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Joint RFI Mitigation and Radar Echo Recovery for
One-Bit UWB Radar
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Abstract—Radio frequency interference (RFI) mitigation and
radar echo recovery are critically important for the proper
functioning of ultra-wideband (UWB) radar systems using one-
bit sampling techniques. We recently introduced a technique for
one-bit UWB radar, which first uses a majorization-minimization
method for RFI parameter estimation followed by a sparse
method for radar echo recovery. However, this technique suffers
from high computational complexity due to the need to estimate
the parameters of each RFI source separately and iteratively.
In this paper, we present a computationally efficient joint RFI
mitigation and radar echo recovery framework to greatly reduce
the computational cost. Specifically, we exploit the sparsity of RFI
in the fast-frequency domain and the sparsity of radar echoes in
the fast-time domain to design a one-bit weighted SPICE (SParse
Iterative Covariance-based Estimation) based framework for the
joint RFI mitigation and radar echo recovery of one-bit UWB
radar. Both simulated and experimental results are presented to
show that the proposed one-bit weighted SPICE framework can
not only reduce the computational cost but also outperform the
existing approach for decoupled RFI mitigation and radar echo
recovery of one-bit UWB radar.

Index Terms—Signed measurements, one-bit sampling, slow-
time-varying threshold, one-bit UWB radar, RFI mitigation,
sparse radar echo recovery, one-bit weighted SPICE

I. INTRODUCTION

ULTRA-wideband (UWB) radar systems have a wide
range of applications including, for example, landmine

and unexploded ordinance (UXO) detection using ground
penetrating radar (GPR) [1], hidden object imaging via fo-
liage penetrating radar (FOPEN) radar [2], as well as human
detection [3] and non-contact human vital sign monitoring
[4]. However, due to the large bandwidth, an analog-to-digital
converter (ADC) with a high-sampling rate is necessary at the
UWB radar receiver. For example, for an impulse UWB radar
system with a bandwidth larger than 10 GHz, the sampling rate
of the ADC should be larger than 20 GHz. However, a radar
system using such an ADC, especially with a high quantization
precision, may be too expensive to be commercially viable.
Even if a high-speed ADC with high-resolution quantization
was available, it would greatly increase the cost and power
consumption of the UWB radar system. To solve this problem,
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an ADC with low-resolution quantization can be attractive due
to its low cost and low power consumption advantages, as well
as its potential to achieve ultra-high sampling rates [5], [6].
For instance, the NVA6100 impulse radar system, a single-chip
UWB radar from Novelda, utilizes the so-called Continuous
Time Binary Value (CTBV) technique to achieve a very high
sampling rate of 39 GHz and a 13-bit quantization precision
[7], [8]. CTBV is an efficient one-bit sampling strategy, an
extreme form of low-bit resolution sampling, which obtains
its signed measurements via comparing the received signal to
a known threshold. The threshold varies linearly with slow-
time, i.e., from one pulse repetition interval (PRI) to another.
High-precision data samples can then be obtained from the
signed measurements (i.e., one-bit fast-time samples for each
PRI) via a simple digital integration (DI) method [8] under
the assumption that the targets are stationary during the short
time interval of the sample collection process. Leveraging
the CTBV technology, the NVA6100 system employs simple
circuitry and has low power consumption. NVA6100 can be
used for diverse applications, including vital sign monitoring
[4], through-wall imaging and object tracking [7]. We refer
to the CTBV-based UWB radar system as the one-bit UWB
radar in this paper.

One of the most significant problems of a UWB radar
system is the presence of strong radio frequency interferences
(RFIs) caused by many competing users within the ultra-wide
frequency band of the radar. Typical RFI sources include FM
radio transmitters, TV broadcast transmitters, cellular phones,
and other radiation devices whose operating frequencies tend
to overlap with those of the UWB radar systems [9]. These RFI
sources pose a significant hindrance to the proper operations
of the UWB radar systems in terms of reduced signal-to-noise
ratio (SNR) and degraded radar imaging quality.

RFI mitigation is a notoriously challenging problem since
it is difficult to predict and model RFI signals accurately due
to their dynamic range and diverse modulation schemes. We
have recently developed a technique for one-bit UWB radar,
which first estimates the RFI parameters [10], [11], using
1bMMRELAX-1bBIC algorithm [12] and then uses a sparse
method for echo recovery. However, this technique suffers
from high computational complexity due to the need of using
1bMMRELAX-1bBIC to estimate the parameters of each RFI
source separately and iteratively.

