
Node Copying: A Random Graph Model for Effective Graph

Sampling

Florence Regol1†, Soumyasundar Pal1†, Jianing Sun2, Yingxue Zhang2,
Yanhui Geng2, and Mark Coates1

1Dept. of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada.
2Huawei Noah’s Ark Lab, Montreal Research Center, Montreal, QC, Canada.

Abstract

There has been an increased interest in applying machine learning techniques on rela-
tional structured-data based on an observed graph. Often, this graph is not fully repre-
sentative of the true relationship amongst nodes. In these settings, building a generative
model conditioned on the observed graph allows to take the graph uncertainty into ac-
count. Various existing techniques either rely on restrictive assumptions, fail to preserve
topological properties within the samples or are prohibitively expensive for larger graphs.
In this work, we introduce the node copying model for constructing a distribution over
graphs. Sampling of a random graph is carried out by replacing each node’s neighbors by
those of a randomly sampled similar node. The sampled graphs preserve key characteris-
tics of the graph structure without explicitly targeting them. Additionally, sampling from
this model is extremely simple and scales linearly with the nodes. We show the usefulness
of the copying model in three tasks. First, in node classification, a Bayesian formulation
based on node copying achieves higher accuracy in sparse data settings. Second, we employ
our proposed model to mitigate the effect of adversarial attacks on the graph topology.
Last, incorporation of the model in a recommendation system setting improves recall over
state-of-the-art methods.

Keywords— Generative graph model, graph neural network, adversarial attack, recommender sys-
tems

1 Introduction

In graph related learning problems, models need to take into account relational structure. This
additional information is encoded by a graph that represents data points as nodes and the relationships
as edges. In practice, observed quantities are often noisy and the information used to construct a graph
is no exception. The provided graph is likely to be incomplete and/or contain spurious edges. For
some graph learning tasks, this error or incompleteness is explicitly stated. For example, in the
recommendation system setting, the task is to infer unobserved links representing users’ preferences
for items. In other cases, such as protein-protein interaction networks, graph uncertainty is implicit,
arising because the graphs are constructed from noisy measurement data.

In these cases, we can view the graph as a random quantity. The modelling of random graphs as
realisations of statistical models has been widely studied in network analysis [1]. Parametric random
graph models have been used extensively to study complex systems and perform inference [2, 3, 4].
Parameters are usually estimated based on the observed graph. However, these models often fail to
capture the structural properties of real-world networks and as a result, are not suitable as generative

†These authors contributed equally to this work.
Corresponding author: Florence Regol (email address: florence.robert-regol@mail.mcgill.ca)

1

ar
X

iv
:2

20
8.

02
43

5v
1

 [
st

at
.M

L
]

 4
 A

ug
 2

02
2

mailto:florence.robert-regol@mail.mcgill.ca

models. In addition, inference of parameters can be prohibitively expensive for large scale networks,
and many parametric models cannot take into account node or edge attributes.

Recent interest in generative models for graph learning has resulted in auto-encoder based formula-
tions [5, 6]. There has also been an effort to combine the strengths of parametric random graph models
and machine learning approaches [7]. In these models, the probability of the presence of an edge is
related to the node embeddings of the incident nodes. Although the auto-encoder solutions excel in
their targeted objective of link prediction, they fail to generate representative samples [8]. In [8, 9],
application of generative adversarial networks (GANs) is considered for graph generative models. [8]
shows that the GAN generated graphs do not deviate from the observed graph in terms of structural
properties. These approaches are promising but the required training time can be prohibitive for
graphs of even a moderate size.

The main contribution of this paper is to introduce a novel generative model for graphs for the
case when we have access to a single observed graph. The generative model is designed to allow the
sampling of multiple graphs that can be used as an ensemble to improve performance in graph-based
learning tasks. We call the approach “node copying”. Based on a similarity metric between nodes,
the node copying model generates random graph realizations by replacing the edges of a node in the
observed graph with those of a randomly chosen similar node. The assumption made by this model
is that similar nodes should have similar neighborhoods. The meaning of ‘similar’ varies depending
on how the model is employed in a learning task and has to be defined according to the application
setting. Most graph learning algorithms rely on and exploit the property of homophily, which implies
that nodes with similar characteristics are more likely to be connected to one another [10]. The
proposed node copying model preserves this homophily (one similar neighbourhood is swapped for
another similar neighbourhood). The advantage is that the generative model permits sampling of an
ensemble of graphs that can be used to improve the performance of learning algorithms, as illustrated
in later sections of the paper.

By construction, each sampled graph possesses the same set of nodes as the observed graph and
the identities of the nodes are retained throughout the sampling procedure. The identity of a node is
specified by a label and/or a set of node features; hence, each node preserves its own features or labels
(if available) in the sampled graphs. The proposed model is simple and the computational overhead
is minimal. Despite its simplicity, we show that incorporating such a model can be beneficial in a
range of graph-based learning tasks. The model is flexible in the sense that the choice of the similarity
metric is adapted to the end-to-end learning goal. It can be combined with state-of-the-art methods
to provide an improvement in performance. In summary, the proposed model: 1) generates useful
samples which improve the performance in graph-based machine learning tasks and retain important
structural properties; 2) is flexible so that it is applicable to various tasks (e.g., the bipartite graphs in
recommendation systems are drastically different from the community structured graphs considered
in node classification); and 3) is fast both for model construction and random sample generation.

Extensive experiments demonstrate the effectiveness of our model for three different graph learning
tasks. We show that the incorporation of the model in a Bayesian framework for node classification
leads to improved performance over state-of-the art methods for the scarce data scenario. The model
has much lower computational complexity compared to other Bayesian alternatives. In the face of
adversarial attacks, a node copying based strategy significantly mitigates the effect of the corruption.
Lastly, the use of the node copying model in a personalized recommender system leads to improvement
over a state-of-the-art graph-based method. Preliminary results for application of the node copying
model in semi-supervised node classification and in defense against adversarial attacks were published
in [11] and [12] respectively. In this paper, we add theoretical results to shed light on the statistical
properties of the sampled graphs in special cases, conduct thorough experimentation to examine
the similarity of the sampled graphs to the observed graph, show the effectiveness of the proposed
approach in a data-scarce classification problem and against diverse adversarial attacks, and extend
the application of the copying model to the recommendation setting.

2

2 Related work

Parametric random graph models: There is a rich history of research and development of para-
metric models of random graphs. These models have been designed to generate graphs exhibiting
specific characteristics and their theoretical properties have been studied in depth. They can yield
samples representative of an observed graph provided that the model is capable of representing the
particular graph structure and parameter inference is successful. The Barabasi-Albert model [2], expo-
nential random graphs [3], exchangeable random graph models [13], and the large family of stochastic
block models (SBMs) [14], including mixed-membership SBMs [4], degree-corrected SBMs [15], and
overlapping SBMs [16, 17]), fall into this category. Configuration model [18, 19] variants preserve
the degree sequence of a graph while changing the connectivity pattern in the random samples. [20]
provides a recent survey of various random graph models. A major drawback of these models is that
they impose relatively strict structural assumptions in order to maintain tractability. As a result,
they often cannot model characteristics like large clustering coefficients [21], small world connectivity
and exponential degree distributions [22], observed in many real-world networks. Additionally, most
cannot readily take into account node or edge attribute information, and high-dimensional parameter
inference can be prohibitively computationally expensive for larger graphs.
Learning-based models: Other generative graph models have emerged from the machine learning
community, incorporating an auto-encoder structure. The models are commonly trained to accurately
predict the links in the graph, and as a result, tend to fail to reproduce global structural properties
of the observed graph. [5] introduces a variational auto-encoder based model parameterized by a
graph convolutional network (GCN) to learn node embeddings. The link probabilities are derived
from the dot product of the obtained node embeddings. [23] adopts a similar approach, but employs
adversarial regularization to learn more robust embeddings. Both of these models exhibit impressive
clustering of node embeddings. [24] adds a message passing component to the decoder that is based on
intermediately learned graphs. This leads to improved representations and better link prediction. [7]
combines the strengths of the parametric models and the graph-based learning methods, proposing the
DGLFRM model, which aims to retain the interpretability of the overlapping SBM (OSBM) paired
with the flexibility of the graph auto-encoder. The incorporation of the OSBM improves the ability
of the model to capture block-based community structure.

An alternative approach is to use generative adversarial networks (GANs) as the basis for graph
models. [9] models edge probability through an adversarial framework in the GraphGAN model. The
NetGAN model represents the graph as a distribution on random walks [8]. Compared to auto-encoder
based methods, the GAN based methods seem more capable of capturing the structural characteristics
of an observed graph. The major disadvantage is that the models are extremely computationally
demanding to train and the success of the training can be sensitive to the choice of hyperparameters.

Our focus in this paper is on learning a graph model based on a single observed graph. By contrast,
there is a growing body of work that focuses on learning graph models that can reproduce graphs that
have characteristics similar to a dataset of multiple training graphs. These approaches can preserve
important structural attributes of the graph(s) in the dataset, but the sampled graphs do not retain
node identity information. They cannot be applied in the node- and edge-oriented learning tasks we
focus on. In this category, there have been variational auto-encoder approaches [25, 26], GAN-based
approaches [27], models based on iterative generation [28], and auto-regressive models [29, 30].

