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Abstract

Dictionary learning methods can be split into: i) class specific dictionary
learning ii) class shared dictionary learning. The difference between the two
categories is how to use discriminative information. With the first category,
samples of different classes are mapped into different subspaces, which leads
to some redundancy with the class specific base vectors. While for the second
category, the samples in each specific class can not be described accurately. In
this paper, we first propose a novel class shared dictionary learning method
named label embedded dictionary learning (LEDL). It is the improvement
based on LCKSVD, which is easier to find out the optimal solution. Then we
propose a novel framework named cascaded dictionary learning framework
(CDLF) to combine the specific dictionary learning with shared dictionary
learning to describe the feature to boost the performance of classification suf-
ficiently. Extensive experimental results on six benchmark datasets illustrate
that our methods are capable of achieving superior performance compared
to several state-of-art classification algorithms.
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1. Introduction

In recent years, image classification has been a classical issue in pattern
recognition. With advancement in theory, many image classification methods
have been proposed Wright et al. (2009); Liu et al. (2019); Zhang et al. (2011);
Yang et al. (2009); Liu et al. (2016, 2017); Aharon et al. (2006); Zhang and
Li (2010); Jiang et al. (2013); Chan et al. (2015); He et al. (2016). In these
methods, there is one category that contributes a lot for image classification
which is the dictionary learning (DL) based method. DL is a generative
model of which the concept was firstly proposed by Mallat et al. Mallat
and Zhang (1993). A few years later, Olshausen et al. Olshausen and Field
(1996, 1997) proposed an application of DL on natural images and then it
has been widely used in many fields such as image denoising Li et al. (2018,
2012), image superresolution Gao et al. (2018); Jiang et al. (2019) and image
classification Li et al. (2019); Lin et al. (2018). According to different ways
of utilizing the discriminative information, DL methods can be split into
two categories: i) class specific dictionary learning ii) class shared dictionary
learning.

Class specific dictionary learning method utilizes the discriminative in-
formation by adding discrimination ability into a dictionary. The learned
dictionary is for each class. This category can gain the representative feature
information of a class. The feature information that most of the class’s sam-
ples have is focused on, while only a few samples of the class have is ignored
to some extent. That is to say, the learned dictionary has higher weight on
the feature information which samples close to the distribution center, and
lower weight on the feature information that samples off the center. With
this method, some abnormal sample points are ignored so that the learned
dictionary’s robustness can be improved. There are many classical class spe-
cific dictionary learning algorithms that have been reported in recent years.
For example, fisher discrimination dictionary learning (FDDL) Yang et al.
(2011) uses the fisher discrimination criterion to learn a structured dictionary
for pattern classification. In this method, each sub-dictionary can well recon-
struct the signals from the same class. Different from FDDL, projective dictio-
nary pair learning (DPL) Gu et al. (2014) and sevral following works such as
robust adaptive dictionary pair learning (RA-DPL) Sun et al. (2020), twin-
projective latent dictionary pairs learning (TP-DPL) Zhang et al. (2019c)
extend the regular dictionary learning to dictionary pair learning. This kind
of approach achieves the goal of signal representation and discrimination by
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Figure 1: Illustration of the variation of sample distribution. Different circles represent
different subspaces.

jointly learning a synthesis dictionary and an analysis dictionary. Moreover,
discriminative Bayesian dictionary learning (DBDL) Akhtar et al. (2016) and
joint embedding and dictionary learning framework (JEDL) Zhang et al.
(2016) are two effective methods based class specific DL for classification.
Specifically, DBDL complete classification task by approaching a non-parametric
Bayesian perspective and JEDL do it according to deliver a linear sparse
codes auto-extractor and a multi-class classifier by simultaneously minimiz-
ing the sparse reconstruction, discriminative sparse-code, code approxima-
tion, and classification errors.

Due that the learned dictionary is for each class, the training samples
of each class are mapped into a separate subspace. First, different dictio-
naries can be regarded as different subspaces, which ensure that the salient
characteristics of each category are elegantly described (`1 norm constraint
would generate the salient characteristics), and the discriminative informa-
tion among different categories is obtained obviously (for each category, most
of the learned atoms have their category characteristics and only a few will
overlap with other categories’ atoms). Second, each atom of dictionaries is
`2 normalized to guarantee that all the atoms are distributed on a hyper-
surface. And thus, the projection of the image features is under the same
scale. Third, although different dictionaries can be regarded as different sub-
spaces, these dictionaries are not unrelated. For example, for the face dataset,
different categories usually have the same characteristics (e.g., similar facial
structure). When learning the dictionaries, the atoms would have some in-
tersections or overlaps, which ensure that different categories of projections
are comparable.

For class shared dictionary learning method, the discriminative informa-
tion is directly embedded into the objective function to learn a dictionary
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for all classes. With this method, the training samples from all classes are
mapped into one subspace. Hence, the representative feature information of
all classes can be adopted. In recent years, many class shared dictionary
learning methods have been proposed. For instance, label consistent K-SVD
(LC-KSVD) Jiang et al. (2013) proposed a new method to use a discrimi-
native dictionary for sparse coding. In robust flexible discriminative dictio-
nary learning (RFDDL) Zhang et al. (2019b), the labels are utilized flexibly
to enhance the robust property to sparse errors and encoding the locality,
reconstruction error and label consistency more accurately. And the joint
robust factorization and projective dictionary learning (J-RFDL) Ren et al.
(2020) discovered the hybrid salient low-rank and sparse representation in a
factorized compressed space and use it improve the data representations. All
of the above-mentioned methods which are based on class shared dictionary
learning approaches to update the dictionary, have got an outstanding per-
formance on classification tasks. However, it can not describe the samples in
each specific class accurately so that the detailed features between samples
in one class can not be found easily.

