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Abstract

In wireless sensor networks (WSNs), a good sensor de-
ployment method is vital to the quality of service (QoS) pro-
vided by WSNs. This QoS depends on the coverage of the
monitoring area. In WSNs with locomotion facilities, sen-
sors can move around and self-deploy to ensure coverage
and load balancing. In SMART [1], various optimization
problems are defined to minimize different parameters. In
this paper, we focus on minimizing total moving distance
and propose an optimal, but centralized solution, based on
the Hungarian method. We then propose several efficient,
albeit non-optimal, distributed solutions based on the scan-
based solution in [1]. Extensive simulations have been done
to verify the effectiveness of the proposed solutions.

Keywords: Hungarian method, load balance, sensor cover-
age, sensor deployment, wireless sensor networks (WSNs).

1 Introduction

The efficiency of a WSN depends on the coverage of the
monitoring area. In many environments, such as remote
harsh fields or disaster areas, sensor deployment cannot be
performed manually or precisely. In addition, sensors may
run out of battery after a certain time, requiring others to
be moved to cover the coverage holes created by the dead
sensors. In these cases, it is necessary to make use of mo-
bile sensors [2] to provide the required coverage and load
balancing.

In general, two methods can be used to enhance the
coverage:incremental sensor deploymentand movement-
assisted sensor deployment. Incremental self-deployment
[3] incrementally deploys additional sensors, usually one-
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at-a-time, with each node using data gathered from pre-
viously deployed nodes to determine its optimal location.
Movement-assisted sensor deployment [4], on the other
hand, uses a potential-field-based approach to move exist-
ing sensors by treating sensors as virtual particles, subject
to virtual forces [5, 6, 7].

In this paper, we focus on load balancing solutions in
WSN that minimize total moving distance of sensors. By
load balancing, we mean each unit of monitoring area is
covered by the same number of sensors. The monitoring
area is a 2-D grid-based mesh (2-D mesh). We first provide
an optimal solution in 2-D meshes. This solution is based
on the classic Hungarian method, but requires global infor-
mation. We then enhance the scan-based solution without
resorting to global information, but with relatively compet-
itive results in terms of the total moving distance.

The contributions of this paper are: (1) We systemati-
cally discuss the drawback of existing movement-assisted
sensor deployment in WSNs. (2) We propose an optimal
load balancing solution based on the Hungarian method that
achieves minimum total moving distance and the number of
moves. (3) We extend the scan-based solution to reduce
total moving distance without resorting to global informa-
tion. (4) We present several further extensions and discuss
various trade-offs among total moving distance, number of
moves, and converging speed. (5) We conduct extensive
simulations and compare results of the proposed extended
scan-based solutions with the optimal solution.

The following assumptions are used in this paper: (1)
The monitoring and deployment area is ann× n grid, with
each grid of sizer × r. In a 2-D mesh, each grid point at
position (i, j) has four neighbors at positions:(i − 1, j),
(i, j − 1), (i, j + 1), and(i + 1, j). Among existing ap-
proaches, TTDD [8] and GAF [9] use geographic location
to partition the network into a 2-D mesh. (2) Each sen-
sor has position information and has uniform sensing range√

2r and two transmission ranges
√

2r (for intra-grid com-
munication) and

√
5r (for inter-grid communication). (3)

The sensor network is sufficiently dense so that each grid
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Figure 1. SMART: (a) initial deployment, (b)
row scan, and (c) column scan.

point (cluster) has at least one sensor. Each grid point has
one leader (clusterhead) to coordinate activities with leaders
of four neighbors.

2 Preliminaries and Related Work

2.1 Movement-assisted deployment

The sensor placement issue has been widely studied re-
cently [10]. Two methods can be used to enhance the
coverage: incremental sensor deployment and movement-
assisted sensor deployment.

In incremental sensor deployment in [3], nodes are de-
ployed one by one, using the location information of previ-
ously deployed nodes to deploy the current one. This algo-
rithm is not scalable and is computationally expensive.

[7] proposed a centralized virtual force based mobile
sensor deployment algorithm (VFA), which combines the
idea of potential field and disk packing [11]. In VFA, there
is a powerful clusterhead, which will communicate with all
the other sensors, collect sensor position information, and
calculate forces and desired position for each sensor.