3 Node copying model

We propose to build a random graph model by introducing random perturbations to an initial ob-
served graph Gobs. Our aim is to generate graphs G that are close to Gobs in some structural sense,
while preserving any metadata associated with a node’s identity (e.g., node features, labels). Here, we
consider that Gobs = {Vobs, Eobs} is a directed graph (the extension to the undirected case is straight-
forward and will be explained at the end of this section). Vobs denotes the set of N nodes and Eobs is
the set of directed edges of the form (i, j, AGobs,ij) which indicates that there is a directed edge from
node i to node j with edge weight encoded in the adjacency matrix AGobs ∈ RN×N+ . For the sampled

3

graph G = {V, E}, we have the same set of vertices as Gobs i.e. V = Vobs but the connectivity pattern
is different i.e. E 6= Eobs.

To that end, we introduce a discrete perturbation random vector ζ ∈ SNζ , whose entries can have

values from a finite or countably infinite set Sζ and define a mapping T : RN×N+ ×SNζ → RN×N+ whose

output is an adjacency matrix AG ∈ RN×N+ of the same dimension as the observed adjacency matrix

AGobs ∈ RN×N+ , based on the inputs AGobs and ζ. We require G to have the same set of nodes as Gobs;
hence, G is fully characterized by AG .

The mapping is not necessarily one-to-one, i.e., multiple ζs can generate the same graph G. The
probability of generating a specific graph G is then specified by defining a probability distribution for
ζ. We model the distribution of ζ to be conditioned on Gobs and possible additional information D
(e.g. node/edge labels or features). We therefore obtain the following conditional probability:

p(G|Gobs,D) =
∑
ζ

p(ζ|Gobs,D) 1[T (AGobs , ζ) = AG] , (1)

where 1[·] denotes the indicator function, which takes the value one if T (AGobs , ζ) = AG and is zero oth-
erwise. This is the foundation of our proposed copying model. We propose a ‘node copying’ mechanism
to implement the mapping T . The intuition for the node copying mechanism is as follows. Suppose
two nodes, i and j, are ‘similar’, where ‘similarity’ depends on the context or application setting. It
may be defined in terms of node attributes, node labels, structural properties, or a combination of
all of these. Then we conjecture that similar nodes also have similar neighbourhoods. For example,
suppose both nodes have the same label. Then, in a homophilic graph, most of their neighbours also
have the same label, and the neighbourhoods are thus similar. If we replace node i’s neighbourhood
with that of node j (the copy operation), then we obtain a new graph, but the homophilic nature of
the graph is preserved.

To make our random graph model concrete, we need to specify 1) the mapping T with the nature
of ζ and 2) the conditional distribution p(ζ|Gobs,D).

1 2

3 4 𝜻 =

2
1
3
3

1 2

3 4

Figure 1: Application of the node copying
T on observed graph Gobs (left-side) for a
given ζ to obtain G (right-side).

1) Mapping T (·, ·) and random vector ζ: We construct
a node copying mapping T that replaces the neighbor-
hood of a node i by that of another node given by the i-th
entry of the vector ζ = [ζ1, ζ2, ...ζN]> ∈ {1, 2, ...N}N . ζi

is referred to as the replacement node of node i. An ex-
plicit expression for T can be provided using a selection
matrix Cζ ∈ {0, 1}N×N , where Cζ [i, j] = 1 if j = ζi and
0 otherwise. Then T (AGobs , ζ) = CζAGobs = AG . Figure 1
depicts the application of the mapping T on example Gobs
and ζ to obtain a graph G.

2) Distribution p(ζ|Gobs,D): The distribution for ζ
should encode the notion of node similarity, and is there-

fore task dependant. The entries in ζ are assumed to be mutually independent to facilitate inference:
p(ζ|Gobs,D) =

∏N
j=1 p(ζ

j |Gobs,D). We provide examples of candidate probability distributions in later
sections. One approach is to train a node embedding algorithm to learn {ei}i=1:N = fΘ(Gobs,D),
where ei denotes the representation of node i. The probability p(ζj = i|Gobs,D) ∝ sim(ej , ei) to pro-
mote frequent copying between nodes if they are ‘similar’, for some function sim(·, ·) , which measures
similarity between two nodes.

This completes the description of our proposed model. Sampling a graph G from the node copying
model involves sampling each element of ζ independently according to p(ζj |Gobs,D). Once ζ is con-
structed, we replace the out-edges of the i-th node in the observed graph Gobs by those of the ζi-th
node. In general, we construct the distribution p(ζj |Gobs,D) so that it is simple to sample from. We
thus avoid any need to use MCMC or importance sampling for drawing the sampled graphs. For using
this model to sample undirected graphs when Gobs is undirected, we apply the following procedure.
We treat Gobs as a directed graph and use the node copying model to sample a directed graph G′.
Then, we change each directed edge to an undirected edge to obtain an directed graph G by setting
AG,ij = max(AG′,ij , AG′,ji).

4

Remark 1. Since the model is defined in terms of perturbations of the observed graph Gobs, the
utility of the proposed graph model hinges on Gobs being a meaningful starting point for inference. In
some cases, even if no graph is directly available for a problem, we can learn relationships between
entities and construct Gobs from the available data. Computationally efficient techniques for such
graph construction are reported in [31, 32]. In some cases, the computational requirements can still
be considerable.

4 Analysis and comparison of sampled graphs

In order to gain insight into the properties of the random graphs drawn from the node copying model,
we evaluate several properties of the samples and compare with other generative methods and the
observed graph, for four datasets.
Node Embedding Baselines: We compare with various graph-based auto-encoder models, which
are trained to optimize an unsupervised variational objective for a link prediction task. Specifically
we compare with the Variational Graph Auto-Encoder (VGAE) [5], GRAPHITE [24] and DGLFRM-
B [7] algorithms. In each algorithm, the probability of an edge between any two nodes depends on
the learned embeddings. The probability of an edge between nodes i and j from a specific model is
denoted as pmodelij . Instead of their originally proposed use for link prediction, we wish to evaluate
these models as generative models. Hence, we train the models using the entire graph and estimate
{pmodelij }1≤i≤j≤N . We refer to these probabilities as ‘raw’ probabilities and sample graphs according
to them. In practice, this results in dense sampled graphs where the edge densities in the sampled
graphs are multiple orders-of-magnitude higher than the density of the observed graph Gobs. As a
result, many of the statistics of the sampled graphs are not comparable with those of Gobs. In order
to sample more realistic graphs, we employ logistic regression based calibration. We fit a model
pcalij = p(Aobs,ij = 1|pmodelij) = σ(αpmodelij +β) (where σ(·) denotes the sigmoid function) to learn (α, β)
and use the predicted probabilities for sampling graphs. Even after calibration the densities of the
sampled graphs are still too high, so we explicitly re-scale the calibrated probabilities such that the

sampled graphs in expectation have the same number of edges |Eobs| as Gobs: pccij =
|Eobs|pcalij∑N
i=1

∑N
j=1 p

cal
ij

.

We call this procedure ‘calibration and correction’ (cc).
Node copying: Since the baselines are unsupervised techniques, for a fair comparison we refrain
from using node labels for the node copying model. Instead, we sample replacement nodes according
to the distances between learned embeddings. The selected datasets are used as benchmark for node
classification task and are expected to exhibit some homophilic property, which suggests that nodes
with the same label are clustered together and share similar features. This indicates that it is sensible
to construct a similarity metric using node embeddings that are derived from both topological and
feature information. Specifically, for any node, we sample the replacement node uniformly from the
K-nearest neighbors according to the Euclidean distance between embeddings.
Experiment: The qualitative similarity of two graphs can be measured in multiple ways. To obtain
an insight into which method can generate graphs that are the closest to an original graph, we report
various graph statistics on the sampled graphs and compare them to the statistics of the observed
graphs for Cora, Polblogs, Bitcoin, and Amazon-photo datasets (homophilic graphs, used extensively
for node classification) in Table 1. Details of all datasets used in this paper are included in A. For
uniformity, the directed graph of Bitcoin has been made undirected by casting every in/out edge as
an undirected edge.
Metrics: For a graph G, d(v) is the degree of node v and cv denotes the class label of node v. We report
the average and minimum degree, the proportion of cross-community edges: 1

|E|
∑

(i,j)∈E 1[ci 6= cj] , the

proportion of claws (‘Y’ structure): 1

(|E|
3)

∑
v∈V

(
d(v)
3

)
and the relative entropy of the edge distribution:

1
logN

∑
v∈V

−d(v)
|E| log

(d(v)
|E|
)
. By reporting various summary graph statistics, we can have a broad

picture of the properties of the generated graphs.
In each case, 10 random trials of the model training are conducted and 10 random graphs are

sampled based on each trial. The results are thus averaged over 10 × 10 = 100 sampled graphs. We

5

Table 1: Average statistics of 100 sampled graphs. Bolded entries indicate the closest values to the
observed value. N/A indicates entries that were not reported due to processing limitations.