In this paper, we present a computationally efficient joint
RFI mitigation and radar echo recovery framework for one-bit
UWB radar systems. The echo signals of an impulse UWB
radar are commonly sparse in the fast-time domain due to
the sparsity of strong targets present in the scene of interest.
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Similarly, the RFI sources also tend to be sparse but in the
fast-frequency domain (see, e.g., Figure 1). We exploit these
properties and introduce a one-bit weighted SPICE framework
to jointly mitigate the RFI and recover the radar echoes
from signed measurements. Inspired by the original weighted
SPICE framework devised for high-precision data sets [13], a
weighted SPICE technique was presented in [14] for target
parameter estimation for one-bit automotive radar systems.
However, this method was designed for single-PRI data con-
taining only radar echoes contaminated by noise. The method
in [14] cannot be directly applied to our problem, i.e., radar
echo recovery from multiple-PRI data sets containing severe
RFI and noise. Our main contributions can be summarized as
follows:
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Fig. 1: Example of fast-time RFI spectrum vs. slow-time index,
for the RFI-only data measured by an experimental ARL UWB
radar receiver.

1) We establish a proper data model for the signed mea-
surements obtained by the one-bit UWB radar systems.

2) We jointly exploit the sparsity of radar echoes in the
fast-time domain and the sparsity of the RFI sources in the
fast-frequency domain.

3) We introduce a one-bit weighted SPICE based framework
to jointly mitigate the RFI sources and recover the radar
echoes from the signed measurements of the one-bit UWB
radar systems. The one-bit weighted SPICE framework in
[14] is modified herein to deal with multiple-PRI data sets
and with UWB radar echoes contaminated by severe RFI
and noise. The proposed computationally efficient joint RFI
mitigation and radar echo recovery methodology reduces the
computational cost of the existing technique in [10], [11] while
providing improved performance of RFI mitigation and radar
echo recovery.

4) Both simulated and measured RFI data sets are used
in this paper to demonstrate the effectiveness of the one-bit
weighted SPICE based framework for joint RFI mitigation and
radar echo recovery. The impact of various weighting choices
on the performance of the one-bit weighted SPICE is also
discussed herein.

The rest of this paper is organized as follows. In Section
II, we formulate the RFI mitigation and radar echo recovery
problem for a one-bit UWB radar system using the CTBV
sampling technique. Next in Section III, we briefly review

the weighted SPICE framework for high-precision measure-
ments. In Section IV, we present the one-bit weighted SPICE
framework for joint RFI mitigation and radar echo recovery
for one-bit UWB radar. Finally, in Section V, we provide
both simulated and experimental examples to demonstrate the
improved performance and reduced computational cost of the
proposed one-bit weighted SPICE framework.

Notation: We denote vectors and matrices by boldface
lower-case and upper-case letters, respectively. (·)T and (·)H
denote the transpose and conjugate transpose operations, re-
spectively. xn,: and x:,m denote the n-th row and m-th
column of matrix X , respectively. xn,m denotes the (n,m)-th
element of the matrix X , and xn denotes the n-th element
of the vector x. For a matrix or a vector, ‖·‖p denotes

the `p norm, i.e., ‖X‖p =
(∑M

m=1

∑N
n=1 |xn,m|p

)1/p

or

‖x‖p =
(∑N

n=1 |xn|p
)1/p

. 1N = [1, . . . , 1]T ∈ RN×1 and
IN denotes the N×N identity matrix. � denotes the element-
wise product of matrices or vectors. The acronyms used in this
paper are summarized in Table I:

Acronyms Complete Name
ADC Analog-to-Digital Converter
UWB Ultra-WideBand
CPI Coherent Processing Interval
PRI Pulse Repetition Interval
CTBV Continuous Time Binary Value
RFI Radio Frequency Interference
SPICE SParse Iterative Covariance-based Estimation
LIKES LIKelihood-based Estimation of Sparse parameters
IAA Iterative Adaptive Approach
MM Majorization-Minimization
DI Digital Integration
ARL Army Research Laboratory
BIC Bayesian Information Criterion
SINR Signal-to-Interference-plus-Noise Ratio
FFT Fast Fourier Transform
RELAX RELAXation method

TABLE I: Acronyms used in this paper

II. PROBLEM FORMULATION

A. One-Bit UWB Radar System

We consider a recently-developed impulse UWB radar on
a single chip, namely the NVA6100 system [7]. By using
the CTBV sampling technique, it can achieve an ultra-high
sampling rate of 39 GHz and a 13-bit quantization precision
with rather simple hardware [7], making it a low cost and
low power system. The radar transmits a super narrow pulse
repeatedly, and at the receiver uses one-bit ADCs to obtain
signed measurements. More specifically, each one-bit ADC
compares the received signal with a known threshold varying
with slow-time. The threshold varies linearly over different
PRIs within the CPI, and each one-bit ADC records whether
the data samples are larger or smaller than the threshold.
Thus, in the absence of RFI and other disturbances, the signed
measurement matrix obtained by NVA6100 can be expressed
as follows:

Z = sign(S −H) ∈ RN×M , (1)
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where N and M denote the number of fast-time samples per
PRI and the number of PRIs or slow-time samples within the
CPI, respectively, S denotes the radar echo signal and H
denotes the known threshold matrix. Since the threshold varies
linearly with slow-time, each column of the matrix H can be
expressed as hm = [−hmax+2(m−1)hmax/(M−1)]1N ,m =
1, . . . ,M . In (1), sign(·) is the element-wise sign operator
defined as:

sign(x) =

{
1, x ≥ 0,

−1, x < 0.
(2)

