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Abstract

In this paper, a reduced-rank angular parameters estimation algorithm is
proposed for incoherently distributed (ID) noncircular sources based on a u-
niform linear array (ULA), which addresses the problems of central direction-
of-arrival (DOA) estimation and angular spread estimation. Firstly, the non-
circularity property of the signals is utilized to establish an extended gen-
eralized array manifold (GAM) model based on the first-order Taylor series
approximation. Then, the central DOAs of source signals are obtained based
on the generalized shift invariance property of the array manifold and the
reduced-rank principle. Next, the angular spreads are estimated from the

central moments of the angular distribution. Compared with the existing al-
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gorithm without exploiting the noncircularity information, the proposed one
can achieve a higher accuracy and handle more sources. In addition, it can
deal with a general scenario where different sources have different angular
distribution shapes. Furthermore, the approximate stochastic Cramer-Rao
bound (CRB) of the concerned problem is derived. Simulation results are
provided to demonstrate the performance of the proposed algorithm.
Keywords:

Incoherently distributed sources, noncircularity, central DOA estimation,

angular spread estimation, generalized shift invariance, rank reduction.

1. Introduction

Direction of arrival (DOA) estimation has developed rapidly over the last
few decades, given its wide range of applications such as wireless communica-
tion, radar and sonar [1-5]. In most applications, DOA estimation methods
are usually developed for the point source model, with the assumption that
the signals impinging on the array through one single path. However, in
practice, the multipath scattering phenomenon is unavoidable [6-10], which
causes angular spread of the impinging source signals, and then affects the
signal spatial distribution, making the DOA estimation problem more chal-
lenging. Thus, directly applying the classic point-source based multi-signal
classification (MUSIC) [11] or ESPRIT types of algorithms [12] in such a sce-
nario will lead to severe performance degradation, or even worse a complete
failure of the algorithms. To this end, a spatially distributed source model
has been introduced in array signal processing, where two important angular

parameters of the received signal are used which are the central DOA and



the angular spread, respectively.

According to the correlation property among different signal paths, one
can categorize distributed sources into either coherently distributed (CD)
sources or incoherently distributed (ID) sources. For CD sources, as the
rank of the noise-free covariance matrix is equal to the number of sources,
the dimension of the signal subspace is still equal to the number of sources.
Therefore, in the past few decades, parameter estimation of CD sources has
been well studied by extending the classic point source methods [13-17].
In [13], in order to estimate the angle parameters of the CD sources, the
central DOAs of the sources were firstly estimated using the TLS-ESPRIT
algorithm, and then a one-dimensional (1-D) distributed source parameter
estimator (DSPE) was constructed for each source to estimate the angular
spread. With the assumption of small angular spread, an effective DSPE
algorithm [14] and successive DSPE-based algorithm [15] for CD sources were
proposed by decoupling the estimation of DOA from that of angular spread
of CD sources. In [16], the authors studied the joint estimation of DOA
and angular distribution for CD sources in the presence of model errors due
to mismatch of the distribution shape between the model and the actual
source. In the case of near-field sources and unknown angular distributions,
an algorithm was proposed in [17] for jointly estimating the DOA, range,
spread angle and shape the CD sources.

However, for ID sources, their components take the entire observation
space, leaving the noise subspace empty. As the rank of the noise-free co-
variance matrix is not equal to the number of sources [6], traditional point