Avg.
degree

Max.
degree

Cross
com. %

Claws %
(×10−4)

Edge dist.
ent. (%)

Avg.
degree

Max.
degree

Cross
com. %

Claws %
(×10−4)

Edge dist.
ent. (%)

Cora Polblogs

Observed 3.89 168 19.6 6.34 95.6 27.4 351 9.42 10.1 90.3

GRAPHITE (cc) 3.9 24 34.4 0.43 96 27.3 64 18.1 0.91 98.9
raw 1.3× 103 1.4× 103 77.6 0.18 100 614 712 39.2 0.67 100
calibrated 105 519 34.5 0.44 97.7 256 530 18.1 0.91 99.2

GVAE (cc) 3.9 22.1 37 0.302 96.2 27.3 64.1 18.2 0.918 98.9
raw 1.34×103 1.44×103 77.7 0.136 100 614 714 39.4 0.673 100
calibrated 125 587 37 0.309 97.9 255 533 18.2 0.918 99.1

DGLFRM-B (cc) 3.9 14.9 38.8 0.169 97.8 27.3 58.8 18.1 0.874 99

COPYING K=5 3.5 105 18.4 3.2 96.9 26 311 8.94 8.61 90.6
COPYING K=10 3.3 63.9 20.4 1.22 97.4 25.5 290 8.83 7.72 90.8
COPYING K=15 3.2 58.1 22 1.1 97.5 25.2 274 8.72 7.33 90.9

Bitcoins Amazon-photo

Observed 2.08 53 27.1 240 92.3 31.8 1.43× 103 17.3 0.75 94.2

GRAPHITE (cc) 2.09 9.21 23.8 6.22 94.7 31.8 87.2 81.3 0.02 99.3
raw 250 311 37.6 4.97 99.8 4.4× 103 6.0× 103 83.1 0.02 100
calibrated 84.8 219 23.8 9.48 99.1 2.7× 103 6.4× 103 81.3 0.02 99.4

GVAE (cc) 2.09 9.18 22.2 6.24 94.8 31.8 71.7 80.2 0.0212 99.5
raw 236 285 37.1 4.62 99.9 5.41×103 6.24×103 82.4 0.0226 100
calibrated 72.4 198 22.2 6.96 99.1 2.95×103 4.84×103 80.2 0.0228 99.7

DGLFRM-B (cc) 235 291 36.9 4.59 99.9 N/A N/A N/A N/A N/A

COPYING K=5 1.8 34.9 23.6 125 95.3 31.5 1.04× 103 41.5 0.532 94.7
COPYING K=10 1.73 28.3 23 89.9 96.0 31.1 1.05× 103 47.2 0.502 94.9
COPYING K=15 1.68 21 22.6 50.3 96.7 31 1.03× 103 50.6 0.502 94.9

observe that without the ‘calibration and correction’, the baseline node embedding algorithms fail
to generate representative graphs as the characteristics of the sampled graphs show large deviation
from those of the observed graph. In particular, in ‘raw’ versions, we obtain graph samples which are
significantly denser, have higher proportion of cross-community links, have lower proportion of claws,
and possess a flatter degree distribution compared to the observed graph. This shows that learning
node embeddings while targeting a link prediction task does not necessarily result in a good generative
model.

‘Calibration’ reduces this effect and leads to sparser graphs with better cross-community structure.
After the explicit ‘correction’, the average degree of the sampled graphs is the same as that of the
observed graph. However, the degree distribution still does not match with that of the observed graph,
as evident from the maximum degree, as well as the relative entropy of the edge distribution. Moreover,
the sample graphs have a much lower proportion of claws. This is not unexpected, because any model
which is based on independence of the links cannot model such local structural dependencies observed
in real world graphs. On the other hand, the samples from the proposed node copying model show a
much better agreement with the observed graph in terms of all the statistics we consider. In particular,
a much lower proportion of cross-community links in the graph samples of the copying model provides
a rationale for its efficacy when the model is adopted for a node classification task. Overall, these
tendencies can be observed when sampling is performed using a different number of nearest neighbors
for the sampling distribution (K = 5, 10, 15). In this experiment, sampling from the K = 5 nearest
neighbors seems to be the best choice.
Connections to other random graph models: We further support this notion that the copying
model preserves the structure of the observed graph with theoretical results. We show that if the
observed graph itself is a sample from some parametric random graph model, then suitable copying
procedures can ensure that the sampled graphs have the same marginal distribution. We prove this
result for two popular random graph models, namely for the Stochastic Block Model in Theorem 4.1
and for the Erdős-Rényi family in Theorem 4.2.

Theorem 4.1. Let Gobs be a sample of a Stochastic Block Model (SBM) with N nodes and K com-
munities and symmetric conditional probability matrix β ∈ RK×K . We use a node copying procedure

6

between nodes of the same label, i.e., a node j cannot be copied in place of node i, if the labels ci 6= cj.
Then any sampled graph Gsa is marginally another realization from the same SBM.

Proof. For Gobs, we have p(Aobsij = 1|ci, cj) = βci,cj . Now, based on the copying strategy above, the
probability of observing an edge (i, j) in Gsa is given by:

p(Asaij = 1|ci, cj) =
N∑
v=1

p(Aobsvj = 1|ci, cj , ζi = v)p(ζi = v|ci, cv) ,

=
∑

v:ci=cv

p(Aobsvj = 1|ci, cj , ζi = v)p(ζi = v|ci, cv) (since p(ζi = v|ci 6= cv) = 0),

= βci,cj = p(Aobsij = 1|ci, cj), (2)

since, p(Aobsvj = 1|ci, cj , ζi = v) = βci,cj = p(Aobsij = 1|ci, cj) for all {v : ci = cv} and
∑

v:ci=cv
p(ζi =

v|ci, cv) = 1. This is reliant on only copying within the same community, as p(ζi = v|ci 6= cv) = 0.
Next we consider the joint distribution of two edges, i.e. p(Asai1j1 = 1, Asai2j2 = 1|ci1 , ci2 , cj1 , cj2). We
need to consider the following two cases:
Case 1: i1 6= i2

p(Asai1j1 = 1, Asai2j2 = 1|ci1 , ci2 , cj1 , cj2)

=

N∑
v=1

N∑
u=1

p(ζi1 = v, ζi2 = u|ci1 , ci2)p(Aobsvj1 = 1, Aobsuj2 = 1|ci1ci2 , cj1 , cj2 , ζi1 = v, ζi2 = u) ,

=
∑
v:

ci1=cv

∑
u:

ci2=cu

p(ζi1 = v, |ci1)p(ζi2 = u, |ci2)p(Aobsvj1 = 1|ci1 , cj1 , ζi1 = v)p(Aobsuj2 = 1|ci2 , cj2 , ζi2 = u) ,

= βci1cj1βci2cj2 = p(Aobsi1j1 = 1, Aobsi2j2 = 1|ci1 , ci2 , cj1 , cj2) . (3)

Case 2: i1 = i2

p(Asai1j1 = 1, Asai2j2 = 1|ci1 = ci2 , cj1 , cj2)

=
N∑
v=1

p(ζi1 = v|ci1)p(Aobsvj1 = 1, Aobsvj2 = 1|ci1 = ci2 , cj1 , cj2 , ζ
i1 = v) ,

=
∑

v:ci1=cv

p(ζi1 = v, |ci1)p(Aobsvj1 = 1|ci1 , cj1 , ζi1 = v)p(Aobsvj2 = 1|ci1 , cj2 , ζi1 = v) ,

= βci1cj1βci1cj2 = p(Aobsi1j1 = 1, Aobsi1j2 = 1|ci1 = ci2 , cj1 , cj2) . (4)

Here, the joint distribution of ζ factorizes because of the independence of ζis. The joint conditional
edge probability in Gobs is the product of individual conditional edge probabilities as Gobs is sampled
from a SBM. Similarly, if we consider any arbitrary subset of the edges in Gsa, we can show that the
joint distribution is mutually independent over the edges and is the same as that of Gobs. This proves
the theorem.

Theorem 4.2. If Gobs is a sample of an Erdős-Rényi model with N nodes and connection probability
θ ∈ [0, 1]), then for any arbitrary distribution of ζ, Gsa is also a sample from the same model.

Proof. For Gobs, we have p(Aobsij = 1|θ) = θ. Now, based on any arbitrary copying strategy, we have

p(Asaij = 1|θ) =
N∑
k=1

p(ζi = k|θ)p(Aobskj = 1|θ, ζi = k) ,

= θ = p(Aobsij = 1|θ) , (5)

since p(Aobskj = 1|θ, ζi = k) = p(Aobskj = 1|θ) = θ for 1 ≤ k ≤ N and
∑N

k=1 p(ζ
i = k|θ) = 1. Similarly,

if we consider any arbitrary subset of the edges in Gsa, we can show that the joint distribution is
mutually independent over the edges and is the same as that of Gobs. This proves the theorem.

7

Although generating samples that preserve graph structure can be useful, it is not the main purpose
of our model. In the following three sections, we explain how this model can be applied in node
classification, in protection against adversarial attack and in a recommendation system.

