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Abstract

The optimal power adaptation problem is investigated for vector parameter estimation according

to various Fisher information based optimality criteria. By considering an observation model that

involves a linear transformation of the parameter vector and an additive noise component with an

arbitrary probability distribution, six different optimal power allocation problems are formulated based

on Fisher information based objective functions. Via optimization theoretic approaches, various closed-

form solutions are derived for the proposed problems. Also, the results are extended to cases in which

nuisance parameters exist in the system model or certain types of nonlinear transformations are applied

on the parameter vector. Numerical examples are presented to investigate performance of the proposed

power allocation strategies.
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I. INTRODUCTION

In vector parameter estimation, the aim is to design an optimal estimator for a number

of unknown parameters based on a set of observations. The design of an optimal estimator

commonly involves the calculation of posterior distributions or likelihood functions based on the

statistical relation between the observation and the parameter vector. If the prior distribution of

parameters is known, the Bayesian approach can be adopted and estimators such as the minimum

mean squared error (MMSE) estimator, the minimum mean absolute error (MMAE) estimator,

or the maximum a posteriori probability (MAP) estimator can be derived based on the posterior

distribution, i.e., the probability distribution of the parameter vector given the observation [1]. On

the other hand, in the absence of prior information, parameters can be modeled as a deterministic

unknown vector and estimators such as the minimum variance unbiased estimator (MVUE),

the maximum likelihood (ML) estimator, or the best linear unbiased estimator (BLUE) can be

employed for vector parameter estimation [2].

Performance of the aforementioned estimators depends on system parameters such as noise

variance and transformations acting on the parameter vector, and it is usually challenging to

find exact and closed-form expressions for estimation errors of the corresponding estimators.

Therefore, in order to assess estimation performance, various theoretical bounds such as the

Cramér-Rao lower bound (CRLB), Ziv-Zakai lower bound (ZZLB), and Barankin-type bounds

are used as gold standards [3]. Such bounds are mainly determined by the statistics of the

observation, which depends on system parameters. This means that for a given system model,

estimation performance can be improved only to a certain extent by using an optimal estimator.

In order to realize further improvements in estimation performance, the effects of the system on

the parameter vector should be adapted. One common way of achieving such an improvement

is to perform power adaptation, i.e., transmitting different components of the parameter vector

with different power levels [4]. Since the total available power is usually limited [5], the problem

of power adaptation arises as a constrained optimization problem. In this manuscript, the aim is

to develop optimal power allocation strategies for vector parameter estimation in the absence of

prior information by using Fisher information based optimality criteria [2, Section IV.E.1], [6],

[7, Section 9.2.1], .

Power adaptation and in general resource allocation have been considered for various es-

timation problems in the literature. For example, in wireless sensor networks (WSNs), the
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problem of optimal resource allocation for vector parameter estimation with respect to various

performance metrics is the main focus in many studies. In [8], the optimal transmit power

allocation and quantization rate allocation schemes are investigated to minimize the average

mean squared error (MSE). In [9], the optimal power allocation strategy that minimizes the

ℓ2-norm of the transmit power vector is derived under a maximum variance constraint for the

best linear unbiased estimator. In addition, the optimal codebook is computed via the Lloyd

algorithm when the channel state information (CSI) is limited, which is usually the case for

large WSNs. In [4], estimation of an unknown Gaussian random vector with known mean vector

and covariance matrix is considered in a WSN setting, where the fusion center uses the linear

MMSE (LMMSE) estimator to estimate the parameter vector based on sensor observations,

which are fading channel impaired and noise corrupted versions of the transmitted parameter

vector. An upper bound on the MSE is minimized by first computing the optimal bit allocation

to minimize the MSE distortion. Then, the optimal power allocation strategy is computed to

minimize the channel errors. In [10], optimal power allocation for vector parameter estimation

is investigated with the aim of maximizing the average Bayesian Fisher information between the

random parameter vector and the observation vector. In [11], optimal power allocation schemes

for LMMSE estimation are derived by taking channel estimation errors into account. In [12]–[21],

the optimal power allocation problem is considered for position estimation in wireless localization

and radar systems. In [14], the transmit power allocation problem is formulated as a semidefinite

program by using the squared position error bound as the objective function. In [18], the total

transmit power is minimized by imposing a constraint on the CRLB for target localization in

a distributed multiple-radar system. In addition, the dual problem of CRLB minimization for a

predefined total power budget is considered.

It is noted that theoretical lower bounds for estimation error are commonly used in the literature

to define optimality criteria for developing power adaptation strategies in estimation problems

[10], [12]–[25]. In the absence of prior information, lower bounds generated from the Fisher

information matrix (FIM) are usually adopted due to their practicality. As the most widely

used bound, the CRLB is obtained as the inverse of the FIM and specifies a lower limit on

the covariance matrix of any unbiased estimator with respect to the positive semidefinite cone.