source based subspace methods are not applicable in this case. To solve



this problem, the concept of quasi-signal subspace and quasi-noise subspace
was introduced [18], and subsequently, a number of effective methods have
been studied for DOA estimation of ID sources, such as the dispersed signal
parameter estimation (DISPARE) algorithm [18], the maximum likelihood
(ML) algorithm [19] and the covariance matching (COMET) algorithm [20].
However, the multidimensional searching operation in [19] leads to an ex-
tremely high computational complexity, and to reduce it, a TLS-ESPRIT
method was proposed in [13] based on the generalized array manifold (GAM).
Although the TLS-ESPRIT method has a lower computational complexity,
it has limitations on the structure of the array. In [21], a joint polynomial
rooting and general ESPRIT method was proposed for ID source based on a
generalized shift invariance property, which is more adaptable in array man-
ifold and has a better performance, and also can handle more ID sources.
In the beamspace domain, a shift invariance method was proposed in [22]
to efficiently estimate the center DOA and angular spread of the ID sources
without the need of spectral peak search. Resorting to the manifold sepa-
ration technique, a computationally efficient yet accurate estimator [23] was
developed for localization of multiple ID sources, which has good applica-
bility for arbitrary array geometries or large angular spreads. In [24], two
consecutive one-dimensional searches were performed to decouple the central
DOA and the angular spread, and it outperformed the existing algorithms in
terms of estimation accuracy and robustness, also the stochastic Cramer-Rao
bound (CRB) was derived for the underlying estimation problem.

None of the above work considers the possible noncircular information

of the impinging signals, such as the BPSK signal, which has been widely



used in DOA estimation by increasing the array virtual aperture to improve
the DOA estimation performance [25-27]. In [28], a method for estimating
ID noncircular sources using two closely spaced uniform linear arrays (U-
LAs) was proposed, which used the cross-correlation matrix to eliminate the
influence of noise, and then singular value decomposition (SVD) to obtain
the signal subspace for central DOA estimation. In [29], an improved gen-
eralized approximate message passing technique was proposed to estimate
the central DOA of ID noncircular sources, which is based on sparsity and
non-circularity of the signals. However, the methods in [28] and [29] are only
focused on center DOA estimation of ID non-circular sources.

In this paper, a novel method for central DOA estimation and angular
spread estimation of ID noncircular signals is proposed based on the extended
GAM model by using a first-order Taylor series approximation, and combin-
ing the generalized shift invariance property and the reduced-rank principle.
The contributions of the paper are given as follows.

(1) Compared with Cao’s algorithm [21], the proposed algorithm exploits
signal noncircularity to handle more ID sources and improves estimation ac-
curacy.

(2) Compared with the multi-dimensional spectrum search method, the pro-
posed algorithm only requires 1-D spectrum search, which reduces the com-
putational complexity.

(3) The proposed algorithm does not require prior knowledge of angular dis-
tribution, such that it can be applied to situations where multiple sources
have different angular distributions.

The rest of this paper is organized as follows. Section 2 introduces the



general signal model. The proposed algorithm is presented in detail in Sec-
tion 3. The approximate stochastic CRB of the concerned problem is derived
in Section 4. Simulation results are provided in Section 5, followed by con-
clusions in Section 6.

Notations: (-)*, (1), ()71, (\)*, and (-)¥ denote conjugate, transpose,
inverse, and conjugate transpose, respectively. E{-} is the expectation op-
eration; Rect[-] denotes the rectangular window function; diag{-} represents
a diagonal matrix formed by its elements; blkdiag{-} represents the gener-
ation of a block diagonal matrix; Iy is the k-dimensional identity matrix;
Osx; denotes the k x [ zero matrix; det{-} and ¢r{-} denote the determi-
nant and trace of a matrix, respectively; |-| is the floor function, giving the
largest integer less than or equal to its input; ® and © are the Kronecker and
Hadamard matrix product, respectively; vec{-} denotes an operator stack-
ing the columns of a matrix on top of one another; [-]; denotes the (I, k)th

elements of a matrix.

2. General signal model

Consider a ULA with M elements on the x axis as shown in Fig.1. The
distance between adjacent antennas is d which is half-wavelength. It is as-
sumed that there are K uncorrelated narrowband far-field ID noncircular
signals sx(t),k = 1,2,..., K impinging on the array. The received data vec-

tor can be expressed as



Fig. 1: A uniform linear array structure

where t = 1,2,...,T is the sampling index, T is the total number of s-
napshots, Ly is the total number of rays/paths from the kth signal, 6; €
[—90°,90°] is the DOA of the ith ray from the kth signal, with the first an-
tenna as the zero-phase reference point, the array manifold vector a(@k’l) =
[1,e2mdsinbu/A ... ei2m(M—1)dsinbe1/NT -~ (1) is the complex-valued path
gain, n(t) = [ny(¢),--- ,np(¢)]7 is the M x 1 additive white Gaussian noise
vector with zero mean and variance 2. For ID sources, v ,(t) is assumed to
be temporally white and independent from each other with zero-mean and
covariance [21]