5 Application – Node copying for semi-supervised node classifica-
tion

The node classification algorithms that we consider rely heavily on the homophily of the graph struc-
ture in predicting node labels. Nodes of the same label tend to be connected together more often than
the nodes of different labels. If we define a notion of similarity which is based on the node labels,
a node copying model can sample graphs which preserve the homophily property (see Theorem 4.1).
Those graph samples can then be integrated in a Bayesian framework to make better prediction.
Problem Setting: In the task of semi-supervised node classification, apart from the observed graph
Gobs, we have access to node features X and the labels in the training set YL. So, D = (X,YL). The
goal is to infer the labels of the remaining nodes L = V \ L.
Bayesian GCNs - Background and Extension: A Bayesian framework for GCNs [33] (BGCN)
views the graph G and the GCN weights W as random quantities and performs prediction by com-
puting an expectation with respect to the posterior distribution. In [33], Gobs is viewed as a sample
realization from a parametric random graph model; the goal is the posterior inference of p(G|Gobs)
marginalizing with respect to the random graph parameters. However, this approach ignores any
possible dependence of the graph G on the features X and the labels YL [34]. Although subsequent
works address this issue, they either use variational approximation [35] of the posterior, or rely on
maximum a posteriori (MAP) estimation [36]. Neither approach attempts to generate graph samples
from the actual posterior.

We propose a modified version of the BGCN. In the proposed BGCN, the conditional distribution of
the graph G is represented as p(G|Gobs,X,YL). This graph distribution can incorporate the information
provided by the features X and the training labels YL. In the classification task, the posterior
is defined over the GCN weights W. As in [37], we model the prior p(W) = N (W; 0, I). The
likelihood p(YL|X,G,W) is modelled using a K-dimensional categorical distribution by applying
softmax function at the last layer of the Bayesian GCN over the graph G. The posterior distribution
of W can be written as:

p(W|X,YL,G) ∝ p(W)p(YL|W,X,G) . (6)

For predicting labels for the unlabelled nodes, we only need to draw samples from p(W|X,YL,G),
rather than explicitly evaluate the probability, so the normalization constant 1/p(YL|X,G) can be
ignored. The posterior over W induces a predictive marginal posterior for the unknown node labels
Z as follows:

p(Z|X,YL,Gobs) =

∫
p(Z|W,Gobs,X)p(W|X,YL,G)p(G|Gobs,X,YL) dW dG . (7)

The integral in equation (7) cannot be computed in a closed form. Hence, Monte Carlo sampling is
used for approximation:

p(Z|X,YL,Gobs) ≈
1

NGS

NG∑
i=1

S∑
s=1

p(Z|Ws,i,Gobs,X) . (8)

Here, NG graphs Gi are sampled from p(G|Gobs,X,YL) and subsequently for each Gi, S weight matrices
Ws,i are sampled from the variational approximation of p(W|X,YL,Gi). Due to its simplicity, we use
Monte Carlo dropout [37] to generate the samples Ws,i from the variational approximation, although
its generalization for GCNs in [38] could also be used.
Node copying for BGCN: The node copying model provides a way to specify p(G|Gobs,X,YL) and
to generate samples from it. The proposed BGCN algorithm is presented in Algorithm 1. The inputs
are the observed graph, the node features and the observed labels. The outputs are soft predictions

8

for the unknown node labels. For the copying model, we need to specify p(ζj = m|Gobs,X,YL),
because this defines the graph distribution. In this setting, intuitively we believe that nodes with the
same labels are similar and hence should be candidates for copying. For constructing the conditional
distribution of ζ, we employ a base classification algorithm using the observed graph Gobs, the features
X and the training labels YL to obtain predictive labels ĉ` ∈ {1, ...,K} for each node ` in the graph
(Step 3: Initialization). Then, for each node j, we assign a uniform probability for ζj over all nodes
with the same predictive label from the base classifier as follows:

p(ζj = m|Gobs,X,YL) =

1

|Ck|
, if ĉj = ĉm = k , where Ck = {` | ĉ` = k}

0, otherwise .

(9)

In our experiments, we use the GCN [39] as a base classifier to obtain {ĉ`}.

Algorithm 1 Bayesian GCN with node copying

1: Input: Gobs, X, YL
2: Output: p(Z|X,YL,Gobs)
3: Initialization: Train a base classifier to obtain ĉ` and form Ck, k = 1, 2, ...,K.
4: for i = 1 to NG do
5: Sample graph Gi ∼ p(G|Gobs,X,YL) from node copying model defined by (9) and (1).
6: for s = 1 to S do
7: Sample weights Ws,i using MC dropout by training a GCN over graph Gi.
8: end for
9: end for

10: Approximate p(Z|X,YL,Gobs) using eq. (8).

Experiments: We evaluate node classification on standard benchmark datasets, including citation
datasets Cora, Citeseer and Pubmed from [40] and Coauthor-CS from [41]. For the citation networks,
we use the same hyperparameters as in [5] and for the Coauthor-CS dataset we use the largest con-
nected component and the hyperparameters reported in [41]. We address three different scenarios,
where we have access to 5, 10 or 20 labels per class. We conduct 50 trials; each trial corresponds to a
random weight initialization and use of a random train/test split.

Table 2: Accuracy of semi-supervised node classification.

Algorithms 5 labels 10 labels 20 labels 5 labels 10 labels 20 labels

GCN

C
or

a

70.0±3.7 76.0±2.2 79.8±1.8

C
it

es
ee

r

58.5±4.7 65.4±2.6 67.8±2.3
MMSBM-BGCN 74.6±2.8* 77.5±2.6 80.2±1.5 63.0±4.8 69.9±2.3* 71.1±1.8*
DFNET-ATT 72.3±2.9 75.8 ±1.7 79.3±1.8 60.5±1.2 63.2 ±2.9 66.3±1.7
SBM-GCN 46.0±19 74.4±10 82.6±0.2* 24.5±7.3 43.3±12 66.1±5.7
BGCN-Copy 73.8±2.7 77.6±2.6 80.3±1.6 63.9±4.2* 68.5±2.3 70.2±2.0

GCN

P
u

b
m

ed

69.7±4.5 73.9±3.4 77.5±2.5

C
o.

-C
S

90.7±1.4 90.7±1.4 92.1±1.0
MMSBM-BGCN 70.2±4.5 73.3±3.1 76.0±2.6 91.0±1.0 91.3±1.1* 91.6±1.0
SBM-GCN 59.0±10 67.8±6.9 74.6±4.5 88.8±1.7 89.8±1.7 91.4±1.8
BGCN-Copy 71.0±4.2* 74.6±3.3* 77.5±2.4 90.5±1.4 90.7±1.2 91.6±1.0

We compare the proposed BGCN based on node copying (BGCN-Copy) with the BGCN based on
an MMSBM [33] (MMSBM-BGCN) and the SBM-GCN [34] to highlight the usefulness of the node
copying model. We also include node classification baselines GCN [39] and DFNET[42] (only for Cora
and Citeseer datasets due to run-time considerations). The average accuracies along with standard
errors are reported in Table 2. For each setting, the highest average accuracy is written in bold and an
asterisk (*) is used if the algorithm offers better performance compared to the second best algorithm
that is statistically significant at the 5% level using a Wilcoxon signed rank test. (The significance
test results are reported in the same way in the two following sections).

9

Data scarce setting: As in [34], we consider another node classification experiment where all
the edges connected to the test set nodes are removed from the graph. We also have access to only 5
training examples from each class. We use a Multi Layer Perceptron (MLP) as a non-graph baseline
algorithm. We conduct 20 trials for each dataset and report the average accuracies along with the
standard error in Table 3.

Table 3: Accuracy of semi-supervised node classification in data-scarce setting.

MLP GCN MMSBM-BGCN SBM-GCN BGCN-Copy

Cora 39.7±3.7 53.5±3.6 54.7±4.6 25.3±12.8 58.7±3.5*
Citeseer 40.2±3.6 48.3±3.3 47.6±2.5 18.1±5.4 54.5±2.8*
Pubmed 59.2±3.4 66.2±4.1 67.1±3.9 57.8±7.7 69.1±4.0*
Coauthor CS 80.5±2.5 85.8±2.3 88.2±1.2 88.7±1.8 87.4±1.6

Comparison of BGCN generative models with runtime analysis: Finally, we compare the node
copying BGCN with BGCN variants that incorporate other graph generative models for p(G|Gobs,D),
including the generative models considered in Section 4. Performance and runtime results on the Cora
dataset are reported in Table 4. Implementation details of the BGCN variants are provided in B.

Table 4: Accuracy of node classification for different size of labeled set and runtime (for a 20 labels
per class trial) of various BGCNs on Cora dataset, averaged over 20 trials.