Due to the ultra-high sampling rate, the time interval of the
CTBV sampling process is also extremely short and it can
be assumed that the slow-time samples of the radar echo will
be nearly the same in such a short time interval, i.e., s:,1 =
s:,2 = · · · = s:,M = s. Then the simple digital integration
(DI) method [8] can be used to recover the radar echo from
the signed measurement matrix Z. The output of the one-
bit system using the DI method, ŝDI, can be written in the
following form:

ŝDI
n =

[
∆h

M∑
m=1

1

2
(zn,m + 1)

]
− hmax −∆h, (3)

∆h = 2hmax/(M − 1), n = 1, . . . , N.

The structure of the NVA6100 receiver and an illustration of
the DI method are shown in Figure 2. More details about
NVA6100, the CTBV sampling technique and the DI method
can be found in [7], [8]. The DI method cannot provide a
satisfactory performance when the RFI is strong since DI treats
RFI as noise and does not exploit its structure of RFI. Since
strong RFI sources exist in practical applications, an effective
RFI mitigation technique is needed for the proper operation of
one-bit UWB radar systems. An existing RFI mitigation tech-
nique for the one-bit UWB radar system, introduced in [10],
[11], is to first use the 1bMMRELAX-1bBIC algorithm [12] to
estimate the RFI parameters and then employ a sparse method
for echo recovery. However, this method suffers from high
computational complexity since the 1bMMRELAX algorithm
that estimates the parameters of the RFI sources requires many
iterations. Also, this technique performs the RFI parameter
estimation and radar echo recovery separately, which can limit
its effectiveness for RFI mitigation and accurate echo recovery.

B. Data Model
For the NVA6100 one-bit UWB radar system, the received

data matrix in the presence of RFI and other disturbances can
be written as follows:

Z = sign(Y −H)

= sign(F + S +E −H) ∈ RN×M , (4)

where Y is the high-precision data matrix, F denotes the RFI
matrix and E denotes noise and other disturbances. In (4),
S denotes the radar echo signal, which as already stated is
assumed to be invariant over the PRIs, i.e., s:,1 = s:,2 =
· · · = s:,M = s. Our goal is to recover the radar echo s from
the signed measurement matrix Z while mitigating the impact
of the strong RFI and other disturbances.
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Fig. 2: a) The structure of the receiver of a one-bit UWB radar
system. Note that in fact there is only one ADC in a one-bit
UWB radar sampling different PRIs. b) illustration of the DI
method.

III. REVIEW OF WEIGHTED SPICE FOR
HIGH-PRECISION DATA

In this section, we give a brief review of the original
weighted SPICE framework [13] for high-precision measure-
ments. This review will be beneficial to later interpretation and
analysis of the one-bit weighted SPICE counterpart. Consider
sparse parameter estimation for the following linear model:

y = Bx+ e ∈ CN , B ∈ CN×K , (5)

where x ∈ CK denotes the unknown sparse parameter vector
(K > N ), B is the given matrix of regressors and e is the
zero-mean noise. The covariance matrix of the data vector y
can be written as

R = E{yyH} = E{(Bx+ e)(xHBH + eH)}
= BE{xxH}BH + E{eeH} = BPxB

H + Pe

= APxeA
H , (6)

where

A = [B IN ],Pxe = diag(pxe),pxe = [pTx ,p
T
e ]T , (7)

and where Px = diag(px), with px = [p1, p2, . . . , pK ]T ,
Pe = diag(pe), with pe = [pK+1, pK+2, . . . , pK+N ]T . The
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SPICE algorithm is a covariance fitting approach with the
following objective function [13]:

min
pxe

‖R−1/2(yyH −R)‖22. (8)

After some simple calculations, the objective function can be
reformulated as [13]:

min
pxe

fSPICE(pxe) = yHR−1y + tr{R}

= yHR−1y +

N+K∑
k=1

wkpk (9)

where tr(·) denotes the trace of a matrix and wk = ‖a:,k‖22.
The convex optimization problem (9) can be efficiently solved
by iteratively minimizing a majorizing function [13]. At the
(t + 1)-th iteration, the majorizing function of fSPICE(pxe)
that will be used has the following form (see [13], [15]–[17]
for details):

fSPICE(pxe) ≤ (x̆(t+1))HP−1
xe x̆

(t+1) +

N+K∑
k=1

wkpk, (10)

with

x̆(t+1) = P̂ t
xeA

H(R̂t)−1y

=

[
P̂ t
xB

H(R̂t)−1y

P̂ t
e (R̂t)−1y

]
, (11)

where P̂ t
xe and R̂t = AP̂ t

xeA
H denote the estimates

of Pxe and R at the t-th iteration. Note that x̂(t+1) =
P̂ t
xB

H(R̂t)−1y is the linear minimum mean-squared error
(LMMSE) estimate of x corresponding to p̂tx [13]. The above
majorizing function can be minimized easily and pxe can be
updated by using the following closed-form expression at the
(t+ 1)-th iteration:

p̂
(t+1)
k = |x̆(t+1)

k |/
√
wk

= p̂tk|aH:,k(R̂t)−1y|/
√
wk, k = 1, . . . ,K +N.