In comparison to class specific dictionary learning and class shared dictio-
nary learning, it is clear that the two methods have complementary advan-
tages. It would help to obtain a significant boost in classification accuracy
if the advantages of the two dictionary learning methods can be appropri-
ately combined. In this paper, we first propose a novel class shared dictionary
learning algorithm named label embedded dictionary learning (LEDL). This
method introduces the `1-norm regularization term to replace the `0-norm
regularization of LC-KSVD. In LC-KSVD, `0-norm based sparse regulariza-
tion term leads to the NP-hard problem. Even though many classical greedy
methods such as orthogonal matching pursuit (OMP) Tropp and Gilbert
(2007) have solved this problem to some extent, it is usually to find the sub-
optimum sparse solution instead of the optimal sparse solution. In addition,
the greedy method solves the global optimal problems by finding basis vec-
tors in order of reconstruction errors from small to large until T (the sparsity
constraint factor) times. Thus, the initialized values are crucial. To this end,
there are still many restrictions by using `0-norm based sparse constraint.
While our proposed LEDL is helpful to solve this problem. Moreover, com-
pared with some dictionary learning methods without `0/`0-norm regular-
ization term, such as robust label embedding projective dictionary learning
(LE-PDL) Jiang et al. (2017) and scalable locality-constrained projective dic-
tionary learning (LC-PDL) Zhang et al. (2019a), our proposed methods are
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Figure 2: Illustration of the cascaded dictionary learning framework (CDLF). In the first
layer, accurate subspaces are created for each class by class specific dictionary method.
Therefore the samples from the same class are clustered together. In the second layer,
the label embeded dictionary learning method establishes a discriminative subspace for
all classes. X represents the sample matrix, D, S are dictionary matrix and sparse codes
matrix, respectively. W represents the learned classifier.

more general. Despite the fact that these methods have achieved good perfor-
mance, they may lead to some singular values which come from the non-full
rank matrices in some datasets. After that, we propose a novel framework
named cascaded dictionary learning framework (CDLF) to combine a class
specific dictionary learning method with a class shared dictionary learning
method together.

Our framework contains two layers. Specifically, the first layer consists
of the class specific dictionary learning for sparse representation (CSDL-
SRC) Liu et al. (2016) method, it is used to extract the crucial feature
information of a class to wipe off singular points and improve robustness.
The second layer is composed of LEDL which pulled the feature information
belongs to different subspaces back into the same subspace to obtain the
relationship among different classes. To be attention, different from the re-
cent work CDPL-Net Zhang et al. (2020) which is a deep dictionary learning
network, our proposed framework is a whole structure that can replace the
dictionary pair learning layer of the network.

In addition, the feature after the first layer has been a better representa-
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tion as to the reason that the objective function introduced the discriminative
information and map them into different subspaces for the classifier which
trained from the second layer. Thus, we can regard the first layer as a helpful
tool to obtain excellent features. It does not work if we set the class shared
dictionary learning method as the first layer and the class specific dictio-
nary learning as the second layer. Figure 1 shows the variation of sample
distribution. Figure 1 a shows the random distribution samples belong to
three classes; Figure 1 b shows that the samples belong to the same class
are clustered while the samples of three classes are in different subspaces;
Figure 1 c shows that the samples in different subspaces are pulled back into
the same subspace. A schematic description of our proposed CDLF is given
in Figure 2.

We adopt the alternating direction method of multipliers (ADMM) Boyd
et al. (2011) algorithm and blockwise coordinate descent (BCD) Liu et al.
(2014) algorithm to optimize CDLF. The contributions of this work are four-
fold:

• We propose a novel class shared dictionary learning method named
label embedded dictionary learning (LEDL) that introduces the `1-
norm regularization term as the sparse constraint. The `1-norm sparse
constraint can easily find the optimal sparse solution.

• We propose a novel dictionary learning framework named cascaded dic-
tionary learning framework (CDLF), which is the first time we combine
the class specific and shared dictionary learning. More specifically, dis-
criminative information is used in different ways to fully describe the
feature while completely maintain the discriminative information. The
CDLF can be considered as the extension of conventional dictionary
learning algorithms.

• We propose to utilize the alternating direction method of multipliers
(ADMM) Boyd et al. (2011) algorithm and blockwise coordinate de-
scent (BCD) Liu et al. (2014) algorithm to optimize each layer of a
dictionary learning task.

• We evaluate the proposed LEDL and CDLF methods on six benchmark
datasets, and the achieved superior performance verifies the effective-
ness of our proposed methods.
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We organize the rest of the paper as follows. Section 2 introduces two
related algorithms, which are CSDL-SRC and LC-KSVD. Section 3 presents
CDLF for image classification. section 4 shows some experiments and analy-
ses. Finally, we conclude this paper in Section 5.

2. Related Work

In this section, we overview two related dictionary learning methods, in-
cluding class specific dictionary learning for sparse representation (CSDL-
SRC) and label consistent K-SVD (LC-KSVD).

2.1. Class specific dictionary learning for sparse representation (CSDL-SRC)

Liu et al. Liu et al. (2016) proposed CSDL-SRC to reduce the high residual
error and instability of SRC. The authors consider the weight of each sample
feature when generating the dictionary. Assume that X =

[
X1,X2, · · · ,XC

]
∈

Rd×N is the training sample matrix, where d represents the dimensions of the
sample features, N and C are the number of training samples and the class
number of training samples, respectively. The cth class of training sample
matrix is denoted as Xc ∈ Rd×Nc , where c = 1, 2, · · · , C and Nc is the cth class

of N(N =
C∑

c=1
Nc). Liu et al. build a weight coefficient matrix Pc ∈ RNc×Kc for

Xc, where K is the dictionary size of CSDL-SRC and Kc is the cth class of K

(K =
C∑

c=1
Kc). The objective function of CSDL-SRC is as follows:

< Pc,Uc > = argmin
Pc,Uc

‖Xc −XcPcUc‖2F + 2ζ‖Uc‖`1

s.t. ‖XcPc
•k‖

2
2 ≤ 1 (k = 1, 2, · · · ,K)

(1)

where Uc ∈ RKc×Nc is the sparse codes of Xc, the `1-norm regularization term
is utilized to enforce the sparsity, ζ is the regularization parameter to control
the tradeoff between fitting goodness and sparseness. The (•)•k denote the kth

column vector of matrix (•).