Gen. model VGAE GRAPHITE MMSBM NETGAN DGLFRM-B BGCN-Copy

5 labels 68.3±3.6 69.0±3.1 74.6±2.8 71.0±2.4 75.1±2.3 73.8±2.7
10 labels 74.0±2.0 74.3±2.0 77.5±2.6 77.0±2.7 77.3±1.8 77.6±2.6
20 labels 78.2±2.0 78.3±1.7 80.2±1.5 80.0±1.62 78.8±1.6 80.3±1.6

Exec. time (s) 33 34 512 86573 244 30

Discussion: From Table 2, we observe that the proposed BGCN either outperforms or offers compa-
rable performance to the competing techniques in most cases. In the data-scarce setting, models which
can incorporate the uncertainty in the graph show better performance in general as they have some
capability to mitigate the effects of missing edges and fewer training labels. The proposed BGCN-
Copy has the capacity of adding new edges during training, as do MMSBM-BGCN and SBM-GCN.
From Table 3, we observe that the proposed algorithm shows significant improvement compared to its
competitors.

Table 4 highlights that the node copying based BGCN provides much better results than VGAE or
GRAPHITE and is much faster compared to the other alternatives. The proposed copying approach
generalizes the BGCN to settings where the parametric model does not fit well. It also reveals that
our approach is faster than MMSBM-BGCN which makes it a better alternative to process larger
datasets. The parametric inference for the MMSBM is challenging for larger graphs, whereas our
approach scales linearly with the number of nodes.

6 Application – Node copying for defense against adversarial attacks

We present node classification in an adversarial setting as a second application. Generally, a topological
attack corrupts the prediction of a node label by tampering with its neighborhood. Since the node
copying model explicitly provides new neighborhoods to nodes, we can construct a defense algorithm
based on sampled graphs in which the targeted node can possibly escape the effect of the attack.
Problem Setting: We consider attacks in which unlabeled nodes Vattacked ⊂ L are subjected to an
adversarial attack that can modify the neighborhood of the targeted nodes. The defense algorithm
only has access to the resulting corrupted graph Gattacked, and the goal is to recover classification
accuracy at the targeted nodes v ∈ Vattacked. The complete feature matrix X and the training labels

10

YL of a (small) labeled set are assumed to be unperturbed. Following the categorizations of graph
attacks in the survey [43], this specific adversarial setting belongs to the edge-level, targeted, poisoning
category.
Defense algorithm using node copying: Our proposed defense procedure is summarized in Al-
gorithm 2. We now detail the steps of the algorithm. We first train a GCN classification algorithm
on the attacked graph (Step 3). Since our sole interest is in correcting the erroneous classifications at
the nodes in Vattacked, we do not need to sample entire graphs for this application. Instead, we sample
local neighbourhoods of the targeted nodes v ∈ Vattacked via the node copying model p(ζv|Gattacked,X).
We note that the classifications of the attacked nodes are most likely incorrect. So, using the pre-
dicted classes to define similarities in the node copying model is not sensible as the targeted nodes
might be more similar to nodes from a different class. Instead, we use an unsupervised representa-
tion of the nodes for sampling the replacement nodes. We train a node embedding algorithm using
(Gattacked,X) to obtain the node representations {ei}i=1:N (Step 4). A symmetric, pairwise distance
matrix D ∈ RN×N+ is formed, where Dij denotes a distance between ei and ej . (Step 5). In our
experiments, we use the Graph Variational Auto Encoder (VGAE) [39] as the embedding algorithm
and compute pairwise Euclidean distances to form D : Di,j = ||ei − ej ||2. For any targeted node, we
sample the replacement node (Step 8) uniformly at random from the nodes which are close to the
targeted node. Formally, we define:

p(ζv = m|Gattacked,X,YL) =

1

P
, if Dv,m = Dv,(`) for some 1 ≤ ` ≤ P

0, otherwise.
(10)

Here Di,(j) is the j-th order statistic of {Di,`}N`=1. For each corrupted node, our approach replaces
the classification obtained from the node classifier trained on the corrupted graph Gattacked by the
ensemble of classifications of the same model with the sampled ζvs copied in place of node v (Step
9). We use the mean of the softmax probabilities as the ensemble aggregation function (Step 11). In
many graph-based models [5, 44], the node classification is primarily influenced by nodes within a few
hops. As a result, a localized evaluation of the predictions at the targeted nodes can be computed
efficiently.

Algorithm 2 Error correction using node copying

1: Input: Gattacked, X, YL, Vattacked
2: Output: ŶCopying

attacked

3: Train a semi supervised node classification algorithm using Gattacked,X, YL to learn model pa-
rameters W.

4: Train a node embedding algorithm using Gattacked,X to obtain embeddings {ei}Ni=1.
5: Compute the pairwise distance matrix D, where, Dij = ||ei − ej ||2.
6: for v ∈ Vattacked do
7: for k = 1 : NG do
8: Sample ζvk ∼ p(ζv|Gattacked,X,YL) according to (10).
9: Copy node ζvk in place of node v and compute the prediction of the learned classifier (in Step

3) at node v, ŷ
(ζvk)
v using the parameters W.

10: end for
11: Compute ŷCopyingv = 1

NG

∑NG
k=1 ŷ

(ζvk)
v

12: end for
13: Form ŶCopying

attacked = {ŷCopyingv }v∈Vattacked

We note that the node embeddings {ei}Ni=1 of Gattacked, which are used to form p(ζv|Gattacked,X,YL)
are also affected by the topological attack. This can potentially degrade the effectiveness of the
proposed defense mechanism. If the attack is believed to be too strong, we can use a similarity
metric that ignores any topological information instead of relying on the embeddings of the nodes
of the attacked graph. However, our experimental results in Table 5 demonstrates that even for a
quite severe attack (where 75% of the neighbors of the targeted nodes have been tampered with), the

11

proposed defense strategy using node copying has impressive performance. Figure 2(b) shows how a

v

j

v

v

k

z

v

a) b) c) d)

+ =

✓

✓

j

v

k

X 1
2

Figure 2: Summary of the node copying procedure. a) In the absence of the attack, the softmax
of node v achieves the correct classification in Gobs. b) Node v is targeted by an attack and is now
wrongly classified. c) We sample two replacement nodes for node v : ζv = j and ζv = k. The softmax

vectors at node v after nodes j and k are copied in place of node v are denoted as ŷ
(j)
v and ŷ

(k)
v ,

respectively. d) The error for node v is corrected by computing ŷCopyingv = 1
2

(
ŷ
(j)
v + ŷ

(k)
v

)
.

topological attack can lead to an incorrect classification for a targeted node. Figure 2(c) provides two
examples of the node copying operation to generate new graphs by copying some ζvs in place of node
v. Figure 2(d) depicts how the softmax values derived from these generated graphs are combined to
recover the original correct classification.
Experiments: Our proposed defense algorithm is evaluated against three graph adversarial attacks.
Targeted DICE (Delete Internally Connect Externally) is the targeted version of the global attack
from [45]. This algorithm attacks a node by randomly disconnecting β percent of its neighbors of the
same class, and add the same number of edges to random nodes of a different class. We present results
with β = 50% and β = 75%. Nettack from [46] is another topological attack. We use the directed
version of Nettack and set the number of perturbations to be equal to the degree of the attacked node.
The last attack we consider is FGA [47], for which we set the number of perturbations to 20. All
remaining parameters are set to the values provided in the respective papers.

In order to illustrate the effectiveness of the procedure, we compare the accuracy at the attacked
nodes for the proposed copying algorithm with a standard GCN and a state-of-the-art defense algo-
rithm GCN-SVD [48], for which we set the rank parameter K = 50. We consider a setting where Vtrn
is formed with 20 labels per class. The attacked set Vattacked is simulated by randomly sampling 40
nodes, excluding Vtrn, and corrupting them with the attack.

Table 5: Accuracy of defense algorithms at the attacked node averaged over 50 trials.

Cora Citeseer

DICE 50% DICE 75% Nettack FGA DICE 50% DICE 75% Nettack FGA

GCN 53.4±8.9 31.9±8.9 13.6±9.6 69.8±16 45.5±7.9 30.45±7.6 11.8±5.1 54.6±15
GCN-SVD 51.1±9.8 35.9±7.1 41.7±11 57.2±15 48.4±7.7 36.3±9.1 34.4±8.9 * 39.4±17
Copying 57.5±9.9* 38.3±7.4* 40.5±11 70.2±16 50.1±9.1* 37.6±9.1 31.6±7.7 55.8±12

Discussion: From Table 5, we see that the proposed corrective mechanism based on node copying
improves the classification accuracy of the corrupted nodes. Interestingly, the proposed correction
procedure does not involve sampling of the entire graph or retraining of the model, rather we can
perform computationally inexpensive, localized computations to improve accuracy at the targeted
nodes. We observe that the GCN-SVD approach outperforms the Copying algorithm for Nettack,
which is expected as it is tailored to provide efficient defense for this specific attack, but performs
significantly worse than a standard GCN against the FGA attack. In contrast, the proposed Copying
defense offers consistent improvement over GCN across different attacks.