(12)

By changing the weight vector {wk}K+N
k=1 in fSPICE(pxe),

different weighted SPICE algorithms can be derived, including
LIKES and IAA.

The LIKES criterion has the following form [13]:

fLIKES(pxe) = yHR−1yH + ln |R|, (13)

and its majorizing function at (t+1)-th iteration can be written
as:

fLIKES(pxe) ≤ (x̆(t+1))HP−1
xe x̆

(t+1) +

N+K∑
k=1

wkpk, (14)

with wk = aH:,k(R̂t)−1a:,k. Note that (14) and (10) have a
similar form but with different weights. The IAA algorithm
can also be interpreted as a form of weighted SPICE by only
setting the weights wk as p̂tk(aH:,k(R̂t)−1a:,k)2 at the (t+ 1)-
th iteration [13] (for more details about the weighted SPICE
framework, we refer to [13], [14]).

IV. ONE-BIT WEIGHTED SPICE FOR ONE-BIT UWB
RADAR SYSTEMS

Considering the sparsity of the RFI sources in the fast-
frequency domain, as illustrated in Figure 1, we model the
RFI as a sum of sinusoids. Thus we can write the RFI matrix
in the following structured form:

F = A1X1, A1 ∈ CN×K1 , (15)

(a1):,k = [1, ejωk , . . . , ej(N−1)ωk ]T , k = 1, . . . ,K1.

Here A1 = [(a1):,1, . . . , (a1):,K1
] is the Fourier matrix

corresponding to the normalized frequencies {ωk}K1

k=1, which
form a grid of K1 points covering the interval [−π, π]. We
assume that the grid is fine enough such that the frequencies
(normalized by the sampling frequency) corresponding to the
RFI sources are on or close enough to the grid points. The
elements of the matrix X1 ∈ CK1×M denote the complex
amplitudes of the corresponding frequency points in the grid;
this matrix has a row sparse property due to the sparsity of the
RFI sources in the fast-frequency domain. Note that since R
is a real-valued matrix, (x1)K1−k+1,m should be the complex
conjugate of (x1)k,m,m = 1, . . . ,M .

The radar echo matrix S can also be rewritten as:

S = A2X2, (x2):,1 = · · · = (x2):,M = x2 ∈ RK2×1, (16)

where A2 denotes the dictionary whose columns are time-
shifted, digitized versions of the transmitted impulse ψ(t).
Each column of the dictionary A2 can be thought of
as the discrete version of the time-shifted analog signal
ψ
(
t− N∆t

K2
k
)
, k = 1, 2, . . . ,K2, with ∆t denoting the

sampling interval. x2 is the vector containing the information
on the magnitudes and positions of the radar echoes. Due
to the sparsity of the radar echoes in the fast-time domain,
the vector x2 also possesses a sparse property. Thus, we can
extend the idea of the weighted SPICE framework, which
exploits the sparse property of X1 and X2, to solve the
joint RFI mitigation and echo recovery problem for the one-
bit UWB radar system. Inspired by [13], a one-bit weighted
SPICE based framework was presented in [14] for parameter
estimation in automotive radar systems. However, the method
in [14] cannot be directly applied to our one-bit RFI mitigation
and echo recovery problem. In this paper, we extend the
work in [14] and develop a new one-bit weighted SPICE
methodology for joint RFI mitigation and radar echo recovery
for the one-bit UWB radar system.

To use the weighted SPICE framework for signed measure-
ments, a penalty term for the sign disagreement between the
estimated signal and the signed measurements is necessary.
Here we consider using the negative log-likelihood function of
the signal model due to the good performance of the maximum
likelihood estimator. We assume that the elements of the noise,
i.e., E, obeys an i.i.d. Gaussian distribution with zero-mean
and unknown variance σ2. The numerical and experimental
examples in Section V will show that the proposed algorithms
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are robust to this assumption. Then the negative log-likelihood
function of Z in (4) can be written as:

L(X1,x2, σ)

=−
M∑
m=1

N∑
n=1

ln Φ

(
zn,m

(a1)n,:(x1):,m + (a2)n,:x2 − hn,m
σ

)