[5] developed a novel distributed self-deployment proto-
col for mobile sensors. They used Voronoi diagrams [12]
to find coverage holes in the sensor network, and proposed
algorithms to guide sensor movement toward the coverage
hole. When applied to randomly deployed sensors, these
algorithms can provide high coverage within a short time
and limited moving distance. If the initial distribution of
the sensors is extremely uneven, disconnection may occur,
thus, the Voronoi polygon constructed may not be accurate
enough, which results in more moves and larger moving dis-
tance. They adopted the optimization of random scattering
of some sensors to cover holes. The termination condition
of their algorithms is coverage instead of load balancing. [6]
further explored the motion capability of sensors for reloca-
tion to deal with sensor failure or respond to new events.

Table 1. The scan process.
i 1 2 3 4 5

wi 5 4 8 3 5
vi 5 9 17 20 25
vi 5 10 15 20 25

2.2 SMART: a scan-based approach

SMART [1] is a hybrid of local and global approach. The
sensor network is partitioned into ann × n 2-D mesh of
grids. Each leader, in charge of communication with adja-
cent grids, knows the following information: (1) its grid’s
position,i, in the currently processed row/column of the 2-
D mesh, and (2) the number of sensors,wi, in the grid.

In SMART, the 2-D mesh is partitioned into 1-D arrays
by row and by column. Two scans are used in sequence: one
for all rows, followed by the other for all columns. Consider
the 1-D array of grids where grid ID is labeled following the
sequence in the linear line. Letvi be the prefix sum of the
first i grids, i.e.,vi =

∑i
j=1 wj . Thenvn =

∑n
j=1 wj is

the total sum. Clearly,w = vn/n is the average number of
sensors in a balanced state, andvi = iw is the prefix sum
in the balanced state. Note thatw is a real number which
should be rounded to an integerbwc or dwe. In a balanced
state,|wi − wj | ≤ 1 for any two grids in the 1-D array.

The scan algorithm works from one end of the array to
another (first scan) and then from the other end back to the
initial end (second scan). The first sweep calculates the pre-
fix sum vi, where each clusterheadi determines its prefix
sumvi by addingvi−1 + wi and forwardingvi to the next
grid. The clusterhead in the last grid determinesvn and
w = vn/n (load in a balanced state) and initiates the second
scan by sending outw. During this scan, each clusterhead
determinesvi = iw (load of prefix sum in a balanced state)
based onw passed around and its own grid positioni.

Knowing the load in the balanced state, each grid can
easily determine its “give/take” state. Specifically, when
wi − w = 0, grid i is in the “neutral” state. Whenwi −
w > 0, it is overloaded and in the “give” state; and when
wi − w < 0, it is underloaded and in the “take” state. Each
grid in the give state also needs to determine the number
of sensors (load) to be sent to each direction:w→i for load
in the positive direction (or simply give-right) and←wi for
load in the negative direction (give-left).

Based on the scan procedure, it is clear that

w→i = min{wi − w, max{vi − vi, 0}} (1)
←wi = (wi − w)− w→i (2)

The 2-D scan process involves a row scan followed by a
column scan as shown in Figures 1 (b) and (c), respectively.
Table 1 shows details of the row scan on the third row where
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Figure 2. The node and edge weighted bipar-
tite graph of Figure 1, “give” grids on left and
“take” grids on right.

i is the column number in Figure 1. Only the grid at column
3 is in the “give” state, since its load is higher thanw = 5.
For column 3,w→3 = 2 will be assigned to column 2 and
←w4 = 1 will be assigned to column 2. Similarly, a set of
conditions can be given for a “take” state:w←i for take-right
and→wi for take-left.

→wi = min{w − wi, max{vi−1 − vi−1, 0}} (3)

w←i = (w − wi)−→ wi (4)

The result of the 2-D scan process usually does not gen-
erate an ideal global balanced state as in Figure 1. How-
ever, the maximum load difference between any two grids
is bounded by 2. It is shown that the scan-based approach is
optimal (in terms of both total moving distance and number
of moves) for 1-D arrays, but not for 2-D meshes.