12

7 Application – Node copying for recommender systems

As the last application, we consider the task of graph-based personalized item recommendation. An
intuitive solution to this problem is to form the item recommendation of a user based on other users
that have many items in common. If two users share multiple items in their interaction histories, we
presume that one item purchased/liked by one of them could be recommended to the other. A node
copying model can directly apply this approach by using a similarity metric between users that is
proportional with the number of shared items.
Problem Setting: Let U be the set of users and I be the set of items. Gobs is the partially observed
bipartite graph built from previous user-item interactions. The task is to infer other unobserved
interactions, which can be seen as a link prediction problem [49, 50]. Alternatively, we can view
this task as a ranking problem [51]. For each user u, for an observed interaction with item i and a
non-observed interaction with item j, we have i >u j in the training set. If both (u, i) and (u, j)
are observed, we do not have a ranking. Using this interaction data {>u}trn = {(u, i, j) : (u, i) ∈
Gobs, (u, j) /∈ Gobs} for fitting a model, the task is to rank all (u, i, j) such that both (u, i) and (u, j) /∈
Gobs. The sets of pairs {(u, i) : (u, i) ∈ Gobs} and {(u, j) : (u, j) /∈ Gobs} are referred to as the positive
and negative pools of interactions respectively. We denote the test set as {>u}test = {(u, i, j) : (u, i) /∈
Gobs, (u, j) /∈ Gobs}. We consider a Bayesian Personalized Recommendation (BPR) framework [51]
(details in C) along with the inference of the graph G.
Background: Many existing graph-based deep learning recommender system models [52, 49, 50]
learn weights W to form an embedding eu(W,Gobs) for the u-th user and ei(W,Gobs) for the i-th item
node. The ranking of any (u, i, j) triple such that both (u, i) /∈ Gobs and (u, j) /∈ Gobs is specified as
p(i >u j|Gobs,W) = σ(eu · ei − eu · ej) , where σ(·) is the sigmoid function and · denotes the inner
product. Assuming a suitable prior on W, the learning goal is to maximize the posterior of W on
the training set. Here, Ŵ = arg max

W
p(W|{>u}trn,Gobs) is learned by maximizing the BPR objective

using Stochastic Gradient Descent (SGD). The pairwise ranking probabilities in the test set is then

computed using Ŵ.
Ensemble BPR: We summarize the proposed Ensemble BPR algorithm in Algorithm 3. For the
Ensemble BPR algorithm, we first obtain Ŵ as previously described (Step 3), then we evaluate the
ranking by computing an expectation with respect to the random graph G, sampled from the node
copying model.

Algorithm 3 Ensemble BPR with node copying

1: Input: Gobs, {>u}trn
2: Output: p({>u}test|{>u}trn,Gobs)
3: Obtain Ŵ = arg max

W
p(W|{>u}trn,Gobs) by minimizing the BPR loss.

4: for i = 1 to NG do
5: Sample graph Gi ∼ p(G|Gobs, {>u}trn) using the node copying model defined by (11).
6: end for
7: Approximate p({>u}test|{>u}trn,Gobs) using eq. (13).

In this setting, we assign a non-zero conditional probability to only the class of bipartite graphs
since Gobs is bipartite. This is achieved by considering a node copying scheme where only user nodes
can be copied to a user node. We consider that users that share items are similar, so we use the Jaccard
index ρ between the sets of items for pairs of users to define the conditional probability distribution
of ζ as follows:

p(ζj = m|Gobs) =

ρ(j,m)/

∑
i∈U

ρ(j, i) , if j,m ∈ U

0 , otherwise

(11)

13

We compute the pairwise ranking probabilities in the test set as follows:

p({>u}test|{>u}trn,Gobs) =

∫
p({>u}test|G,W)p(W|{>u}trn,Gobs)p(G|Gobs, {>u}trn)dWdG . (12)

We sample NG graphs Gis from p(G|Gobs, {>u}trn) using node copying (Step 5) and then form a Monte
Carlo approximation of eq. (12) as follows (Step 7):

p({>u}test|{>u}trn,Gobs) ≈
1

NG

NG∑
i=1

p({>u}test|Gi,Ŵ) , (13)

Implementation of eq. (13) does not require retraining of the model since Ŵ is already obtained by
minimizing the BPR loss; it only involves evaluation of a trained model on multiple sampled graphs
to compute the average pairwise ranking probability for the test set.
Sampled Graph BPR (SGBPR) — training with sampled graphs:

We consider another approach where we use the generated graphs during the training process as
well. The SGBPR algorithm is summarized in Algorithm 4.

Algorithm 4 Sampled Graph BPR with node copying

1: Input: Gobs, {>u}trn
2: Output: p({>u}test|{>u}trn,Gobs)
3: for i = 1 to NG do
4: Sample graph Gi ∼ p(G|Gobs, {>u}trn) using the node copying model defined by (11).
5: end for
6: Compute ÂG using eq. (15) and Ĝb (equivalently A

Ĝb
) using ÂG .

7: Compute f̂(Gobs) = Gobs ∪ Ĝb
8: Obtain Ŵ′ = arg max

W
p(W|{>u}trn,Gobs, f̂(Gobs)) by minimizing the BPR loss.

9: Approximate p({>u}test|{>u}trn,Gobs) using eq. (16).

Our motivation is to remove some of the potentially unobserved positive interactions in the training
set from the negative interaction pool. We rely on the node copying model to sample graphs (Step
4), which potentially contain positive interactions between user-item pairs, which are unobserved in
Gobs. The inference of graph G is carried out from the copying model p(G|Gobs, {>u}trn) specified in
eq. (11). We need to compute:

p({>u}test|{>u}trn,Gobs) =

∫
p({>u}test|G,W)p(W|{>u}trn,Gobs, f(Gobs))p(G|Gobs, {>u}trn)dWdG .

(14)

Here, f(Gobs) is a function of the observed graph that returns a graph that is used to control the
negative pool. There is flexibility in the choice of this function, but we use f(Gobs) = Gobs ∪ Gb. The
union ∪ indicates that we take the union of the edge sets of the two graphs. We define G , EG|Gobs [G] as
the graph with adjacency matrix equal to the expectation of the adjacency matrix over the generative
graph distribution. The graph Gb is derived from this; it has a binary adjacency matrix derived by
comparing the adjacency matrix entries of G to a small positive threshold b. So, we have AGb = 1[AG >
b] . Due to analytical intractability, we approximate EG|Gobs [G] using Monte Carlo. This amounts to

approximating the adjacency matrix of G = EG|Gobs [G], whose (s, w)-th entry can be estimated as:

ÂG(s, w) =
1

NG

NG∑
i=1

AGi(s, w) . (15)

Here, Gi ∼ p(G|Gobs, {>u}trn) is sampled from the node copying model in Step 4. This allows us to

construct an estimate f̂(Gobs) by first computing an approximate Ĝb (equivalently A
Ĝb

) using ÂG (Step

6) and then using this Ĝb in the definition of f(Gobs) (Step 7).

14

In specifying p(W|{>u}trn,Gobs, f(Gobs)), we effectively aim to reduce the training set by elim-
inating unobserved edges from the negative pool. We have {>u}trn = DS . We now introduce
D′S = DS \ {(u, i, j) : (u, i) ∈ Gobs, (u, j) ∈ Gb}, and set p(W|{>u}trn,Gobs, f(Gobs)) = p(W|D′S),
which amounts to training the model based on positive and negative interactions in D′S . Using

Ŵ′ = arg max
W

p(W|{>u}trn,Gobs, f̂(Gobs)) (Step 8), the posterior probability of {>u}test in eq. (14)

is then approximated as:

p({>u}test|{>u}trn,Gobs) ≈
1

NG

NG∑
i=1

p({>u}test|Gi,Ŵ′) (16)

Experiments: For the recommender system, we use two datasets (ML100k and Amazon-CDs, with
details in Table 8 in A) that we preprocess by retaining users and items that have a specified minimum
number of edges set by a threshold. We create training, validation and test sets by splitting the
data 70/10/20%. We generate random splits for each of the 10 trials and report average Recall and
Normalized Discounted Cumulative Gain (NDCG) at 10 and 20. Recall@k measures the proportion
of the true (preferred) items from the top-k recommendation. For a user u ∈ U , the algorithm
recommends an ordered set (in descending order of preference) of top-k items Ik(u) = {in}kn=1 ⊂ I.
There is a set of true preferred items for a user I+u and the number of true positive is |I+u ∩ Ik(u)|,
so the recall is computed as follows: Recall@k = |I+u ∩Ik(u)|

|I+u |
. Normalized Discounted Cumulative

Gain (NDCG) [53] computes a score for recommendation Ik(u) which emphasizes higher-ranked true
positives. Dk(n) = 1[in ∈ I+u]/ log2(n + 1) accounts for a relevancy score. NDCG@k = DCGk

IDCGk
=∑

in∈Ik(u)Dk(n)∑
in∈I+

u,k
Dk(n)

, where I+u,k is the ordered set of top-k true preferred items in descending order of

preference. We use the embedding model (MGCCF) presented in [54], which achieves state-of-the-art
performance for this task.

Table 6: Average recall and NDCG for recommender system experiment.