=−
M∑
m=1

N∑
n=1

ln Φ(zn,m [(a1)n,:(x̃1):,m+(a2)n,:x̃2 − ηhn,m]) ,

(17)

where Φ(x) denotes the cumulative distribution function of
the standard normal distribution, and X̃1 = X1/σ, x̃2 =
x2/σ, η = 1/σ. Then, similar to Section III, considering the
sparse properties of the signal model we introduce the follow-
ing objective function for the joint one-bit RFI mitigation and
echo recovery:

min
X̃1,X̃2,η,p1,p2

−
M∑
m=1

N∑
n=1

ln Φ(zn,m[(a1)n,:(x̃1):,m+(a2)n,:(x̃2):,m

− ηhn,m])+

M∑
m=1

(x̃1)H:,mP
−1
1 (x̃1):,m

+

M∑
m=1

(x̃2)H:,mP
−1
2 (x̃2):,m + ξwT

1 p1 +wT
2 p2,

s.t. (x̃2):,1 = · · · = (x̃2):,M = x̃2, (18)

where P1 = diag(p1),P2 = diag(p2). In (18), w1 and w2

denote the weight vectors of three SPICE methods discussed
in Section III, shown in Table II, and ξ is a penalty factor used
to balance the power of the estimated RFI and radar echoes.

Since the problem in (18) is difficult to solve directly, we use
the majorization-minimization (MM) [18], [19] technique to
simplify it. By using the MM technique, the objective function
in (18) can be majorized as in (19) at the (t + 1)-th MM
iteration (see [12]):

min
X̃1,X̃2,η,p1,p2

1

2

M∑
m=1

∥∥(A1(x̃1):,m+A2(x̃2):,m−(ηh:,m+gt:,m)
)∥∥2

2

+

M∑
m=1

(x̃1)H:,mP
−1
1 (x̃1):,m+

M∑
m=1

(x̃2)H:,mP
−1
2 (x̃2):,m

+ ξwT
1 p1 +wT

2 p2,

s.t. (x̃2):,1 = · · · = (x̃2):,M = x̃2, (19)

where

gt:,m = z:,m � (γt:,m − f ′(γt:,m)), (20)

f ′(x) = − φ(x)

Φ(x)
, (21)

γt:,m = z:,m �
(

Re
[
A1(ˆ̃xt1):,m +A2

ˆ̃xt2

]
− η̂th:,m

)
. (22)

Here, ˆ̃Xt
1, ˆ̃xt2 and η̂t denote the estimates of the corresponding

variables at the t-th MM iteration. Re(·) means taking the real
part of the corresponding variable and φ(x) denotes the prob-
ability density function of the standard normal distribution.

To simplify the calculation, we rewrite (19) in the following
form:

min
X̃1,X̃2,η,p1,p2

1

2

M∑
m=1

∥∥(Ax̃:,m − (ηh:,m + gt:,m)
)∥∥2

2

+

M∑
m=1

x̃H:,mP
−1x̃:,m + ξwT

1 p1 +wT
2 p2,

s.t. (x̃2):,1 = · · · = (x̃2):,M = x̃2, (23)

where

A=[A1,A2], x̃:,m=

[
(x̃1):,m

(x̃2):,m

]
,P =diag(p),p=

[
p1

p2

]
.

(24)
We minimize (23) by cyclicly updating one group of vari-

ables while fixing the rest.

A. Update of {x̃:,m}Mm=1 and η

To update {x̃:,m}Mm=1 and η, we set to zero the derivatives
of (23) with respect to {x̃:,m}Mm=1 and η. We obtain the
following equation for the (t+ 1)-th MM iteration:

AH
(
Ax̃:,m − (ηh:,m + gt:,m)

)
+ 2(P̂ t)−1x̃:,m = 0, (25)

which gives:

x̃:,m =
(
AHA+ 2(P̂ t)−1

)−1

AH
(
ηh:,m + gt:,m

)
. (26)

Using the matrix inversion lemma yields:

x̃:,m =

[
(x̃1):,m

(x̃2):,m

]
= P̂ tAH(R̂t)−1

(
ηh:,m + gt:,m

)
, (27)

where
R̂t = AP̂ tAH + 2IN , (28)

with P̂ t denoting the estimate of P from the t-th MM
iteration.

We also have
M∑
m=1

hT:,m
(
ηh:,m + gt:,m −Ax̃:,m

)
= 0. (29)

Substituting the expression of x̃m in (28) into (29), we obtain:
M∑
m=1

hT:,m

(
ηh:,m+gt:,m−AP̂ tAH(R̂t)−1

(
ηh:,m + gt:,m

))
=0,

(30)
which yields:

η̂(t+1) = max

(
0,

∑M
m=1 h

T
:,m(R̂t)−1gt:,m∑M

m=1 h
T
:,m(R̂t)−1h:,m

)
. (31)

Next, we insert the η̂(t+1) above into (28) and obtain the
update formula of x̃:,m:

ˆ̃x(t+1)
:,m =

[
(ˆ̃x

(t+1)
1 ):,m

(ˆ̃x
(t+1)
2 ):,m

]
= P̂ tAH(R̂t)−1

(
η̂(t+1)h:,m + gt:,m

)
.