0.2

E{yea(8)7i0 ()} = -Ll:5(/€ — K61 = 16(t — 1) (2)

Angle 0, can be represented as

Ors = Ok + oru(2) (3)

where 6 is the central DOA of the kth noncircular signal, and ¢y,(t) is a
small random angular deviation from the central DOA 6y, which is assumed
to be real-valued zero-mean random variables with variance o,. Here, we
also assume that ¢ ;(t) is small, and the DOAs from different rays from one

noncircular source are relatively close to each other.
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It is also assumed that ( 2 ¢r(t) is a real-valued zero-mean random
variable with probability density function pg((;or). Moreover, pi((; o) is
generally assumed symmetric in terms of (. Two typical distributions are

the Gaussian distribution and the uniform distribution as given below

L exp{—0.5¢*/c}} Gaussian,

27’l‘0‘k

2\/15% ReCt[_\/é(Tk, \/é(fk] Uniform.

(4)

Pr(Ciop) =

3. The Proposed Method

3.1. Extended GAM Model

According to (3), for a small angle spread, the first-order Taylor series

expansion of the manifold vector a(ék,l) can be approximated as
a(Oh1) = a(0y) +a'(0h)pra(t) (5)

where a’(0,) is the derivative of a(fy) with respect to 0. Substituting (5)

into (1), we have

x(t) = Y (a(Bk)vno(t) + ' (Bk)vpa (1)) + n(t) (6)

k=1
where

Vg o(t) = si(t) % Vil
o (7)

Ve 1(t) = sk(t) D Yeara(t)
=1

Then, we can reformulate (6) into the GAM model as
x(t) =~ B(0)g(t) + n(t) (8)

where

B(0) = [A(61), A(6:), - -, A(O)] € CM2F (9)
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A(6;) = [a(6), &' (6,)] € CM>2 (10)
g(t)=[gl.g. gk €C*! (11)
ge = [ko(t), vea (1)) € C* (12)

It should be noted that the GAM matrix B(6) depends only on the central
DOA. Assume that the transmitted signals, the path gains, and the angular
deviations are uncorrelated from each other, the variance of vy 1(¢) includes

the variance of the angular distribution o7, that is

E {upa (104 (1)} = po? (13)

where pr = E {|sx(t)]’} 02, is the power of the kth ID noncircular signal.
Additionally, the variance of vy (t) is

E {1),670(1%)1);70(15)} = Pk (14)
and the covariance is
E {ven(t)v o (6)} = 0,Yk £ K or n#n' (15)

From equations (13), (14), and (15), the covariance of g(t) can be expressed
as

A =E{gt)g"(t)} = blkdiag {A1,As, - . Ax} (16)

where Ay, = prdiag{l,0?}, k=1,2,--- | K.

Here, we consider the case where the received signals are strictly noncir-
cular with the maximal noncircularity rate. Thus, g(¢) can be re-written as
[30]

g(t) = ®go(t) (17)



] ) , . o, . .,
where g (1) is a real-valued signal vector, and ® = diag{e’“!, /¥t ... WK ¥ K}

is a 2K x2K diagonal matrix, whose diagonal elements w = [wq, W], - -+ , Wk, Wy
carry the noncircular phase information.

To exploit the noncircularity property of the strictly noncircular signals,
a new data vector is constructed by stacking the original data vector x(t)

and its corresponding conjugate counterpart together as follows

o | =0 ] _[Besn | [a0
| x'(?) B*(0)g" (1) n*(t)
NG NR R (13
| B (0)2~? n*(t)
— B@)s(r) +n(t)
where
- B(0) ,
B(@) _ c 02M><2K (19)
B*(0)® 2
is the extended GAM matrix, and fi(t) = n(z)) € C?Mx1 i the extended
n*(¢

noise matrix.

