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Abstract

This paper introduces a clustering framework for networks with nodes are

annotated with time-series data. The framework addresses all types of network-

clustering problems: State clustering, node clustering within states (a.k.a. topol-

ogy identification or community detection), and even subnetwork-state-sequence

identification/tracking. Via a bottom-up approach, features are first extracted

from the raw nodal time-series data by kernel autoregressive-moving-average

modeling to reveal non-linear dependencies and low-rank representations, and

then mapped onto the Grassmann manifold (Grassmannian). All clustering

tasks are performed by leveraging the underlying Riemannian geometry of the

Grassmannian in a novel way. To validate the proposed framework, brain-

network clustering is considered, where extensive numerical tests on synthetic

and real functional Magnetic Resonance Imaging (fMRI) data demonstrate that

the advocated learning framework compares favorably versus several state-of-

the-art clustering schemes.
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1. Introduction

1.1. Background

Network clustering is the task of assigning nodes to groups via user-defined

(statistical) “similarities” among nodal time series (signals), and is ubiquitous

across a plethora of disciplines such as computer vision [1], wireless-sensor [2], so-

cial [3] and brain networks [4]. In brain networks, the choice of scale and type of

data determine how networks are built. At the microscopic level, network nodes

might be neurons, and edges could represent anatomical connections such as

synapses (structural connectivity), or statistical relationships between firing pat-

terns of neurons (functional connectivity). Similarly, at the macroscopic level,

nodes can represent brain regions. At this scale, in structural networks, edges

might represent long range anatomical connections between brain regions or, in

functional networks, statistical relationships between regional brain dynamics

recorded via functional Magnetic Resonance Imaging (fMRI) or encephalopathy

(EEG). Here, we are interested in functional brain networks in which network

nodes represent brain regions whose activity can be represented by a time se-

ries describing the dynamic evolution of brain activity.[5]; e.g., Fig. 1. In the

brain-network context, network clustering has been instrumental in verifying

and describing the dynamic nature of brain networks, as well as in detecting

and predicting brain disorders such as epilepsy [6], schizophrenia [7], Alzheimer

disease and autism [8].

Network clustering aims at three primary goals: State clustering, node clus-

tering within a given state (a.k.a. community detection or topology identifica-

tion), and subnetwork-state-sequence clustering/tracking. Loosely speaking, a

“state” corresponds to a specific network-wide (“global”) network topology or

nodal connectivity pattern which stays fixed over a time interval. For example,

Fig. 1 depicts two states of a given brain network, with distinct nodal connectiv-

ity patterns. Node clustering parcellates nodes within a state via “similarities”

of their time series. Two communities can be seen in the first state, while three
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Figure 1: States, communities and subnetwork state sequences in brain networks. Nodes
connected by soild line are driven by a common latent (stochastic) process. The “blue” nodes
in states 1 and 2 are driven by a common latent (stochastic) process and they belong to same
sub-network.

communities emerge in the second state of Fig. 1. Furthermore, a “subnetwork

state sequence”, defined as the latent (stochastic) process that drives a sub-

network/subgroup of nodal time series, may span several “global” states, and

the collaborating nodes may even change as the network topology transitions

from one state to another. For example, it is conceivable that a specific la-

tent (stochastic) process spans different states of a brain network to drive the

time-series data of the “blue” nodes in Fig. 1.

1.2. Prior Art

Most network-clustering methods are used for state and nodal clustering,

while only very few schemes identify/track subnetwork state sequences. To

avoid an exhaustive list of references, only a few examples on state clustering are

mentioned here. Studies [9, 10] utilize independent vector analysis and K-means

to detect changes in connectivity patterns. Moreover, [11, 12] advocate hidden

Markov models to characterize and cluster network-topology dynamics/states,

while [13] applies hierarchical clustering onto a time series of graph-distance

measures to identify discrete states of networks.

Node clustering (a.k.a. community detection or topology identification) has

been studied extensively for both static and dynamic networks. Modularity

maximization [14, 15] is by-now a classical method for community detection.

In [16], K-means is applied onto the wavelet coefficients of nodal signals, while [4,
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17] promote network “motifs” as features to detect network communities. In [18],

EEG-data topography via Renyi’s entropy was proposed as a feature extraction

mapping, before applying self-organizing maps as the off-the-shelf clustering

algorithm. In the recently popular graph-signal-processing context [19, 20],

topology inference is achieved by solving optimization problems formed via the

Laplacian matrix of the network. Moreover, motivated by the observation that

changes in nodal communities suggest changes in network states, [21] uses fMRI

data to perform community detection, and subsequently state clustering, by

capitalizing on K-means, multi-layer modeling, (Tucker) tensor and higher-order

singular value decompositions.

There are only few methods that can cluster subnetwork state sequences,

especially in the brain-network context. In [22], features extracted from the

frequency content of time series are fed into the classical K-means to yield the

subnetwork state sequences. A computer-vision approach is introduced in [23]

where time series data are transformed into dynamic topographic maps via

motion vectors.

1.3. Contributions

The contributions of this manuscript are as follows:

(i) By capitalizing on the directions established by [24], a unifying clustering

framework with strong geometric flavor is introduced that makes no assump-

tions on the network’s stationarity and can carry through all possible brain-

clustering duties, i.e., state and node clustering, as well as subnetwork-state-

sequence tracking.

(ii) A kernel (vector-valued) autoregressive-moving-average (K-ARMA) model,

which appears to be novel in the network-science literature, is proposed to

capture latent non-linear and causal dependencies among network time-series.

This K-ARMA model propels the network-feature extraction of any network-

clustering task in this article. Per application of the K-ARMA model, a system-

identification problem is solved to extract a low-rank observability matrix. Fea-
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tures are defined as the low-rank column spaces of those observability matri-

ces. For a fixed rank, those features become points of the Grassmann manifold

(Grassmannian), which enjoys the rich Riemannian geometry.

(iii) The framework assumes no prior knowledge on affinity/adjacency matrices

of the network, as it is customary done in the literature; e.g., Laplacian matri-

ces [25]. All such information can be computed from scratch in the proposed

framework via the K-ARMA feature-extraction scheme.

(iv) Having computed features, the Riemannian multi-manifold modeling

(RMMM) [24, 26, 27] postulates that clusters take the form of sub-manifolds

in the Grassmannian. To identify clusters, the underlying Riemannian

geometry is exploited by the geodesic-clustering-with-tangent-spaces (GCT)

algorithm [24, 26, 27]. Unlike the standard practice of using only the

Riemannian distance, e.g., [28], GCT considers both distance and angular

information to improve clustering accuracy.

(v) In contrast to [24, 26, 27], where the number of clusters needs to be known

a priori, this paper incorporates hierarchical clustering to render GCT free from

any a-priori knowledge of the number of clusters.

(vi) Extensive numerical tests on synthetic and real fMRI data demonstrate

that the proposed framework compares favorably versus state-of-the-art

manifold-learning and brain-network clustering schemes.

For convenience, the proposed clustering framework is summarized in Fig. 2,

and its building blocks, or modules, are delineated in the rest of the paper.