Various scalarizations of the FIM are employed in the literature [18], [23], [25]. In particular,

the log-determinant of the FIM, the maximum (minimum) eigenvalue of the CRLB (FIM), the

maximum diagonal entry of the CRLB, the trace of the FIM, and the minimum diagonal entry
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of the FIM are utilized for quantifying estimation performance from various perspectives such

as estimation robustness and probabilistic confinement of estimator error [7, Section 9.2.1],

[26]–[31]. In this manuscript, the power adaptation problem for vector parameter estimation is

considered according to such Fisher information based optimality criteria and the corresponding

optimal strategies are characterized.

Although there exist a multitude of studies on power allocation for various estimation problems

in the literature, a general investigation of the optimal power allocation problem for vector

parameter estimation according to various Fisher information based criteria is not available to

the best of authors’ knowledge. In particular, we consider a generic additive noise model, where

the observation vector is a linear function of the parameter vector corrupted by additive noise

with an arbitrary probability distribution. Based on this model, we first present the FIM in

terms of the system parameters, including the power allocation parameters. Then, we formulate

optimal power allocation problems according to six different estimation performance criteria

based on the FIM, and derive various closed-form solutions. We also extend our results to cases

in which nuisance parameters exist in the problem or certain types of nonlinear transformations

are applied on the parameter vector. The main contributions and novelty of this manuscript can

be summarized as follows:

• According to various Fisher information based optimality criteria, we propose optimal power

allocation problems for vector parameter estimation by considering a system model, where

the parameter vector is processed by a linear transformation and corrupted by additive noise

with a generic probability distribution.

• Based on optimization theoretic approaches, we provide various closed-form solutions for

the proposed power allocation problems.

• We show that the proposed optimal power allocation strategies are also valid for nonlinear

system models under certain conditions and in the presence of nuisance parameters.

In addition, we provide numerical examples to illustrate the performance of the proposed strate-

gies and compare them with the equal power allocation strategy. It should be noted that providing

closed-form solutions for optimal power allocation is important for real-time applications due to

delay and computational complexity requirements.

The rest of the manuscript is organized as follows: The system model is presented in Section II

and optimal power allocation strategies are derived in Section III. In Section IV, extensions to

nonlinear models and presence of nuisance parameters are considered. Numerical results are
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provided in Section V followed by the concluding remarks in Section VI.

II. SYSTEM MODEL

Consider the following linear1 model relating a vector of unknown deterministic parameters

θ = [θ1, . . . , θk]
T ∈ R

k with their measurements X ∈ R
n:

X = FTPθ +N (1)

In (1), F is a k×n real matrix with full row rank (k ≤ n) that is assumed to be known, N ∈ R
n

is the additive noise vector with a joint probability density function fN(·), which is independent

of θ, and P is a k × k diagonal power allocation matrix (to be optimized) expressed as

P =











√
p1 0

. . .

0
√
pk











(2)

subject to the total power constraint
k
∑

i=1

pi ≤ PΣ (3)

where pi denotes the power allocated to the parameter θi and PΣ denotes the (available) total

power. For the linear model given in (1), the FIM of the measurement vector X with respect to

the parameter vector θ is obtained as [32, Lemma 5].

I(X; θ) = PFI(N)FTP, (4)

where P = PT is employed, and I(N) is a special form of the FIM, namely the FIM of the

random vector N with respect to a translation parameter φ [32, Equation 8], defined as

I(N) = I(φ+N;φ) =

∫

1

fN(n)

(

∂fN(n)

∂n

)(

∂fN(n)

∂n

)T

dn (5)

It is noted that the FIM under translation is a function of only the probability density function

(pdf) of the random vector N, and consequently, I(X; θ) in (4) does not depend on the parameter

vector θ. It is assumed that the noise pdf fN(·) satisfies certain regularity conditions so that the

FIM in (5) exists [33].

In the following, we provide closed-form solutions for optimal power allocation problems by

considering various estimation accuracy criteria based on the FIM in (4).

1Extensions to nonlinear models are presented in Section IV.
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III. OPTIMAL POWER ALLOCATION FOR VECTOR PARAMETER ESTIMATION

A. Average Mean Squared Error Criterion

The inverse of the FIM, known as the Cramer-Rao lower bound (CRLB) provides a lower

bound on the MSE of any unbiased estimator θ̂(X) via the following matrix inequality [2]:

Cov(θ̂(X)) ≥ I−1(X; θ) (6)

where Cov(θ̂(X)) = E[(θ̂(X)− θ)(θ̂(X)− θ)T ] due to the unbiasedness and the expectation is

taken with respect to the pdf of X given θ. Consequently, the lower bound on the average MSE

of the vector parameter can be stated as

E
[

‖θ̂(X)− θ‖2
]

≥ tr{I−1(X; θ)} (7)

Consideration of the lower bound in (7) as a performance metric in optimal design problems is

referred as the A-optimality criterion in the literature [7], [22], [26].