The covariance matrix of the extended data vector y(t) is given by
R = E{y(t)y"(t)} = B(0)AB"(0) + 07 Lou (20)

where A is the convariance matrix of g(t).

With eigenvalue decomposition (EVD), we have
R=UxU" +U,x, U (21)

where the 2M x 2K matrix Uy is the signal subspace corresponding to diago-

nal matrix 3¢ composed of the 2M largest eigenvalues, and the 2M x (2M —
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2K) matrix U, is the noise subspace corresponding to diagonal matrix 3,

composed of the (2M — 2K) smallest eigenvalues.

3.2. Central DOA Estimation

The sensor array is first divided into two subarrays, each with N = M —1

sensors. They include sensors {x1, -+ ,xy 1} and {z, -+, x)}, respective-

ly. For simplicity, {x1,}_, and {zo, }_, are used to represent the locations

of the sensors in each subarray, where z,, < xg,,n=1,---,N.

Define the following selection matrix
Ji=[Iyxn Onyi ) €CVHM

Jo=[ 0y Iyuy]€CVHM

According to (9), (10) and (19), we have

Kgﬁl(ek) = Q’kKlé’(Bk)

where
a(f
E_i(ek) _ . ( k) c 02M><1
e‘«72“’k‘a*(9k)
a'(0
5,(9]4) — ‘ ( k) c 02M><1
eIk a’™ (6,
Q. = blkdiag{e’* Inyn, e I Inyn}, ¢ = 2mdsin O,/ A
Q/k - dlag{61€]¢k7 oo ’BN€j¢k7 Ble_j¢k7 oo 75Ne_j¢k} S CQNX2N7 /Bn —

11

(22)

(23)

(26)

(27)

(28)

$2,11
)
$1,n

(29)




where a(f),) is an M x 1 vector whose mth element is e/27(m—1dsin0k/A,

a’'(fy) is the derivative of a(f;) with respect to 6y; a*() and a’*(6;) are
the conjugates of a(fy) and a’(fy), respectively; K; = blkdiag{J;,J;}, and
Ky = blkdiag{Js,J2}. From (24) and (25), we have

B(0k) = [a(0k), &' (0x)] (30)

K.B(6) = [, K a(6:), QK& (6,) - -, QKia (), kK& (0x)]. (31)

Clearly, U, has the same column space as the GAM matrix B(#), which
yields
U, =BT (32)

where T is an invertible 2K x 2K matrix.
We can extract two submatrices U; and Uy from U, whose rows corre-
spond to the partition of the two subarrays, where U, U, € O?V*2K Then,

we have

U, =K;B®T (33)
U, = Ky,B(6)T (34)
Define a new matrix ¥(0) as
U(0) = blkdiag{e’ Iy n, e " Iyxn} (35)
where ¢ = 2ndsin /). Then we construct D(0) as
D) =U, - ¥(0)U, = (K,B - ¥(/)K,B)T = Q(/)T (36)
where Q(0) = (K,B — ¥(0)K;B). Using (31), Q(f) can be rewritten as

Q(0) = [($21 — ¥ (0)) Kqa(6y), (1 — ¥(0)) Kqa'(01), - -+,
(Qx — ¥(0) Kia(0k), (¥'x — ¥(0)) K@ (k)]

(37)

12



It can be seen from (37) that when § = 6y, all the elements of (€2, — ¥ (0))
become zero. Therefore, if K < N, then D(0) is rank deficient and the deter-
minant of D (9)D(6) is zero. The estimated value {6}, }X_, of the noncircular
signals central DOA can be obtained by searching for the peaks of the fol-

lowing function

1
1) = G @D )T (38)
3.3. Angular Spread Estimation
From (20), A can be estimated as
A =B(0)" (R—67To0) (B (9)) (39)

where B(f) is the estimate of B(#) by substituting the estimates of 6 into (19).
Furthermore, the estimate of the variance 62 of the noise can be calculated
by the average of the (2M — 2K') smallest eigenvalues of R. According to

the expression of A in (16), the angular spreads can be given by

~

. 1 ( [A] 2% 2k [A]2K+2k,21<+2k

O — - +

. . ) k=12 ,K (40)
2 [A]Qk—1,2k—1 [A]2K+2k—1,2K+2k—1

The proposed algorithm for estimating the angular parameters of inco-

herently distributed noncircular sources is summarized in Table 1.