The K-ARMA model and the feature-extraction mechanism are introduced in

Section 2. The new variant of the GCT clustering algorithm is presented in

Section 3, while numerical tests on synthetic and real fMRI data are showed in

Section 4. Numerical tests and results that do not fit in the main manuscript

are deferred to the supplementary file. Sections, figures, and tables of the sup-

plementary manuscript are marked with the “S” qualifier.
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Brain-network time-series data

Clustering
task

Form data accord-
ing to Sec. 2.1

St1

Extract fea-
tures via Alg. 1

St2

Cluster features via
Alg. 2; find JSt states

St3

Clustering results

State clustering

Form data accord-
ing to Sec. 2.1

Comm1

Extract fea-
tures via Alg. 1

Comm2

Cluster features via
Alg. 2; find JComm states

Comm3

State j: Form data
according to Sec. 2.2

Comm4

State j: Extract
features via Alg. 1

Comm5

State j: Cluster
features via Alg. 2

Comm6

j = JComm?

Community
detection

No

j = j + 1

Yes

Form data accord-
ing to Sec. 2.1

Sub1

Extract fea-
tures via Alg. 1

Sub2

Cluster features via
Alg. 2; find JSub states

Sub3

State j: Form data
according to Sec. 2.2

Sub4

State j: Extract
features via Alg. 1

Sub5

j = JSub?

Cluster all fea-
tures via Alg. 2

Sub6

Subnetwork-state-sequence
clustering

No

j = j + 1

Yes

Figure 2: The pipeline of the proposed clustering framework.

2. Network-Feature Extraction by Kernel-ARMA Modeling

Consider a (brain) network/graph G := (N , E), with sets of nodes N , of

cardinality |N |, and edges E . Each node ν ∈ N is annotated with a stochastic

process (time series) (νyt)t∈Z, where t denotes discrete time and Z the set of

all integer numbers; cf. Fig. 1. To avoid congestion in notations, νyt stands for

both the random variable (RV) and its realization. In fMRI, nodes N comprise

regions of interest (ROI) of the brain which are created either anatomically
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or functionally, and (νyt)t∈Z becomes a blood-oxygen-level dependent (BOLD)

time series [29], e.g., Fig. 4e. For index V ⊂ N and q ∈ Z>0, the q × 1 vector

Vyt is used in this manuscript to collect all signal samples from node(s) V of

the network at time t, and to unify several scenarios of interest as the following

discussion demonstrates.

2.1. State Clustering (V := N )

Since a “state” is a global attribute of the network, vector

Nyt := [1yt, . . . , |N |yt]
ᵀ, with V := N and q := |N |, stands as the "snapshot" of

the network at time t. The time series (Nyt)t are the data formed in modules

St1, Comm1 and Sub1 of Fig. 2.

2.2. Community Detection and Subnetwork-State-Sequence Clustering (V := ν)

In the case of community detection and subnetwork-state-sequence cluster-

ing, nodes N need to be partitioned through the (dis)similarities of their time

series. To detect common features and to identify those nodes, it is desirable

first to extract individual features from each nodal time series. To this end, V is

assigned the value ν, so that ∀ν ∈ N , for a given buffer length Buffν ∈ Z>0 and

with q = Buffν , νyt takes the form of [νyt, . . . , νyt+Buffν−1]ᵀ. If Tj comprises all

time indices of the jth state of a network, then the time series {(νyt)t∈Tj}ν∈N
are the data formed in modules Comm4 and Sub4 of Fig. 2.

2.3. Extracting Grassmannian Features

Consider now a user-defined RKHS H with its kernel mapping ϕ(·);
cf. Sec. Appendix A. Given N ∈ Z>0 and assuming that the sequence (Vyt)t

is available, define ϕt := [ϕ(Vyt), ϕ(Vyt+1), . . . , ϕ(Vyt+N−1)]ᵀ ∈ HN . This

work proposes the following kernel (K-)ARMA model to fit the variations of

features {ϕt}t within space HN : There exist matrices C ∈ RN×ρ, A ∈ Rρ×ρ,

the latent variable ψt ∈ Hρ, and vectors υt ∈ HN , ωt ∈ Hρ that capture noise

and approximation errors, s.t. ∀t,

ϕt = Cψt + υt , (1a)
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ψt = Aψt−1 + ωt . (1b)

Kernel-based ARMA models have been already studied in the context of

support-vector regression [30–32]. However, those models are different than (1)

since only the AR and MA vectors of coefficients are mapped to an RKHS

feature space, while the observed data νyt (of only a single time series) are

kept in the input space. Here, (1) offers a way to map even the observed data

to an RKHS to capture non-linearities in data via applying the ARMA idea

to properly chosen feature spaces. In a different context [33], time series of

graph-distance metrics are fitted by ARMA modeling to detect anomalies and

thus identify states in networks. Neither the Grassmannian nor kernel functions

were investigated in [33].

Proposition 1. Given parameter m ∈ Z>0, define the “forward” matrix-valued

function

F t :=


ϕt ϕt+1 . . . ϕt+τf−1

ϕt+1 ϕt+2 . . . ϕt+τf
...

...
. . .

...

ϕt+m−1 ϕt+m . . . ϕt+τf+m−2

 ∈ H
mN×τf , (2a)

and the “backward” matrix-valued function

Bt :=


ϕt ϕt+1 . . . ϕt+τf−1

ϕt−1 ϕt . . . ϕt+τf−2
...

...
. . .

...

ϕt−τb+1 ϕt−τb+2 . . . ϕt+τf−τb

 ∈ H
τbN×τf . (2b)

Then, there exist matrices Πt+1 ∈ Rρ×τbN and Eτft+1 ∈ RmN×τbN s.t. the fol-

lowing low-rank factorization holds true:

1
τf
F t+1⊗HBᵀ

t = OΠt+1 + Eτft+1 , (3)
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where product ⊗H is defined in Sec. Appendix A, and O is the so-called ob-

servability matrix: O :=
[
Cᵀ, (CA)ᵀ, . . . , (CAm−1)ᵀ

]ᵀ ∈ RmN×ρ.

With regards to a probability space, if (i) (υt)t and (ωt)t in (1) are consid-

ered to be zero-mean, independent and identically distributed stochastic pro-

cesses, as well as independent of each other, (ii) (ωt)t is independent of (ψt)t,

and (iii) ωt and ψt′ , ∀(t, t′) s.t. t > t′, are independent, then

E
{

1
τf
F t+1⊗HBᵀ

t

∣∣∣ {ψt′}t+τf+m−1t′=t−τb+1

}
= OΠt+1 . (4)

If, in addition, (iv) (ωt)t, (υt)t, (ψt)t, and (ωt⊗Hψᵀ
t−τ )t, ∀τ ∈ Z>0, are

wide-sense stationary, then limτf→∞ Eτft = 0, ∀t, in the mean-square (L2-) sense

w.r.t. the probability space.

Proof of Proposition 1. See Appendix B.

Motivated by (3) and (4), the result (limτf→∞ Eτft = 0, ∀t), and the fact

that the conditional expectation is the least-squares-best estimator [34, §9.4],

the following task is proposed to obtain an estimate of the observability matrix:

(
VÔt, Π̂t

)
∈ arg min

O∈RmN×ρ
Π∈Rρ×τbN

∥∥∥ 1
τf
F t+1⊗HBᵀ

t −OΠ
∥∥∥2

F
. (5)

To solve (5), the singular value decomposition (SVD) is applied to obtain

(1/τf)F t+1⊗HBᵀ
t = UΣVᵀ, where U ∈ RmN×mN is orthogonal. Assum-

ing that ρ ≤ rank[(1/τf)F t+1⊗HBᵀ
t ], the Schmidt-Mirsky-Eckart-Young the-

orem [35] provides the estimates VÔt := U:,1:ρ and Π̂t := Σ1:ρ,1:ρV
ᵀ
:,1:ρ, where

U:,1:ρ is the orthogonal matrix that collects those columns of U that correspond

to the top (principal) ρ singular values in Σ.

