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New Generalised Approximation Methods for the Cumulative

Distribution Function of arbitrary multivariate Rayleigh Random

Variables
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Abstract

Based on our previous works, we revise a simple series expansion for multivariate probability density
functions (PDF) of the Rayleigh distribution. From there we derive a similar expression for the cumu-
lative density function (CDF) of multivariate Rayleigh random variables of arbitrary dimension and
covariance matrix. The CDF is of particular interest as it can be used to compute outage probabilities
of multi-channel wireless systems, for which we provide an example. We compare the performance
of the newly proposed approximation to recently proposed methods based on numerical integration
methods.

Keywords: Outage Probability, Cumulative Distribution Function, Series Expansion, Multivariate
Rayleigh distribution

1 Introduction

The Rayleigh distribution is ubiquitous in the field of engineering, specifically in signal processing. Multi-
variate Rayleigh random variables play a particularly important role in modelling multi-channel wireless
systems. However, as the multivariate extension of the Rayleigh distribution has no known closed form,
accurate computations remain troublesome. Approximation methods aimed at certain specific cases (fixed
number of channels and correlation structure) of the multivariate case are numerous, and have been pro-
posed for decades [3, 5, 2, 1, 4, 11]. Some recent approximations of the density or other properties extend
both dimensionality as well as the range of distribution parameters, but are still subject to considerable
limitations [6, 7, 8].

Based on the series expansion introduced by Beard and Tekinay [1] we introduce an extension, wich
relaxes parameter assumptions and dimensional restrictions entirely, while preserving computational ef-
fort and matching orneven outperforming integration based methods. The computation of the outage
probability of multi-channel wireless systems via the cumuluative density function (CDF) is one of the
most common applications of the Rayleigh distribution in signal processing. We therefore develop an effi-
cient series expansion that can directly compute these properties while performing similarly or superior to
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other approaches. Restrictions to neither dimension (e.g. [12]) nor the structure of the covariance matrix
(e.g. [16]) will apply in the development of our approximation.

This paper is structured as follows: In Section 2 we perform some preliminary computations that
set up the construction of the new PDF expansions, which serve as the foundation of the CDF approx-
imations. We then derive the CDF approximations by integrating over the PDF expansions and create
an approximation, thus eliminating the necessity for numerical integration methods. In Section 3 we in-
vestigate the computaional performance of the derived approximations against previous approaches that
are based on multivariate numerical integration. Section 4 is dedicated to the applications of the newly
procured series approximation and a numerical simulation. We close the paper with a brief summary and
conclusion in Section 5.

2 Approximation Method

2.1 Preliminary Considerations

We begin with the derivation of the Rayleigh PDF, analogously to previous approaches [15]. The den-
sity may be expressed through the distributions of two normal random variables X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn) 1.

f(x1, . . . , xn, y1, . . . , yn) =
1

(2π)n|Σ| exp

(
−(x, y)TΣ−1(x, y)

2

)
(1)

We denote the combined covariance matrix by Σ.

Σ =




0

σ1σnρ1,n

0

...

...

σ1σ2ρ1,2

0

σ2
1

σ1σnρ1,n

0

σ1σ2ρ1,2

0

σ2
1

0

0

. . .

σ2
2

0

σ1σ2ρ1,2

. . .

. . .

. . .

σ1σ2ρ1,2

. . . . . .

. . .

. . .

. . .

0

0

σn

. . .

0

σ1σnρ1,n

σn

0

...

...

0

σ1σnρ1,n

0



We may then derive the Rayleigh density function by computing the marginal probability function by
integrating:

f(r1, . . . , rn) = γn,K

∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

exp (at cos(x̄t)) dx1 . . . dxn (2)
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Before moving onto new approximation methods for the Rayleigh PDF and CDF, we recall the ultimate
intention. The derivation of the results in this paper all have the same starting point 2. The fundamental
difference between the approaches lies in the type of expansion applied to the exponential function of the
integrand, to further break down the complex integration into a more computable series expansion. We
begin with a rather straight forward Taylor expansion around z = 0 which we know as the fundamental
characterisation of the exponential function.