The optimal power allocation problem that minimizes the lower bound on the average MSE

subject to a sum-power constraint can be formulated as

min
{pi}ki=1

tr{I−1(X; θ)}

s.t.

k
∑

i=1

pi ≤ PΣ

pi ≥ 0, i = 1, 2, . . . , k

(8)

For the convenience of notation, two system dependent matrices can be defined as

J , FI(N)FT

A , J−1
(9)

From (4) and (9), the FIM with respect to the parameter vector θ and the corresponding CRLB

are expressed respectively as I(X; θ) = PJP and I−1(X; θ) = P−1AP−1. Then, the objective

function in (8) can be written in terms of the power allocation coefficients and the diagonal

entries of A as

tr{I−1(X; θ)} = tr{P−1AP−1}

= tr{(P−1)2A}

=
k
∑

i=1

aii
pi

(10)
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where aii denotes the ith diagonal entry of A. It is noted that the FIM is assumed to be positive-

definite for the existence of the CRLB. Therefore, A and J in (9) have positive diagonal entries.

As the objective function is convex (see (10)) and the constraints are linear, the problem

in (8) is a convex optimization problem. In addition, Slater’s condition holds [27]. Therefore,

Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for optimality. From (10),

the Lagrangian for (8) is expressed as

L
(

{pi}ki=1, {υi}k+1
i=1

)

=

k
∑

i=1

aii
pi

+ υ1

(

k
∑

i=1

pi − PΣ

)

−
k
∑

i=1

υi+1pi (11)

where υ1, . . . , υk+1 are the dual variables. Then, KKT conditions for optimality are obtained as

follows [27]:

• Primal Feasibility: The optimal power allocation strategy {p∗i }ki=1 must satisfy the con-

straints
∑k

i=1 p
∗
i ≤ PΣ and p∗i ≥ 0, ∀i ∈ {1, . . . , k}.

• Dual Feasibility: The dual variables must be non-negative, i.e., υ∗
i ≥ 0 for i = 1, . . . , k+1.

• Stationarity: The derivatives of the Lagrangian in (11) with respect to pi must be equal to

zero at pi = p∗i for i = 1, . . . , k. That is,

∂L
∂pi

∣

∣

∣

∣

pi=p∗i

= − aii
(p∗i )

2
+ υ∗

1 − υ∗
i+1 = 0 (12)

for i = 1, . . . , k.

• Complementary Slackness: At the optimal solution, the following conditions hold:

υ∗
1

(

k
∑

i=1

p∗i − PΣ

)

= 0 (13)

υ∗
i+1p

∗
i = 0, i = 1, . . . , k (14)

For the condition in (13), the case of υ∗
1 = 0 is not possible since the derivative in (12) could

be set to zero only for p∗i → ∞ in that case (for some positive aii), which would violate the

primal feasibility condition. Therefore, (13) implies that υ∗
1 > 0 and

k
∑

i=1

p∗i = PΣ (15)

That is, full-power utilization is required for optimality2. Then, two cases are investigated

depending on the values of aii’s. Let Az and Ap denote the sets of indices i for which aii’s

2This fact can also be seen by noting that the objective function in (10) is a decreasing function of pi’s.
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are zero and positive, respectively. That is, Az = {i ∈ {1, . . . , k} | aii = 0} and Ap = {i ∈
{1, . . . , k} | aii > 0}.

Case 1: Consider an index i such that i ∈ Az. Suppose that p∗i > 0. Then, (14) implies that

υ∗
i+1 = 0 and the expression in (12) becomes equal to υ∗

1 . However, υ∗
1 > 0 as discussed before,

which leads to a contradiction (i.e., the stationary condition could not be satisfied). Hence, it is

concluded that

p∗i = 0 for i ∈ Az. (16)

Case 2: Consider an index i such that i ∈ Ap. In that case, it can be concluded from (12)–(14)

that p∗i > 0 and υ∗
i+1 = 0 for i ∈ Ap. Then, (12) leads to

p∗i =

√

aii
υ∗
1

for i ∈ Ap (17)

From (15), a relation for υ∗
1 can be obtained as

k
∑

j=1

p∗j =
∑

j∈Ap

p∗j =
∑

j∈Ap

√

ajj
υ∗
1

= PΣ, (18)

which yields
1√
υ∗
1

=
PΣ

∑

j∈Ap

√
ajj

=
PΣ

∑k
j=1

√
ajj

(19)

Based on (16), (17) and (19), the optimal power allocation strategy to minimize the average

MSE in (8) is specified as follows:

p∗i =
PΣ

√
aii

∑k
j=1

√
ajj

, i = 1, . . . , k (20)

Hence, a closed-form solution to the problem in (8) is obtained.