Example 1: Consider a2 × 2 mesh M [1, 1] =
3,M [1, 2] = 1,M [2, 1] = 3, and M [2, 2] = 5. A
scan on rows will change load distribution of the mesh to
M [1, 1] = 2,M [1, 2] = 2,M [2, 1] = 4, andM [2, 2] = 4,
and a scan on columns will balance the mesh toM [1, 1] =
3,M [1, 2] = 3,M [2, 1] = 3, andM [2, 2] = 3. A total of 4
moves occur, however, the optimal solution requires only 2
moves fromM [2, 2] to M [1, 2] directly.

Example 2: Consider a large 2-D mesh where all nodes
have a load of 2 exceptM [i, j] = 3, M [i, j + d] = 1,
M [i + 1, j] = 1, andM [i + 1, j + d] = 3. A row scan will
balance the mesh with a total moving distance2d, while a
column scan will balance the mesh in an optimal way using
a total moving distance 2.

3 An optimal solution

3.1 Hungarian method

Let us consider theedge weighted matching problemin
a complete bipartite graphKm,m with each edge associated
with a number called its weights. The objective is to find
a perfect matching (ofm pairs), such that the sum of the
weights of edges in the matching is minimum.
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Figure 3. (a) The edge weighted complete bi-
partite graph and (b) the optimal solution.

A naive approach to solve the matching problem is to
enumerate allm perfect matchings and find an optimal one
among them. A better solution called Hungarian method1

exists. The following is the algebraic formulation for the
matching problem. We letxij , (i, j = 1, . . . ,m), be a set of
variables.m is the number of nodes in the node sets of the
complete bipartite graphB = (V, U,E), whereV , U are
two node sets, andE is the edge set.xij = 1 means that the
edge(vi, uj) is included in the matching, whereasxij = 0
means not. An optimal solution is to:

Minimize Σijcijxij

subject to
∑

j=1 xij = 1 i = 1, . . . , m
∑

i=1 xij = 1 j = 1, . . . , m

(5)

With this definition, the bipartite graph problem is con-
verted into a matrix problem. The rows of the matrixx rep-
resent the nodes inV , and the columns represent the nodes
in U . The value of entrycij is the cost of assigning nodevi

to nodeuj .
There are several polynomial implementations for the

Hungarian method. Our implementation is based on
Munkres’ [13], which describes the manual manipulation
of a two-dimensional matrix by starring and priming zeros
and by covering and uncovering rows and columns. An-
other implementation [14] solves the problem inO(m3).
This implementation applies the solution to the max-flow
problem with some modifications. A corresponding flow
networkG can be defined for the bipartite graphB, intro-
ducing two new nodess andt. 2m edges are added in the
graph,m from s to every node inV andm from every node
in U to nodet. In this way, the maximum flow problem can
be explored.

To use the Hungarian method to load balancing in
WSNs, we need to first convert the 2-D mesh to a complete
bipartite graph using the follow procedure:
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Figure 4. SMART( l): total cost 384.

1. Calculate the global averagēv and determine the
“give”, “take”, and “neutral” state of each grid.

2. A node and edge weighted bipartite graph is con-
structed, where “give” and “take” grids appear at the
left and right hand sides of the graph, respectively. The
node weight corresponds to amount of overload and
underload, and the edge weight represents the distance
between the “give” and “take” grids in a matching pair.

3. An edge weighted perfect bipartite graph is derived by
expanding each node with weightk tok “clone” nodes.
The edge weight of clone nodes will inherit from the
original nodes.

Again, we use Figure 1 to illustrate the procedure. The
global average in case is 5. There are three overloaded
nodes and five underloaded nodes.M [3, 3] = 3 means
overloaded by 3 units andM [1, 2] = 1 is underloaded
by 1 unit. The edge weight is the Manhattan distance2

between two end nodesM [i, j] and M [i
′
, j
′
]. That is,

∆x + ∆y = |i− i
′ |+ |j − j

′ |. For example, the edge con-
nectingM [3, 3] to M [1, 2] has a weight of 3. In Figure 2,
the node and edge weighted bipartite graph shows weights
of all edges connectingM [3, 3] to underloaded nodes.

In Figure 3 (a), the edge weighted complete bipartite
graph of Figure 2 is shown, where each node (overloaded
or underloaded) with weightk hask “clone” nodes. For ex-
ample,M [3, 3] has three clone nodes labeled from 1 to 3.
The Hungarian method is then applied to Figure 3 (a) and
the optimal result is shown in Figure 3 (b). The optimal re-
sult shows thatM [5, 5] (now with four clone nodes) needs
to move one sensor to each ofM [1, 2], M [5, 2], M [2, 3],
andM [4, 3].