2.2 Taylor Approximation

Instead of the Bessel-function expansion proposed by Tekinay and Beard [1] we apply the simpler series
definition of the exponential function:

exp(x) =

∞∑

k=0

xk

k!
(3)

The integrand needs to be acurately approximated in the range [0, 2π]. Therefore a simple expansion
should be sufficently robust for integration, and will greatly simplify the overall expression and speed up
evaluation.
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f(r1, . . . , rn) = γn,K

∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

∞∑

jt=0

(at cos(x̄t))
jt

jt!
dx1 . . . dxn

b(t,jt)=
a
jt
t
jt!= γn,K

∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

∞∑

jt=0

b(t,jt) cos(x̄t)
jtdx1 . . . dxn

= γn,K

∫ 2π

0
. . .

∫ 2π

0

∞∑

j1=0

· · ·
jp−1∑

jp=0

p∏

t=1

b(t,jt) cos(x̄t)
jtdx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

p∏

t=1

b(t,j∗t ) ×
∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

cos(x̄t)
j∗t dx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

p∏

t=1

b(t,j∗t ) ×
∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

(
exp(ix̄t) + exp(−ix̄t)

2

)j|t∗
dx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
1

2

)∑p
t=1 j

∗
t

p∏

t=1

b(t,j∗t )

×
∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

j∗t∑

kt=0

(
j∗t
kt

)
exp(iktx̄t) exp(−i(j∗t − kt)x̄t)dx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
1

2

)∑p
t=1 j

∗
t

p∏

t=1

b(t,j∗t ) ×
∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

j∗t∑

kt=0

(
j∗t
kt

)
exp(ix̄t(2kt − j∗t ))dx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
1

2

)∑p
t=1 j

∗
t

p∏

t=1

b(t,j∗t )

×
∫ 2π

0
. . .

∫ 2π

0

∑

kv∈K

p∏

t=1

((
j∗t
kt

)
exp(ix̄t(2kt − j∗t ))

)
dx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
1

2

)∑p
t=1 j

∗
t

p∏

t=1

b(t,j∗t )

×
∫ 2π

0
. . .

∫ 2π

0

∑

kv∈K

(
p∏

t=1

(
j∗t
kt

))
exp(i

p∑

t=1

x̄t(2kt − j∗t ))dx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
1

2

)∑p
t=1 j

∗
t

p∏

t=1

b(t,j∗t )

×
∑

kv∈K

(
p∏

t=1

(
j∗t
kt

))∫ 2π

0
. . .

∫ 2π

0
exp(i

p∑

t=1

x̄t(2kt − j∗t ))dx1 . . . dxn

(4)

Here kv = (k1, . . . , kp), so that K = {(k1, . . . , kp)|k1 = 0, . . . , j∗1 ; . . . ; kp = 0, . . . , j∗p}, which denotes all
possible permutations of index variables. This formulation is once more highly reminiscent of previous
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results. However, the coefficients b(t,j∗t ) are differently defined, as well as the sum over the integrals.
Regardless, we are still able to evaluate the subsequent integral analytically. Dependent on the coefficient
in the power, the integral can only result in 0 or 2π. We define αt = 2kt − j∗t , and may therefore define
the Integral as follows:

Int = (2π)n
n−1∏

l=1

(
1−

n−1∏

m=1

I{
sgn(al,m)

(
2kal,m−j∗l,m

)}
)

︸ ︷︷ ︸
=Int(j∗t ,kv)

, (5)

where A denotes the matrix of indices 1, . . . , p. The matrix A for the n-dimensional Rayleigh distir-
bution is of dimension n− 1, and thus can be written as follows:

An =




n− 1

...

3

2

1

−2(n− 3)

...

−(n+ 1)

−n

n

2n− 3

n+ 1

−p

p

. . .

. . .

. . .



.

In this manner the matrix elements are succesively set to integers between 1 and p. We elaborated
in our previous work [15] how to determine the non-zero contributions. Since the integral has been
analytically resolved, we are therefore left with:

f(r1, . . . , rn) = (2π)nγn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
1

2

)∑p
t=1 j

∗
t

p∏

t=1

b(t,j∗t )

∑

kv∈K

(
p∏

t=1

(
j∗t
kt

))
Int(j∗t , kv). (6)

The reverse application of the Cauchy sum reintroduces the original indeces jt and eliminates the
nested sums, providing a more manageable and terse formulation.

2.2.1 Cumulative Distribution Function

Based on the result of the previous section we can now continue to derive the CDF of the Rayleigh distri-
bution by F (x1, . . . , xn) =

∫ xn
0 . . .

∫ x1

0 f(r1, . . . , rn)dr1 . . . drn. We introduce the notation j∗ = (j∗1 , . . . , j
∗
p)

to summarise all terms not essential for integration.
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F (x1, . . . , xn) =

∫ xn

0
. . .