MGCCF EBPR SGBPR MGCCF EBPR SGBPR

Recall@10

M
L

10
0k

19.91±0.20 20.15±0.07* 20.96±0.23*

A
m

a
.-

C
D

s 13.28±0.05 13.21±0.01* 13.83±0.19*
Recall@20 31.27±0.21 31.56±0.07* 32.45±0.34* 20.26±0.05 20.37±0.02* 20.95±0.22*
NDCG@10 26.50±0.20 26.86±0.07* 27.66±0.24* 14.86±0.04 14.78±0.01* 15.31±0.20*
NDCG@20 31.90±0.14 32.23±0.06* 33.14±0.31* 18.63±0.04 18.65±0.02 19.20±0.20*

Discussion: From Table 6, we observe that for the recommendation task, adaptation of the copying
model results in a simple intuitive ‘EBPR’ algorithm which improves recall over the baseline and does
not involve any retraining. Use of the sampled graphs to train the model offers significantly better
performance.

8 Conclusion

We present a novel generative model for graphs called node copying. The proposed model is based
on the idea that neighbourhoods of similar nodes in a graph are similar and can be swapped. It
is flexible and can incorporate many existing graph-based learning techniques for identifying node
similarity. Sampling of graphs from this model is simple. The sampled graphs preserve important
structural properties. We have demonstrated that the use of the model can improve performance for a
variety of downstream learning tasks. Future work will investigate developing more general measures
of similarity among the nodes of a graph and incorporating them in the copying model, and exploring
potential extensions of our theoretical results to more general graphon models.

15

A Description of the datasets

Table 7: Statistics of evaluation datasets for node classification and generative graph models.

Dataset Cora Citeseer Pubmed Coauthor CS Amazon-Photo Bitcoin Polblogs

No. Classes 7 6 3 15 8 2 2
No. Features 1,433 3,703 500 6805 745 166 N/A
No. Nodes 2,485 2110 19,717 18,333 7,487 472 1222
Edge Density 0.04% 0.04% 0.01% 0.01% 0.11% 0.11% 0.56%

Table 8: Statistics of evaluation datasets for the recommender system experiments.

Dataset Threshold # Users # Items # Interactions Density

ML100k 10 897 823 52,857 7.15%
Amazon-CDs 30 5,479 2,605 137,313 0.96%

We conduct experiments on seven datasets. In the citation datasets (Cora [40], Citeseer [40], and
Pubmed [55]), nodes represent research papers and the task is to classify them into topics. The graph
is built by adding an undirected edge when one paper cites another and features are derived from the
keywords of the document. Coauthor CS is a coauthorship graph where each node is an author and
two authors are connected if they have coauthored a paper. The node features represent keywords
from each author’s papers and the node labels are the active area of research of the authors. Amazon-
Photo [41] is a portion of the Amazon co-purchase dataset graph from [56]. In this case nodes are
products, the features are based on the reviews, and the label is the product type. Items often bought
together are linked in the graph. The bitcoin dataset is a transactional network snapshot taken from
the dynamic graphs provided in the Elliptic Bitcoin Dataset [57]. In this dataset, nodes represent
transactions and edges represent a directed bitcoin flow. Each transaction is labeled as being either
fraudulent or legitimate. Polblogs [58] dataset is a political blogs network.

B Details of the generative models used for BGCN

For the node classification experiments comparing different candidate generative models, we use the
following hyperparameters and test settings. All of the choices are inherited from the respective
original papers. For VGAE [5] and GRAPHITE [24], we use a two layer GCN with 32 dimensional
hidden layer and 16 dimensional encoding. The model is trained for 200 epochs with learning rate
0.01. In DGLFRM-B [7], we set α = 50 and K = 100.

The encoder network has two nonlinear GCN layers with dimensions 64 and 100. The decoder
network has two layers with dimension 32 and 16. The model is trained for 1000 epochs with a learning
rate of 0.01 and dropout rate 0.5. All models are trained on 100% of the dataset (no test edges are
held out, because the task of interest is not link prediction). For the MMSBM, we use the same
settings that are reported in [59]: η = 1, α = 1, ρ = 0.001. The mini-batch size for SGD is n = 500
and the hyperparameters related to the decaying step size are ε0 = 1, τ = 1024 and κ = 0.5. For
the NETGAN, we set the stopping parameter EO at 50% using a validation set of 15% of the links.
Due to computation limitations, we used random walks of 10K steps to generate the graphs. The
remaining hyperparameters are set to the values reported in [8]: the generator and the discriminator
are respectively set to 40 and 30 layers. The noise is generated by a 16-dimensional multivariate
Gaussian distribution. We use the Adam optimizer with a learning rate of 0.0003 with λL2 = 10−6.
The length of the random walks is set to 16. For more details, the complete list of hyperparameters
can be found in section H of the supplementary material of [8].

16

C BPR for recommendation

In [51], Rendle et al. introduce Bayesian Personalized Ranking (BPR) framework for recommendation
systems. Following the notations in Section 7, we denote the set of items that are neighbours in the
observed graph for user u as I+u := {i ∈ I : (u, i) ∈ Gobs}. The training set can then be written as
DS := {(u, i, j)|i ∈ I+u ∧ j ∈ I \ I+u } .
In other words, the training set is all triples (u, i, j) such that user u interacted with i but did not
interact with j. The test set, denoted DS comprises all triples (u, i, j) such that neither edge (u, i)
nor (u, j) appears in Gobs. The goal of the recommender system is to generate a total ranking >u of
all items for each user u. The relation i >u j specifies that user u prefers item i to item j.

In the Bayesian personalized ranking framework of [51], our task is to maximize: p (Θ|{>u}DS
) ∝

p ({>u}DS
|Θ) p(Θ) . Here Θ are the parameters of the model, and {>u}DS

are the observed preferences
in the training data. We aim to identify the parameters Θ that maximize this posterior over all users
and all pairs of items. If users are assumed to act independently, then we can write:

p ({>u}DS
|Θ) =

∏
(u,i,j)∈DS

p (i >u j|Θ) (17)

We define the probability that a user prefers item i over j as p (i >u j|Θ) := σ (x̂uij(Θ)) . Here x̂uij
is a function of the model parameters Θ and the observed graph for each triple (u, i, j). In our
case, we use the difference between the dot products of the user and item embeddings, so x̂uij(Θ) =
eu(Θ) · ei(Θ) − eu(Θ) · ej(Θ). If we adopt a normal distribution as the prior for p(Θ) then we can
formulate the optimization objective as:

BPR−OPT := ln p (Θ|{>u}DS
) =

∑
(u,i,j)∈DS

lnσ (x̂uij)− λΘ||Θ||2 (18)

We maximize this via stochastic gradient descent by repeatedly drawing triples (u, i, j) randomly
from the training set and updating the model parameters Θ.

References

[1] A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M. Airoldi, “A survey of statistical network
models,” Found. Trends Mach. Learn., vol. 2, no. 2, p. 129–233, 2010.

[2] R. Albert and A. L. Barabási, “Statistical mechanics of complex networks,” Rev. Modern Physics,
vol. 74, no. 1, p. 47–97, 2002.

[3] P. Erdös and A. Rényi, “On random graphs I,” Publicationes Mathematicae Debrecen, vol. 6, p.
290, 1959.

[4] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed membership stochastic block-
models,” in Proc. Adv. Neural Info. Process. Syst., 2009, pp. 33–40.

[5] T. Kipf and M. Welling, “Variational graph auto-encoders,” in Proc. Bayesian Deep Learning
Workshop, Adv. Neural Info. Process. Syst., 2016.

[6] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proc. ACM
Int. Conf. Knowl. Disc. Data Mining, 2016.

[7] N. Mehta, L. C. Duke, and P. Rai, “Stochastic blockmodels meet graph neural networks,” in
Proc. Int. Conf. Machine Learning, 2019, pp. 4466–4474.

[8] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “NetGAN: Generating graphs via
random walks,” in Proc. Int. Conf. Machine Learning, 2018, pp. 609–618.

17

[9] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, and M. Guo, “GraphGAN:
graph representation learning with generative adversarial nets,” in Proc. AAAI Conf. Artificial
Intell., 2017, pp. 2508–2515.

[10] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra, “Beyond homophily in graph
neural networks: Current limitations and effective designs,” in Proc. Adv. Neural Info. Process.
Syst., 2020, pp. 7793–7804.

[11] S. Pal, F. Regol, and M. Coates, “Bayesian graph convolutional neural networks using node
copying,” in Proc. Learning and Reasoning with Graph-Structured Representations Workshop,
Int. Conf. Machine Learning, 2019.

[12] F. Regol, S. Pal, and M. Coates, “Node copying for protection against graph neural network
topology attacks,” in Proc. IEEE Int. Conf. Comput. Adv. Multi-Sensor Adaptive Process., 2019.

[13] F. Caron and E. B. Fox, “Sparse graphs using exchangeable random measures,” J. Royal Statistical
Society: Series B (Statist. Method.), vol. 79, no. 5, pp. 1295–1366, 2017.

[14] K. Nowicki and T. A. B. Snijders, “Estimation and prediction for stochastic blockstructures,” J.
American Statistical Association, vol. 96, no. 455, pp. 1077–1087, 2001.