(32)
Considering the constraint (x̃2):,1 = · · · = (x̃2):,M = x̃2, we
have:

ˆ̃x
(t+1)
2 =

1

M

M∑
m=1

(ˆ̃x
(t+1)
2 ):,m . (33)
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Note that, if we interpret η̂(t+1)h:,m+gt:,m as high-precision
“input data”, the update formula of x̃:,m is similar to the one
we used in the weighted SPICE framework for high-precision
data sets (see Section III). Thus, the (t+ 1)-th MM iteration
of the one-bit weighted SPICE can be viewed as a weighted
SPICE algorithm for the high-precision input η̂(t+1)h:,m+gt:,m
contaminated by zero-mean Gaussian noise with covariance
matrix 2IN [14]. Similar to the weights used in Section III,
the weights of these one-bit weighted SPICE algorithms at the
(t+ 1)-th MM iteration are summarized in Table II.

Weight wi, i = 1 or 2
1bSPICE (wt+1

i )k =
∥∥(ai):,k

∥∥2
2

1bLIKES (wt+1
i )k = (ai)

H
:,k(R̂

t)−1(ai):,k

1bIAA (wt+1
i )k = (pi)

t
k

(
(ai)

H
:,k(R̂

t)−1(ai):,k

)2
TABLE II: Weight vectors w1 and w2 at the (t + 1)-th MM
iteration of three one-bit weighted SPICE algorithms.

B. Update of p1,p2

To update p1 in the (t + 1)-th MM iteration, we need to
solve the following subproblem:

min
p1

M∑
m=1

(ˆ̃x
(t+1)
1 )H:,mP

−1
1 (ˆ̃x

(t+1)
1 ):,m + ξ(w

(t+1)
1 )Tp1, (34)

which can be rewritten as:

min
p1

K1∑
k=1

(
M∑
m=1

∣∣∣(ˆ̃x
(t+1)
1 )k,m

∣∣∣2 /(p1)k + ξ(w
(t+1)
1 )k(p1)k

)
.

(35)
The above objective function achieves its minimum when:

M∑
m=1

∣∣∣(ˆ̃x
(t+1)
1 )k,m

∣∣∣2 /(p1)k = ξ(w
(t+1)
1 )k(p1)k,

k = 1, . . . ,K1. (36)

Thus, p̂(t+1)
1 can be updated by:

(p̂
(t+1)
1 )k =

√√√√√∑M
m=1

∣∣∣(ˆ̃x
(t+1)
1 )k,m

∣∣∣2
ξ(w

(t+1)
1 )k

, k = 1, . . . ,K1.

(37)
Similarly, we can update p̂(t+1)

2 by:

(p̂
(t+1)
2 )k =

√√√√√∑M
m=1

∣∣∣(ˆ̃x
(t+1)
2 )k,m

∣∣∣2
(w

(t+1)
2 )k

, k = 1, . . . ,K2,

(38)
which yields:

(p̂
(t+1)
2 )k =

√√√√√M
∣∣∣(ˆ̃x

(t+1)
2 )k

∣∣∣2
(w

(t+1)
2 )k

, k = 1, . . . ,K2. (39)

The one-bit weighted SPICE methodolgy for joint RFI
mitigation and echo recovery is summarized in Table III. The
choice of the user-parameter ξ will be discussed in Section V.

Finally, the estimate x̂2 of x2, can be obtained as ˆ̃x2/η̂,
and the recovered radar echo signal as ŝ = A2x̂2.

C. Computational Complexity Analysis
We now compare the computational complexity of the one-

bit weighted SPICE framework with that of the separate
1bMMRELAX-1bBIC and radar echo recovery technique [11].
For simplicity only the computationally dominating steps are
considered herein. First, note that the computational com-
plexity of the one-bit weighted SPICE framework, which
mainly comes from the matrix inversion in (32), is O(N3).
Consider next the technique in [11]. Suppose that N1-point
(N1 � N ) zero-padded FFT operations are used in the
1bMMRELAX iterations [11] and the number of RFI sources
is Q; then the computational complexity of 1bMMRELAX
is O(Q2MN1 logN1). For the fast frequency initialization,
if MM and Alternating Direction Method of Multipliers
(ADMM) [11], [20] approaches are used, the computational
complexity is O(K3

1 ) with K1 � N , which comes from
matrix inversion operations. Similarly, the computational com-
plexity of the sparse radar echo recovery is O(K3

2 ) with
K2 � N . Thus the total computational complexity of the
separate 1bMMRELAX-1bBIC and sparse radar echo recovery
technique is O(Q2MN1 logN1 + K3

1 + K3
2 ) which is much

higher than that of the joint one-bit weighted SPICE frame-
work.

V. SIMULATED AND EXPERIMENTAL EXAMPLES

In this section, we compare the RFI mitigation and echo
recovery performance of the joint one-bit weighted SPICE
framework with that of the separate 1bMMRELAX-1bBIC and
sparse echo recovery technique [10], [11], and the DI method
[8], for the one-bit NVA6100 UWB radar. For simplicity, we
will refer to 1bMMRELAX-1bBIC as RELAX hereafter. The
computational costs of the one-bit weighted SPICE algorithms
and RELAX will also be compared. Depending on the weight
vectors used, the one-bit weighted SPICE framework includes
1bLIKES, 1bSPICE and 1bIAA, as summarized in Table II.

