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Highlights

• DOA is estimated with a reduced number of RF chains.

• Only a random subset of sensors is sampled at each time instant.

• The full snapshot matrix is recovered via matrix completion.

• The matrix completion method is enhanced to enforce the shift-invariance
property.

• Optimal subspace estimation is used to obtain the reconstructed signal
subspace.
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Abstract

In this paper, we propose an energy-efficient approach to estimate direc-
tions of arrival (DOAs) of multiple uncorrelated sources received by a uniform
linear array (ULA) with many antennas. To reduce energy consumption and
hardware costs, the receiving array uses antenna switching techniques so that at
every time instant or snapshot only the radio-frequency (RF) signals received by
a randomly selected subset of antennas is downconverted to baseband and sam-
pled. Low-rank matrix completion (MC) techniques are then used to reconstruct
the missing entries of the signal data matrix to keep the angular resolution of
the original large-scale array. The proposed MC algorithm exploits not only the
low-rank structure of the signal subspace, but also the shift-invariance property
of ULAs, which results in a better estimation of the signal subspace. Further,
the effect of MC on DOA estimation is discussed under the perturbation theory
framework. The simulation results suggest that the proposed method provides
accurate DOA estimates even in the small-sample regime with a significant re-
duction in the number of RF chains required for a given spatial resolution.

Keywords: Direction of arrival (DOA), Uniform Linear Array, Massive
MIMO, Matrix Completion, Shift Invariance

1. Introduction

The need of large bandwidths in 5G networks motivates to operate in mm-
Wave bands, which require large-scale antenna arrays to compensate for the
path loss [1, 2]. Indeed, research in wireless communication systems has shifted
towards the use of large antenna arrays as in massive multiple-input multiple-
output (MIMO) systems [3]. This poses new challenges not only to antenna
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calibration and complexity issues associated with channel state information ac-
quisition and precoding [4], but also to energy consumption. It is acknowledged
that power consumption requirements in 5G networks increase by about 3 times
over 4G, and that the signal processing in massive MIMO systems can represent
up to 40% of the total power consumption for below-6 GHz bands, and even
larger in mm-Wave bands [5].

A classical problem when processing multiple signals received by a uniform
linear array (ULA) is that of estimating their directions-of-arrival (DOAs). DOA
estimation has a long and rich history in array processing [6], and numerous
high-resolution direction finding algorithms have been proposed over the last
decades. As representative examples it is worth mentioning subspace-based
methods such as the multiple signal classification (MUSIC) algorithm [7] and the
estimation of signal parameters via rotational invariance technique (ESPRIT)
[8], which provide high angular resolution. However, using MUSIC or ESPRIT
with a large-scale fully-digital receive antenna array can be challenging due to
their computational complexity and high energy consumption requirements. A
possible solution is to reduce the number of radio frequency (RF) transceiver
chains by performing antenna selection at the receiving array (cf. Fig. 1).
At every time instant a random switch selects a subset of antennas whose RF
signals are downconverted and further processed. Since the number of targets or
sources is typically much smaller than the number of antennas, it is feasible to
reconstruct (or at least to approximate) the low-rank signal data matrix using
matrix completion (MC) algorithms as if it had been received by the full array,
as long as we sample a sufficiently large fraction of the sensors [9].

Low-rank MC methods for DOA estimation are used in [10] for scenarios in
which the number of sources exceeds the number of sensors, and in [11] in the
presence of diffuse noise. An iterative reweighted nuclear norm minimization
method is used in [12] for DOA estimation with nested arrays. When a sparse
coprime array is used, array interpolation techniques can be applied to improve
the DOA estimation performace. In [13] the authors consider this scenario and
apply MC techniques to reconstruct the Toeplitz virtual array covariance matrix.
In [14], a DOA estimation algorithm based on virtual array interpolation and
MC techniques is developed for coherent sources in coprime arrays. A Toeplitz
reconstruction algorithm based on nuclear norm minimization is proposed in
[15] for uniform and sparse linear arrays. A different approach is proposed in
[16], where MC algorithms are used to reconstruct the entries of the sample
covariance matrix (SCM) along its diagonal, which are deliberately set to zero.
In [17] MC is used for order estimation in the presence of noise with a diagonal
spatial covariance matrix. Whereas most of existing MC methods in array
signal processing target the reconstruction of the signal covariance matrix, it
is the data matrix itself that needs to be reconstructed when only a subset of
sensors is sampled.