B. Shannon Information Criterion

An alternative criterion for estimation accuracy is to maximize the log-determinant of the

FIM, i.e.,

IS(X; θ) = log det I(X; θ) (21)

which is associated with the volume of the confidence ellipsoid containing the estimation error

[27, Section 7.5.2]. This criterion is known as the Shannon information criterion, and also the

D-optimal design in the literature [22], [26], [28], [29].
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The optimal power allocation problem with the objective of maximizing the Shannon infor-

mation under the sum-power constraint can be expressed as

max
{pi}ki=1

log det I(X; θ)

s.t.
k
∑

i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(22)

The problem in (22) involves the maximization of a concave function, and the feasible region

has an interior point; hence, Slater’s condition is satisfied. Consequently, KKT conditions are

necessary and sufficient for optimality. In order to find the optimal solution, the Shannon

information can be expressed in terms of the known matrices. From (4) and (9), the Shannon

information can be written as

log det I(X; θ) = log detPJP

= 2 log detP+ log detJ

=
k
∑

i=1

log pi + log detJ

(23)

As seen in (23), the Shannon information separates into a power allocation dependent component

and a system dependent component, the latter being constant for a fixed F and I(N). Therefore,

it suffices to consider
∑k

i=1 log pi in order to maximize the Shannon information. Therefore, the

problem in (22) reduces to

max
{pi}ki=1

k
∑

i=1

log pi

s.t.
k
∑

i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(24)

which is a convex optimization problem. This problem is equivalent to maximizing the product

of nonnegative numbers whose sum is constant. Hence, its solution can be obtained as

p∗i =
PΣ

k
, i = 1, . . . , k (25)



10

That is, the optimal power allocation strategy according to the Shannon information criterion

is to allocate equal power to all the parameters at the sum-power limit. Corresponding to the

optimal strategy, the maximum Shannon information is achieved as

I∗S(X; θ) = k log

(

PΣ

k

)

+ log detJ . (26)

C. Worst-Case Error Variance Criterion

The worst-case error variance criterion is a measure of robustness rather than average es-

timation accuracy and is associated with the maximum eigenvalue of the CRLB [27], [30].

In order to reduce the worst-case error variance, the maximum eigenvalue of the CRLB can

be minimized. Optimality according to this criterion is also known as E-optimality, where the

minimum diameter of the FIM is maximized [22], [26], [31]. When variances vary significantly,

the confidence ellipsoid can have very different diameters along different dimensions; hence, the

log-volume minimization approach in the D-optimal design can be misleading [26], [31].

The optimal power allocation strategy that minimizes the maximum eigenvalue of the CRLB

corresponds to maximizing the minimum eigenvalue of the FIM. Hence, the following problem

can be considered:

max
{pi}ki=1

λmin{I(X; θ)}

s.t.

k
∑

i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(27)

From (4) and (9), I(X; θ) in (27) can be expressed as I(X; θ) = PJP, where J is positive

semi-definite and P is diagonal (see (2)). It can be shown that the eigenvalues of PJP are the

same as those of P2J based on their characteristic equations. However in general, there is not

a closed-form relationship between the eigenvalues of P2 and J and the eigenvalues of their

product. Therefore, it is challenging to obtain a closed-form solution to (27). One way to solve

(27) is to apply global optimization tools such as particle swarm optimization (PSO) or the

multistart algorithm [34]. This approach is adopted in Section V to obtain the solution of (27).

To perform further investigations on the problem in (27), we can derive a bound on the

objective function in (27). To that aim, the following lemma can be utilized to provide bounds

for the eigenvalues of the FIM, I(X; θ).
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Lemma 1: Let G,T ∈ R
n×n, GT = G, TT = T, rank(G) = rank(T) = n and R = GT. Let

{νi}ni=1, {µi}ni=1 and {γi}ni=1 denote, respectively, the eigenvalues of G, T and R increasing in

the absolute value. Then,

|ν1||µ1| ≤ |γ1| ≤ · · · ≤ |γn| ≤ |νn||µn| (28)

Proof. For the Euclidean matrix norm, it is known that ‖GT‖≤ ‖G‖‖T‖. In addition, the norm

of a symmetric matrix is equal to its spectral radius, i.e., ‖G‖= maxj |νj | and ‖T‖= maxj |µj|.
Therefore, ‖R‖= ‖GT‖≤ ‖G‖‖T‖= |νn||µn|. Since R is the product of two symmetric

matrices, it is also symmetric. Therefore, ‖R‖= |γn|. Hence, the upper bound on the absolute

value of the maximum eigenvalue of R is obtained as |γn| ≤ |νn||µn|. Since rank(G) =

rank(T) = n, the lower bound can be derived via inversion; that is, R−1 = T−1G−1. Therefore,

‖R−1‖= ‖T−1G−1‖≤ 1
|ν1||µ1|

. Through the same reasoning, ‖R−1‖= 1
|γ1|

. Hence, the relation of

1
|γ1|

≤ 1
|ν1||µ1|

is obtained, which yields the lower bound in (28).