∫ x1

0
(2π)nγn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
1

2

)∑p
t=1 j

∗
t

p∏

t=1

b(t,j∗t )

∑

kv∈K

(
p∏

t=1

(
j∗t
kt

))
Int(j∗t , kv)dr1 . . . drn

Tonelli
=

∞∑

j1=0

· · ·
jp−1∑

jp=0

(2π)n
(

1

2

)∑p
t=1 j

∗
t ∑

kv∈K

(
p∏

t=1

(
j∗t
kt

))
Int(j∗t , kv)

︸ ︷︷ ︸
=c(j∗)

∫ xn

0
. . .

∫ x1

0
γn,K

p∏

t=1

b(t,j∗t )dr1 . . . drn

=
∞∑

j1=0

· · ·
jp−1∑

jp=0

c(j∗)
∫ xn

0
. . .

∫ x1

0

r1 · · · rn
(2π)n|K|1/2

p∏

t=1

a
j∗t
t

j∗t !
exp

(
−−1

|K|
n∑

i=1

r2
i ci,i

)
dr1 . . . drn

|j−k|=t
=

∞∑

j1=0

· · ·
jp−1∑

jp=0

c(j∗)
∫ xn

0
. . .

∫ x1

0

r1 · · · rn
(2π)n|K|1/2

p∏

t=1

(
−ct
|K| rlrk

)j∗t

j∗t !
exp

(
−−1

|K|
n∑

i=1

r2
i ci,i

)
dr1 . . . drn

=
∞∑

j1=0

· · ·
jp−1∑

jp=0

c(j∗)
∫ xn

0
. . .

∫ x1

0

r1 · · · rn
(2π)n|K|1/2

n∏

i=1

rj̄ii

p∏

t=1

(
−ct
|K|

)j∗t

j∗t !
exp

(
−−1

|K|
n∑

i=1

r2
i ci,i

)
dr1 . . . drn

=
∞∑

j1=0

· · ·
jp−1∑

jp=0

c(j∗)
(2π)n|K|1/2

p∏

t=1

(
−ct
|K|

)j∗t

j∗t !

∫ xn

0
. . .

∫ x1

0

n∏

i=1

rj̄i+1
i exp

(
−−1

|K|r
2
i ci,i

)
dr1 . . . drn

ind.
=

∞∑

j1=0

· · ·
jp−1∑

jp=0

c(j∗)
(2π)n|K|1/2

p∏

t=1

(
−ct
|K|

)j∗t

j∗t !

n∏

i=1

(∫ xi

0
rj̄i+1
i exp

(
−−1

|K|r
2
i ci,i

)
dxi

)

=
∞∑

j1=0

· · ·
jp−1∑

jp=0

c(j∗)
(2π)n|K|1/2

p∏

t=1

(
−ct
|K|

)j∗t

j∗t !

n∏

i=1

[
2j̄i/2|K|
ci,i

(
ci,i
|K|

)−j̄i/2(
Γ

(
j̄i
2

+ 1

)
− Γ

(
j̄

2
,
ci,ix

2
i

2|K|

))]

=
∞∑

j1=0

· · ·
jp−1∑

jp=0

c(j∗)
(2π)n|K|1/2

p∏

t=1

(
−ct
|K|

)j∗t

j∗t !

n∏

i=1

(
2j̄i/2|K|
ci,i

(
ci,i
|K|

)−j̄i/2)

n∏

i=1

(
Γ

(
j̄i
2

+ 1

)
− Γ

(
j̄i
2
,
ci,ix

2
i

2|K|

))
. (7)

Here ct denotes the cofactor matrix value c(i,j) corresponding to the definition of the coefficients at.
We have denoted j̄i as the sum of j∗t values affecting the respective ri variables. In full this leads to the
expression below:
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F (x1, . . . , xn) =
∞∑

j1=0

· · ·
jp−1∑

jp=0

(2π)n
(

1
2

)∑p
t=1 j

∗
t
∑

kv∈K
(∏p

t=1

(j∗t
kt

))
Int(j∗t , kv)

(2π)n|K|1/2
p∏

t=1

(
−ct
|K|

)j∗t

j∗t !

n∏

i=1

(
2j̄i/2

(
ci,i
|K|

)−j̄i/2−1
)

n∏

i=1

(
Γ

(
j̄i
2

+ 1

)
− Γ

(
j̄

2
,
ci,ix

2
i

2|K|

))