[15] L. Peng and L. Carvalho, “Bayesian degree-corrected stochastic blockmodels for community de-
tection,” Electron. J. Statist., vol. 10, no. 2, pp. 2746–2779, 2016.

[16] P. Latouche, E. Birmelé, and C. Ambroise, “Overlapping stochastic block models with application
to the french political blogosphere,” Annals Applied Statist., vol. 5, no. 1, pp. 309 – 336, 2011.

[17] K. T. Miller, T. L. Griffiths, and M. I. Jordan, “Nonparametric latent feature models for link
prediction,” in Proc. Adv. Neural Info. Process. Syst., 2009, pp. 1276–1284.

[18] B. Fosdick, D. Larremore, J. Nishimura, and J. Ugander, “Configuring random graph models
with fixed degree sequences,” SIAM Review, vol. 60, no. 2, pp. 315–355, 2018.

[19] G. Casiraghi, “Analytical formulation of the block-constrained configuration model,” arXiv
preprint: arXiv 1811.05337, 2018.

[20] M. Drobyshevskiy and D. Turdakov, “Random graph modeling: A survey of the concepts,” ACM
Comput. Surv., vol. 52, no. 6, pp. 1–36, 2019.

[21] K. Bringmann, R. Keusch, and J. Lengler, “Geometric inhomogeneous random graphs,” Theoret-
ical Comput. Science, vol. 760, pp. 35–54, 2019.

[22] V. Veitch and D. M. Roy, “The class of random graphs arising from exchangeable random mea-
sures,” arXiv preprint: arXiv 1512.03099, 2015.

[23] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially regularized graph
autoencoder for graph embedding,” in Proc. Int. Joint Conf. on Artificial Intell., 2018, pp. 2609–
2615.

[24] A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative generative modeling of graphs,” in Proc.
Int. Conf. Machine Learning, 2019, pp. 2434–2444.

[25] M. Simonovsky and N. Komodakis, “GraphVAE: Towards generation of small graphs using varia-
tional autoencoders,” in Proc. Int. Conf. Artificial Neural Networks and Machine Learning, 2018,
pp. 412–422.

[26] T. Ma, J. Chen, and C. Xiao, “Constrained generation of semantically valid graphs via regularizing
variational autoencoders,” in Proc. Adv. Neural Info. Process. Syst., 2018, pp. 7113–7124.

18

[27] N. De Cao and T. Kipf, “MolGAN: An implicit generative model for small molecular graphs,”
in Proc. Workshop on Theoretical Foundations and Applications of Deep Generative Models, Int.
Conf. Machine Learning, 2018.

[28] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep generative models of
graphs,” arXiv preprint: arXiv 1803.03324, 2018.

[29] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, “GraphRNN: Generating realistic graphs
with deep auto-regressive models,” in Proc. Int. Conf. Machine Learning, 2018, pp. 5708–5717.

[30] R. Liao, Y. Li, Y. Song, S. Wang, C. Nash, W. Hamilton, D. K. Duvenaud, R. Urtasun, and
R. Zemel, “Efficient graph generation with graph recurrent attention networks,” in Proc. Adv.
Neural Info. Process. Syst., 2019, pp. 4257–4267.

[31] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning laplacian matrix in smooth
graph signal representations,” IEEE Trans. Sig. Proc., vol. 64, no. 23, pp. 6160–6173, 2016.

[32] V. Kalofolias and N. Perraudin, “Large Scale Graph Learning from Smooth Signals,” in Proc.
Int. Conf. Learning Representations, 2019.

[33] Y. Zhang, S. Pal, M. Coates, and D. Üstebay, “Bayesian graph convolutional neural networks for
semi-supervised classification,” in Proc. AAAI Conf. Artificial Intell., 2019, pp. 5829–5836.

[34] J. Ma, W. Tang, J. Zhu, and Q. Mei, “A flexible generative framework for graph-based semi-
supervised learning,” in Proc. Adv. Neural Info. Process. Syst., 2019, pp. 3276–3285.

[35] P. Elinas, E. V. Bonilla, and L. Tiao, “Variational inference for graph convolutional networks in
the absence of graph data and adversarial settings,” in Proc. Adv. Neural Info. Process. Syst.,
2020, pp. 18 648–18 660.

[36] S. Pal, S. Malekmohammadi, F. Regol, Y. Zhang, Y. Xu, and M. Coates, “Non-parametric graph
learning for Bayesian graph neural networks,” in Proc. Conf. Uncertainty Artificial Intell., 2020,
pp. 1318–1327.

[37] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Representing model uncer-
tainty in deep learning,” in Proc. Int. Conf. Machine Learning, 2016, pp. 1050–1059.

[38] A. Hasanzadeh, E. Hajiramezanali, S. Boluki, M. Zhou, N. Duffield, K. Narayanan, and X. Qian,
“Bayesian graph neural networks with adaptive connection sampling,” in Proc. Int. Conf. Machine
Learning, 2020, pp. 4094–4104.

[39] T. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in
Proc. Int. Conf. Learning Representations, 2017.

[40] P. Sen, G. Namata et al., “Collective classification in network data,” AI Magazine, vol. 29, no. 3,
pp. 93–106, 2008.

[41] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph neural network
evaluation,” in Proc. Relational Representation Learning Workshop, Adv. Neural Info. Process.
Syst., 2018.

[42] A. Wijesinghe and Q. Wang, “DFNets: Spectral CNNs for graphs with feedback-looped filters,”
in Proc. Adv. Neural Info. Process. Syst., 2019, pp. 6007–6018.

[43] L. Sun, J. Wang, P. S. Yu, and B. Li, “Adversarial attack and defense on graph data: a survey,”
arXiv preprint: arXiv 1812.10528, 2018.

[44] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention
networks,” in Proc. Int. Conf. Learning Representations, 2018.

19

[45] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan, “Hiding individuals and commu-
nities in a social network,” Nature Human Behaviour, vol. 2, no. 2, pp. 139–147, 2018.

[46] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on neural networks for graph
data,” in Proc. Int. Conf. on Knowledge Discovery & Data Mining, 2018, pp. 2847–2856.

[47] J. Chen, Y. Wu, X. Xu, Y. Chen, H. Zheng, and Q. Xuan, “Fast gradient attack on network
embedding,” arXiv preprint: arXiv 1809.02797, 2018.

[48] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalexakis, “All you need is low rank:
defending against adversarial attacks on graphs,” in Proc. Int. Conf. on Web Search and Data
Mining, 2020, pp. 169–177.

[49] X. Wang, X. He, M. Wang, F. Feng, and T. Chua, “Neural graph collaborative filtering,” in Proc.
Conf. Research and Development in Info. Retrieval, 2019, pp. 165–174.

[50] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph convolu-
tional neural networks for web-scale recommender systems,” in Proc. Int. Conf. on Knowledge
Discovery & Data Mining, 2018, pp. 974–983.

[51] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR: Bayesian personalized
ranking from implicit feedback,” in Proc. Conf. Uncertainty in Artificial Intell., 2009, pp. 452–
461.

[52] J. Sun, Y. Zhang, C. Ma, M. Coates, H. Guo, R. Tang, and X. He, “Multi-graph convolution
collaborative filtering,” in Proc. IEEE Int. Conf. on Data Mining, 2019, pp. 1306–1311.

[53] K. Järvelin and J. Kekäläinen, “IR evaluation methods for retrieving highly relevant documents,”
in Proc. Int. ACM SIGIR Conf. Research and Development in Inf. Retrieval, 2000, pp. 41–48.

[54] K. Sun, P. Koniusz, and J. Wang, “Fisher-Bures adversary graph convolutional networks,” in
Proc. Conf. Uncertainty in Artificial Intell., 2019.

[55] G. Namata, B. London, L. Getoor, and B. Huang, “Query-driven active surveying for collective
classification,” in Proc. Workshop on Mining and Learning with Graphs, Int. Conf. Machine
Learning, 2012.

[56] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, “Image-based recommendations on styles
and substitutes,” in Proc. Int. ACM SIGIR Conf. Research and Development Info. Retrieval,
2015, pp. 43–52.

[57] M. Weber, G. Domeniconi, J. Chen, D. K. I. Weidele, C. Bellei, T. Robinson, and C. E. Leiserson,
“Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for finan-
cial forensics,” in Proc. KDD Deep Learning on Graphs: Methods and Applications workshop,
2018.

[58] L. A. Adamic and N. Glance, “The political blogosphere and the 2004 U.S. election: Divided they
blog,” in Proc. Int. Workshop on Link Discovery, 2005, pp. 36–43.

[59] X. Zhang, C. Moore, and M. Newman, “Random graph models for dynamic networks,” Eur.
Phys. J. B, pp. 90–200, 2017.

20

	1 Introduction
	2 Related work
	3 Node copying model
	4 Analysis and comparison of sampled graphs
	5 Application – Node copying for semi-supervised node classification
	6 Application – Node copying for defense against adversarial attacks
	7 Application – Node copying for recommender systems
	8 Conclusion
	A Description of the datasets
	B Details of the generative models used for BGCN
	C BPR for recommendation