In this paper, an energy-efficient approach to DOA estimation is proposed
based on the recovery of the data matrix by means of a MC method. We
consider that only a randomly chosen subset of sensors are sampled at each
time instant. By reducing the number of RF chains of the receiver, the overall
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hardware cost and energy consumption are reduced as well. In our approach, the
matrix completion problem is tailored to enforce the shift-invariance property of
ULAs by including an additional regularization term in the MC cost function.
Then, the Optimal Subspace Estimation (OSE) technique proposed by Vaccaro
and Ding in [18] is used to estimate the signal subspace and, finally, the DOAs
are estimated using ESPRIT as a high-resolution technique. The simulations
show that the number of RF chains can be largely reduced without significant
performance loss in DOA estimation accuracy.

The rest of the paper is organized as follows. Section 2 presents the signal
model assuming an array architecture with random antenna switching, and for-
mulates the problem. The proposed Shift-Invariant Matrix Completion (SIMC)
method is described in Section 3. A direct application of the Davis-Kahan theo-
rem [19] allows us to analyze in Section 4 the chordal distance between the true
signal subspace and the signal subspace of the sparse and reconstructed matri-
ces. The simulation results are discussed in Section 5, and concluding remarks
are provided in Section 6.

Notation. Bold lowercase letters denote vectors and bold uppercase matri-
ces; B(i, j) is the entry in the i-th row and j-th column of matrix B. Super-
scripts (·)T , (·)∗ and (·)H denote transpose, complex conjugate and Hermitian,
respectively. |z| denotes the modulus of a complex number z, and ||x||2 is the
l2-norm of vector x. The trace, nuclear, spectral, Frobenius and infinity norms
of a matrix are denoted, respectively, as tr(·), || · ||∗, || · ||2, || · ||F and || · ||∞. The
k-th largest singular value is denoted as λk(·). Furthermore, x ∼ CNn(0,Σ)
denotes a proper Gaussian random vector in Cn with zero mean and covariance
Σ.

2. Observed Data Matrix and Problem Statement

Let us consider K narrowband signals impinging on a large half-wavelength
ULA with M antennas. For a fully digital receiver with M RF-branches, the
received signal at time instant or snapshot n is

z[n] = [a(θ1) · · ·a(θK)] s[n] + e[n] = A s[n] + e[n], (1)

where e[n] is the noise vector, s[n] = [s1[n], . . . , sK [n]]T is the signal vector with

complex gains sk[n] and a(θk) =
[
1 e−jθk e−jθk(M−1)

]T
is the M×1 complex

array response to the k-th source with electrical angle θk, which is unknown;
and A = [a(θ1) · · ·a(θK)] is the steering matrix. In the case of narrowband
sources, free space propagation, and a ULA with inter-element spacing d, the
spatial frequency or electrical angle is

θk =
2π

λ
d sin(φk),

where λ is the wavelength and φk is the direction-of-arrival (DOA). We will refer
to θk as the DOA of source k for simplicity. Note that for a half-wavelength
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ULA θk = π sin(φk), and the spatial frequency varies between −π and π when
φk varies between −π/2 and π/2, with 0◦ being the broadside direction.

The signal and noise vectors are assumed uncorrelated and modeled as s[n] ∼
CNK(0,Σ) with Σ = diag(σ2

1 , . . . , σ
2
K), and e[n] ∼ CNM (0, σ2I), respectively.

Using the signal model in (1), the full M ×M covariance matrix is

R = E
[
z[n]zH [n]

]
= Rs + σ2I (2)

where Rs = AΣAH .
After collecting N snapshots, the full data matrix Z =

[
z[1] . . . z[N ]

]
can be

written as
Z = X + E (3)

where E =
[
e[1] . . . e[N ]

]
, and X = AS is the noiseless signal component with

S =
[
s[1] . . . s[N ]

]
. A simplified receiver architecture composed of an M × L

RF switching network is considered such that, at each snapshot, it randomly
selects L out of the M antennas to be downconverted and sampled at baseband
(see Fig. 1). Multi-switch antenna selection techniques for massive MIMO have
been studied and experimentally validated in [20]. After downconversion and
sampling, the L × N samples are arranged in a Zd ∈ CM×N matrix so that
missing entries are replaced with zeros. The sampling process can be compactly
expressed as

Zd = PΩ(Z), (4)

where Ω ⊆ {1, . . . ,M} × {1, . . . , N} is the set of observed (antenna, time) in-
dexes, and PΩ is a projection operator that sets to zero the missing entries and
leaves the observed ones unchanged.

