of the detection,

using the box-optimization solver proposed in [14], and using these distances

to discard configurations. The computation of these distances could be done in

Algorithm 1, after line 17.225

These distances can be used as follows: let us consider the sequential process

proposed in [11]. When a new configuration/subproblem k, k > 1 has to be

explored, a radius has already been computed, which is the Euclidean distance of

the best solution obtained so far. Then, if the present radius is smaller than the

distance drk, the k-th configuration can be safely ignored/pruned because the230

distance of any signal in this subproblem will have a larger Euclidean distance

than drk.

This procedure is graphically described in Figure 3, and a pseudocode im-

plementation is given in Algorithm 3.
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Algorithm 3 ML GSM search phase with Box Optimization aid

1: Input:

2: - channel submatrices Hk ∈ CnR×nA , k = 1, ..., nc

3: - unitary submatrices Qk ∈ CnR×nT , k = 1, ..., nc

4: - square upper triangular submatrices Rk1 ∈ CnA×nA , k = 1, ..., nc

5: - received signal y ∈ CnR

6: - ordering vector vorder ∈ Nnc

7: - initial radius r

8: - vectors zk = QH
k · y

9: - distances drk, k = 1, ..., nc

10: Output:

11: - index of optimal configuration iopt

12: - ML solution sol optim

13: /*Start*/

14: rad = r;

15: for k = 1 to nc do

16: i = vorder(k)

17: if dri < rad then

18: if nR > nA then

19: dist extra = ‖zi(nA + 1 : nR)‖2 /* = ‖ QH
k 2 · y‖

2 */

20: dist aux = rad− dist extra

21: end if

22: x = SD SE(Ri1, zi(1 : nA), dist aux)

23: new rad = ‖y −Hi · x‖2

24: if new rad <= rad then

25: rad = new rad

26: sol optim = x

27: iopt = i

28: end if

29: end if

30: end for

14



As Figure 3 shows, the search is carried out only in those configurations235

whose minimal possible distance (drk) is smaller than the best radius obtained.

This reduces the number of configurations explored. The computational cost of

computing the distances drk is not negligible and in the case of relatively small

problems (bits per transmission of around 20 or less), it is not worthwhile. How-

ever, for larger problems (30− 40 bits per transmission, or more), the reduction240

in examined configurations is significant enough to counterbalance the extra

computational cost coming from the computation of the drk distances.

4.2. Box-optimization-aided sphere decoder

The bound described in Section 4.1 allows reasonable computing times for

problems with numbers of bits per transmission of around 30 − 40. However,245

for larger problems (and especially for large noise), the computational cost per

signal can be unpredictably large.

This problem can be alleviated to a certain extent by switching from the

Schnorr-Euchner decoder (line 22, Algorithm 3) to the hard-output box-optimization-

aided sphere decoder proposed in [14] (available in [21]). This sphere decoder250

has the same basic structure of the SD-SE decoder; that is, it performs a tree

search among partial solutions, looking for the solution with minimum Euclidean

distance and using an adjustable radius to improve efficiency. Box optimization

is used in the sphere decoder proposed in [14] as a means of discarding partial

solutions (i.e., branches of the tree) quite fast, especially in cases with large255

noise.

The computational cost of this sphere decoder is substantially smaller than

standard SD detectors for large problems with large noise because the number of

examined partial solutions is greatly reduced. The number of examined partial

solutions is also very small for small MIMO problems. However, in this case the260

computational cost of the box optimizations may be excessive.

In the GSM case, the situation is similar. For small GSM-MIMO systems,

this technique may not be worthwhile. However, as shown below, the combined

use of the algorithm proposed in [11] and the two proposals described above
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allows reasonable execution times for GSM-MIMO configurations over 50 bits265

per transmission.

It is important to note that the distances drk can also be used to sort the

configurations. However, we preferred to compare the algorithm described in

[11] with our proposals using the same ordering in all cases: the ordering based

on distances from ZF estimators, which was described at the end of section 3.1.270

The goal of selecting this ordering was to evaluate our proposals in a setting

that was independent from the ordering method.

5. Numerical simulations, Results, and Discussion

We chose four setups to test our proposals, which are shown in Table 1. We

estimated the average number of expanded nodes and execution time by means275

of Monte Carlo simulation. The experiments were carried out varying the signal-

to-noise ratio between 5 and 40 dB in increments of 5 dB. We generated 10000

complex Gaussian channel matrices for each value of the signal-to-noise ratio.

Each matrix was used for an equivalent channel coherence time of 5 sent GSM-

MIMO signals. The tests were carried out running Matlab R2017, using a single280

core of an Intel Xeon CPU X5680 processor with the Ubuntu operating system.

Table 1: Setups for computer Simulations

nT nA nR Modulation nc bps/Hz

Setup 1 32 6 6 4QAM 64 18

Setup 2 32 6 6 16QAM 64 30

Setup 3 32 6 6 64QAM 64 42

Setup 4 32 8 8 64QAM 256 56

The proposed methods are ML as long as the detector used for the subprob-

lems (3) is ML. All of the Sphere Decoders used are ML; therefore, all of them

display the same Bit-Error-Rate (BER) curve. For a visual comparison, we also

implemented the popular, suboptimal OB-MMSE method [4]. Figure 4 shows285

the BER curves for the setups 1, 2, and 3 (which differ only in the constella-
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Figure 4: BER comparison between OB-MMSE (non-ML method) and the proposed ML

methods

tions used) along with the corresponding curves for the OB-MMSE method. Of

course, the usual trade-off between accuracy and computing efficiency appears

here; the OB-MMSE method is much faster than any ML method.