Lemma 1 can be used to derive a lower bound on the objective function in (27) as follows:

λmin{I(X; θ)} = λmin{P2J} ≥ λmin{J} min
i∈{1,...,k}

pi (29)

where λmin{J} denotes the minimum eigenvalue of J. In (29), the absolute value operators in

(28) are not used since all the eigenvalues are non-negative and the eigenvalues of P2 are taken

as {p1, . . . , pk} based on (2).

Instead of maximizing the minimum eigenvalue of I(X; θ) in (27), consider the maximization

of the lower bound on it. As noted from (29), the lower bound on the minimum eigenvalue of

I(X; θ) depends on the minimum power allocated to an individual parameter. Therefore, instead

of (27), we get the following convex optimization problem:

max
{pi}ki=1

min
j∈{1,...,k}

pj

s.t.
k
∑

i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(30)

The problem in (30) is a minimax problem over a scaled k-simplex. Therefore, its solution is

an equalizer rule [2], leading to p∗1 = p∗2 = · · · = p∗k with
∑k

i=1 p
∗
i = PΣ. Hence, the solution

of (30) is given by p∗i = PΣ/k for i = 1, . . . , k; that is, the optimal power allocation strategy

to maximize (minimize) the lower (upper) bound on the minimum (maximum) eigenvalue of



12

the FIM (CRLB) is the equal power allocation strategy. Consequently, the lower bound on the

minimum eigenvalue of I(X; θ) becomes λmin{J}PΣ/k.

Remark 1: The preceding analysis indicates that the equal power allocation strategy solves the

problem of maximizing a lower bound on the objective function in (27). Hence, it does not

necessarily yield the optimal power allocation strategy. (The numerical example in Section V-C

illustrates this fact.)

D. Worst-Case Coordinate Error Variance Criterion

As an alternative measure of robustness, one can consider the worst-case coordinate error vari-

ance, which is bounded by the largest diagonal entry of the CRLB; i.e., maxj∈{1,...,k} [I
−1(X; θ)]j,j .

This criterion is referred as G-optimality [7], [26], and it has the effect of reducing the worst-case

error variance as well.

From (10), the jth diagonal entry of the CRLB can be expressed as

[I−1(X; θ)]j,j =
ajj
pj

(31)

Therefore, the problem of minimizing the maximum diagonal entry of the CRLB can be formu-

lated as

min
{pi}ki=1

max
j∈{1,...,k}

ajj
pj

s.t.

k
∑

i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(32)

The problem in (32) is a convex optimization problem, it can be shown that the solution of (32)

satisfies
∑k

i=1 p
∗
i = PΣ and

aii
p∗i

= α, ∀i ∈ {1, . . . , k} (33)

where α is a constant (i.e., an equalizer solution [35]). Then, parameter α in (33) obtained from

k
∑

i=1

p∗i =
1

α

k
∑

i=1

aii = PΣ (34)

which yields

α =
tr{A}
PΣ

· (35)

Hence, the optimal power allocation strategy is given by

p∗i =
PΣ aii
tr{A} , i = 1, . . . , k (36)
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When the optimal power allocation strategy is employed, the diagonal entries of the CRLB are

the same, and the worst-case coordinate error variance becomes α = tr{A}/PΣ.

E. Average Fisher Information Criterion

When the aim is to estimate a vector of parameters, the average Fisher information indicates the

overall usefulness of the observation vector to estimate the parameter vector. The informativeness

of the observation vector to estimate the ith parameter corresponds to the ith diagonal entry of the

FIM. Therefore, the average Fisher information is related to the trace of the FIM. Accordingly,

the optimal power allocation problem for maximizing the trace of the FIM is formulated as

follows:

max
{pi}ki=1

tr{I(X; θ)}

s.t.
k
∑

i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(37)

From (4) and (9), the objective function in (37) can be rewritten in terms of the known matrices

as

tr{I(X; θ)} = tr{PJP} =

k
∑

i=1

pi jii (38)

where jii , [J]i,i. Based on (38), the problem in (37) can be converted to a linear program (LP)

by defining

p , diag(PPT ) = [p1 . . . pk]
T (39)

j , diag(J) = [j11 . . . jkk]
T , (40)

and expressing (37) as

max
p

jTp

s.t. 1Tp ≤ PΣ

p ≥ 0

(41)

The solution of (41) is provided in the following proposition.
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Proposition 1: Let i∗ denote the index of the maximum element of j in (40); i.e., i∗ = argmaxl∈{1,...,k} jll.