Suppose a BS (base station) is connected to the WSN,
it can act as the central controller to collect all information
from all leaders (clusterheads), execute the optimal algo-
rithm, and then inform all leaders about the sensor move-
ment from the current location to the destination location.

Instead of direct communication between each leader
and the BS, some spanning-tree-based approaches can be
applied. In WSNs, the BS is available only as an appli-
cation frontend rather than as a centralized coordinator for
coordinating basic network activities, including movement-
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Figure 5. SMART( g): total cost 352.

assisted sensor deployment. Therefore, solutions based on
local or limited global (such as prefix sum in the scan-based
method) are more desirable.

4 Extended Scan-Based Solutions

4.1 Threshold-based scan methods

In the original SMART, an “aggressive” approach is used
where a local “give” state in a row or column can be a global
“take” state (as in Example 1). To avoid this situation, a
“conservative” approach can be used to decide local “give”
and “take” state based on global average.

Again, we denotewi as the number of sensors in grid
i, and vi the prefix sum of the firsti grids in a row (or
column) in the positive direction, i.e.,vi =

∑i
j=1 wj .

vn =
∑n

j=1 wj is the total sum in the row (or column).
Another negative direction prefix sum is exploited, where
v′i =

∑n
j=i wj , andv′1 =

∑n
j=1 wj is also the total sum in

the row (or column). The negative prefix sum is achieved
in the negative sweep where the average is sending out.
Now, wl = vn/n is the average number of sensors in a
local balanced state with respect to the current row (or col-
umn). v =

∑n
i=1

∑n
j=1 wij is the global total sum. Then

wg = v/n2 is the average number of sensors in a global
balanced state. We definewm = |wg − wl|/2 as the mean
of global and local balanced state. This approach is a com-
promise between conservative and aggressive approaches.

The proposed threshold-based scan method differs from
the original SMART in its definition of thresholdw used to
determine the “give/take” state. Still, whenwi − w = 0,
grid i is in the “neutral” state. Whenwi − w > 0, it is
overloaded and in the “give” state; and whenwi − w < 0,
it is underloaded and in the “take” state.w can be one of



9

(d)

(b) (c)

88

7 7 7

8

5 7

11 10

11

17

9 8

9 9

9 9 9

9

9

11

11

930 8 8 8

14

14

14 7

11

1

1

1

1 1

1

1 11

129

171 1

1

(a)

10 10 10

11

16

9 9

9 9

9 9 9

9

9

11

11

11 10 10

11 10 10

10

10

11

9 9

11

10 9

10

(e)

Figure 6. SMART( m, 3): total cost 348.

three possible choices:wl, wg, andwm. Again, vi = iw
is the the prefix sum in the balanced state under the given
thresholdw, andvi

′ = (n− i + 1)w is that of the negative
direction.w should be rounded to an integer.

In the original SMART, the threshold is based on the lo-
cal average,wl, when “give” and “take” states are balanced
in a row (or column). With a changing threshold, such a bal-
ance is no longer held. That is, there could be more “give”
than “take” grids and vice versa. Therefore,w→i for load
in the positive direction (or simply give-right) and←wi for
load in the negative direction (give-left) are changed as fol-
lows: a grid is in “give” state if its value is over the given
thresholdw. The amount of excessive load to be transferred
to its right (or left) depends on the amount of underload to
its right (or left) provided that amount does not cause the
underload of the current node. More formally, we have

w→i = min{wi − w, max{v′i+1 − v′i+1, 0}} (6)
←wi = min{(wi − w)− w→i ,

max{(vi−1 − vi−1), 0}} (7)

The following steps are used in the proposed threshold-
based scan:

1. If w 6= wl, determine global balanced valuewg.

2. Perform a row scan followed by a column scan using
the selectedw.

3. If w 6= wl, repeat step (2) usingw = wl.

wg in step (1) can be calculated during step (2). Basi-
cally, wg is determined after row and then column scans.
However, in these scans there are no actual sensor move-
ments. Movements occur oncew is derived fromwg. Step
(3) is needed since the result of step (2) cannot guarantee a
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Figure 7. (a) initial network, (b) first step of
SMART(g), (c) first step of H-SMART( g).

globally balanced state. Whenw = wm, one variation of
the algorithm is to repeat step (2) a constant (c) number of
times before applying step (3).