Next, we discuss the computational efficiency of the proposed ML tech-290

niques. We compare three methods: SE1, which is the method proposed in

[11]; SE2, which is the same SE1 method but including the proposal 1 (the

box-optimization bound); and BO1, which is the SE1 method but including pro-

posals 1 and 2 (the box-optimization bound and box-optimization-aided sphere

decoder). In the three methods, the configurations were ordered using the ZF-295

based method described in 3.1.

5.1. Results with Setups 1 (4QAM) and 2 (16QAM).

Figures 5 and 6 show the average expanded nodes in the smaller Setups 1

and 2. In these two cases, the average number of expanded nodes does not give

a reliable indication of the computational cost due to the higher preprocessing300

cost of the box optimization. This is clearly seen in Figures 7 and 8, where

the average computing times per GSM-MIMO symbol are shown. It can be

observed that the SE1 method is faster in these smaller problems than the SE2

17



5 10 15 20 25 30 35 40

SNR (dB)

0

100

200

300

400

500

600

#
n
o
d
e
s

Expanded nodes

(n
T
=32, n

T
A

=6, n
R

=6, nbpa=6)

BO
1
 (4QAM)

SE
1
 (4QAM)

SE
2
 (4QAM)

Figure 5: Average expanded nodes in Setup 1 (4QAM) .

and BO1 methods.

5.2. Results with Setups 3 and 4 (64 QAM)305

It is well known that when the size of the problem increases, all ML sphere

decoders increase the number of nodes (in most cases, exponentially). This

problem is even more acute in a GSM setting.

Table 2: Average computing times (seconds) in Setup 3.

SNR SE1 SE2 BO1

5 1.7E+00 5.8E-01 8.4E-02

10 2.0E-01 1.2E-01 6.3E-02

15 6.9E-02 5.4E-02 5.2E-02

20 2.9E-02 3.8E-02 4.5E-02

25 1.6E-02 2.9E-02 3.5E-02

30 9.9E-03 2.6E-02 2.9E-02

35 9.2E-03 2.5E-02 2.7E-02

40 8.6E-03 2.5E-02 2.6E-02

Tables 2 and 3 show that, in Setup 3, SE2 and BO1 have similar results,

which are far better than the results of the SE1 method. The box optimization310
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Figure 8: Average computing times (seconds) in Setup 2 (16QAM).

bound is very effective in this case, especially in the low SNR regime. The BO1

method is very stable in terms of computing time and expanded nodes. In this

setup, the differences between methods are very large, which makes a graphic

representation inappropriate. This is the reason why the results of this setup

have been presented as tables.315

The results show a clear trend, favoring simple algorithms for small problems,

while sophisticated algorithms perform better in large problems. We checked

this idea by performing a larger experiment (Setup 4), which uses 56 bits per

transmission. In this setup, the SE1 method was far too slow. We reduced the

experiment to only 500 channel matrices. The computing times obtained are320

shown in Table 4.

The results show that the computing times needed by SE1 are not acceptable,

especially for large noise. For example, for a SNR of 15dB, the computational

cost of method SE1 is three times larger than the methods that use our pro-

posals, SE2 and BO1. When the noise increases, the difference becomes much325

larger. We performed another experiment using Setup 4 and 10000 channel ma-

trices, but involving only the methods SE2 and BO1. The results are shown in

Figures 9 and 10.
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Table 3: Average expanded nodes in Setup 3.

SNR SE1 SE2 BO1

5 8.3E+04 2.6E+04 3.4E+02

10 9.2E+03 4.8E+03 2.5E+02

15 3.0E+03 1.4E+03 2.1E+02

20 9.9E+02 6.2E+02 1.7E+02

25 3.5E+02 1.8E+02 8.8E+01

30 7.6E+01 4.4E+01 3.2E+01

35 4.1E+01 3.0E+01 1.5E+01

40 1.6E+01 1.3E+01 8.9E+00

The results indicate that, as long as the noise is moderate (SNR ≥ 10),

the SE2 method is slightly better. However, in the presence of large noise, it330

becomes necessary to switch to the box optimization sphere detector (method

BO1) in order to obtain acceptable computing times.

Figure 11 shows the effect of the proposed techniques when the size of the

problem increases. We have chosen spectral efficiency (bps/Hz) as a measure

of the size of the GSM-ML problem, see Table 1. For ease of interpretation of335

the graph, we have chosen a single SNR (10dB) as a representative SNR. Then,

the average computing times of each method for a SNR of 10dB are displayed,

versus bps/Hz.

6. Conclusion

The algorithm proposed in [11] allows ML detection in GSM-MIMO prob-340

lems of small and moderate size. However, when this algorithm is applied to

large MIMO problems, its computational cost becomes excessive, even for re-

search simulations. In this paper, we propose two new techniques that can be

used along with the algorithm proposed in [11] for large GSM-MIMO problems.

The first proposal is the use of a bound based on box optimization that can345

be used to discard configurations. This proposal is very useful for large GSM
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Table 4: Average computing times (seconds) in Setup 4 (experiment with only 500 channel

matrices)

SNR SE1 SE2 BO1

5 7.2E+01 1.8E+00 2.6E-01

10 4.9E-00 3.1E-01 2.5E-01

15 7.4E-01 1.9E-01 2.5E-01

20 5.5E-01 1.7E-01 2.3E-01

25 1.1E-01 1.5E-01 1.8E-01

30 7.8E-02 1.4E-01 1.5E-01

35 4.2E-02 1.3E-01 1.4E-01

40 3.5E-02 1.3E-01 1.3E-01

MIMO detection problems with moderate noise. The second proposal is to use

a box-optimization-aided sphere decoding solver for the MIMO subproblems.

The experimental results show that this technique becomes necessary in order

to obtain reasonable computing times in large MIMO-GSM detection problems,350

if the noise is also large.
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