Then, the optimal power allocation strategy that maximizes the average Fisher information under

the sum-power constraint is given by p∗ = [p∗1 · · ·p∗k]T , where

p∗i =











PΣ, i = i∗

0, otherwise
(42)

for i = 1, . . . , k. (In case of multiple maxima, the indices of any non-empty subset can be

selected.)

Proposition 1 states that in order to maximize the average FI, the whole power must be

allocated to the parameter corresponding to the maximum diagonal entry of J. When the optimal

power adaptation strategy is used, the average Fisher information achieves a maximum value of

PΣ maxi jii.

F. Worst-Case Coordinate Fisher Information Criterion

Depending on the system properties, the observation vector can be more informative about

some parameters and less informative about the others. Consequently, the estimation performance

of individual parameters can vary to some extent. Such variations can be undesirable as certain

performance requirements should be satisfied for estimation of all parameters. To alleviate this

effect, one approach is to maximize the minimum Fisher information contained the observation

vector w.r.t. individual parameters. Such an optimization increases the robustness of estimation

against accuracy variations.

The minimum Fisher information contained in the observation vector w.r.t. individual pa-

rameters is called the worst-case coordinate FI, which corresponds to the minimum diagonal

entry of the FIM, that is, mini∈{1,...,k} [I(X; θ)]i,i. Based on this objective function, the following

maximization problem is defined under the sum-power constraint:

max
{pi}ki=1

min
i∈{1,...,k}

[I(X; θ)]i,i

s.t.
k
∑

i=1

pi ≤ PΣ

pi ≥ 0, i = 1, . . . , k

(43)

Based on (38), the objective function in (43) can be written as

min
i

[I(X; θ)]i,i = min
i

pi jii (44)
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Then, (43) is observed to have a very similar form to the problem in (30). Hence, the same steps

can be followed and it can be shown that the solution of (43) satisfies
∑k

i=1 p
∗
i = PΣ and

p∗i jii = α̃, ∀i ∈ {1, . . . , k} (45)

where α̃ is a constant that is specified by

k
∑

i=1

p∗i =

k
∑

i=1

α̃

jii
= PΣ (46)

From (46), α̃ is obtained as

α̃ =
PΣ

∑k
i=1

1
jii

. (47)

Therefore, the optimal power allocation strategy becomes

p∗i =
PΣ

jii
∑k

l=1
1
jll

, i = 1, . . . , k (48)

When the optimal power allocation strategy is used, the worst case Fisher information achieves

a maximum value of PΣ

/
∑k

l=1
1
jll

. It is noted that the optimal power allocation strategy in (48)

equalizes the Fisher information contained in X w.r.t. the ith element of θ for all i ∈ {1, . . . , k};

that is, p∗i jii = PΣ

/
∑k

l=1
1
jll

for all i ∈ {1, . . . , k}.

IV. EXTENSIONS

A. Presence of Nuisance Parameters

In some vector parameter estimation scenarios, only a subset of parameters can be of interest

for estimation purposes. Let only r out of the k parameters be relevant and the remaining k− r

parameters be nuisance parameters. We assume that the nuisance parameters must be transmitted

with unit power and power adaptation is not available for them. Without loss of generality, we

can arrange the vector of parameters to be transmitted as

θ =





θγ

θσ



 (49)

where θγ ∈ R
r denotes the vector of relevant parameters, and θσ ∈ R

k−r represents the vector

of nuisance parameters. Then, the power allocation matrix becomes

P =





Pγ 0

0 Ik−r



 (50)
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where Ik−r denotes the (k− r)× (k− r) identity matrix. Under the same system model, matrix

J defined in (9) can be expressed as

J =





Jγ B

BT Jσ



 (51)

where Jγ ∈ R
r×r and Jσ ∈ R

(k−r)×(k−r) are the components of J corresponding to the parameters

of interest and the nuisance parameters, respectively, and matrix B ∈ R
r×(k−r) and its transpose

are the cross-terms. Similarly, matrix A in (9), i.e., A , J−1, can also be arranged as

A =





Aγ C

CT Aσ



 (52)

where C ∈ R
r×(k−r) and its transpose are the cross-terms. Based on (50), (51), and (52), the

FIM and the CRLB can be expressed as

I(X; θ) = PJP =





PγJγPγ PγB

BTPγ Jσ



 (53)

I−1(X; θ) = P−1AP−1 =





P−1
γ AγP

−1
γ P−1

γ C

CTP−1
γ Aσ



 (54)

The related terms of the FIM and the CRLB are the ones involving only the parameters of

interest. In this setting, only the first r rows and the first r columns are taken into account; that

is,

Iγ(X; θ) = PγJγPγ (55)

I−1
γ (X; θ) = P−1

γ AγP
−1
γ (56)

where Aγ = (Jγ − BJ−1
σ BT )−1 [36]. As seen from above, the power allocation strategies

developed in Section III (which are developed in the absence of nuisance parameters) can also

be used in this case.