Due to the factorization OΠ, identifying the observability matrix becomes

ambiguous, since for any non-singular matrix P ∈ Rρ×ρ, OΠ = OP·P−1Π, and

VÔtP can serve also as an estimate. By virtue of the elementary observation

that the column (range) spaces of VÔtP and VÔt coincide, it becomes prefer-

able to identify the column space of VÔt, denoted hereafter by [VÔt], rather

9



Algorithm 1: Extracting Grassmannian features
Parameters: Time indices T, and positive integers N , m, ρ, τf, τb.
Input : Time series (Vyt)t∈T.
Output : Grassmannian features {xt}t∈T.

1 for all t ∈ T do
2 Form (1/τf)F t+1⊗HBᵀ

t via (2).
3 Apply SVD: (1/τf)F t+1⊗HBᵀ

t = UΣVᵀ.
4 Feature xt := [VÔt] ∈ Gr(ρ,mN) is the linear subspace spanned by

the ρ “principal” columns of U.

than the matrix VÔt itself. If ρ = rank[VÔt], then [VÔt] becomes a point in

the Grassmann manifold Gr(ρ,mN), or Grassmannian, which is defined as the

collection of all linear subspaces of RmN with rank equal to ρ [36, p. 73]. The

Grassmannian Gr(ρ,mN) is a Riemannian manifold with dimension equal to

ρ(mN − ρ) [36, p. 74]. The algorithmic procedure of extracting the feature

[VÔt] from the available data is summarized in Alg. 1. To keep notation as

general as possible, instead of using all of the signal samples, a subset T ⊂ Z is

considered and signal samples are gathered in (νyt)t∈T per node ν.

There can be many choices for the reproducing kernel function κ(·, ·) (cf.

Sec. Appendix A). If the linear kernel κlin is chosen, then H = Rq, ϕ(·) be-

comes the identity mapping, ϕt = [yᵀ
t ,y

ᵀ
t+1, . . . ,y

ᵀ
t+N−1]ᵀ ∈ RqN , and ⊗H boils

down to the usual matrix product. This case was introduced in [24]. The most

popular choice for κ is the Gaussian kernel κG;σ, where parameter σ > 0 stands

for standard deviation. However, pinpointing the appropriate σ∗ for a specific

dataset is a difficult task which may entail cumbersome cross-validation proce-

dures [37]. A popular approach to circumvent the judicious selection of σ∗ is

to use a dictionary of parameters {σj}Jj=1, with J ∈ Z>0, to cover an interval

where σ∗ is known to belong to. A reproducing kernel function κ(·, ·) can be then

defined as the convex combination κ(·, ·) :=
∑J
j=1 γjκG;σj (·, ·), where {γj}Jj=1

are convex weights, i.e., non-negative real numbers s.t.
∑J
j=1 γj = 1 [37]. Such

a strategy is followed in Section 4. Examples of non-Gaussian kernels can be

also found in Sec. Appendix A.
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Parameters in Alg. 1 need to be chosen properly to guarantee that features

{xi}i∈I capture the statistical information of the time series. Parameters N , m

and ρ control the dimension ρ(mN − ρ) of the Grassmannian, which should be

large enough to capture the variability of the assumed low-dimensional feature

point-cloud. The sum m+ τf + τb should not be greater than the length of the

time series due to the size of "forward" and "backward’ matrices F t and Bt,

while large values of τf can help in reducing the estimation error of VÔt.

3. Network Clustering In The Grassmannian

3.1. Extended Geodesic Clustering by Tangent Spaces

Having extracted and mapped features into the Grassmannian, the next task

in the pipeline of the framework is clustering. To keep this module as generic

as possible, the index set I will be used henceforth to mark features in {xi}i∈I.
This work follows the Riemannian multi-manifold modeling (RMMM) hy-

pothesis [24, 26, 27], where clusters {Ck}Kk=1 are considered to be submanifolds

of the Grassmannian, and data {xi}i are located close to or onto {Ck}Kk=1 (see

Fig. 3a for the case of K = 2 clusters). RMMM allows for clusters to intersect;

a case where the classical K-means, for example, is known to face difficulties

[38].

Clustering is performed by Alg. 2, coined geodesic clustering by tangent

spaces (GCT). The present GCT extends its initial form of [24, 26, 27] to the

case of Alg. 2 where there is no need to know the number K of clusters a-priori.

This desirable feature of Alg. 2 is also along the lines of usual practice, where

it is unrealistic to know K before employing a clustering algorithm.

In a nutshell, Alg. 2 computes the affinity matrix W of features {xi}i∈I in

step 8, comprising information about sparse data approximations, via weights

{αii′}i,i′∈I, as well as the angular information {θii′}i,i′∈I. Although the incor-

poration of sparse weights originates from [39], one of the novelties of GCT is the

usage of the angular information via {θii′}i,i′∈I. GCT’s version of [24, 26, 27]

applies spectral clustering in step 9, where knowledge of the number of clusters

11



Gr(ρ,mN)

xi

xi′

C1
C2

(a) Clusters on Gr(ρ,mN)

xi′

xi

xii
TxiGr(ρ,mN)

Ŝxi

Ck
Gr(ρ,mN)

xii′

θii′

(b) Angular information

Figure 3: (a) The Riemannian multi-manifold modeling (RMMM) hypothesis. (b) Angular
information computed in tangent spaces and used in Alg. 2.

K is necessary. To surmount the obstacle of knowing K beforehand, Lou-

vain clustering method [40] is adopted in step 9. The Louvain method belongs

to the family of hierarchical-clustering algorithms that attempt to maximize

a modularity function, which monitors the intra- and inter-cluster density of

links/edges. Needless to say that any other hierarchical-clustering scheme can

be used at step 9 instead of Louvain method.

A short description of the steps in Alg. 2 follows, with Riemannian-geometry

details deferred to [24, 26, 27]. Alg. 2 visits {xi}i∈I sequentially (step 1). At

step 2, the KNN-nearest-neighbors NNN(xi) of xi are identified, i.e., those KNN

points, taken from {xi}i, which are placed the closest from xi with respect to the

Grassmannian distance [41]. The neighbors NNN(xi) are then mapped at step 3

to the Euclidean vectors {xii′}xi′∈NNN(xi)
in the tangent space TxiGr(ρ,mN)

of the Grassmannian at xi (the gray-colored plane in Fig. 3b) via the logarithm

map logxi(·), whose computation (non-closed form via SVD) is provided in

[24, 27]. Step 4 computes the weights {αii′}xi′∈NNN(xi)
, with αii := 0, via the

following sparse-coding task:

min
{αii′}

∥∥∥∥xii −∑xi′∈NNN(xi)\{xi}
αii′xii′

∥∥∥∥2
+
∑

xi′∈NNN(xi)\{xi}
exp[‖xii′ − xii‖/σα] · |αii′ |

s.to
∑

xi′∈NNN(xi)\{xi}
αii′ = 1 . (6)

12



Algorithm 2: Extended geodesic clustering by tangent spaces (eGCT)
Input : Grassmannian features {xi}i∈I.
Parameters: KNN ∈ Z>0 and σα, σθ ∈ R>0.
Output : Clusters {Ck}Kk=1.