4. The approximate Cramer-Rao bound

To derive the approximate stochastic CRB of the concerned problem, we

first define a vector i containing all the interesting parameters as

n= [[.LT,’UT]T c C(4K+1)><1 (41)
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Table 1: Summary of the proposed algorithm.

Algorithm: Estimation of the central DOA and the angular spreads of

ID noncircular sources.

Step 1 Obtain the extended data vector y(t) according to (18).

Step 2 Calculate the covariance matrix R via (20), and perform EVD
on R to obtain Us,.

Step 3 Extract two submatrices U; and U, from U, and formulate
matrix Dy.

Step 4 Estimate the central DOAs through peak search of (38).

Step 5 Calculate A via (39) and estimate the angular spreads with (40).

where p = [07,0’]" € C*!*! with the central DOAs 6 = [0,0,,--- ,0k]"
and the angle spreads o = [0, 09, -+ ,0x]", v = [T, pT, 02T € CRE+x1
with the noncircular phases ¥ = [¢1, p2, -+, ¢x]’ and p = [p1, p2, -+, pr]*-
Under the assumption of small angular spreads, the conjugated and un-

conjugated covariance matrix R; and R/ of the observation can be approxi-

mated as [21], respectively

K
Ry~ Y pRa(Oh 0k) + 071y (42)
k=1
K
R ~ ) e R (0, 01) (43)
k=1

where RS((‘)k, O'k) = a(é?k)aH(F)k) ©O) G((gk O'k) and R’S(Hk, O'k) = a((‘)k)aT(Hk) ©)
G (0, 0k). G(0y,0) is a Toeplitz matrix with the (p, ¢)th element given by
sinc ((2v/30%(x, — 7,) cos 6),) /A) Uniform,

(G Ok, 1)]pqg =
e exp (—(27’7(:% — Z4)0) COS Gk)2/2> Gaussian,

14



and G'(0y, o) is an anti-Toeplitz matrix with the (p, ¢)th element given by

, sin ¢ ((2v/30% (2, +2,—2) cos 6) /A) Uniform,
(G (6. )]p.g = 9 2 .
exp (—(7”(:Ic][,%—xq—Z)a/zC cos O) /2) Gaussian.

Considering the noncircularity of the incoming signals, the extended co-

variance matrix R can be further rewritten as

R, R/
R = (44)
R Rj

The CRB of ) can be calculated as [24, 30]
CRB(n) =F! (45)

where F is the Fisher information matrix (FIM) with the (p, ¢)th entry de-

T R oR
Fl|,,= —tr R_l—R_l—} 46
g = g {R R (a6

fined as

Furthermore, (46) can be rewritten as

where h = vec{R}.
With the partition

_ _ Jh | oh
(R T2 g R 1/2) lm dv_T] 2 [U|V] (48)
where
_ _ oh | oh
_ B cdh | oh | 0oh
V = (R T2 o R 1/2) [&pT " 8021 = [Uy |V [V,] (50)

15



where the kth column of Uy, U,, Uy, V, and V,, are as follows

Uy(:, k) = vec R_l/za—RR_l/2 (51)

06y,
U, (i, k) = vee {R‘I/Q%R‘I/Q} (52)
Uy (s, k) = vec {RI/Q%RW} (53)
V(i k) = vec {R_l/za—RR_l/Z} (54)

Ipr
V.,.(:, k) = vec {R_1/2§7I;LR_1/2} (55)

Then we can rewrite (47) as

2 F = v 56
i [U V] (56)

Resorting to the block matrix inversion lemma [30] by taking the upper-left
corner of F~!) we can attain the interesting angle parameters C RB(u) from
(45).