=
1√
|K|

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
1

2

)∑p
t=1 j

∗
t−
∑n
i=1 j̄i/2 ∑

kv∈K

(
p∏

t=1

(
j∗t
kt

))
Int(j∗t , kv)

p∏

t=1

(
−ct
|K|

)j∗t

j∗t !

n∏

i=1

(
ci,i
|K|

)−j̄i/2−1(
Γ

(
j̄i
2

+ 1

)
− Γ

(
j̄i
2
,
ci,ix

2
i

2|K|

))
(8)

The last line therefore yields a series expansion of the cumulative distribution function for Rayleigh
distributions of arbitrary dimension. We like to note that the products largely don’t change with different
xi values. The sum over the matrix K determines which sum terms contribute to the series representation,
and remains the same regardless of covariance matrix. The remaining factors are dependent on the values
of the covariance matrix, and have to be computed only for non-zero contributions. The gamma functions
then need to be evaluated for each new point (x1, . . . , xn). This tiered process separates the setup and
evaluation process from each other, and makes the repeated evaluation of the series highly efficient.

2.3 Polynomial Expansion

The series definition of the exponential function constitutes one of the simplest series we can investigate.
However, the convergence rate of the Taylor expansion can be matched and surpassed by several other
series expansions. Two of which are listed in Equation 9

exp(z) =
∞∑

k=0

z2k−1(z + 2k)

(2k)!
exp(z) =

∞∑

k=0

z2k(z + 2k + 1)

(2k + 1)!
(9)

These expansions can be introduced into Equation 2 to fashion yet another series expansion for the
Rayleigh PDF. The faster convergence rate of these expansion should then translate to the final PDF
approximation. Without loss of generality we will use the first version of the polynomial expansion.
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f(r1, . . . , rn) = γn,K

∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

∞∑

jt=0

(at cos(x̄t))
2jt−1((at cos(x̄t)) + 2jt)

(2jt)!
dx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

(at cos(x̄t))
2j∗t−1((at cos(x̄t)) + 2j∗t )

(2j∗t )!
dx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

a
2j∗t−1
t

(2j∗t )!

)∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

(cos(x̄t))
2j∗t−1

p∏

t=1

((at cos(x̄t)) + 2j∗t )dx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

a
2j∗t−1
t

(2j∗t )!

) ∑

ξ∈{0,1}p

∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

aξtt cos(x̄t)
2j∗t−1+ξt(2j∗t )1−ξtdx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

a
2j∗t−1
t

(2j∗t )!

) ∑

ξ∈{0,1}p

p∏

t=1

aξtt (2j∗t )1−ξt
∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

cos(x̄t)
2j∗t−1+ξtdx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

a
2j∗t−1
t

(2j∗t )!

) ∑

ξ∈{0,1}p

p∏

t=1

aξtt (2j∗t )1−ξt

×
∫ 2π

0
. . .

∫ 2π

0

p∏

t=1

(
eix̄t + e−ix̄t

2

)2j∗t−1+ξt

dx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

a
2j∗t−1
t

(2j∗t )!

) ∑

ξ∈{0,1}p

p∏

t=1

aξtt (2j∗t )1−ξt

2j
∗
t−1+ξt

×
∫ 2π

0
. . .

∫ 2π

0

∑

ρ∈{−1,1}p

p∏

t=1

eix̄tρt(2j
∗
t−1+ξt)dx1 . . . dxn

= γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

a
2j∗t−1
t

(2j∗t )!

) ∑

ξ∈{0,1}p

p∏

t=1

aξtt (2j∗t )1−ξt

2j
∗
t−1+ξt

×
∑

ρ∈{−1,1}p

∫ 2π

0
. . .

∫ 2π

0
ei
∑p
t=1 x̄tρt(2j

∗
t−1+ξt)dx1 . . . dxn.

This yields a formulation of the PDF approximation, we can now evaluate. Again, the final step is to
determine non-zero sum contributions by the established method, based on the underlying coefficents. Any
non-zero integral has the value (2π)n. We now compute the corresponding CDF of this series expansion.

f(r1, . . . , rn) = (2π)nγn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

a
2j∗t−1
t

(2j∗t )!

) ∑

ξ∈{0,1}p

p∏

t=1

aξtt (2j∗t )1−ξt

2j
∗
t−1+ξt

∑

ρ∈{−1,1}p
I(ρ, ξ, j∗) (10)

The indicator I ∈ {0, 1} denotes the outcome of the integration, based on j∗ = (j∗1 , . . . , j
∗
p),ρ =

(ρ1, . . . , ρp) and ξ = (ξ1, . . . , ξp).