The problem addressed in this paper is, given the observed data matrix Zd
in (4), to estimate the rank-K noiseless signal matrix, denoted by X̂, and use it
to further estimate the DOAs {θk}Kk=1. We assume that the number of sources
K is known and satisfies K � L < M .

3. Shift-Invariant Matrix Completion (SIMC)

3.1. Matrix Completion

The problem of estimating the low-rank signal matrix X from Zd ∈ CM×N
can be solved using MC techniques. According to [9], we can recover X by
solving

min
X∈CM×N

||X||∗ (5)

subject to ||PΩ(X− Zd)||F ≤ η

where ||X||∗ denotes the nuclear norm of X, Ω ⊆ {1, . . . ,M} × {1, . . . , N} the
set of observed entries of Zd, and η > 0 is a tolerance parameter that limits the
fitting error.

The main assumption for a successful recovery in low-rank MC is that of
incoherence, which means that each singular vector of the unknown matrix
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Figure 1: Simplified large-scale multi-switch array architecture where L out of M sensors are
randomly selected and sampled at each time instant.

must be evenly spread across its coordinates instead of having a few entries
with large value i.e., singular vectors are not too sparse. Intuitively, this implies
that there is no underlying matrix structure and that all entries have similar
importance. Formally, the coherence of the column space of a rank-K matrix
Y ∈ CM×N is defined as

τ(Y) =
M

K
max

1≤i≤M
||PYei||2

where PY = Y(YHY)−1YH is the orthogonal projection matrix onto the col-
umn space of Y, and ei is the i-th vector of the Euclidean basis.

As shown in [21], in array processing τ(X) and τ(XH) are small enough that
the complete matrix X can be recovered via (5). Indeed, in the noiseless case
an exact recovery is possible with high probability provided that we observe
|Ω| ≥ DKN

6
5 logN for a constant D assuming a random uniform sampling

distribution and N > M [9]. In our problem we have |Ω| = NL, therefore

L ≥ DKN 1
5 logN antenna elements need to be sampled for successful recovery.

In the noisy case, X is recovered with an error proportional to η as long as
||PΩ(E)||F ≤ η [9].

While standard MC assumes uniform random sampling, this scheme does not
exactly match the multi-switch array architecture in Fig. 1. In the proposed
architecture, exactly L sensors, chosen at random, are sampled per snapshot,
which is termed as uniform spatial sampling in [21] and does not correspond
to uniform random sampling across Z. Nevertheless, as it proved in [21], the
uniform spatial sampling scheme satisfies the coherence conditions for matrix
recovery and hence it can be used in array processing problems.
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When the number of sources K is known, X can be factored as X = WHH ,
where W ∈ CM×K and H ∈ CN×K . Then, using the identity

||X||∗ = min
X=WHH

1

2

(∥∥W
∥∥2

F
+
∥∥H
∥∥2

F

)
,

X can be estimated by solving the optimization problem [22]

{Ŵ, Ĥ} = argmin
W∈CM×K

H∈CN×K

∥∥PΩ

(
Zd −WHH

)∥∥2

F
+ µ

(∥∥W
∥∥2

F
+
∥∥H
∥∥2

F

)
(6)

where µ is a regularization parameter. In the next subsection, we modify (6) to
exploit the shift-invariance property of the steering matrix A.

3.2. Shift-invariant Matrix Completion

In addition to being a low-rank matrix, X has additional structure inherited
from the array geometry that can be exploited by the MC method. Specifically,
when ULAs are employed, the shift-invariance property holds. According to
this property, each row of the steering matrix A is related to the previous one
as follows

aHi Q = aHi−1 i = 2, . . . ,M (7)

where aHi is the i-th row of A and Q = diag(ejθ1 , . . . , ejθK ), as it can be readily
verified from (1). From the shift-invariance property, it follows that the column
span of X↑, formed by the first M − 1 rows of X, and the column span of
X↓, formed by the last M − 1 rows of X, are identical. In other words, the
K-dimensional signal subspaces of X↑ and X↓ are the same.