1 for all i ∈ I do
2 Define the KNN-nearest-neighbors NNN(xi).
3 Map NNN(xi) into the tangent space TxiGr(ρ,mN) of the

Grassmannian at xi via the logarithm map: xii′ := logxi(xi′),
∀xi′ ∈ NNN(xi).

4 Identify {αii′}xi′∈NNN(xi)
via (6). Set αii′ := 0, for all i′ s.t.

xi′ /∈ NNN(xi).
5 Compute the sample correlation matrix Ĉxi in (7).
6 Perform principal component analysis (PCA) on Ĉxi to extract the

eigenspace Ŝxi .
7 Compute angle θii′ between vector xii′ − xii and Ŝxi , ∀xi′ ∈ NNN(xi)

(θii := 0). Let also θii′ := 0 for xi′ /∈ NNN(xi).
8 Form the symmetric |I| × |I| affinity (adjacency) matrix

W := [wii′ ](i,i′)∈I2 , where entry wii′ is defined as

wii′ := exp(|αii′ |+ |αi′i|) · exp[−(θii′ + θi′i)/σθ] .

9 Apply Louvain method [40] to W to parcellate the data (xi)i∈I into
clusters {Ck}Kk=1.

The affine constraint in (6), imposed on the {αii′} coefficients in representing

xii via its neighbors, is motivated by the affine nature of the tangent space

(Fig. 3b). Moreover, the larger the distance of neighbor xii′ from xii, the larger

the weight exp[‖xii′ − xii‖/σα], which in turn penalizes severely the coefficient

αii′ by pushing it to values close to zero. Step 5 computes the sample covariance

matrix

Ĉxi := 1
|NNN(xi)|−1

∑
xi′∈NNN(xi)

(xii′ − x̄i)(xii′ − x̄i)
ᵀ , (7)

where x̄i := (1/|NNN(xi)|)
∑
xi′∈NNN(xi)

xii′ denotes the sample average of the

neighbors of xii. PCA is applied to Ĉxi at step 6 to compute the principal

eigenspace Ŝxi , which may be viewed as an approximation of the image of

the cluster (submanifold) Ck, via the logarithm map, into the tangent space

13



TxiGr(ρ,mN) (see Fig. 3b). Once Ŝxi is computed, the angle θii′ between vec-

tor xii′ −xii and Ŝxi is also computed at step 7 to extract angular information.

The larger the angle θii′ is, the less the likelihood for xi′ to belong to cluster

Ck. The additional use of angular information by GCT advances the boundary

of state-of-the-art clustering methods in the Grassmannian, where, usually, the

weights of the adjacency matrix are defined via the Grassmannian (geodesic)

distance or sparse-coding schemes [39].

3.2. Summarizing the Network-Clustering Framework

To summarize, the flowchart of the network-clustering framework is pre-

sented in Fig. 2. The most straightforward path is the (blue-colored) state-

clustering one, where data are firstly formed (St1), then Alg. 1 is applied to

those data to collect features (St2), and finally Alg. 2 is utilized to assign those

features into clusters {Ck}Kk=1 (St3). In this context, clustering is equivalent to

parcellating the time horizon T into a partition {Tj}Jj=1 of time intervals s.t.

data (|N |yt)t∈Tj are mapped to the same state j.

The “community-detection” (red color) and “subnetwork-state-sequence-

clustering” (green color) paths require state clustering as a pre-processing

part. This is necessary in order to achieve high accuracy clustering results.

Without knowing the starting and ending points of different states, there

will be time-series vectors νyt in Alg. 1 which capture data from two

consecutive states, since νyt takes the form of [νyt, . . . , νyt+Buffν−1]ᵀ. Features

corresponding to those vectors will decrease the clustering accuracy since the

extracted features do not correspond to any actual state or community. Once

states are determined, the features that come from two consecutive states

are ignored and the time horizon T is partitioned in {Tj}Jj=1, then Algs. 1

and 2 are applied per state j to detect communities (Comm4–Comm6). In

“subnetwork-state-sequence clustering,” states are again identified first. Per

state, nodal time-series data are formed according to Sec. 2.2 (Sub4) and nodal

features are extracted by Alg. 1 (Sub5). All those features from all states

are collected and finally Alg. 2 is applied to track/identify subnetwork state
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sequences (Sub6).

3.3. Computational Complexity

The main computational burden comes from the feature extracting and clus-

tering steps in Alg. 1 and Alg. 2. If I denotes the points in the Grassman-

nian, the computational complexity for computing features {xi}i∈I in Alg. 1

is O(|I|C⊗H), where C⊗H denotes the cost of computing F t+1⊗HBᵀ
t , which

includes SVD computations. In Alg. 2, the complexity for computing the

NNN(xi) nearest neighbors of xi is O(|I|Cdist + NNN log |I|), where Cdist de-

notes the cost of computing the Riemannian distance between any two points,

and NNN log |I| refers to the cost of finding the NNN nearest neighbors of xi.

Step 4 of Alg. 2 is a sparsity-promoting optimization task of (6) and let CSC

denotes the complexity to solve it. Under M := Gr(ρ,mN), step 6 of Alg. 2

involves the computation of the eigenvectors of the sample covariance matrix

Ĉxi , with complexity of O(dimM+K3
NN). In step 7, the complexity for com-

puting empirical geodesic angles is O[|I|(Clog + dimM)], where Clog is the com-

plexity of computing the logarithm map logxi(·); for details, see [24]. For the

last step of Alg. 2, the exact complexity of Louvain method is not known but

the method seems to run in time O(|I| log |I|) with most of the computational

effort spent on modularity optimization at first level, since modularity optimiza-

tion is known to be NP-hard [42]. To summarize, the complexity of Alg. 2 is

O[|I|2(Cdist + Clog + dimM) + (KNN + 1)|I| log |I|+ |I|(dimM+K3
NN)].

4. Numerical Tests

This section validates the proposed framework on synthetic and real data.

Tags eGCT[Sker] and eGCT[Mker] denote the proposed framework whenever

a single and multiple kernel functions are employed, respectively. In the case

where the linear kernel is used, the K-ARMA method boils down to the eGCT

method of [24]. Apart from the classical K-means, other competing algorithms

are: (i) The sparse manifold clustering and embedding (SMCE) [39]; (ii) inter-
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action K-means with PCA (IKM-PCA) [43]; (iii) graph-shift-operator estima-

tion (GOE) [20] from the popular graph-signal-processing framework; (iv) inde-

pendent component analysis (ICA) [44, 45]; (v) multivariate Granger causality

(MVGC) [46, 47]; (vi) 3D-windowed tensor approach (3D-WTA) [48]. More

details are given in Sec. 5 of the supplementary file to abide by the thirty-pages

limit for new paper submissions imposed by this journal. SMCE, 3D-WTA,

ICA and the classical K-means will be compared against proposed framework

on state clustering. SMCE, IKM-PCA, 3D-WTA, GOA, ICA, MVGC and K-

means will be used in community detection. Since none of IKM-PCA, GOA,

MVGC and 3D-WTA can perform subnetwork-state-sequence clustering across

multiple states, only the results of proposed framework and SMCE are reported.

To ensure fair comparisons, the parameters of all methods were tuned to reach

optimal performance for every scenario at hand.