2.2. Label consistent K-SVD (LC-KSVD)

Jiang et al. Jiang et al. (2013) proposed LC-KSVD to combine the dis-
criminative sparse codes error with the reconstruction error and the classifi-
cation error to form a unified objective function which is defined as follows:

< B,W,A,V > = argmin
B,W,A,V

‖X−BV‖2F + λ ‖H−WV‖2F + ω ‖Q−AV‖2F

s.t. ‖vi‖0 < T (i = 1, 2 · · · , N)

(2)
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where T is the sparsity constraint factor, B ∈ Rd×K is the dictionary matrix of
X, V ∈ RK×d is the sparse codes matrix of X. W ∈ RC×K is a classifier matrix
learned from the given label matrix H ∈ RC×N . We hope W can return the most
probable class this sample belongs to. Q ∈ RK×N represents the discriminative
sparse codes matrix and A =

[
a1,a2, · · · ,aK2

]
∈ RK2×K2 is a linear transformation

matrix relys on Q. λ and ω are the regularization parameters balancing the
discriminative sparse codes errors and the classification contribution to the
overall objective function, respectively.

3. Methodology

In this section, we elaborate on the construction of a cascaded dictionary
learning framework (CDLF). Specifically, in subsection 3.1, we introduce the
label embedded dictionary learning method. In subsection 3.2, we propose
the cascaded method of the first layer and the second layer. In subsection 3.3,
we give the optimization method of objective function.

3.1. Label embedded dictionary learning (LEDL)

This subsection proposes a novel dictionary learning method named la-
bel embedded dictionary learning (LEDL) for image classification. LEDL is
an improvement of LC-KSVD, which introducing the `1-norm regularization
term to replace the `0-norm regularization of LC-KSVD. Thus, we can freely
select the basis vectors for linear fitting to obtain an optimal sparse solution
instead of a suboptimal solution.

The objection function is as follows and the ε is the regularization pa-
rameter:

< B,W,A,V >= argmin
B,W,A,V

‖X−BV‖2F + λ ‖H−WV‖2F

+ ω ‖Q−AV‖2F + 2ε‖V‖`1
s.t. ‖B•k‖22 ≤ 1, ‖W•k‖22 ≤ 1, ‖A•k‖22 ≤ 1 (k = 1, 2, · · ·K)

(3)

Where the definitions of W, W, A, V in Equation 3 are same with the ones in
Equation 2. Consider the optimization problem (3) is not jointly convex in
both V, B, W and A, it is separately convex in either V (with B, W, A fixed), B

(with V, W, A fixed), W (with V, B, A fixed) or A (with V, B, W fixed). Thus, we
recognised the optimization as four optimization subproblems. Futhermore,
ADMM Boyd et al. (2011) framework is employed to finding sparse codes
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(V) and BCD Liu et al. (2014) algorithm is utilised to getting the learning
bases (B, W, A). The details of optimization are parts of CDLF, which are
shown in next section 3.2.

3.2. Cascaded dictionary learning framework (CDLF)

In this subsection, we introduce the first layer of the framework which
is composed of CSDL-SRC, then we rewrite the objective function of the
proposed LEDL and let it be the second layer.

3.2.1. The first layer

The first layer is utilised to learn a class specific dictionary for each class.
Given a training sample matrix X, then we set a suitable dictionary size K1,
the objective function of the first layer is as follows:

< Dc
l1
,Sc

l1
>= argmin

Dc
l1

,Sc
l1

∥∥∥Xc −Dc
l1
Sc
l1

∥∥∥2
F

+ 2ζ
∥∥∥Sc

l1

∥∥∥
`1

s.t.
∥∥∥(Dc

l1

)
•k

∥∥∥2
2
≤ 1 (k = 1, 2, · · · ,K1)

(4)

where Dl1 ∈ Rd×K1 and Sl1 ∈ RK1×N are the dictionary matrix and sparse codes
matrix of the first layer in our proposed CDLF, respectively.

3.2.2. The second layer

The second layer is composed of the proposed LEDL, which is used to
learn a class shared dictionary. Based on the computation above, we explicitly
construct a sparse codes matrix Sl1 from the first layer and make it to be
one of the input of the next layer. In addition, the label matrix H ∈ RC×N and
discriminative sparse codes matrix Q ∈ RK2×N are also introduced to the second
layer. After giving a reasonable dictionary size K2 of LEDL, the objective
function can be rewritten as follows:

< Dl2 ,W,A,Sl2 >= argmin
Dl2

,W,A,Sl2

∥∥Sl1 −Dl2Sl2

∥∥2
F

+ λ
∥∥H−WSl2

∥∥2
F

+ ω
∥∥Q−ASl2

∥∥2
F

+ 2ε
∥∥Sl2

∥∥
`1

s.t.
∥∥(Dl2

)
•k
∥∥2
2
≤ 1, ‖W•k‖22 ≤ 1,

‖A•k‖22 ≤ 1 (k = 1, 2 · · · ,K2)

(5)

where Dl2 ∈ RK1×K2 is the dictionary of Sl1 , Sl2 ∈ RK2×N is the sparse codes of Sl1 .
The definitions of W ∈ RC×K2 and A ∈ RK2×K2 in Equation 5 are the same with
the ones in Equation 2.
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3.3. Optimization of objective function

Due to the optimization issues about Equation 4 and Equation 5 are not
jointly convex, Equation 4 is separately convex in either Sc

l1
(with Dc

l1
fixed) or

Dc
l1

(with Sc
l1

fixed), and Equation 5 is separately convex in either Sl2(with Dl2 ,
W, A fixed), Dl2(with W, A, Sl2 fixed), W(with Dl2 , A, Sl2 fixed), or A(with Dl2 ,
W, Sl2 fixed). To this end, we cast the optimization problem as six subproblems
which are `1-norm regularized least-squares(`1-`s) minimization subproblem
for finding sparse codes(Sc

l1
, Sl2) and `1-norm constrained least-squares (`1-

`s) minimization subproblem for learning bases (Dc
l1

, Dl2 , W, A), respectively.
Here, ADMM Boyd et al. (2011) framework is introduced to solve the first
subproblem while BCD Liu et al. (2014) method offers the key to addressing
the other subproblems.