It is then clear that the factor W in

X = WHH (8)

should satisfy the shift-invariance property as well. Since the factorization (8)
is not unique, we use a relaxed version of (7) to enforce the following relation
between the rows of W, i.e.,

wH
i T = wH

i−1 i = 2, . . . ,M (9)

where wH
i is the i-th row of W and T ∈ D where D is the set of K×K diagonal

complex matrices not necessarily unitary.
To enforce (9), the shift-invariant matrix completion (SIMC) problem (6)

includes an additional regularization term:

{Ŵ, Ĥ, T̂} = argmin
W∈CM×K

H∈CN×K

T∈D

∑

(i,j)∈Ω

∣∣Zd(i, j)−wH
i hj

∣∣2 + µ
( M∑

i=1

‖wi‖22 +
N∑

j=1

‖hj‖22
)

+ α
M∑

i=2

‖wH
i T−wH

i−1‖22 (10)
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where hHj is the j-th row of H and α is an additional regularization parameter.

The solution X̂ = ŴĤH can be obtained by iteratively optimizing (10) over
each wH

i , hHj and T until convergence. To optimize (10) for wH
i , we take the

derivative with respect to wH
i , assuming H and T fixed, and equate it to zero,

which provides the following solution

wH
i =





(
gH1 + gH2

)(
Y1 + αI

)−1

if i = 1
(
gH1 + gH2 + gH3

)(
Y1 + Y2 + αI

)−1

if 1 < i < M
(
gH1 + gH3

)(
Y1 + Y2

)−1

if i = M

(11)

where

gH1 =
∑

j∈Ji

Zd(i, j)h
H
j

gH2 = αwH
i+1T

gH3 = αwH
i−1T

H

Y1 =
∑

j∈Ji

hjh
H
j + µI

Y2 = αTTH

and Ji is the set of observed indices of the i-th row of Zd. Similarly, (10) can
be optimized for hHj to find the solution as

hHj =
(∑

i∈Ij
Zd(i, j)

∗wH
i

)(∑

i∈Ij
wiw

H
i + µI

)−1

(12)

where Ij is the set of observed indices of the j-th column of Zd. Since T =
diag(t1, . . . , tK) is a diagonal matrix, (10) can be optimized for each diagonal
element tk individually. To this end, the third term in the right hand side of
(10) can be rewritten in terms of tk as

M∑

i=2

‖wH
i T−wH

i−1‖22 =

M∑

i=2

K∑

k=1

∣∣tkW(i, k)−W(i− 1, k)
∣∣2, (13)

which can be optimized with respect to tk to get

tk =

∑M
i=2 W(i− 1, k)W∗(i, k)
∑M
i=2

∣∣W(i, k)
∣∣2 (14)

3.3. Post-processing via Optimal Subspace Estimation (OSE)

As the shift-invariance property is enforced through a regularization term,
the solution of (10) provides a low-rank data matrix, X̂, which has the required
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structure only in an approximate fashion. This motivates applying the Optimal
Subspace Estimation (OSE) technique as a final post-processing step of our

algorithm. The OSE algorithm takes X̂ as input and provides an estimate of the
underlying noise-free signal subspace with the required shift-invariant structure.
Let Uose ∈ CM×K be a basis for this subspace, and let Pose = UoseU

H
ose be its

orthogonal projection matrix. Then, the output of the OSE algorithm is

X̂ose = PoseX̂ (15)

For a full account of the OSE method the reader is referred to [18, 23, 24].
A summary of the shift-invariant matrix completion method, denoted as

SIMC, is provided in Algorithm 1. Once X̂ose is obtained, any subspace-based
method can be used to estimate the DOAs. We choose ESPRIT, as it effectively
exploits the shift-invariance property of ULAs.

Algorithm 1: Shift-Invariant Matrix Completion (SIMC)

Input: Zd, µ, K, itrmax

Output: R̂ose

Initialization: T̂ = I, itr = 1

Compute the SVD of Zd = FΛGH and initialize Ŵ = FKΛ
1/2
K and

Ĥ = GKΛ
1/2
K , using the K largest singular vectors and singular values of

Zd (best K-rank approximation of Zd)
Set α as in (17)
REPEAT
Compute Ŵ, Ĥ and T̂ using (11), (12) and (14), respectively
itr = itr + 1
Until Convergence = true or itr = itrmax

Compute X̂ = ŴĤH

Apply OSE algorithm to estimate X̂ose = PoseX̂

The SIMC algorithm has a computational cost of O((M +N)K3) per itera-
tion, which is basically the cost of standard MC algorithms based on alternating
least squares, since the extra cost due to (14) is negligible. The OSE post-
processing step, has a computational complexity of

(
O(M2N) + 2O((MK)3)

)
.