B. Extension to Nonlinear Model

In some practical applications, the linear system model in (1) may not be valid, and the

parameter vector, after power adaptation, can be processed by a nonlinear transformation f(·) as

follows:

X = f(Pθ) +N (57)
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In this case, the FIM w.r.t. parameter θ can be expressed in the same form as (4) after replacing F

with the Jacobian of the vector valued function f(·) [32, Lemma 4]. More explicitly, let φ , Pθ

in (57), and the Jacobian of f(φ) w.r.t. its argument φ is given as

F ,















∂f1
∂φ1

∂f2
∂φ1

. . . ∂fn
∂φ1

∂f1
∂φ2

∂f2
∂φ2

. . . ∂fn
∂φ2

...
...

. . .
...

∂f1
∂φk

∂f2
∂φk

. . . ∂fn
∂φk















(58)

If f(·) is continuously differentiable w.r.t. φ and F in (58) does not depend on pi’s for i =

1, . . . , k, F in (58) can be substituted into (4), and the developed techniques can be employed

without further modification for power adaptation in the presence of a nonlinear system model,

as well. If F depends on pi’s, (58) is still valid; however, the objective functions should

be modified accordingly, leading to possibly nonconvex optimization problems. In that case,

numerical methods can be employed. On the other hand, if f(·) is not continuously differentiable

w.r.t. φ, further analysis is required and new techniques should be developed.

V. NUMERICAL RESULTS

In this section, we provide numerical examples for the optimal power allocation strategies in

Section III. In all cases, the equal power allocation strategy is also implemented for comparison

purposes. The noise is modeled as a zero-mean Gaussian random vector with independent

components; that is, N ∼ N (0,Σ), where Σ = Diag(σ2
1 , . . . , σ

2
n). For this noise model, the

FIM of N in (5) is obtained as

I(N) = Σ−1 = Diag
(

1/σ2
1, . . . , 1/σ

2
n

)

(59)

In the simulations, σ2
i ’s are set to σ2

i = 10−7+3(i−1)/(n−1) for i = 1, . . . , n. The dimension of the

parameter vector, k, is varied between 2 and 30, and the dimension of the observation vector,

n, is taken to be equal to the number of parameters, i.e., k = n. Also, for matrix F in (1),

two different scenarios are considered. In the first scenario, F = F1, where F1 is the k × k

identity matrix (k = n), that is, F1 = Ik×k. In this scenario, we can observe the effects of power

adaptation on the estimation performance when the main source of error is additive noise. In

the second scenario, F = F2, which is specified as

F2 = Ik×k + κVT (60)
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with

κ =
‖Ik×k‖F
‖V‖F

V =





















1 1 1 . . . 1

1 1 + ǫ (1 + ǫ)2 . . . (1 + ǫ)k−1

1 1 + 2ǫ (1 + 2ǫ)2 . . . (1 + 2ǫ)k−1

...
...

...
...

1 1.5 1.52 . . . 1.5k−1





















ǫ =
0.5

k − 1

(61)

That is, F2 is the sum of the k × k identity matrix and the transpose of a normalized k × k

Vandermonde matrix, where the normalization factor κ makes sure that the Frobenius norms of

the added matrices are equal. In this scenario, the entries of the system matrix F differ from each

other significantly, which implies that the system affects the individual parameters differently.

In the following, the optimal power allocation strategies are obtained according to the Fisher

information based criteria in Section III for the considered simulation setup, and the performance

metrics are plotted against the dimension of the parameter vector, k, under a unit sum-power

constraint, that is, PΣ = 0 dB.

A. Results for Average MSE Criterion

In this case, the problem in (8) is considered, and the CRLBs achieved by the optimal power

allocation strategy in (20) and by the equal power allocation strategy (i.e., p∗i = PΣ/k, i =

1, . . . , k) are plotted versus k in Fig. 1. It is noted that as the dimension of the parameter

vector increases, the CRLB on the average MSE increases for both optimal and equal power

allocation strategies except for the slight initial decrease in the optimal strategy for F = F2. It

is also observed that the optimal power allocation strategy consistently outperforms the equal

power allocation strategy for both system matrices. As an example, for F = F2, the CRLB is

around 10−4 when k = n = 7 for the equal power allocation strategy, and the same level of

CRLB is attained when k = n = 14 for the optimal power allocation strategy. Hence, significant

improvements can be achieved by the optimal power allocation strategy.