2.3.1 Cumulative Distribution Function

As before we integrate the previously acquired PDF approximation, to obtain the CDF.
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F (x1, . . . , xn) =

∫ x1

0
. . .

∫ xn

0
(2π)nγn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

a
2j∗t−1
t

(2j∗t )!

)
(11)

∑

ξ∈{0,1}p

p∏

t=1

aξtt (2j∗t )1−ξt

2j
∗
t−1+ξt

∑

ρ∈{−1,1}p
I(ρ, ξ, j∗)dr1 . . . drn (12)

=
1

|K|
∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

1

(2j∗t )!

) ∑

ξ∈{0,1}p

p∏

t=1

(2j∗t )1−ξt

2j
∗
t−1+ξt

∑

ρ∈{−1,1}p
I(ρ, ξ, j∗) (13)

∫ x1

0
. . .

∫ xn

0
r1 . . . rn exp

(
−1

|K|
n∑

i=1

ciir
2
i

)
p∏

t=1

a
2j∗t−1ξt
t dr1 . . . drn (14)

=
1

|K|
∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

1

(2j∗t )!

) ∑

ξ∈{0,1}p

p∏

t=1

(−ct
|K|

)2j∗t +1−ξt (2j∗t )1−ξt

2j
∗
t−1+ξt

(15)

∑

ρ∈{−1,1}p
I(ρ, ξ, j∗)

n∏

l

∫ xl

0

(
rl exp

(−r2
l cll
|K|

)
rkll

)
dxl. (16)

The integration of the innermost sum term is the last remaining non-trivial operation.

∫ xl

0

(
rl exp

(−r2
l cll
|K|

)
rkll

)
dxl =

∫ xl

0

(
rkl+1
l exp

(−r2
l cll
|K|

))
dxl

=
1

2

(
cll
|K|

)− kl
2
−1(

Γ

(
kl
2

+ 1

)
− Γ

(
kl
2

+ 1,
cllx

2
l

|K|

))
.

Rejoining the integral with the CDF approximation yields the final result below.

F (x1, . . . , xn) =
1

|K|
∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

1

(2j∗t )!

) ∑

ξ∈{0,1}p

p∏

t=1

(−ct
|K|

)2j∗t +1−ξt (2j∗t )1−ξt

2j
∗
t−1+ξt

∑

ρ∈{−1,1}p
I(ρ, ξ, j∗)

n∏

l

1

2

(
cll
|K|

)− kl
2
−1(

Γ

(
kl
2

+ 1

)
− Γ

(
kl
2

+ 1,
cllx

2
l

|K|

))
. (17)

2.4 Fourier Expansion

We investigate the Bessel function expansion by reintroducing the previously derived PDF function below:

f(r1, . . . , rn) = γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

p∏

t=1

bt,j∗t

∑

ρ∈{−1,1}p

p∏

t=1

I{αtj∗t ρt=0}. (18)

9

                  



Here bt,jt,j?t∗ = βt,j∗t Ij∗t (|at|) with βt,j∗t = 2I{ct>0}(−1)
j∗t I{j∗t 6=0} . As at = − ct

|K|rlrk and rlrk/|K| > 0, the
indicator depends solely on the correlation values ct. The indicator function inside the sum determines
which sum terms are non-zero. As the at coefficients contain the variables r1, . . . , rn we need to rearrange
terms to find our integration variables for the CDF.

F (x1, . . . , xn) =

∫ xn

0
. . .

∫ x1

0
γn,K

∞∑

j1=0

· · ·
jp−1∑

jp=0

p∏

t=1

bt,j∗t

∑

ρ∈{−1,1}p

p∏

t=1

I{αtj∗t ρt=0}dx1 . . . dxn (19)

=

∞∑

j1=0

· · ·
jp−1∑

jp=0

p∏

t=1

βt,j∗t

∑

ρ∈{−1,1}p

p∏

t=1

I{αtj∗t ρt=0}

︸ ︷︷ ︸
=R(j∗1 ,...,j

∗
p)

∫ xn

0
. . .

∫ x1

0
γn,K

p∏

t=1

Ij∗t (|at|)dx1 . . . dxn (20)

=
∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

βt,j∗t

)
R(j∗1 , . . . , j

∗
p)

∫ xn

0
. . .

∫ x1

0
γn,K

p∏

t=1

Ij∗t (|at|)dx1 . . . dxn (21)

=
∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

βt,j∗t

)
R(j∗1 , . . . , j

∗
p)

∫ xn

0
. . .