The evaluation of all methods was based on the following two criteria:

(i) Clustering accuracy, defined as the number of correctly clustered data points

(ground-truth labels are known) over the total number of points; (ii) normalized

mutual information (NMI) [49]; and In what follows, every numerical value of

the previous criteria is the uniform average of 20 independently performed tests

for the particular scenario at hand.

4.1. Synthetic Data

Data were generated by the open-source Matlab SimTB toolbox [44]. A 10-

node network is considered that transitions successively between 4 distinct net-

work states. Every state corresponds to a certain connectivity matrix, generated

via the following path. Each connectivity matrix, fed to the SimTB toolbox, is

modeled as the superposition of three matrices: 1) The ground-truth (noiseless)

connectivity matrix (cf. Fig. 4), where nodes sharing the same color belong to

the same cluster and collaborate to perform a common task; 2) a symmetric

matrix whose entries are drawn independently from a zero-mean Gaussian dis-

tribution with standard deviation σ to model noise; and 3) a symmetric outlier

matrix where 36 entries are equal to µ to account for outlier neural activity.
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(a) State 1 (b) State 2 (c) State 3 (d) State 4

(e) BOLD time series of node #2, dataset #5

Figure 4: Synthetic data generated by the Matlab SimTB toolbox [44]. (a)-(d) Noiseless and
outlier-free connectivity matrices corresponding to four network states. Nodes that share the
same color cooperate to perform a common task.

Table 1: Synthetic fMRI Data: State clustering

Methods
Without Outliers With Outliers

Clustering Accuracy NMI Clustering Accuracy NMI

D1 D2 D3 D1 D2 D3 D4 D5 D6 D4 D5 D6

eGCT 0.969 0.805 0.640 0.948 0.766 0.596 0.944 0.743 0.589 0.860 0.627 0.340
eGCT[Sker] 1 0.824 0.681 1 0.791 0.622 0.983 0.775 0.599 0.930 0.651 0.379
eGCT[Mker] 1 0.839 0.708 1 0.808 0.641 0.992 0.800 0.626 0.967 0.689 0.435
3DWTA [48] 1 0.792 0.603 1 0.735 0.556 0.943 0.731 0.517 0.872 0.562 0.281
SMCE [39] 0.920 0.784 0.583 0.887 0.673 0.480 0.883 0.712 0.508 0.713 0.558 0.246
ICA [44, 45] 0.943 0.734 0.527 0.821 0.605 0.364 0.926 0.719 0.474 0.795 0.533 0.215
Kmeans 0.866 0.670 0.402 0.800 0.560 0.307 0.768 0.621 0.337 0.476 0.403 0.168

Different states may share different outlier matrices, controlled by µ. Aiming

at extensive numerical tests, six datasets were generated (corresponding to the

columns of Table 1) by choosing six pairs of parameters (µ, σ) in the modeling

of the connectivity matrices and the SimTB toolbox. Datasets D1, D2 and D3

were created without outliers, while datasets D4, D5 and D6 include outlier

matrices with different µs in different states. Table 5 details the parameters of

those six datasets. Driven by the previous connectivity matrices, the SimTB

toolbox generates BOLD time series [29]. Each state contributes 150 signal

samples, for a total of 4 × 150 = 600 samples, to every nodal time series, e.g.,

Fig. 4e.

Table 1 demonstrates the results of state clustering. The parameters used

for eGCT, eGCT[Sker] and eGCT[Mker] are: N := 30, m := 2, ρ := 2, τf := 60,

τb := 20. The Gaussian kernel κG;0.8(·, ·) (cf. Sec. Appendix A) is used in
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Table 2: Synthetic fMRI data: Community detection

Methods
Without Outliers With Outliers

Clustering
Accuracy NMI Clustering

Accuracy NMI

D1 D2 D3 D1 D2 D3 D4 D5 D6 D4 D5 D6

eGCT 1 0.960 0.842 1 0.876 0.775 0.973 0.910 0.817 0.940 0.793 0.664
eGCT[Sker] 1 1 0.915 1 1 0.838 1 0.942 0.852 1 0.864 0.710
eGCT[Mker] 1 1 0.945 1 1 0.907 1 0.958 0.879 1 0.892 0.803
3DWTA [48] 1 0.951 0.839 1 0.927 0.754 0.925 0.863 0.799 0.842 0.780 0.638
SMCE [39] 0.965 0.929 0.827 0.902 0.865 0.691 0.909 0.773 0.745 0.769 0.647 0.563
GOE [20] 1 0.933 0.809 1 0.915 0.655 0.918 0.740 0.684 0.833 0.652 0.409

ICA [44, 45] 0.974 0.936 0.830 0.917 0.883 0.702 0.910 0.826 0.761 0.828 0.715 0.592
MVGC [46, 47] 1 0.948 0.834 1 0.920 0.722 0.914 0.845 0.759 0.826 0.742 0.611
IKM-PCA [43] 0.948 0.907 0.791 0.890 0.814 0.629 0.892 0.756 0.712 0.738 0.551 0.486

Kmeans 0.908 0.876 0.725 0.810 0.729 0.547 0.843 0.672 0.605 0.620 0.391 0.314

the single-kernel method eGCT[Sker], while kernel κ(·, ·) := 0.6κG;0.8(·, ·) +

0.4κL;1(·, ·) is used in the eGCT[Mker] case since it performed the best among

other choices of kernel functions. Fig. 6 depicts also the standard deviations

of the results of Table 1, computed after performing independent repetitions of

the same test. To save space, the figures which include the standard deviations

of the subsequent tests will be omitted.

Among all methods, eGCT[Mker] scores the highest clustering accuracy and

NMI over all six datasets. It can be observed by Table 1 that the existence of

outliers affects negatively the ability of all methods to cluster data. The main

reason is that the algorithms tend to detect outliers and gather those in clusters

different from the nominal ones. Ways to reject those outliers are outside of the

scope of this study and will be provided in a future publication.

Table 2 presents the results of community detection. The numerical val-

ues in Table 2 stand for the average values over the 4 states for each one of

the datasets. Parameters of eGCT, eGCT[Sker] and eGCT[Mker] were set as

follows: N := 30, Buffν := 20, m := 3, ρ := 2, τf := 50, τb := 10. In

eGCT[Sker], the utilized kernel function is κG;0.5(·, ·), while in eGCT[Mker] the

kernel is defined as κ(·, ·) := 0.5κG;0.5(·, ·) + 0.5κL0;1(·, ·) (cf. Sec. Appendix

A). Table 2 demonstrates that eGCT[Mker] consistently outperforms all other

methods across all datasets and even for the case where outliers contaminate

the data. Fig. 7 depicts also the standard deviations of the results of Table 2.
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Table 3: Synthetic fMRI data: Subnetwork state sequences

Methods
Without Outliers With Outliers

Clustering
Accuracy NMI Clustering

Accuracy NMI

D1 D2 D3 D1 D2 D3 D4 D5 D6 D4 D5 D6

eGCT 1 0.816 0.749 1 0.767 0.684 0.928 0.701 0.633 0.874 0.484 0.355
eGCT[Sker] 1 0.856 0.781 1 0.791 0.702 0.956 0.728 0.664 0.913 0.534 0.410
eGCT[Mker] 1 0.884 0.817 1 0.821 0.739 1 0.757 0.721 1 0.602 0.485
SMCE [39] 0.936 0.792 0.691 0.804 0.617 0.495 0.851 0.665 0.580 0.785 0.416 0.318

Table 3 illustrates the results of subnetwork-state-sequence clustering. The

parameters of eGCT, eGCT[Sker] and eGCT[Mker] were set as follows: N := 20,

Buffν := 50, m := 3, ρ := 3, τf := 45, τb := 5. The kernel functions used

in eGCT[Sker] and eGCT[Mker] are identical to those employed in Table 2.