3.3.1. Optimization of the first layer

ADMM is usually used to solve the equality-constrained problem while
the objective function of CSDL-SRC is unconstrained. Thus the core idea of
imposing ADMM framework here is to introduce an auxiliary variable to re-
formulate the original function into a linear equality-constrained problem. By
introducing the auxiliary variable Zc

l1
, the Sl1 in Equation 4 can be substituted

by Cl1 and Zl1 , thus we can rewritten Equation 4 as follows:

< Dc
l1
,Cc

l1
,Zc

l1
>= argmin
Dc

l1
,Cc

l1
,Zc

l1

∥∥∥Xc −Dc
l1
Cc

l1

∥∥∥2
F

+ 2ζ
∥∥∥Zc

l1

∥∥∥
`1

s.t. Cc
l1

= Zc
l1
,
∥∥∥(Dc

l1

)
•k

∥∥∥2
2
≤ 1 (k = 1, 2, · · · ,K1)

(6)

Then the lagrangian function of the problem (6) with fixed Dc
l1

can be
rewritten as:

< Cc
l1
,Zc

l1
,Lc

l1
> = argmin

Cc
l1

,Zc
l1

,Lc
l1

∥∥∥Xc −Dc
l1
Cc

l1

∥∥∥2
F

+ 2ζ
∥∥∥Zc

l1

∥∥∥
`1

+ 2
(
Lc
l1

)T (
Cc

l1
− Zc

l1

)
+ ϕ

∥∥∥Cc
l1
− Zc

l1

∥∥∥2
F

(7)

where Lc
l1
∈ RKc

1×Nc is the augmented lagrangian multiplier and ϕ > 0 is the
penalty parameter. We can gain the closed-form solution with respect to each
iteration by follows:
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(1) Updating Cc
l1

while fixing Dc
l1
, Zc

l1
and Lc

l1
:

(
Cc

l1

)
m+1

=<
(
Dc

l1

)
m
,
(
Cc

l1

)
m
,
(
Zc
l1

)
m
,
(
Lc
l1

)
m
> (8)

where m (m = 0, 1, 2, · · ·) is the iteration number and (•)m means the value of
matrix (•) after mth iteration, the closed form solution of Cc

l1
is:

(
Cc

l1

)
m+1

=
(
Ċc

l1

)−1
C̈c

l1
(9)

the Ċc
l1

here can be written as:

Ċc
l1

=
(
Dc

l1

)T
m

(
Dc

l1

)
m

+ ϕI (10)

where I is the identity matrix. The C̈c
l1

here can be written as:

C̈c
l1

=
(
Dc

l1

)T
m

Xc −
(
Lc
l1

)
m

+ ϕ
(
Zc
l1

)
m

(11)

(2) Updating Zc
l1

while fixing Dc
l1
, Cc

l1
and Lc

l1
:

(
Zc
l1

)
m+1

=<
(
Dc

l1

)
m
,
(
Cc

l1

)
m+1

,
(
Zc
l1

)
m
,
(
Lc
l1

)
m
> (12)

the closed form solution of Zc
l1

is:

(
Zc
l1

)
m+1

= Żc
l1

+ Z̈c
l1 (13)

the Żc
l1

here can be written as:

Żc
l1

= max


(
Cc

l1

)
m+1

+

(
Lc
l1

)
m

ϕ
−
ζ

ϕ
I,0

 (14)

the Z̈c
l1

here can be written as:

Z̈c
l1

= min


(
Cc

l1

)
m+1

+

(
Lc
l1

)
m

ϕ
+
ζ

ϕ
I,0

 (15)
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(3) Updating Lc
l1

while fixing Dc
l1
, Cc

l1
and Zc

l1
:

(
Lc
l1

)
m+1

=
(
Lc
l1

)
m

+ ϕ

((
Cc

l1

)
m+1

−
(
Zc
l1

)
m+1

)
(16)

Based on the above ADMM steps, we obtain the closed form solution
of Cc

l1
, Zc

l1
and Lc

l1
. Then we utilise BCD method with fixed Cc

l1
, Zc

l1
and Lc

l1

to solve the constrained minimization problem of Equation 6. The objective
function can be rewritten as follows:

< Dc
l1
>= argmin

Dc
l1

∥∥∥Xc −Dc
l1
Cc

l1

∥∥∥2
F

+ 2ζ
∥∥∥Zc

l1

∥∥∥
`1

+2
(
Lc
l1

)T (
Cc

l1
− Zc

l1

)
+ ϕ

∥∥∥Cc
l1
− Zc

l1

∥∥∥2
F

s.t.
∥∥∥(Dc

l1

)
•k

∥∥∥2
2
≤ 1 (k = 1, 2, · · · ,K1)

(17)

To this end, we can solve the closed-form solution with respect to the
single column by follows:

(4) Updating Dc
l1

while fixing Cc
l1
, Zc

l1
and Lc

l1
:

(
Dc

l1

)
m+1

=<
(
Dc

l1

)
m
,
(
Cc

l1

)
m+1

,
(
Zc
l1

)
m+1

,
(
Lc
l1

)
m+1

> (18)

the closed form solution of Dc
l1

is:

((
Dc

l1

)
•k

)
m+1 =

Ḋc
l1∥∥∥Ḋc
l1

∥∥∥
2

(19)

the Ḋc
l1

here can be written as:

Ḋc
l1

= Xc

[((
Cc

l1

)
k•

)
m+1

]T
−
((

D̃c
l1

)k)
m

(
Cc

l1

)
m+1

[((
Cc

l1

)
k•

)
m+1

]T
(20)

where
(
D̃c

l1

)k
=

{ (
Dc

l1

)
•p
, p 6= k

0, p = k
, (•)k• denote the kth row vector of matrix (•).