Remark 1: The major computational effort of the proposed algorithm
includes the construction of R, performing EVD on R, spectral searching
and Step 5. Denote the number of searches for estimating the central DOAs
by A. To calculate R and perform EVD on R, a computational complexity
of O((2M)*T) and O((2M)?) is needed, respectively. The complexity for
1D spectral search of Step 4 is about O(A(8NK? + 16N?K)). The com-
plexity of Step 5 is O(8MK? + 2(2M)?K). The total computational com-
plexity of the proposed algorithm is about O((2M)*T + (2M)3+A(SNK? +
16N?K)+8M K? + 2(2M )?*K).

16



Subarray 1 Extended subarray 1

[O O Oeee O 0O O] [O O Oeee O O O]
X
o ,
[O Oeee O O O O] [ O Oeee O O O O
Subarray 2 Extended subarray 2

(a)The proposed algorithm

Subarray 1
[O O Oeee O O O]

o

[0 Oeee 0O O 0O O]
Subarray 2
(b)Cao’s algorithm

Fig. 2: Subarray selection of the proposed algorithm and Cao’s algorithm.

Remark 2: Compared to Cao’s algorithm in [21], the proposed method
exploits the additional information provided by noncircular signals by ex-
tending the virtual array aperture. The maximum number of distinguishable
signals by the proposed algorithm is based on the new extended data vec-
tor in (18) as well as the matrix D(€) in (36), which is shown in Fig.2 and
Table.2 as compared to Cao’s algorithm. Obviously, the proposed algorithm
can distinguish twice as many signals as Cao’s algorithm. Moreover, for the
ESPRIT-ID algorithm [13], if two non-overlapping identical subarrays are
used, the maximum number of distinguishable signals will be only | M /4].

In this case, the proposed algorithm can detect almost four times the number

of signals than the ESPRIT-ID.
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Table 2: Maximum number of signals distinguished by the two algorithms

Algorithm Parity of M Maximum detectable number

odd K=M-1

Proposed algorithm

even K=M-1

odd K=(M-1)/2
Cao’s algorithm

even K=(M-2)/2

5. Simulation results

In this part, the effectiveness of the proposed algorithm is evaluated
through some simulations as compared to the state-of-the-art techniques,
namely Cao’s algorithm [21] and the classic ESPRIT-ID [13]. The CRB of
the ID noncircular sources is also plotted for reference. Consider that the
involved ID noncircular sources emit the BPSK signals, which impinge on
the ULA with the adjacent elements spaced half a wavelength apart. The
variance of ray-gains is set as {02 };; = 1, and the number of scattering

paths is set as {L;,}£, = 100. We use the root mean square error (RMSE)

K M. ,. 2
RMSE = KLMC > <9k,m — Hk,) as the performance index, where M,
k

=1m=1

is the total number of Monte-Carlo trials, 6, is the estimate of the cen-

tral DOA 6, of the kth signal in the mth Monte-Carlo trial. For the first

18



simulation, we suppose the total number of ULA sensors is M = 5, and the
next four simulations, M = 8. It should be noted that the number of sensors
included in each subarrray is N = M — 1 for the proposed algorithm.

In the first simulation, the maximum number of detectable ID signals by
the proposed algorithm is studied. According to Remark 2, the maximum
number of ID noncircular signals that can be handled by Cao’s algorithm
is 2 and for the ESPRIT-ID algorithm it is 1, while for the proposed one
it is 4. Here, we set the number of ID noncircular signals to 4 with the
central DOAs as 0; = —30°, #, = —5°, 63 = 20°, and 0, = 40°. All signals
angular distributions are Gaussian with the same angular spread o = 0.1°.
The SNR is set as 20dB, and the number of snapshots is 7" = 200. Fig.3
shows the resultant spatial spectrum of the proposed algorithm. Obviously,
in this case, the proposed one has provided an effective estimation result,
while Cao’s algorithm and ESPRIT-ID algorithm have failed completely.