Similarly to the previous cases, eGCT[Mker] outperforms all other methods

across all datasets and scenarios on both clustering accuracy and NMI. Fig. 8

depicts also the standard deviations of the results of Table 3.

4.2. Real Data

To validate the community detection framework,we tested our algorithm on

functional networks derived for two subjects taken from the S1200 dataset of

the Human Connectome Project (HCP) [50] were considered.

To avoid irrelevant influence, only the part of cleaned volume data in single

run with left-to-right phase encoding direction was employed. In addition to

the HCP preprocessing, each voxel was standardized by first subtracting the

temporal mean and then applying global signal regression. Specifically, motion

outliers was used to estimate framewise displacement (FD) [51] and volumes

with FD>0.2 mm were censored and removed from further analysis. In addition,

we standardized each voxel by first subtracting the temporal mean and then

applying global signal regression. Brain regions were defined using either the

standard 116 region AAL-atlas [52]. The temporal activity for a given brain

region was computed by averaging the signal over all voxels within the region.

Table 4 and Fig. 5 shows the community-detection results with 116 brain

ROIs. Ten subjects are randomly selected from the HCP resting state fMRI
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Table 4: Real fMRI data: community detection results

Community Fitting rate

Cerebellum 0.381
Control 0.440

Default Mode 0.642
Dorsal Attention 0.422

Limbic 0.386
Salience/Ventral Attention 0.700

Somatomotor 0.554
Subcortical 0.357

Visual 0.633
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Figure 5: Real fMRI data : Community detection

data set. Nine cortical regions are considered as nine communities as labels of

cognitive system. Each cortical region from the AAL atlas was mapped onto a

cognitive system from the 7-Network parcellation scheme from the Schaefer-100

atlas, respectively [53]. Community label assignment was based on minimizing

the Euclidian distance from the centroid of a region in the AAL to the cor-

responding Schaefer-100atlas over more than 1000 samples. Subcortical and

Cerebellar regions were combined into their respective systems.

Table 4 and Fig. 5 shows the community-detection results with 116 brain

ROIs. Nodes/ROIs with the same color are in the same cluster. Ten samples

are randomly selected from the data set. .

The state clustering results of real fMRI are briefly described in Sec. 7 of

the supplementary file.
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5. Supplementary: Competing Algorithms

5.1. Sparse Manifold Clustering and Embedding (SMCE) [39]

Each point on the Grassmannian is described by a sparse affine combination

of its neighbors. The computed sparse weights define the entries of a similarity

matrix, which is subsequently used to identify data-cluster associations. SMCE

does not utilize any angular information, as step 7 of Alg. 2 does.

5.2. Interaction K-means with PCA (IKM-PCA) [43]

IKM is a clustering algorithm based on the classical K-means and Euclidean

distances within a properly chosen feature space. To promote time-efficient so-

lutions, the classical PCA is employed as a dimensionality-reduction tool for

feature-subset selection. In this algorithm, the dimension of fMRI data is re-

duced by classical PCA first, then the PCA-processed data are clustered using

IKM.

5.3. Graph-shift-operator estimation (GOE) [20]

The graph shift operator is a symmetric matrix capturing the network’s

structure, i.e., topology. There are widely adopted choices of graph shift oper-

ators, including the adjacency and Laplacian matrices, or their various degree-

normalized counterparts. An estimation algorithm in [20] computes the optimal

graph shift operator via convex optimization. The computed graph shift opera-

tor is fed to a spectral-clustering module to identify communities within a single

brain state, since [20] assumes stationary time-series data.

5.4. Independent Component Analysis based algorithms (ICA) [44, 45]

Independent component analysis discovers hidden features or factors from

a set of observed data such that the discovered features are maximally inde-

pendent. For state clustering, group ICA [44] is introduced. In this algorithm,

features are extracted and examined for relationships among the data types

at the group level (i.e., variations among time sliding windows, patients or

controls). Then, functional connectivity matrices are estimated as covariance
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matrices and clustered by K-means. For community detection, [45] proposed

a framework with ICA and hierarchical clustering to identify functional brain

connectivity patterns of EEG and fMRI datasets.

5.5. Multivariate Granger causality (MVGC) [46, 47]

To explore the knowledge of functional brain network as well as connectivity

patterns and community structures, multivariate Granger causality (MVGC)

has recently been applied to incorporate information about the influence exerted

by a brain region onto another. A MVGC toolbox is provided by [46] that

estimates “Granger causality” and vector autoregressive coefficients on time or

frequency domain of time series. A community detection framework based on

MVGC toolbox is proposed in [47]. “Granger causality” strength between each

pair of nodes/ROIs become the entries of an adjacency matrix, which is fed into

spectral clustering for community detection.

5.6. 3D-Windowed Tensor Approach (3D-WTA) [48]

3D-WTA was originally introduced for community detection in dynamic net-

works by applying tensor decompositions onto a sequence of adjacency matri-

ces indexed over the time axis. 3D-WTA was modified in [21] to accommo-

date multi-layer network structures. High-order SVD (HOSVD) and high-order

orthogonal iteration (HOOI) are used within a pre-defined sliding window to

extract subspace information from the adjacency matrices. The “asymptotic-

surprise” metric is used as the criterion to determine the number of clusters.

3D-WTA is capable of performing both state clustering and community detec-

tion.

6. Supplementary: Synthetic fMRI data

Table 5 provides the parameters µ and σ used to generate noise matrices and

symmetric matrices to simulate outlier neural activities. By choosing different

combinations of (µ, σ), 6 different synthetic fMRI datasets were created.
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Table 5: Parameters (µ, σ) used to generate synthetic BOLD time series

Dataset State 1 State 2 State 3 State 4
1 (0,−10dB) (0,−10dB) (0,−10dB) (0,−10dB)
2 (0,−8dB) (0,−8dB) (0,−8dB) (0,−8dB)
3 (0,−6dB) (0,−6dB) (0,−6dB) (0,−6dB)
4 (0.2,−10dB) (0.3,−10dB) (0.4,−10dB) (0.5,−10dB)
5 (0.2,−8dB) (0.3,−8dB) (0.4,−8dB) (0.5,−8dB)
6 (0.2,−6dB) (0.3,−6dB) (0.4,−6dB) (0.5,−6dB)
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Figure 6: State-clustering results of synthetic fMRI datasets. (a) Data without an independent
event; (b) Data with an independent event. These data sets are the same as D1, D2, etc, in
Table 1.

Standard-deviation results of state clustering on synthetic fMRI datasets

are demonstrated in Fig. 6. Standard deviation of all algorithms increase

when the strength of the noisy matrix increases. For dataset D1, eGCT[Sker] ,

eGCT[Mker] and 3DWTA reach 100% accuracy; for other datasets, eGCT[Mker]

exhibits the highest accuracy and the smallest standard deviation.

Fig. 7 illustrates the results of community detection for the synthetic fMRI

datasets. eGCT, eGCT[Sker] , eGCT[Mker] and 3DWTA score 100% accuracy
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Figure 7: Community detection results of synthetic fMRI datasets. (a) Data without an
independent event; (b) Data with an independent event. These data sets are the same as D1,
D2, etc, in Table 2.

for dataset D1, while eGCT[Sker] and eGCT[Mker] show 100% accuracy for

dataset D4. eGCT[Mker] shows the highest accuracy on all other datasets.