∫ x1

0
γn,K

p∏

t=1

∞∑

it=0

(
|at|
2

)2it+j∗t

it!Γ(it + j∗t + 1)
dx1 . . . dxn

(22)

=
∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

βt,j∗t

)
R(j∗1 , . . . , j

∗
p)

∫ xn

0
. . .

∫ x1

0
(23)

γn,K

∞∑

i1=0

· · ·
ip−1∑

ip=0

p∏

t=1

(
|at|
2

)2i∗t+j∗t

(i∗t )!Γ(i∗t + j∗t + 1)
dx1 . . . dxn (24)

=

∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

βt,j∗t

)
R(j∗1 , . . . , j

∗
p)

∞∑

i1=0

· · ·
ip−1∑

ip=0

p∏

t=1

1

22i∗t+j∗t (i∗t )!Γ(i∗t + j∗t + 1)
(25)

∫ xn

0
. . .

∫ x1

0

r1 . . . rn√
|K|

exp

(
−1

|K|
n∑

i=1

r2
i cii

)
p∏

t=1

(
ct
|K|

)2i∗t+j∗t n∏

l=1

rkidx1 . . . dxn (26)

=
1

|K|
∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

βt,j∗t

)
R(j∗1 , . . . , j

∗
p)

∞∑

i1=0

· · ·
ip−1∑

ip=0

p∏

t=1

(
ct
|K|

)2i∗t+j∗t

22i∗t+j∗t (i∗t )!Γ(i∗t + j∗t + 1)
(27)

∫ xn

0
. . .

∫ x1

0

n∏

l=1

rkl+1 exp

(
−1

|K|
n∑

i=1

r2
i cii

)
dx1 . . . dxn (28)

Now at last we may determine the integrals within the series expansion. Due to indepedence of the
integrals we can write the inner integration as follows:

∫ xn

0
. . .

∫ x1

0

n∏

l=1

rkl+1 exp

(
−1

|K|
n∑

i=1

r2
i cii

)
dx1 . . . dxn =

n∏

l=1

∫ xl

0
rkl+1 exp

(−cll
|K| r

2
l

)
dxl

=

n∏

l=1

1

2

(
cll
|K|

)−kl/2−1(
Γ

(
kl + 2

2

)
− Γ

(
kl + 2

2
, x2

l

))
.
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This results in the final formula below:

=
1

|K|
∞∑

j1=0

· · ·
jp−1∑

jp=0

(
p∏

t=1

βt,j∗t

)
R(j∗1 , . . . , j

∗
p)
∞∑

i1=0

· · ·
ip−1∑

ip=0

p∏

t=1

(
ct
|K|

)2i∗t+j∗t

22i∗t+j∗t (i∗t )!Γ(i∗t + j∗t + 1)

n∏

l=1

1

2

(
cll
|K|

)−kl/2−1(
Γ

(
kl + 2

2

)
− Γ

(
kl + 2

2
, x2

l

))
.

3 Comparison

To test the accuracy of the newly proposed approximation, we compare the approximation with a pre-
viously proven accurate version of the PDF series expansion, as well as with a recent integration-based
approach. In a previous work we have developed a series expansion based on Bessel functions, which
we have shown to be convergent. With a sufficient number of sum terms, we can approximate the true
solution to an arbitrary degree, if computation time is secondary.

3.1 Three dimensional case

The example values we intend for the three dimensional example are as follows: σ2
1 = 0.25, σ2

2 = 0.1, σ2
3 =

0.5 and the correlation values of ρ1,2 = 0.3, ρ1,3 = −0.4 and ρ2,3 = 0.1. The covariance matrix can then
be written as stated in Equation 29.

Σ =



σ1σ3ρ1,3

σ1σ2ρ1,2

σ2
1

σ2σ3ρ2,3

σ2
2

σ1σ2ρ1,2

σ2
3

σ2σ3ρ2,3

σ1σ2ρ1,2

 (29)