We conduct experiments using simulated RFI-free UWB
radar data and two different RFI data sets: a simulated RFI
data set and a measured RFI data set. The measured RFI
data set was collected by an ARL radar receiver with its
antenna pointing toward Washington DC. More details about
the experimental data collection can be found in [21]–[23].
Because the sampling rate of the ARL radar receiver is 8 GHz,
we assume that all data sets used in this section are obtained
at an 8 GHz sampling rate.

All data sets contain 8192 slow-time samples within a CPI
and 512 fast-time samples per PRI, i.e., M = 8192, N = 512.
The transmitted radar pulse is shaped as the first-order deriva-
tive of a Gaussian pulse covering the frequency range of
300 ∼ 1100 MHz (see Figures 3(a) and 3(b)). The simulated
radar echoes are generated by using 6 targets at different
ranges with different amplitudes (see Figure 3(c)).

All signed measurements are obtained by sampling the RFI-
contaminated data via the CTBV sampling technology. All
experiments are run using Matlab 2017a installed on a PC
with 2.40 GHz CPU and 16 G RAM.
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Step Operation

1. Initialization
{
(x01)k,m = 1 + j, k = 1, . . . ,K1/2,

(x01)k,m = 1− j, k = K1/2 + 1, . . . ,K1.

(x02)k,m = 1, k = 1, . . . ,K2.

2. Computation of Rt and gt
:,m See (28) and (20)

3. Update of weights See Table II

4. Update of η̂t+1 η̂t+1 = max

(
0,

∑M
m=1 hT

:,m(R̂t)−1gt
:,m∑M

m=1 hT
:,m(R̂t)−1h:,m

)
5. Update of ˆ̃x

(t+1)
:,m See (32)

6. Update of p̂(t+1)
1 , p̂

(t+1)
2 See (37) and (39)

Iterate Steps 2∼6 until
∣∣p(t+1) − pt

∣∣
2
/
∣∣pt
∣∣
2
< 10−6

or t reaches a prescribed maximum iteration number TM .

Result: ˆ̃X1, ˆ̃x2, η̂.

TABLE III: One-Bit Weighted SPICE for Joint RFI Mitigation and Radar Echo Recovery
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Fig. 3: (a) Simulated transmitted radar pulse; (b) Spectrum of the transmitted radar pulse; (c) Simulated RFI-free and noise-free
radar echoes for one PRI.

A. Implementation Details

For the three one-bit weighted SPICE methods, we set K1 =
K2 = 4N and ξ = 0.4M . The maximum iteration number
TM is set to 100. The implementation details for the RELAX
method can be found in [11].

B. Evaluation Metric

Note that the measured RFI data set inevitably contains
noise and other disturbances whereas the simulated RFI data
set is noise-free. We add white Gaussian noise E to the
simulated RFI data set, but we do not add extra noise to the
measured (and hence already noisy) RFI data set. Different
interference-to-noise ratios (INRs) defined as 20 log10

‖R‖2
‖E‖2

(dB), will be considered in Section V-C.
Define the signal-to-interference-plus-noise ratio (SINR) for

the simulated RFI data sets as follows:

SINR = 20 log10

||S||2
||R+E||2

(dB). (40)

For the case of measured RFI data sets, which already contain
noise, the SINR is computed as:

SINR = 20 log10

||S||2
||R||2

(dB). (41)

We fix the radar echo signal and add a scaled simulated RFI
plus noise or a scaled measured RFI to obtain contaminated

data sets with various SINR values. Due to the low transmit
power of the NVA6100 one-bit UWB radar, its signed mea-
surements are commonly contaminated by relatively strong
RFI. Therefore, we only consider the severe RFI cases with
SINR ≤ −25 dB in this section.

The maximum threshold hmax is set to 400 for all cases
according to the magnitude of the echo signal in Figure 3(c).
The echo recovery performance is measured by using the
normalized recovery error (NRE):

NRE = 20 log10

||s− ŝ||2
||s||2

(dB), (42)

where ŝ is the recovered UWB radar echo signal.

C. Simulated RFI case

We first present the results of the three one-bit weighted
SPICE algorithms for the case of simulated RFI data sets.
Since the magnitudes of the RFI sources usually do not change
greatly during the different PRIs within a CPI, we simulate
the RFI sources as a sum of sinusoids with amplitudes and
frequencies fixed within a CPI and phases varying randomly
and independently with slow-time with a uniform distribution
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Fig. 4: Fast-frequency spectrum of the simulated RFI versus
slow-time

over [0, 2π). The (n,m)-th element of the simulated RFI F sim

can be written as follows:

f sim
n,m =

Q∑
q=1

asim
q sin(ωsim

q (n− 1) + φsim
q,m), (43)

where
asimq

asim1
, q = 2, . . . , Q, is the amplitude ratio of the

q-th RFI source relative to the first one. The parameters
of the simulated RFI data are shown in Table IV and the
RFI spectrum is displayed in Figure 4. When generating the
contaminated data sets with different SINR values, the desired

RFI can be obtained by varying asim
1 while fixing

{
asimq

asim1

}Q
q=2

.