Standard-deviation results for subnetwork-state-sequence clustering on syn-

thetic fMRI datasets are demonstrated in Fig. 8. eGCT, eGCT[Sker] and

eGCT[Mker] score 100% accuracy on dataset D1. eGCT[Mker] shows the high-

est accuracy with the smallest standard deviation on all other datasets.

7. Supplementary: Real data

Real fMRI behavioral data, acquired from the Stellar Chance 3T scanner

(SC3T) at the University of Pennsylvania, were used to cluster different states.

The time series in data are collected in two arms before and after an inhibitory

sequence of transcranial magnetic stimulation (TMS) known as continuous theta

burst stimulation [54]. Real and Sham stimulation of two different tasks were
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Figure 8: Subnetwork-state-sequence clustering results of synthetic fMRI datasets. (a) Data
without an independent event; (b) Data with an independent event. These data sets are the
same as D1, D2, etc, in Table 3.

applied for TMS. The two behavioral tasks are: 1) Navon task: A big shape

made up of little shapes is shown on the screen. The big shape can either be

green or white in color. If green, participant identifies the big shape, while

if white, the participant identifies the little shape. The task was presented in

three blocks: All white stimuli, all green stimuli, and switching between colors

on 70% of trials to introduce switching demands. Responses given via button

box are in the order of circle, x, triangle, square; 2) Stroop task: Words are

displayed in different color inks. There are two difficulty conditions; one where

subjects respond to words that introduced low color-word conflict (far, deal,

horse, plenty) or high conflict with color words differing from the color the word

is printed in (e.g., red printed in blue, green printed in yellow, etc.) [55]. The

participant has to tell the color of the ink the word is printed in using a button

box in the order of red, green, yellow, blue.
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Table 6: Real fMRI data: State clustering results

Methods Clustering accuracy NMI

eGCT 0.885 0.809
eGCT[Sker] 0.904 0.843
eGCT[Mker] 0.919 0.875

SMCE 0.893 0.816
ICA 0.873 0.776

Kmeans 0.801 0.720

Each BOLD time series was collected during an 8min scan with TR = 500ms,

which means that the length of time series is 956. The time series has 83 cortical

and subcortical regions so |N | := 83. To test the state clustering results of fMRI

time series, 3 states are concatenated to create a single time series with length

3×956 = 2, 868. The 3 states are: 1) Before real stimulation of the Navon task;

2) after real stimulation of the Navon task; and 3) after real stimulation of the

Stroop task.

Parameters of eGCT, eGCT[Sker] and eGCT[Mker] are defined as: N := 180,

m := 4, ρ := 2, τf := 350, τb := 20. In eGCT[Sker] , the kernel function

is set equal to κG;0.45(·, ·), while in eGCT[Mker] κ(·, ·) := 0.3κG;0.25(·, ·) +

0.3κG;0.9(·, ·)+0.4κL;0.75(·, ·). Notice here that due to the sliding-window imple-

mentation in the proposed framework, there are cases where the sliding window

captures samples from two consecutive states.

Results of state clustering on real fMRI data are revealed in Table 6. Fig. 9

depicts also the standard deviations of the results of Table 6. eGCT[Mker]

scores the best performance among all methods.

8. Conclusions

This paper introduced a novel clustering framework to address all possible

clustering tasks in dynamic (brain) networks: state clustering, community de-

tection and subnetwork-state-sequence tracking/identification. Features were

extracted by a kernel-based ARMA model, with column spaces of observabil-

ity matrices mapped to the Grassmann manifold (Grassmannian). A clustering
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Figure 9: Real fMRI data: State clustering.

algorithm, the geodesic clustering with tangent spaces, was also provided to ex-

ploit the rich underlying Riemannian geometry of the Grassmannian, without

the need to know the number of clusters a-priori. The framework was validated

on multiple simulated and real datasets and compared against state-of-the-art

clustering algorithms. Test results demonstrate that the proposed framework

outperforms the competing methods in all clustering tasks. Current research

effort includes finding ways to reduce the size of the computational footprint of

the framework, and techniques to reject network-wide outlier data.
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Appendix A. Reproducing Kernel Hilbert Spaces

A reproducing kernel Hilbert space H, equipped with inner product 〈· | ·〉H,
is a functional space where each point g ∈ H is a function g : Rq → R : y 7→
g(y), for some q ∈ Z>0, s.t. the mapping g 7→ g(y) is continuous, for any
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choice of y [37, 56, 57]. There exists a kernel function κ(·, ·) : Rq × Rq → R,

unique to H, such that (s.t.) ϕ(y) := κ(y, ·) ∈ H and g(y) = 〈g | ϕ(y)〉H,
for any g ∈ H and any y ∈ Rq [56, 57]. The latter property is the reason for

calling kernel κ reproducing, and yields the celebrated “kernel trick”: κ(y1,y2) =

〈κ(y1, ·) | κ(y2, ·)〉H = 〈ϕ(y1) | ϕ(y2)〉H, for any y1,y2 ∈ Rq.

Popular examples of reproducing kernels are: 1. The linear

κlin(y1,y2) := yᵀ
1y2, where space H is nothing but Rq; 2. the Gaussian

κG;σ(y1,y2) := exp[−‖y1−y2‖2/(2σ2)], where σ ∈ R>0 and ‖·‖ is the standard
Euclidean norm. In this case, H is infinite dimensional [57]; 3. the Laplacian

κL;σ(y1,y2) := exp[−‖y1 − y2‖1/σ], where ‖·‖1 stands for the `1-norm [58];

and 4. the polynomial κpoly;r(y1,y2) := (yᵀ
1y2 + 1)r, for some parameter

r ∈ Z>0. There are several ways of generating reproducing kernels via certain

operations on well-known kernel functions such as convex combinations,

products, etc. [37].

Define Hp, for some p ∈ Z>0, as the space whose points take the following

form: g := [g1, . . . , gp]
ᵀ ∈ Hp s.t. gj ∈ H, ∀j ∈ 1, p, where 1, p is a compact

notation for {1, . . . , p}. For p′ ∈ Z>0 and given a matrix A := [aij ] ∈ Rp′×p,

the product Ag ∈ Hp′ stands for the vector-valued function whose ith entry

is
∑p
j=1 aijgj . Similarly, define Hp1×p2 , for some p1, p2 ∈ Z>0, as the space

comprising all

G :=


g11 · · · g1p2
...