We have evaluated the different approximations at each point of a three dimensional grid, spanning
the hypercube [0, 5]3 with a total of 125000 evaluation points. We tested the results against the quasi-true
value of the PDF and listed the results in Table 1.
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Name AAE REL AGAE MAX
In

te
g
ra

ti
o
n

Kronrod 1.9503346E-11 4.6939900E-08 2.4379183E-06 2.4080532E-10

TOMS614 3.0111506E-08 6.9433501E-05 3.7639383E-03 5.8896215E-07

Simpson 1.9439856E-11 4.7223663E-08 2.4299820E-06 2.4080532E-10

Mixed 1.9503344E-11 4.6939877E-08 2.4379180E-06 2.4080532E-10

Romberg 3.4783528E-11 6.5846685E-07 4.3479410E-06 2.7439149E-10

Terms

B
e
ss
e
l
F
u
n
c
ti
o
n

E
x
p
a
n
si
o
n

3 1.6256426E-05 5.6008235E-01 2.0320533E+00 2.0966767E-04

6 1.8165480E-07 1.5522666E-02 2.2706851E-02 4.2003199E-06

9 1.6144238E-09 2.8107663E-04 2.0180297E-04 6.5966471E-08

12 1.1423477E-11 3.4827283E-06 1.4279346E-06 8.1955314E-10

15 6.4546389E-14 3.0641966E-08 8.0682987E-09 7.8266310E-12

18 2.9238037E-16 1.9732728E-10 3.6547547E-11 5.7371208E-14

21 1.0674926E-18 9.5416639E-13 1.3343658E-13 3.3293138E-16

24 3.1332562E-21 3.5393538E-15 3.9165702E-16 1.5619288E-18

27 7.0473141E-24 1.0044770E-17 8.8091427E-19 1.0842022E-19

Terms

T
a
y
lo
r
S
e
ri
e
s
E
x
p
a
n
si
o
n

3 5.4035713E-03 3.0227990E+01 6.7544641E+02 5.1005191E-02

6 4.3727093E-04 4.9026140E+00 5.4658867E+01 8.1181187E-03

9 1.9367288E-04 3.2937935E+00 2.4209110E+01 4.3054980E-03

12 3.5230129E-06 1.6033958E-01 4.4037661E-01 1.7998233E-04

15 2.8929595E-06 1.6211425E-01 3.6161994E-01 1.7073218E-04

18 1.2518157E-07 1.6309574E-02 1.5647696E-02 1.0296006E-05

21 1.9228045E-08 3.1333672E-03 2.4035056E-03 2.7818631E-06

24 9.1636365E-10 2.5776503E-04 1.1454546E-04 1.9111399E-07

27 6.0589629E-11 2.2236612E-05 7.5737036E-06 1.7723532E-08

Table 1: Error measures and computation time for different CDF approximation approaches.

We have shown in our previous work how the Bessel function based expansion compares to recent
integration approaches. Here we are mainly interested in the comparison of the newly introduced ap-
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proximation to the other methods. We evaluated up to 27 sum terms in order to match the accuracy of
the best integration approaches. Naturally, the series expansion is not limited, and can be increased to
any desired accuracy. While the convergence rate of the expansion is considerably slower than that of
the Bessel function expansion, the true advantage lies in its simplicity. Rather than having to evaluate
numerous Bessel functions (which has to be done via series expansion or by numerical means itself), we
can simply evaluate elementary functions, resulting in advantageous evaluation times. However, since
we already have a well-performing PDF approximation, we are focused on the applicability of the CDF
series expansion. The Taylor expansion benefits from its simplicity. The integral possesses an analytical
solution, thus the CDF can be evaluated almost in the same manner as the PDF, saving the trouble of
multivariate numerical integration. The result of the same test are listed in Table 2.

TYPE AAE REL AGAE MAX TIME (s)