TABLE IV: Simulated RFI Parameters

RFI Frequencies (MHz) 500 350 700 900 1050
RFI Amplitude Ratios 1 0.95 0.8 0.87 0.9

The NRE versus SINR curves for the case of simulated RFI
obtained by the different algorithms are shown in Figures 5
- 7. It is clear that RELAX and the one-bit weighted SPICE
algorithms significantly outperform the DI method, for a wide
range of SINR values from −40 dB to −25 dB. Moreover,
1bLIKES provides the best echo recovery performance.

Figure 8 compares the computational times of the three one-
bit weighted SPICE algorithms and RELAX as functions of
the SINR. The one-bit weighted SPICE algorithms are an order
of magnitude faster than the existing RELAX. Note also that
1bSPICE needs slightly less time than 1bLIKES and 1bIAA.

D. Measured RFI case

We now shift our attention to the case of measured RFI set
collected by the ARL experimental radar receiver [21], [22].
We use the first 512× 8192 samples of the original RFI data
set. The spectrum of the measured RFI data set is shown in
Figure 1.

The echo recovery results obtained by the different algo-
rithms are shown in Figures 9 - 10. Similar to Section V-C,
RELAX and the three one-bit weighted SPICE algorithms sig-
nificantly outperform the DI method, and 1bLIKES provides
the best performance.
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Fig. 5: NRE versus SINR results for the three one-bit weighted
SPICE algorithms, RELAX, and the DI method for the case
of simulated RFI data set. The INR is a) 0 dB and b) 10 dB.

Figure 11 compares the computational times needed by
the one-bit weighted SPICE algorithms and RELAX in this
case. The one-bit weighted SPICE algorithms are almost two
orders of magnitude faster than RELAX. The number of RFI
sources in the measured RFI data set is larger than that in
its simulated counterpart. Comparing Figures 11 and 8, it
is obvious that when the number of RFI sources increases,
the computational burden of RELAX increases sharply since
it iteratively estimates the parameters of each RFI source
separately. Here too, 1bSPICE consumes slightly less time
than 1bLIKES and 1bIAA, due to its simplicity in updating
the weight vectors during the iterations.

VI. CONCLUSIONS

We have considered a joint RFI mitigation and sparse
echo recovery problem for a one-bit UWB radar system that
obtains signed measurements by using the CTBV sampling
technique. We have first established a proper data model
for the RFI sources and the UWB radar echoes. We then
extended a one-bit weighted SPICE framework to jointly
mitigate the RFI sources and recover the radar echoes from the
signed measurements. Through using different weight vectors
in the objective functions, different one-bit weighted SPICE
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Fig. 6: Echo recovery results, for the case of simulated RFI, obtained by using a) the DI method, b) RELAX, c) 1bLIKES, d)
1bSPICE and e) 1bIAA, when SINR = −35 dB and INR = 0 dB.
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Fig. 7: Echo recovery results, for the case of simulated RFI, obtained by using a) the DI method, b) RELAX, c) 1bLIKES, d)
1bSPICE and e) 1bIAA, when SINR = −35 dB and INR = 10 dB.
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Fig. 8: Computational times needed by the one-bit weighted SPICE algorithms and RELAX versus SINR for the the case of
simulated RFI data sets. The INR is 10 dB.
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Fig. 9: NRE versus SINR results for the three one-bit weighted SPICE algorithms, RELAX and the DI method for the case
of measured RFI data set.

algorithms were obtained which were referred to as 1bLIKES,
1bSPICE and 1bIAA. The one-bit weighted SPICE algorithms
jointly estimate all RFI sources and the radar echoes, while
the competing technique of [11] estimates the parameters
of each RFI source separately and iteratively, and recovers
the radar echoes after the RFI parameters were estimated.
The one-bit weighted SPICE algorithms are computationally
much faster that the competing technique. We have provided
examples using both simulated and measured RFI data sets to
demonstrate that the one-bit weighted SPICE algorithms can
significantly outperform the competing technique in regards to
the accuracy of the radar echo recovery. The numerical and
experimental results also showed that 1bLIKES is the most
accurate method of the one-bit weighted SPICE algorithms,
whereas 1bSPICE has a slightly lower computational cost than
the other two one-bit weighted SPICE algorithms.
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Fig. 10: Echo recovery results, for the case of measured RFI, obtained by using a) the DI method, b) RELAX, c) 1bLIKES,
d) 1bSPICE and e) 1bIAA, when SINR = −35 dB.
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