Finally, the proposed initialization step performs a compact SVD with cost
O(MK2). Note that for this problem K �M .

3.4. Selection of regularization parameters

The values of α and µ in (10) control the trade-off among the fulfillment of
the shift-invariance property, the fitting to the observed data and the nuclear
norm of the solution. Since α enforces the shift-invariance property into X̂, its
value should depend on some measure that quantifies the compliance of the shift-
invariance property by the original sparse matrix Zd. As we know, given a rank-
K matrix for which the shift-invariance property holds, the subspaces spanned
by the first and the last M − 1 rows are identical. Thus, the regularization
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parameter α is chosen to be a function of the chordal subspace distance [25]

between Z↑d and Z↓d, which are formed by the first and the last M − 1 rows of
the sparse Zd, respectively.

Specifically, let U1 ∈ C(M−1)×K and U2 ∈ C(M−1)×K be the K largest left
singular vectors (that is, those associated to the K largest singular values) of

Z↑d and Z↓d, respectively. Then, the chordal subspace distance between Z↑d and

Z↓d is
dcs = ‖U1U

H
1 −U2U

H
2 ‖F . (16)

A large value of dcs implies that the K-dimensional subspaces extracted from
Z↑d and Z↓d are far apart from each other and, consequently, the shift-invariance
property does not hold. This in turn implies that a large α must be used in
the reconstruction process. According to our simulations, a value that provides
good performance for a wide range of scenarios is

α = dcsµ, (17)

where µ = M
20 .

4. Perturbation analysis

The main factor impacting the performance of the random multi-switch sam-
pling scheme is how well the signal subspace is preserved. The SIMC algorithm
aims at estimating an improved signal subspace by leveraging its shift-invariant
low-rank structure. This section analyzes how DOA estimation is impacted
when performed after MC.

Since the DOA estimates are essentially determined by the singular vectors
of the signal subspace, we want to assess how much the principal directions
change after each processing step of the original sparse data matrix. To do
so, we will analyze the problem from a matrix perturbation standpoint. A
perturbed matrix is a matrix which has its singular values and vectors altered
after an addition with a second matrix. Thus, Zd in (4) is a perturbed version
of X, with the perturbation being caused by the missing entries and noise. The
Davis-Kahan theorem is a useful tool to measure the angular difference between
the singular vectors of two matrices. We show below Theorem 1 in [26] adapted
to our use-case.

Theorem 1. Davis-Kahan sin theorem.[26] Let UX and UX̃ denote the

first K left singular vectors of X and the perturbed X̃, respectively, and Θ(UX ,UX̃)

be the K×K diagonal matrix containing the principal angles cos−1(ξi)
K
i=1, where

ξi is the i-th singular value of UH
XUX̃ . Then,

|| sin Θ(UX ,UX̃)||F ≤
2
√
K(2||X||2 + ||X− X̃||2) min(||X− X̃||2, 1√

K
||X− X̃||F )

λK(X)
(18)
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Theorem 1 shows that the subspace distance between the singular vectors
UX and UX̃ scales with the norm difference between X and X̃. Interestingly, it
also shows that the larger the K-th singular value is, the smaller the subspace
distance will be. Below, we leverage the Davis-Kahan theorem to compare the
signal space of X firstly with that of the sparse matrix Zd, and secondly with
the recovered estimate X̂MC in (6) obtained through MC.

Clearly, due to the missing data, Zd is a poor approximation to X. Never-
theless, the K first singular vectors of the sampled matrix are often used as a
crude estimate or initialization point for iterative algorithms [27]. Let PK(Zd)
denote the projection of Zd onto the subspace spanned by its first K left singu-
lar vectors, which is obtained by setting λk(Zd) = 0, ∀ k > K. Moreover, let us
assume a uniform random sampling scheme where each entry in Z is sampled
with probability q = L/M . From [28], we have the bound

||X− 1

q
PK(Zd)||2 ≤ C||X||∞

N
3
4

M
1
4
√
q

+ Cσ

√
N logM

q
(19)

which is satisfied with probability greater than 1 − 1
M3 for some constant C.