3.3.2. Optimization of the second layer

Like the above procedure, the LEDL problem can be decomposed into
two subproblems, which are the same as those of CSDL-SRC, which can be
optimized by ADMM and BCD methods, respectively.
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For finding sparse codes subproblem, we utilise AD-MM method to op-
timize the objective function, hence the Equation 5 with Dl2 , W, A fixed can
be written as follows:

< Cl2 ,Zl2 ,Ll2 >= argmin
Cl2

,Zl2
,Ll2

∥∥Cl1 −Dl2Cl2

∥∥2
F

+ λ
∥∥H−WCl2

∥∥2
F

+ ω
∥∥Q−ACl2

∥∥2
F

+ 2
(
Ll2

)T (
Cl2 − Zl2

)
+ ρ

∥∥Cl2 − Zl2

∥∥2
F

+ 2ε
∥∥Zl2

∥∥
`1

(21)

where the definitions and applications of Cc
l2

, Zc
l2

, Lc
l2

and ρ in Equation 21
are similar to the Cc

l1
, Zc

l1
, Lc

l1
and ϕ in Equation 7. Thus, we can obtain the

closed-form solution with respect to each iteration by follows:

(1) Updating Cc
l2

while fixing Dc
l2
, W, A, Zc

l2
and Lc

l2
, the closed-form

solution of Cc
l2

is:

(
Cl2

)
m+1

=
(
Ċl2

)−1
C̈l2

(22)

where

Ċl2 =
((
Dl2

)
m

)T (
Dl2

)
m

+ λWm
TWm + ωAm

TAm + ρI (23)

C̈l2 =
((
Dl2

)
m

)T (
Cl1

)
m

+ λWm
THm + ωAm

TQm −
(
Ll2

)
m

+ ρ
(
Zl2

)
m

(24)

(2) Updating Zc
l2

while fixing Dc
l2
, W, A, Cc

l2
and Lc

l2
, the closed-form

solution of Zc
l2

is:

(
Zl2

)
m+1

= Żl2 + Z̈l2 (25)

where

Żl2 = max

{(
Cl2

)
m+1

+

(
Ll2

)
m

ρ
−
ε

ρ
I,0

}
(26)
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Z̈l2 = min

{(
Cl2

)
m+1

+

(
Ll2

)
m

ρ
+
ε

ρ
I,0

}
(27)

(3) Updating Lc
l2

while fixing Dc
l2
, W, A, Cc

l2
and Zc

l2
, the closed-form

solution of Lc
l2

is:

(
Ll2

)
m+1

=
(
Ll2

)
m

+ ρ
((

Cl2

)
m+1

−
(
Zl2

)
m+1

)
(28)

For learning bases subproblem, BCD method is used to optimize the
objective function, thus the Equation 21 with Cc

l2
, Zc

l2
and Lc

l2
fixed can be

rewritten as follows:

< Dl2 ,W,A > = argmin
Dl2

,W,A

∥∥Cl1 −Dl2Cl2

∥∥2
F

+ 2ε
∥∥Zl2

∥∥
`1

+ 2
(
Ll2

)T (
Cl2 − Zl2

)
+ ρ

∥∥Cl2 − Zl2

∥∥2
F

+ λ
∥∥H−WCl2

∥∥2
F

+ ω
∥∥Q−ACl2

∥∥2
F

s.t.
∥∥(Dl2

)
•k
∥∥2
2
≤ 1, ‖W•k‖22 ≤ 1,

‖A•k‖22 ≤ 1 (k = 1, 2, · · · ,K2)

(29)

To this end, we can solve the closed-form solution with respect to the single
column by follows:

(4) Updating Dl2 while fixing W, A, Cl2, Zl2 and Ll2, the closed-form
solution of Dl2 is:

((
Dl2

)
•k
)
m+1

=
Ḋl2∥∥∥Ḋl2

∥∥∥
2

(30)

the Ḋl2 here can be written as:

Ḋl2 = Cl1

[((
Cl2

)
k•
)
m+1

]T
−
((

D̃l2

)k)
m

(
Cl2

)
m+1

[((
Cl2

)
k•
)
m+1

]T
(31)

where
(
D̃l2

)k
=

{ (
Dl2

)
•p, p 6= k

0, p = k
.

(5) Updating W while fixing Dl2, A, Cl2, Zl2 and Ll2, the closed-form

14



solution of W is:

(W•k) m+1 =
Ẇ∥∥∥Ẇ∥∥∥

2

(32)

the Ẇ here can be rewritten as:

Ẇ = H
[((

Cl2

)
k•
)
m+1

]T
−
(
W̃k

)
m

(
Cl2

)
m+1

[((
Cl2

)
k•
)
m+1

]T
(33)

where W̃k =

{
W•p, p 6= k
0, p = k

;

(6) Updating A while fixing Dl2, W, Cl2, Zl2 and Ll2, the closed-form
solution of A is:

(A•k) m+1 =
Ȧ∥∥∥Ȧ∥∥∥

2

(34)

The A here can be rewritten as:

Ȧ = Q
[((

Cl2

)
k•
)
m+1

]T
−
(
Ãk
)
m

(
Cl2

)
m+1

[((
Cl2

)
k•
)
m+1

]T
(35)

where Ãk =

{
A•p, p 6= k
0, p = k

.

3.4. Convergence analysis

The convergence of CSDL-SRC has been demonstrated in Liu et al.
(2016).

Assume that the result of the objective function after mth iteration is
defined as f (Cm,Zm,Lm,Bm,Wm,Am). Since the minimum point is obtained by
ADMM and BCD methods, each method will monotonically decrease the
corresponding objective function. Considering that the objective function
is obviously bounded below and satisfies the Equation (36), it converges.
Figure 3 shows the convergence curve of CDLF by using the Extended YaleB
dataset.

f
((
Cl2

)
m
,
(
Zl2

)
m
,
(
Ll2

)
m
,Bm,Wm,Am

)
≥ f

((
Cl2

)
m+1

,
(
Zl2

)
m+1

,
(
Ll2

)
m+1

,Bm,Wm,Am

)
≥ f

((
Cl2

)
m+1

,
(
Zl2

)
m+1

,
(
Ll2

)
m+1

,Bm+1,Wm+1,Am+1

) (36)
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Figure 3: Convergence curve of CDLF on Extended YaleB dataset

3.5. Overall algorithm

The overall training procedures of our proposed framework is summarized
in Algorithm 1. Here, maxiter is the maximum number of iterations, 1 ∈ RK1×K1

is a square matrix with all elements 1 and � indicates element dot product. Z

represents the auxiliary variable, C is another form of S and L is augmented
lagrange multiplier. In the algorithm 1, we first update the parameters of
first layer to get the sparse codes Sl1 and dictionary Dl1 . Then Sl1 is treated
as one of the inputs of second layer to obtain the corresponding bases Dl2 , W.