To simplify the notion, we use SMART(g), SMART(l),
and SMART(m, c) to represent the threshold-based scan
that uses global average, local average (the original
SMART), and mean of global and local average, respec-
tively. c in SMART(m, c) corresponds to the number of
iterations of step (2). Whenc is 1, SMART(m, c) is simply
written as SMART(m).

Since the Hungarian method is a global method, it can
be done in one round. As mentioned above, SMART(l) can
be done in two rounds, which means one row scan and one
column scan. SMART(g) needs 4 rounds. One row scan,
one column scan, and two rounds in step (3), which can be
viewed as applying SMART(l) here. SMART(m, c) needs
2c + 2 rounds. We will provide the properc value in the
simulation, which is quite small. Note that the traditional
diffusion method [15] requires a large number of iterations
to converge. Figures 4, 5, and 6 are working procedures
of SMART(l), SMART(g), and SMART(m, 3) applied on a
sample4× 4 mesh.

4.2 Hierarchical-based scan methods

In hierarchical-based scan methods, the 2-D mesh is par-
titioned into four submeshes in a recursive way. The row
and then column scans are applied to each submesh in a
bottom-up fashion.

Suppose the 2-D mesh is a2k×2k mesh (called a level-k
mesh) and is partitioned into four2k−1 × 2k−1 submeshes.
Each submesh is then recursively partitioned until the origi-
nal 2-D mesh is partitioned into22d 2k−d×2k−d submeshes
and2k−d is sufficiently small. The following steps are used
in the proposed threshold-based scan:

1. If w 6= wl, determine global balanced valuewg.

2. For i = 0 to d, perform a row scan followed by a col-
umn scan using the selectedw on 2k−d−i × 2k−d−i

submeshes.
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(b) Multiple-cluster (p = 4)

Figure 8. Different initial sensor distribution.

3. If w 6= wl, usew = wl to perform a row scan followed
by a column scan on the2k × 2k mesh.

This hierarchical approach is another heuristic approach
where the excessive load in a “give” state is more likely to
be moved to a nearby “take” state than to another “take”
state. In this way, cases like Example 2 will be reduced.
H-SMART needsd + 2 iterations for a2k × 2k mesh. In
the firstd + 1 iterations, the selectedw can bewg, wl, or
wm, and 2 rounds are needed for each iteration. In the last
iteration, one row scan and one column scan (2 rounds) are
executed to ensure a globally balanced state. Therefore, H-
SMART needs2(d + 1) + 2 rounds totally. Figure 7 shows
H-SMART applied to a sample4× 4 mesh.

5 Simulation

5.1 Simulation environment

We set up the simulation in a5, 000× 5, 000 monitoring
area. We use three kinds of distributions as the initial de-
ployment of sensors. The first is random distribution where
sensors are randomly deployed in the entire area. The sec-
ond is one-cluster distribution, where the sensors follow a
normal distribution to form one clustered area. The third
is multiple-cluster distribution, where sensors are deployed
to form several clustered areas of different sizes. Figure 8
shows samples of the initial distribution (m = 500).

The tunable parameters are as follows. (1) The number
of gridsn×n. We use 16 as the value ofn, when H-SMART
is analyzed, and10 in the rest of the simulation. (2) The
number of sensorsm. We varym’s value from 100 to 1000.
When n is 16, m varies from256 to 1280 with the step
256. (3) The normal distribution parameterσ in one-cluster
distribution. σ is the standard deviation of the normal dis-
tribution for the initial deployment. Whenσ is 10, around
50% of the sensors are in a50% region of the area. Whenσ
is 1, around98% of the sensors are in a10% region of the

 118000

 118050

 118100

 118150

 118200

 118250

 118300

 118350

 118400

 1  2  3  4  5  6  7  8  9  10

T
ot

al
 m

ov
in

g 
di

st
an

ce

The number of iterations

SMART(m,c)

(a) Random distribution

 1.08e+06

 1.082e+06

 1.084e+06

 1.086e+06

 1.088e+06

 1.09e+06

 1.092e+06

 1.094e+06

 1  2  3  4  5  6  7  8  9  10

T
ot

al
 m

ov
in

g 
di

st
an

ce

The number of iterations

SMART(m,c)

(b) Multiple-cluster distribution

Figure 9. Moving distance of SMART( m, c)
with difference iteration number c (n =
10,m = 500).

area. (4) The number of sensor clusters in multiple-cluster
distributionp. We varyp from 1 to 10. For each sensor clus-
ter, the normal distribution parameter is randomly selected
from 1 to 10. (5) The number of iterations in H-SMARTc.
We use simulation to find a proper value forc.