Note the scaling 1
q of PK(Zd) in (19), which compensates for the norm loss

due to the missing entries. Thus, since 1
qPK(Zd) and Zd share the first K left

singular vectors, then

|| sin Θ(UX ,UZd
)||F = || sin Θ(UX ,U 1

qPK(Zd))||F

and we can use (19) in conjunction with Theorem 1 to bound the subspace
distance.

With regard to X̂MC , assuming that N ≥M the recently developed bounds
in [29] show that

||X− X̂MC ||2 ≤ ||X||2
σ

λK(X)

√
N

q
. (20)

with probability exceeding 1− 1
N3 .

Assuming constant q = L/M and M , and bounded ||X||∞, we have that the

bound for PK(Zd) in (19) grows as O(N
3
4 ). Therefore, comparing it to that of

X̂MC in (20), we observe that the bound for X̂MC grows as O(
√
N). Therefore,

we can conclude that MC will improve the DOA estimates.

5. Simulation Results

In this section we illustrate the performance of the proposed SIMC algo-
rithm by means of Monte Carlo simulations. For comparison, we include the
performance of the following methods:

• SCM: The sample covariance matrix without MC is estimated as R̂d =
1
NZdZ

H
d .
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Figure 2: Subspace distance (a) and RMSE (b) vs. SNR for M = 100, N = 80, K = 5,
∆θ = 10◦ and L = 50.

• OSE: The shift-invariance property is enforced by applying OSE to Zd
(without MC).

• MC: The standard MC algorithm solution given by (6) is used to recon-
struct X from Zd.

• MC-OSE: OSE is applied as a post-processing step to the previous method.

• SIMC: The proposed method.

ESPRIT is used to compute the DOAs for all competing methods. As figures
of merit we use: i) the chordal subspace distance between the true signal sub-
space and the estimated signal subspace, and ii) the Root Mean Squared Error
(RMSE) for the DOA estimates in radians. The chordal distance between the
true signal subspace or column span of X, and the estimated signal subspace
or column span of X̂ is shown to assess how different these subspaces are. Note
that this distance is different from the chordal distance in (16) used to select
the regularization parameter α.

For all simulations we assume that K uncorrelated narrowband signals with
a separation of ∆θ (in electrical angle) are impinging on a ULA with M half-
wavelength separated antennas. Unless stated otherwise, sources have equal
power. For both SIMC and MC, we use µ = M/20 and itrmax = 200. SNR =

10 log tr(Rs)
Mσ2 , where Rs is the signal covariance matrix and σ2 is the noise vari-

ance. L denotes the number of randomly sampled sensors per snapshot. The
Cramer-Rao lower bound (CRLB) [30] when the full data matrix Z is available
is included as a reference benchmark.

In the first example, we consider a sample-poor scenario with M = 100
antennas, N = 80 snapshots, K = 5 sources and ∆θ = 10◦. At each time
instant the multi-switch network randomly selects L = 50 out of the M =
100 antennas. Fig. 2 shows the subspace distance (left plot) and the RMSE
(right plot) vs. the SNR. The performance of SCM and OSE without MC
saturates at high SNR due to the relatively high fraction of missing entries.
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Figure 3: Subspace distance (a) and RMSE (b) vs. SNR for M = 50, N = 50, K = 4,
∆θ = 10◦, Σ = σ2

sdiag(1, 0.8, 0.6, 0.5) and L = 25.
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Figure 4: Subspace distance (a) and RMSE (b) vs. N for M = 200, K = 4, SNR= −5 dB,
∆θ = 5◦, and L = 100.

The benefits of using MC techniques in combination with enforcing the shift-
invariance property are evident, specially at low or moderate SNRs. In fact,
even with 50 % of missing data and SNR≈ 0, we observe that SIMC is close to
the CRLB (which gives us the performance limit when all data are available).
At high SNRs MC-OSE and SIMC have identical performances, which suggest
that the post-processing OSE step is sufficient to enforce in the solution the
required invariance to displacements.

The second example considers a scenario with M = 50 antennas, K = 4
sources with ∆θ = 10◦, N = 50 snapshots and L = 25 (i.e., 50% of missing
entries in Zd). The sources in this example have unequal power with signal
covariance matrix Σ = diag(1, 0.8, 0.6, 0.5). A similar behavior to the previous
example is observed in Fig. 3, with SIMC providing satisfactory performance
over a large range of SNR values.