In the testing stage, the constraint terms are based on `1-norm sparse
constraint. Here, we first exploit the learned dictionary Dl1 to fit the testing
sample y and the output is the sparse codes rl1 . The formulation is shown in
Equation 37.

rl1 = argmin
rl1

{∥∥y −Dl1rl1
∥∥2
2
+ 2α

∥∥rl1∥∥1} (37)

Then the learned dictionary Dl2 are utilised to fit rl1 and we can obtain the
sparse codes rl2 . We show the objective function in Equation 38.

rl2 = argmin
rl2

{∥∥rl2 −Dl2rl2
∥∥2
2
+ 2α

∥∥rl2∥∥1} (38)
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Algorithm 1 Cascaded Dictionary Learning Framework
Input: X ∈ Rd×N , H ∈ RC×N , Q ∈ RK2×N

Output: Dl1 ∈ Rd×K1 , Dl2 ∈ Rd×K2 , W ∈ RC×K2 ,

1: Initialize
(
Cc

l1

)
0
,
(
Zc
l1

)
0
,
(
Lc
l1

)
0

2: m = 0
3: while m ≤ max iter do
4: m← m+ 1
5: Update Cc

l1
, Zc

l1
, Lc

l1
with ADMM

6: Update Dc
l1

with with BCD

7: end while
8: Dl1 ←

[
D1

l1
,D2

l1
, · · · ,DC

l1

]
; Sl1 ←

[
S1
l1
,S2

l1
, · · · ,SC

l1

]
9: Initialize

(
Cl2

)
0
,
(
Zl2

)
0
,
(
Ll2

)
0
,
(
Dl2

)
0
,
(
Wl2

)
0
,
(
Al2

)
0

10: m = 0
11: while m ≤ max iter do
12: m← m+ 1
13: Update Cl2 , Zl2 , Ll2 with ADMM
14: Update Dl2 ,W,A with BCD
15: end while
16: return Dl1 , Dl2 , W

At last, we use the trained classfier W to predict the label of y which can be
formulated as follows:

id (y) = max
{
Wrl2

}
(39)

4. Experimental results

In this section, we evaluate the performance of our approach on several
benchmark datasets, including two face datasets (Extented YaleB Georghi-
ades et al. (2001) dataset, CMU PIE Sim et al. (2002) dataset), two handwrit-
ten digit datasets (MNIST LeCun et al. (1998) dataset and USPS Hull (1994)
dataset) and two remote sensing datasets (RSSCB7 dataset Zou et al. (2015)
and UC Mereced Land Use dataset Yang and Newsam (2010)), then compare
it with other famous methods such as SVM Fan et al. (2008), SRC Wright
et al. (2009), CRC Zhang et al. (2011), SLRC Deng et al. (2018), NRC Xu
et al. (2019), Euler-SRC Song et al. (2018), ADDL Zhang et al. (2018), LC-
PDL Zhang et al. (2019a), FDDL Yang et al. (2011), LC-KSVD Jiang et al.
(2013), and CSDL-SRC Liu et al. (2016).

For all the experiments, we evaluate our methods by randomly selecting 5
samples per class for training. Besides, to eliminate the randomness, we carry
out every experiment 8 times, and we report the mean of the classification
rates.
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Figure 4: Examples of the face datasets

For convenience, we fix the dictionary sizes(K1 and K2) to twice the
number of training samples. Moreover, there are four other parameters(ζ,
λ, ω, ε) that need to be adjusted to achieve the highest classification rates.
The details are shown in the following subsections. In the next subsection,
we illustrate the experimental results on the six datasets. Moreover, some
discussions are finally listed.

4.1. Extended YaleB dataset

The Extended YaleB dataset is consists of 2,432 face images from 38
individuals, each having around 64 nearly frontal images under varying illu-
mination conditions. Here, we resize each image to 32 × 32 pixels and then
pull them into column vectors. After that, we normalize the images to form
the raw `2 normalized features. Figure 4 a shows some images of the dataset.

In addition, we set λ = 2−3, ω = 2−11 and ε = 2−8 for LEDL algorithm
and set ζ = 2−10, λ = 2−6, ω = 2−10 and ε = 2−8 in our experiment to achieve
highest accuracy for both algorithms, respectively. The experimental results
are summarized in Table 1. From Table 1, we can see that our proposed
LEDL and CDLF algorithms achieve superior performance to other meth-
ods. Compared with some conventional algorithms which the DL method
is not involved in such as SVM, SRC, CRC, SLRC, NRC, and Euler-SRC,
the classification performance is improved by 2.1% and 2.9% with our pro-
posed LEDL algorithm and CDLF algorithm, respectively. Compared with
five classical DL based algorithms, including ADDL, LC-PDL, FDDL, LC-
KSVD, and CSDL-SRC, our proposed LEDL algorithm and CDLF algorithm
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Table 1: Classification rates (%) on face datasets

Methods Extended YaleB CMU PIE

SVM Fan et al. (2008) 73.6 71.8
SRC Wright et al. (2009) 79.1 73.7
CRC Zhang et al. (2011) 79.2 73.3
SLRC Deng et al. (2018) 76.7 70.1
NRC Xu et al. (2019) 76.1 71.0

Euler-SRC Song et al. (2018) 78.5 74.4
ADDL Zhang et al. (2018) 77.4 71.1

LC-PDL Zhang et al. (2019a) 77.5 70.2
FDDL Yang et al. (2011) 76.8 70.7

LC-KSVD Jiang et al. (2013) 73.5 67.1
CSDL-SRC Liu et al. (2016) 80.2 77.4

Our LEDL 81.3 77.7
Our CDLF 82.1 78.7

exceeds 1.1% and 1.9%, respectively. Additionally, the classification perfor-
mance of CDLF algorithm exceeds that of LEDL algorithm by 0.8%.

To further illustrate the superiority of our proposed CDLF, we choose the
first 20 classes’ samples of the Extended YaleB dataset as a sub-dataset to
build a confusion matrix. Figure 8 show the confusion matrices of different
methods. As can be seen, our method achieves a higher classification rate
in most of the chosen 20 classes. More specifically, for some classes such as
class3, class 4, class 11, class 15, class 17, we get poor classification rates
by utilizing CSDL-SRC and LEDL separately. However, there are notable
gains while using CDLF. And for some classes (class 1, class 6, class 8, class
9, class 10), which the accuracies have large differences between CSDL-SRC
and LEDL, the classification rate of CDLF is similar to the result of the
optimal one of CSDL-SRC and LEDL.