The performance metrics are (a) deployment quality and
(b) cost. Deployment quality is shown by the balance
degree measured by the standard deviation of the num-
ber of sensors in all the grids, and also the average dif-
ference between every pair of grids. Deployment cost is
measured by the energy consumption, in terms of over-
all moving distance and also, to a less extent, the number
of total moves. Since the number of rounds, which rep-
resents the convergence rate of the algorithms, are static
except SMART(m, c), we only test the round number of
SMART(m, c), and find the properc for it.

5.2 Simulation results

Figure 9 shows the resultant performance of
SMART(m, c) with different c in both random and
multiple-cluster distributions. The total moving distance
decreases with the growth ofc. This is because SMART(m)
balances the distribution to the median of global average
and local average, and after one iteration, the local average
changes and the new median is generated for further
balancing. Thus, more iterations lead to a more balanced
state and when SMART(l) is applied, as in step (3), to
achieve the final balanced state, the moving distance is
smaller. The performance does not change much after three
iterations. Therefore, we use 3 as the value ofc in the
following simulation.

Figure 10 illustrates the performance of the optimal
solution (OPT), and the distributed solutions including
SMART(l), SMART(g), and SMART(m) in random dis-
tribution. To check the effect of step (3), we simulate
SMART(g

′
), which is SMART(g) without step (3). (a)

shows the resultant standard deviation. SMART(g
′
) has a
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Figure 10. Random distribution ( n = 10).

large standard deviation while SMART(l), SMART(g) and
SMART(m) have smaller ones. The standard deviation of
OPT is 0 (not shown in the figure). (b) shows average
pair difference. The results are similar with (a). Since
SMART(l) is applied to both algorithms, the desired final
balance degree is guaranteed since the difference between
the maximum and minimum load grids is upper bounded by
2, we do not examine the performance of balance degree
in the following simulation. (c) and (d) show the moving
distance and number of moves, respectively. SMART(m)
has the most moving distance, while SMART(g) has a
smaller moving distance than SMART(l). OPT has the
smallest moving distance. SMART(m) has the most num-
ber of moves. SMART(g) has the second largest number of
moves. SMART(l) has an even smaller number of moves
than OPT. Because SMART(l) can not completely balance
the distribution.

Figure 11 shows the performance in multiple-cluster and
one-cluster distribution. (a) and (b) are the moving dis-
tance and the number of moves in multiple-cluster. With
the growth of the number of clusters, the total moving dis-
tance decreases and the number of moves decreases slightly.
This is because the distribution tends to be balanced with
more sensor clusters. SMART(g) and SMART(m) have
smaller moving distances than SMART(l). SMART(m) has
the smallest among the three. The numbers of moves are the
opposite. SMART(m) has the largest while SMART(l) the
smallest. OPT has the best performance in both moving dis-
tance and number of moves. (c) and (d) are results in one-
cluster distribution. With the growth ofσ, the moving dis-
tance decreases and the number of moves decreases slightly.
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Figure 11. Multiple-cluster (M)/One-cluster
(O) normal distribution ( n = 10,m = 500).

This is because, whenσ is large, the distribution is close to
random distribution. OPT has larger moving distance than
SMART(l) because SMART(l) does not balance the loads
as it does under the one-cluster distribution circumstance.
The relative performance of SMART(l), SMART(g), and
SMART(m) are similar with that of multiple-cluster distri-
bution. However, in one-cluster distribution, the moving
distances of SMART(g) and SMART(m) are close to OPT.