. . .
...

gp11 · · · gp1p2

 ∈ Hp1×p2 ,

s.t. gij ∈ H, ∀i ∈ 1, p1, ∀j ∈ 1, p2. Moreover, given G ∈ Hp1×p and G′ ∈
Hp×p2 , define the “product” G⊗H G′ as the p1 × p2 matrix whose (i, j)th entry

is [G⊗H G′]ij :=
∑p
l=1〈gil | g′lj〉H. In the case where gil := ϕ(yil) = κ(yil, ·)

and g′lj := ϕ(y′lj) = κ(y′lj , ·), for some yil,y
′
lj , as in (3), then the kernel trick

suggests that the previous formula simplifies to [G⊗H G′]ij =
∑p
l=1 κ(yil,y

′
lj).
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Appendix B. Proof of Proposition 1

By considering a probability space (Ω,Σ,P), a basis {en}n∈Z>0
of

H, and by omitting most of the entailing measure-theoretic details, the

expectation of g =
∑
n∈Z>0

γnen ∈ H, where {γn}n∈Z>0
are real-valued

RVs, is defined as E(g) :=
∑
n∈Z>0

E(γn)en, provided that the latter sum

converges in H. Conditional expectations are similarly defined. All of

the expectations appearing in this manuscript are assumed to exist. Due

to the linearity of the inner product 〈· | ·〉H, it can be verified that the

conditional expectation E{〈g | g′〉H | g′} = E{∑n,n′ γnγn′〈en | en′〉H | g′} =∑
n′ γn′

∑
n E{γn | g′}〈en | en′〉H = 〈∑n E{γn | g′}en |

∑
n′ γn′en′〉H =

〈E{g | g′} | g′〉H, and E{〈g | g′〉H} = 〈E(g) | E(g′)〉H in the case where g and

g′ are independent. It can be similarly verified that these properties, which

hold for the inner product 〈· | ·〉, are inherited by ⊗H.
Induction on (1) suggests that ∀τ ∈ Z≥0, ϕt+τ =

CAτψt +
∑τ
k=1 CAτ−kωt+k + υt+τ , where

∑0
k=1 CA−kωt+k := 0. Then,

ft :=
[
ϕᵀ
t ,ϕ

ᵀ
t+1, . . . ,ϕ

ᵀ
t+m−1

]ᵀ
= Oψt + et , (B.1)

where

et :=



υt

Cωt+1 + υt+1∑2
k=1 CA2−kωt+k + υt+2

...∑m−1
k=1 CAm−1−kωt+k + υt+m−1


∈ HmN .

By observing that F t = [ft,ft+1, . . . ,ft+τf−1], it can be verified that F t =

O [ψt,ψt+1, . . . ,ψt+τf−1] + [et, et+1, . . . , et+τf−1]. Moreover, notice that Bt =
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[bt, bt+1, . . . , bt+τf−1], where bt :=
[
ϕᵀ
t ,ϕ

ᵀ
t−1, . . . ,ϕ

ᵀ
t−τb+1

]ᵀ ∈ HτbN . Hence,

1
τf
F t+1⊗HBᵀ

t

= 1
τf

O [ψt+1, . . . ,ψt+τf ]⊗HBᵀ
t

+ 1
τf

[et+1, . . . , et+τf ]⊗HBᵀ
t

= O 1
τf

∑τf

l=1
ψt+l⊗H bᵀt+l−1

+ 1
τf

∑τf

l=1
et+l⊗H bᵀt+l−1

= O 1
τf

∑τf

l=1
ψt+l⊗H[ψᵀ

t+l−1C
ᵀ, . . . ,ψᵀ

t+l−τbCᵀ]

+ O 1
τf

∑τf

l=1
ψt+l⊗H[υᵀ

t+l−1, . . . ,υ
ᵀ
t+l−τb ]

+ 1
τf

∑τf

l=1
et+l⊗H bᵀt+l−1 ,

and (3) is established under the following definitions:

Πt+1 := 1
τf

∑τf

l=1
ψt+l⊗H[ψᵀ

t+l−1C
ᵀ, . . . ,ψᵀ

t+l−τbCᵀ] ,

Eτft+1 := O 1
τf

∑τf

l=1
ψt+l⊗H[υᵀ

t+l−1, . . . ,υ
ᵀ
t+l−τb ]

+ 1
τf

∑τf

l=1
et+l⊗H bᵀt+l−1 . (B.2)

By virtue of the independency between (ψt)t and (υt)t, the zero-mean as-

sumption on (υt)t, as well as standard properties of the conditional expecta-

tion [34, §9.7(k)] with respect to independency, it can be verified that

E{ψt+l⊗H[υᵀ
t+l−1, . . . ,υ

ᵀ
t+l−τb ] | ψt+l}

= ψt+l⊗H[E{υᵀ
t+l−1}, . . . ,E{υ

ᵀ
t+l−τb}] = 0 . (B.3)

Moreover, for any i ∈ 1,m and any j ∈ 1, τb, the (i, j)th N × N block of the

second term in the expression of Eτft+1 in (B.2) becomes equal to

∑i−1

k=1
CAi−1−k 1

τf

∑τf

l=1
ωt+l+k ⊗Hϕᵀ

t+l−j

+ 1
τf

∑τf

l=1
υt+l+i−1⊗Hϕᵀ

t+l−j

30



=
∑i−1

k=1
CAi−1−k 1

τf

∑τf

l=1
ωt+l+k ⊗Hψᵀ

t+l−jC
ᵀ

+
∑i−1

k=1
CAi−1−k 1

τf

∑τf

l=1
ωt+l+k ⊗H υᵀ

t+l−j

+ 1
τf

∑τf

l=1
υt+l+i−1⊗Hψᵀ

t+l−jC
ᵀ

+ 1
τf

∑τf

l=1
υt+l+i−1⊗H υᵀ

t+l−j . (B.4)

Since t + l + k > t + l > t + l − j and t + l + i − 1 ≥ t + l > t + l − j,

ψt+l−j precedes ωt+l+k on the time axis, while υt+l+i−1 precedes

υt+l−j . Hence, due to independency, E{ωt+l+k ⊗Hψᵀ
t+l−j | ψt′} =

E{ωt+l+k | ψt′}⊗Hψᵀ
t+l−j = E{ωt+l+k}⊗Hψᵀ

t+l−j = 0, and

E{υt+l+i−1⊗H υᵀ
t+l−j | ψt′} = E{υt+l+i−1}⊗H E{υᵀ

t+l−j} = 0. It

can be also similarly verified that E{ωt+l+k ⊗H υᵀ
t+l−j | ψt′} = 0 and

E{υt+l+i−1⊗Hψᵀ
t+l−j | ψt′} = 0. As a result, the conditional expectation of

(B.4), given ψt′ , becomes 0. This observation and (B.3) establish claim (4) of

the proposition.

Under the assumptions on wide-sense stationarity, the covariance sequences

of the processes (ωt⊗Hψᵀ
t−τ )t, (ωt⊗H υᵀ

t−τ )t, (υt⊗Hψᵀ
t−τ )t, (ψt⊗H υᵀ

t−τ )t,

(υt⊗H υᵀ
t−τ )t, ∀τ ∈ Z>0, are summable over all lags; in fact, the covariances of

non-zero lags become zero due to the assumptions on independency. Hence, by

the mean-square ergodic theorem [59], sample averages of the previous processes

converge in the mean-square (L2-) sense to their ensemble means. For example,

applying limτf→∞, in the mean-square sense, to the first part of Eτft+1 in (B.2)

and by recalling standard properties of the conditional expectation [34, §9.7(a)]

yield

O lim
τf→∞

1
τf

∑τf

l=1
ψt+l⊗H[υᵀ

t+l−1, . . . ,υ
ᵀ
t+l−τb ]

= OE{ψt+l⊗H[υᵀ
t+l−1, . . . ,υ

ᵀ
t+l−τb ]}

= OE{E{ψt+l⊗H[υᵀ
t+l−1, . . . ,υ

ᵀ
t+l−τb ] | ψt+l}} = 0 . (B.5)

By following similar arguments, it can be verified that the application of limτf→∞

to (B.4) renders the second part of (B.2) equal to 0. This finding and (B.5)
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establish the final claim of the proposition.
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