4.2. CMU PIE dataset

The CMU PIE dataset contains 41,368 images of 68 individuals with 43
different illumination conditions. Each human is under 13 different poses
and with 4 different expressions. Like the Extended YaleB dataset, each face
image is cropped to 32×32 pixels, pulled into column vectors, and normalized
to 1. Several samples from this dataset are listed in Figure 4 b.

The results are shown in Table 1, as can be seen that our methods out-
performs all the competing approaches by setting λ = 2−3, ω = 2−11, ε = 2−8

for LEDL algorithm and ζ = 2−12, λ = 2−5, ω = 2−11, ε = 2−3 for CDLF
algorithm. Specifically, our proposed method achieves an improvement of at
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Figure 5: t-SNE visualization

least 3.3% and 4.3% over some traditional methods such as SVM, SRC, CRC,
SLRC, NRC, and Euler-SRC for LEDL algorithm and CDLF algorithm, re-
spectively. Compared with DL based methods, our proposed LEDL algorithm
and CDLF algorithm exceed the other algorithms at least 0.3% and 1.3%,
respectively. Futhermore, we reduce the dimensionality using t-distributed
Stochastic Neighbor Embedding(t-SNE) Maaten and Hinton (2008) to show
the distribution of the feature extracted from PIE dataset. The results are
shown in Figure 5, it is clear to see the distinction among the categories after
our proposed method.

4.3. MNIST dataset

The MNIST dataset includes 70,000 images for digit numbers from 0 to
9. Here, we pull the original images in which the size is 28 × 28 into column
vectors. There are some samples from the dataset are given in Figure 6 a.

In Tabel 2, we can see that the classification rates of some conventional
methods such as SVM, SRC, CRC, SLRC, NRC, and Euler-SRC can achieve
the similar ones of DL based methods (e.g. the classification rates between
SRC, CSDL-SRC, and LEDL are similar). However, our proposed CDLF can
achieve the highest accuracy by an improvement of at least 0.5% compared
with all the methods in Tabel 2. The optimal parameter for LEDL algorithm
are λ = 2−8, ω = 2−14, ε = 2−4 and the optimal parameters for CDLF
algorithm are ζ = 2−8, λ = 2−6, ω = 2−6, ε = 2−2.
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Figure 6: Examples of the handwritten digit datasets

Table 2: Classification rates (%) on handwritten digit datasets

Methods MNIST USPS

SVM Fan et al. (2008) 65.4 78.8
SRC Wright et al. (2009) 69.8 78.4
CRC Zhang et al. (2011) 68.3 77.9
SLRC Deng et al. (2018) 66.5 76.4
NRC Xu et al. (2019) 68.5 76.2

Euler-SRC Song et al. (2018) 65.9 76.1
ADDL Zhang et al. (2018) 64.9 65.6

LC-PDL Zhang et al. (2019a) 60.5 63.2
FDDL Yang et al. (2011) 62.4 76.2

LC-KSVD Jiang et al. (2013) 62.1 71.1
CSDL-SRC Liu et al. (2016) 69.8 78.8

Our LEDL 69.8 81.1
Our CDLF 70.3 81.9

4.4. USPS dataset

The USPS dataset consists of 9,298 handwritten digit images from 0 to 9,
which come from the U.S. Postal System. For the USPS dataset, the images
are resized into 16×16 and pulled into column vectors. Several samples from
this dataset are listed in Figure 6 b.

The results are showed in Tabel 2. For LEDL algorithm, we adjust λ =
2−4, ω = 2−8, ε = 2−5. For CDLF algorithm, we adjust ζ = 2−11, λ = 2−10,
ω = 2−14, ε = 2−8 to achieve the highest accuracy. Compared with the
methods (SVM, SRC, CRC, SLRC, NRC, and Euler-SRC) which the DL
is not added into the classifiers, CDLF algorithm achieves an improvement
of at least 3.1% and LEDL algorithm achieves an improvement of at least
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Figure 7: Examples of the remote sensing datasets

Table 3: Classification rates (%) on remote sensing datasets

Methods RSSCB7 UC Mereced

SVM Fan et al. (2008) 67.5 80.5
SRC Wright et al. (2009) 67.1 80.4
CRC Zhang et al. (2011) 67.7 80.7
SLRC Deng et al. (2018) 66.4 80.9
NRC Xu et al. (2019) 65.5 79.6

Euler-SRC Song et al. (2018) 67.0 80.6
ADDL Zhang et al. (2018) 72.3 83.2

LC-PDL Zhang et al. (2019a) 69.7 81.2
FDDL Yang et al. (2011) 60.0 81.0

LC-KSVD Jiang et al. (2013) 68.0 79.4
CSDL-SRC Liu et al. (2016) 66.6 80.5

Our LEDL 67.9 80.7
Our CDLF 69.6 81.0

2.3%. Compared with the DL based method, LEDL algorithm achieves an
improvement of 3.1%.

4.5. RSSCN7 dataset

The RSSCN7 dataset consists of seven different RS scene categories of
2, 800 aerial-scene images in total, which are grassland, forest, farmland, in-
dustry, parking lot, residential, river, and lake region. Each class included
400 images, and all images are of the same size of 400× 400 pixels. Here, we
use the Resnet model He et al. (2016) to extract the features. Specifically, the
layer pool5 is utilized to extract 2, 048-dimensional vectors for them. Figure 7
a shows several samples belongs to this dataset.
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Table 4: Classification rates (%) on remote sensing datasets

Methods Extended YaleB CMUPIE MNIST USPS RSSCB7 UC Mereced

SVM Fan et al. (2008) 73.6 71.8 65.4 78.8 67.5 80.5
SRC Wright et al. (2009) 79.1 73.7 69.8 78.4 67.1 80.4
CRC Zhang et al. (2011) 79.2 73.3 68.3 77.9 67.7 80.7
SLRC Deng et al. (2018) 76.7 70.1 65.5 76.4 66.4 80.9
NRC Xu et al. (2019) 76.1 71.0 68.5 76.2 65.5 79.6