In
te
g
ra

ti
o
n

Kronrod 2.21487617E-10 8.32495896E-08 2.76859522E-08 5.64524982E-10 465.18500

TOMS614 3.50063212E-07 1.16583701E-04 4.37579015E-05 8.65269964E-07 734.11500

Simpson 2.20643529E-10 8.30729220E-08 2.75804411E-08 5.63306179E-10 3174.95500

Mixed 2.21487598E-10 8.32495861E-08 2.76859497E-08 5.64525093E-10 93.59000

Romberg 1.61332637E-10 7.22673027E-08 2.01665796E-08 5.86725224E-10 921.67100

Terms

T
a
y
lo
r
S
e
ri
e
s
E
x
p
a
n
si
o
n

3 4.52660723E-02 6.20384842E+00 5.65825904E+00 1.96297952E-01 0.04100

6 4.57357190E-03 5.51072582E-01 5.71696488E-01 3.06116569E-02 0.11000

9 2.30087109E-03 2.60778143E-01 2.87608887E-01 1.72746333E-02 0.24200

12 1.40297236E-04 1.58233657E-02 1.75371545E-02 1.75059171E-03 0.50600

15 1.20679456E-04 1.27974222E-02 1.50849320E-02 1.49917424E-03 0.85600

18 3.06400846E-06 3.41917754E-04 3.83001058E-04 4.20631906E-05 1.41800

21 6.21738702E-06 6.39626047E-04 7.77173377E-04 1.18353178E-04 2.08900

24 3.48636411E-07 3.55184783E-05 4.35795514E-05 6.65725151E-06 3.05300

27 2.95914961E-07 2.99921992E-05 3.69893702E-05 7.79250505E-06 4.26600

30 3.14789791E-08 3.16392983E-06 3.93487239E-06 9.43384173E-07 5.85700

33 1.18458305E-08 1.19304465E-06 1.48072881E-06 4.00846585E-07 7.71700

36 1.58621263E-09 1.60060516E-07 1.98276578E-07 6.05939035E-08 9.93200

39 3.79293404E-10 3.91619710E-08 4.74116755E-08 1.53232012E-08 12.55600

42 5.37208262E-11 6.49984091E-09 6.71510327E-09 2.25540042E-09 15.51400

45 1.83614732E-11 2.96563489E-09 2.29518415E-09 4.71159667E-10 18.81900

48 8.69508640E-12 1.99775864E-09 1.08688580E-09 8.34170510E-11 22.81800

51 9.92902113E-12 2.12125057E-09 1.24112764E-09 8.41227088E-11 27.18811

Table 2: Error measures and evaluation time

In this comparison we can see the potential of the CDF representation. As any previous iteration of
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a CDF approximation is reliant on integration to some degree, all these approaches are limited by the
numerical capabaility of the integration method used. The series expansion has the advantage of not
requiring integration, and can compute the CDF much faster than all tested approaches. Due to the
slower convergence speed we need 40+ iterations to surpass the integration based accuracy. However,
while matching the accuracy, still only a fraction of the computational effort is necessary compared to
the multivariate numerical integrals.

4 Applications

The most immediate application, for which we developed the series expansions of the previous chapter,
is the outage probability of an n-dimensional wireless system (e.g. n channel systems). For this we refer
to the definition of the outage probility of such a system as introduced by Chen and Tellambura in [5]:

Pout(γth) =

∫
√
γthΣ(1,1)

γ1

0

∫
√
γthΣ(2,2)

γ2

0

∫
√
γthΣ(3,3)

γ3

0
dr1dr2dr3

= FR



√
γthΣ(1,1)

γ1
,

√
γthΣ(2,2)

γ2
,

√
γthΣ(3,3)

γ3


 (30)

Note that we use the inverted value γ/γth as x-axis value. This means we may evaluate the outage
probabaility by the series expansion of the previous section. We once again use the covariance matrix
described in Equation 29. We compute outage probabilities for 1000 steps of the threshold value γth
ranging from 0 to 200. We have added the result of an empirical CDF retrieved by repeatedly sampling
the norm

√
X2 + Y 2 of two random variables X and Y with multivariate normal distribution N (0,Σ)
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Figure 1: Progression of additional series terms in the outage probability vs threshold values.

In Figure 1 we see the influence of additional series terms on the outage probability as described in
Equation 30. The approximation converges rather quickly, as the numerical experiments have proven,
and the evaluation is simple and fast. There is little to no visible difference between the simulated and
computed results.

This shows the immediate and intended applicability of the CDF series expansion in signal processing.
While there may be further applications that can make direct use of either the CDF approximations or the
PDF approximations of previous works [15], we have limited ourselves to the most immediate application,
and will address further applications in future work.

5 Conclusion

In this paper we have derived several new series representations of the multivariate Rayleigh PDF and
CDF by extending previous series approximations. In computational simulations we tested the accuracy
of the new series against existing approximations, that still involve numerical integration to varying
degrees. We found that avoiding the repeated numerical evaluation of these integrals greatly increased
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the evaluation speed and therefore practical value. A series expansion for the multivariate Rayleigh CDF
has (to the best of our knowledge) not been proposed thus far. The generalised method of approximating
multivariate Rayleigh CDFs of arbitrary dimension and correlations lends tremendous flexibility and
range to potential applications. As the CDFs are for example commonly needed for outage probabilities
in wireless communications systems, the approximations may lead to exciting new applications. For future
work the properties of the proposed approach in other applications and settings may be of interest, such
as the behaviour under outdated CSI conditions on the performance of the approximation [10].
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