B. Results for Shannon Information Criterion

For this criterion, the problem in (22) (equivalently, (24)) is considered, which leads to the

solution in (25). That is, the optimal and equal power allocation strategies yield the same solution
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Fig. 1. CRLB on the average MSE versus k for the equal and optimal power allocation strategies.

in this case. The Shannon information achieved by the optimal (equal) power allocation strategy

is plotted versus k in Fig. 2. It is observed that the Shannon information increases as the

dimension of the parameter vector, k, increases. The increase in Shannon information is linear

for both system matrices, and the achieved Shannon information scores are nearly the same for

F = F1 and F = F2.

C. Results for Worst-Case Error Variance Criterion

In this case, the problem in (27) and the alternative problem in (30) are solved. The solution of

(27) is obtained via the multistart global optimization algorithm in MATLAB. On the other hand,

the equal power allocation strategy is the solution of (30), as shown in Section III-C. In Fig. 3,

the maximum eigenvalues of the CRLBs achieved by the optimal and equal power allocation

strategies are plotted versus k. It can be seen in Fig. 3 that the optimal power allocation strategy

can significantly outperform the equal power allocation strategy, and the difference between the

two power allocation strategies increases as the number of parameters increases. One implication

of this result is that power adaptation can get more effective when there exist more parameters
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Fig. 2. Shannon information versus k for the optimal (equal) power allocation strategy.

to estimate. In addition, it is noted that maximizing the lower bound on the eigenvalues of the

CRLB is not sufficient to obtain the optimal power allocation strategy, as stated in Remark 1.

D. Results for Worst-Case Coordinate Error Variance Criterion

For this criterion, the problem in (32) is considered, which leads to the optimal solution in

(36). The largest diagonal entry of the CRLB is plotted versus k for both the optimal solution

and the equal power allocation strategy in Fig. 4. It is noted that the trend is similar to that

in Fig. 3. Namely, the benefits of optimal power adaptation are observed for the worst-case

coordinate error variance criterion, as well.

E. Results for Average Fisher Information Criterion

In this case, we focus on the problem in (37), the solution of which is provided by (42) in

Proposition 1. The impact of the dimension of the parameter vector, k, on the average Fisher

information is shown in Fig. 5 for both the optimal solution in (42) and the equal power allocation

strategy. It is observed that the average Fisher information rapidly decreases with k when k ≤ 10

for both the optimal and equal power allocation strategies. While the optimal power allocation
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Fig. 3. Maximum eigenvalue of the CRLB (inverse FIM) versus k for the optimal and equal power allocation strategies.
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Fig. 4. The largest diagonal entry of the CRLB (worst-case coordinate CRLB) versus k for the optimal and equal power

allocation strategies.
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Fig. 5. Average Fisher information versus k for the optimal and equal power allocation strategies.

strategy is superior to the equal power allocation for all values of k, significant enhancements

are observed for large values of k.

F. Results for Worst Case Coordinate Fisher Information

In this scenario, the minimum diagonal entry of the FIM is maximized as in (43), leading to

the optimal power allocation strategy in (48). The minimum diagonal entry of the FIM is plotted

versus k for both the optimal and equal power allocation strategies in Fig. 6. When F = F2,

the worst-case coordinate Fisher information rapidly decreases for small k, while the trend is

more steady when F = F1. The decrease in worst-case Fisher information slows down for large

values of k. Overall, the impact of power adaptation can be observed more clearly when k is

large.

It is noted from the simulation results that when the dimensions of the parameter and observa-

tion vectors are large, power adaptation becomes more critical and the optimal power allocation

strategies can provide more significant improvements over the equal power allocation strategy.

In addition, the trends show that power adaptation can mitigate the adverse effects of increases
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Fig. 6. The minimum diagonal entry of the FIM (worst-case coordinate Fisher information) versus k for the optimal and equal

power allocation strategies.

in the dimension of the parameter vector when the observation vector has the same dimension

as the parameter vector.

VI. CONCLUSION

The optimal power allocation problem has been investigated for vector parameter estimation

in the absence of prior information according to various Fisher information based optimality

criteria. After deriving the FIM for a linear observation model, six different optimal power

allocation problems have been formulated. Then, some closed-form solutions have been provided

based on optimization theoretic approaches. It has been shown that the proposed power allocation

strategies are also valid for nonlinear system models under certain conditions and in the presence

of nuisance parameters. Numerical examples have shown that the use of the optimal power

allocation strategies can provide significant improvements in estimation performance over the

equal power allocation strategy.
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