Euler-SRC Song et al. (2018) 78.5 74.4 65.9 76.1 67.0 80.6
ADDL Zhang et al. (2018) 77.4 71.1 64.9 65.6 72.3 83.2

LC-PDL Zhang et al. (2019a) 77.5 70.2 60.5 63.2 69.7 81.2
FDDL Yang et al. (2011) 76.8 70.7 62.4 76.2 60.0 81.0

LC-KSVD Jiang et al. (2013) 73.5 67.1 62.1 71.1 68.0 79.4
CSDL-SRC Liu et al. (2016) 80.2 77.4 69.8 78.8 66.6 80.5
LEDL Shao et al. (2020) 81.3 77.7 69.8 81.1 67.9 80.7

Our CDLF 82.1 78.7 70.3 81.9 69.6 81.0

Table 4 shows the experimental results. It is clearly to see that only three
methods (ADDL, LC-PDL, and CSDL) can gain good performance. We will
illustrate the analysis why the performance of our methods is lower than that
of ADDL in 4.7. The optimal parameters are λ = 2−8, ω = 2−14, ε = 2−14

for LEDL algorithm. And the optimal parameters are ζ = 2−13, λ = 2−3,
ω = 2−11, ε = 2−11 for CDLF algorithm.

4.6. UC Mereced Land Use dataset

The UC Merced Land Use Dataset contains a total of 2, 100 land-use
images. The dataset is collected from the United States Geological Survey
National Map of 20 U.S. regions. The size of each original image is 256 ×
256 pixels. Here, we also use the Resnet model to obtain 2048-dimensional
vectors. Some samples are listed in Figure 7 b.

Table 4 shows the classification rates of different methods. Without con-
sidering ADDL, it is hard to say that the DL method contributes a lot for im-
age classification in this dataset. Whether LC-KSVD, CSDL-SRC, and LEDL
can not get better performance than traditional methods such as SVM, SRC,
CRC, SLRC, NRC, and Euler-SRC. Only LC-PDL and our proposed CDLF
algorithm can achieve a slight improvement. The comparison with ADDL is
summarized in 4.7.

4.7. Analysis and discussion

In this section, we mainly focus on illustrating ablation learning and anal-
ysis of the experimental results.
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Figure 8: Confusion matrices on Extended YaleB dataset

4.7.1. Ablation learning

To further evaluate the necessity of each term in Equation 3, we show the
ablation experiments on two face datasets in Figure ??. The results demon-
strate that all terms contribute a lot to our approach.

4.7.2. Analysis of experimental results

We can see that our proposed methods have significant improvement
compared with other classical methods except for ADDL on remote sensing
datasets. The reason is that ADDL encourages the subdictionaries associated
with different classes to be independent while our approaches focus more on
global information. Thus, ADDL is more applicable to the datasets, which
have significant differences among categories. At the same time, remote sens-
ing datasets usually consist of images that come from different regions. Each
class is very different. That is why ADDL can gain better performance than
our proposed CDLF on the two specific datasets.

On the other hand, we have demonstrated on various datasets that our
proposed CDLF is more general than other methods. However, it is not easy
to obtain cleaned datasets in the real world. Besides, the computational com-
plexity of the algorithm is an essential factor to consider in practical applica-
tions. To further validate the performance of our proposed methods, we give
the following analysis:

1) We add Gaussian noise with different variances (0.2, 0.4, 0.6) to the
Extended YaleB dataset to simulate actual data. Figure 10 shows several
examples. Table 5 shows the experimental results. It is clear to see that our
proposed methods are less sensitive to noise than other methods.

2) We list the computational complexity of some methods in Table 6.
N is the number of training samples, D represents the dimensions of the
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Figure 9: Ablation experiments in LEDL

Table 5: Classification rates (%) on noisy Extended YaleB dataset

Methods\Variance 0.0 0.2 0.4 0.6

SVM Fan et al. (2008) 73.6 70.5 69.8 67.9
SRC Wright et al. (2009) 79.1 70.2 60.1 36.7
CRC Zhang et al. (2011) 79.2 76.2 75.6 74.1
SLRC Deng et al. (2018) 76.7 66.4 51.1 19.5
NRC Xu et al. (2019) 76.1 74.1 70.9 63.3

Euler-SRC Song et al. (2018) 78.5 76.8 76.5 75.5
ADDL Zhang et al. (2018) 77.4 65.5 51.7 38.6

LC-PDL Zhang et al. (2019a) 77.5 65.2 50.9 38.7
FDDL Yang et al. (2011) 76.8 64.2 46.8 30.0

LC-KSVD Jiang et al. (2013) 73.5 74.1 69.4 66.3
CSDL-SRC Liu et al. (2016) 80.2 85.3 78.1 73.2

LEDL 81.3 79.6 79.5 76.1
CDLF 82.1 80.9 81.6 76.8
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Figure 10: Examples of the noisy Extended YaleB dataset

Table 6: Computational Complexity

Methods Complexity

SRC O(N2D)

CRC O(N2D)

SLRC O(N2D)

CSDL− SRC O(KcNcD)

LC−KSVD O(KN2DT )

LEDL O(KND)

CDLF O(KND)

sample features, K is the number of atoms in the dictionary, T is the sparsity
constraint factor, Kc and N c represent the cth class of N and K, respectively.
In our experiments, K is twice the number of N and K > N > D > T . From
the table, we can say that the complexity of our methods is slightly higher
than some traditional methods in some cases, which depends on the size of
K.

The analysis above illustrates that our methods are more suitable for
practical situations compared to other approaches to some extent.

5. Conclusion

In this paper, we first propose a novel class shared dictionary learning
method named label embedded dictionary learning (LEDL). This method
introduces the `1-norm regularization term to replace the `0-norm regular-
ization of LC-KSVD. Then we propose a novel network named hybrid dictio-
nary learning network (CDLF) to combine a class specific dictionary learning
method with a class shared dictionary learning method to describe the feature
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to boost the classification performance. Besides, we adopt the ADMM algo-
rithm to solve the `1-norm optimization problem and the BCD algorithm to
update the corresponding dictionaries. Finally, extensive experiments on six
well-known benchmark datasets have proved the superiority of our proposed
LEDL and CDLF methods.
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