The third example compares the performance of the methods with respect
to N for M = 200, K = 4, SNR= −5 dB, ∆θ = 5◦, and L = 100. We can
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Figure 5: Subspace distance (a) and RMSE (b) vs. SNR for ULAs with different number of
antennas when K = 3, ∆θ = 10◦, N = 100 and L = 25.

observe in Fig. 4 that if N is large enough, SIMC, MC-OSE and OSE provide
very similar results. However, SIMC outperforms the rest of methods when N
is small. This example demonstrates a clear advantage of the proposed method
in the small-sample regime where N ≤M .

The next example compares the performances of arrays of different number
of antennas when the number of sampled sensors L is fixed. Therefore, the
spatial sampling ratio L/M decreases as M increases. We consider ULAs with
M = 25, M = 50 and M = 100 antennas using a fixed value of L = 25 so
that at every snapshot the percentages of sampled sensors are 100%, 50% and
25%, respectively. For all three cases, the number of snapshots is N = 100
and K = 3 sources with ∆θ = 10◦ of separation impinge on each array. Since
L and N are fixed, the energy consumption will be roughly the same for all
array architectures. However, the effective spatial resolution is improved as M
increases, as it is observed in Fig. 5. In this way, the proposed SIMC algorithm
allows us to increase the spatial resolution of an array with a fixed number
of RF chains. In other words, we can trade-off spatial resolution by energy
consumption.

The following experiments analyze the impact of the percentage of missing
data on the methods under comparison. We consider a scenario with M = 50
antennas, N = 80, snapshots and K = 3 sources with a separation of ∆θ = 10◦.
Fig. 6 shows the subspace distance and the RMSE curves vs. the SNR when
the number of sampled antennas is L = 50, L = 25, or L = 12. Obviously,
the best performance is achieved when all sensors are sampled. Nevertheless,
performance degrades smoothly with L and hence both the hardware costs and
energy consumption can be substantially reduced with only a minor performance
degradation. As we increase L, we observe more entries of the data matrix and
the MSE of the SIMC method approaches the CRLB.

Fig. 7 shows results for the same scenario when the number of sampled

sensors is L = bM(100−Ps)
100 c, where Ps is the percentage of missing data and

b·c is the floor function. It can be observed in Fig. 7 that the performance
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Figure 6: Subspace distance (a) and RMSE (b) vs. SNR when M = 50, N = 80, K = 3 and
∆θ = 10◦ for L = (50, 25, 12) .
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dB, ∆θ = 5◦, L = 25.

of SIMC is robust against missing data, providing satisfactory performance for
Ps < 70%. The results of Fig. 7 allow us to conclude that to obtain accurate
signal subspace and DOA estimates it is important to exploit in the recon-
struction of the data matrix both its low-rank structure and its shift-invariant
structure. When exploited independently, the shift-invariant structure (OSE)
provides more benefits than the low-rank structure (MC) for Ps < 50%.

In the last experiment, we evaluate the impact of having correlated sources.
We consider a scenario with K = 2 correlated sources when M = 100, N = 80,
SNR= 0 dB, ∆θ = 5◦, and L = 25. The correlation coefficient between the two
sources, ρ, varies from 0 (uncorrelated) to 1 (fully correlated). As Fig. 8 shows,
SIMC outperforms the rest of methods and provides accurate DOA estimates
even for highly correlated sources ρ < 0.8. Nevertheless, the performance of
SIMC under correlated sources needs additional theoretical analysis.

6. Conclusion

The high hardware complexity and energy consumption of massive MIMO
systems is a challenge for its fully-digital implementation. A solution is to reduce
the number of RF chains by performing random antenna selection techniques,
which result in a data matrix with multiple missing entries. In this paper we
have proposed a matrix completion technique tailored to this array processing
architecture. The reconstruction algorithm exploits both the low-rank structure
of the partially observed matrix and the shift-invariance property of uniform
linear arrays. After reconstruction, standard high-resolution subspace-based
techniques can be used for DOA estimation. As long as the number of RF
chains is sufficiently larger than the number of sources, the proposed shift-
invariant matrix completion (SIMC) method provides a substantial reduction
of hardware costs and energy consumption without significant performance loss
in resolution or DOA estimation accuracy.
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