In the second simulation, the performance of the proposed algorithm is
studied with SNR varying from 0dB to 25dB. There are two uncorrelated
ID noncircular signals with the central DOAs ¢; = 30° and 6, = 65°. Their
angular distribution is Gaussian with angular spread o; = 1.5° and o5 = 1°.
The number of snapshots is 200 and M, = 500. As the number of array
sensors is 8, the proposed algorithm divides the array into two 7-sensor sub-
arrays and two 7-sensor extended subarrays as shown in Fig.2(a). However,
Cao’s algorithm only divides the array into two subarrays with 7 sensors as
shown in Fig.2(b). Fig.4 (a) and (b) illustrates the RMSEs of the central
DOA estimation and the angular spread estimation for different algorithms,

where C'RB,, represents the CRB of ID noncircular signals. The CRBs are
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also shown as benchmarks. It can be observed that the performance of the
proposed algorithm is shown to be superior to Cao’s due to the additional
noncircularity information exploited. Meanwhile, the ESPRIT-ID algorithm
performs poorly in the estimation performance because only a quarter of the
sensors is exploited.

In the third simulation, the performance with respect to a varying number
of snapshots ranging from 50 to 950 is investigated. The SNR is set at 10dB,
the two signals are with the central DOAs ¢, = 10° and 6, = 30°, their
angular distribution is Gaussian with angular spread o; = 2° and 0y = 1°,
and the other parameters are the same as in the second simulation. As shown
in Fig.5 (a) and (b), a similar conclusion can be drawn as in Fig.4, i.e., the
proposed algorithm has achieved a better and better performance with the
number of snapshots increasing, and again outperformed Cao’s algorithm
and the ESPRIT-ID algorithm.

In the fourth simulation, the performance of the proposed algorithm is
studied versus the angular spread varying from 0.5° to 3°. The SNR is set at
20dB, the angular spread of two uncorrelated ID noncircular signals is set to
the same, the central DOAs are set at 6; = 30° and 6y = 50° and the other
parameters are the same as in the second simulation. From Fig.6 (a) and (b),
it can be seen that as the angular spread increases, the estimated performance
of the proposed algorithm and Cao’s algorithm [21] becomes worse overall. It
can also be observed that the ESPRIT-ID algorithm [13] tends to be stable
in general because there are fewer number of ULA sensors utilized. However,
with the increase of angular spread, the proposed algorithm still shows better

estimation performance than the other two algorithms.
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Fig. 3: Spatial spectrum of the proposed algorithm for central DOA estimation.

In the last simulation, in order to examine the applicability of the pro-
posed algorithm to different angular distributions, we consider the case where
multiple ID noncircular signals have different angular distributions. Two ID
noncircular signals are considered here: one has a central DOA ¢, = 40°
and exhibits a uniform distribution with o; = 0.5°, and the other one has a
central DOA 6, = 60° and exhibits a Gaussian distribution with oy = 0.7°.
The RMSEs of central DOAs and angular spreads for different algorithms
are shown in Fig.7 (a) and (b), respectively. It is shown that the proposed
algorithm is still effective in the presence of multiple ID noncircular signals
with different angular distributions. In addition, for each type of angular dis-
tribution, the proposed algorithm has achieved a more accurate estimation

result than Cao’s algorithm.
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6. Conclusion

In this paper, based on the reduced-rank principle, a novel angular param-
eters estimation algorithm for multiple incoherently distributed noncircular
sources has been proposed. By exploiting the noncircularity information
of signals and the Taylor series expansion, a generalized rotational invari-
ance relationship based on a ULA structure was obtained for the extended
GAMs, with the central DOAs estimated through a spectral peak search.
Then, closed-form solutions for angle spreads were estimated by the central
moments of the angular distribution and the estimated value of the central
DOAs. Also the CRB is analyzed as a benchmark. Compared with the direct
2D spectral peak search algorithm, the proposed one has a much lower com-
putational complexity. Compared to Cao’s algorithm and the ESPRIT-ID
algorithm, the proposed one can not only improve the estimation accuracy,
but also handle more ID noncircular sources, as demonstrated by various

simulation results.
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