Figure 12 is the performance comparison of H-SMART
with other algorithms. We use 16 as the value ofn. The
number of nodes in random distribution varies from 256 to
1280, with the step 256. Both the moving distance and the
number of moves of all the algorithms are larger than those
whenn is 10, because having more grids makes the final
distribution more balanced, which needs more consump-
tion. In H-SMART, SMART(g) is used as the fundamen-
tal operation, because it has the best overall performance
except OPT. (a) and (b) show the moving distance and the
number of moves in random distribution with the growth of
m. We can see that H-SMART further reduces the moving
distance of SMART(m), and its number of moves is be-
tween those of SMART(g) and SMART(l). (c) and (d) are
results of multiple-cluster distribution. H-SMART has bet-
ter performance than SMART(m) in both the moving dis-
tance and the number of moves. (e) and (f) are results from
one-cluster distribution. These results are consistent with
those ofn = 10, and H-SMART further increases the per-
formance of SMART(m).

Simulation results can be summarized as follows: (1)
The optimal solution has the best overall performance. (2)
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Figure 12. Comparison of H-SMART with
other algorithms ( n = 16, m = 512).

In all distributions, SMART(g) and SMART(m) have larger
numbers of moves than that of SMART(l). (3) The iteration
number of SMART(m) is as small as 3 to achieve a stable
performance. (4) H-SMART further reduces the moving
distance of SMART(m) without improving of the number
of moves in most distributions.

6 Conclusions

We present an optimal solution to the movement-assisted
sensor deployment problem using global network informa-
tion. We also consider several heuristics without global in-
formation based on SMART. One is a scan-based approach,
and the other one is a hierarchical-based approach. The
simulation results show that the optimal solution achieves
best overall performance. Among the local solutions, the
hierarchical-based algorithm has the best performance, and
these extended SMART algorithms have better performance

than the original SMART in total moving distance, espe-
cially in one-cluster distribution, where its total moving dis-
tance is as low as that of the optimal solution.

References

[1] J. Wu and S. Yang, “SMART: A scan-based movement-
assisted sensor deployment method in wireless sensor net-
works,” in Proceedings of INFOCOM, 2005.

[2] G. T. Sibley, M. H. Rahimi, and G. S. Sukhatme, “Robo-
mote: A tiny mobile robot platform for large-scale sensor
networks,” inProceedings of IEEE International Conference
on Robotics and Automation (ICRA), 2002.

[3] A. Howard, M. J. Mataric, and G. S. Sukhatme, “An in-
cremental self-deployment algorithm for mobile sensor net-
works,” Autonomous Robots, Special Issue on Intelligent
Embedded Systems, September 2002.

[4] O. Khatib, “Real time obstacle avoidance for manipulators
and mobile robots,” International Journal of Robotics Re-
search, vol. 5, no. 1, pp. 90–98, August 1986.

[5] G. Wang, G. Cao, and T. La Porta, “Movement-assisted sen-
sor deployment,” inProceedings of INFOCOM, March 2004.

[6] G. Wang, G. Cao, T. La Porta, and W. Zhang, “Sensor relo-
cation in mobile sensor networks,” inProceedings of INFO-
COM, 2005.

[7] Y. Zou and K. Chakrabarty, “Sensor deployment and tar-
get localization based on virtual forces,” inProceedings of
INFOCOM, March 2003.

[8] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier
data dissemination model for large-scale wireless sensor net-
works,” in Proceedings of MobiCOM, 2002.

[9] Y. Xu, J. Heidemann, and D. Estrin, “Geography informed
energy conservation for ad hoc routing,” inACM/IEEE Inter-
national conference on Mobile Computing and Networking,
2001.

[10] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and
K. K. Saluja, “Sensor deployment strategy for target detec-
tion,” in Proceedings of WSNA, 2002.

[11] M. Locateli and U. Raber, “Packing equal circles in a square:
a deterministic global optimization approach,”Discrete Ap-
plied Mathematics, vol. 122, pp. 139–166, Octobor 2002.

[12] D. Du, F. Hwang, and S. Fortune, “Voronoi diagrams and de-
launay triangulations,”Euclidean Geometry and Computers,
1992.

[13] “Dictionary of algorithms and data structures,” 2005,
http://www.nist.gov/dads/HTML/munkresAssignment.html.

[14] C. H. Papadimitriou and K. Steiglitz,Combinatorial opti-
mization, algorithms and complexity, Dover publications,
INC, 1998.

[15] E. Luque, A. Ripoll, A. Cortes, and T. Margalef, “A dis-
tributed diffusion method for dynamic load balancing on par-
allel computers,” inProceedings of 3rd Euromicro Workshop
on Parallel and Distributed Processing, 1995.


