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Abstract

Recent advances in computing architectures and networking are bringing parallel com-
puting systems to the masses so increasing the number of potential users of these kinds
of systems. In particular, two important technological evolutions are happening at the
ends of the computing spectrum: at the “small” scale, processors now include an in-
creasing number of independent execution units (cores), at the point that a mere CPU
can be considered a parallel shared-memory computer; at the “large” scale, the Cloud
Computing paradigm allows applications to scale by offering resources from a large pool
on a pay-as-you-go model. Multi-core processors and Clouds both require applications
to be suitably modified to take advantage of the features they provide. Despite laying at
the extreme of the computing architecture spectrum – multi-core processors being at the
small scale, and Clouds being at the large scale – they share an important common trait:
both are specific forms of parallel/distributed architectures. As such, they present to the
developers well known problems of synchronization, communication, workload distribu-
tion, and so on. Is parallel and distributed simulation ready for these challenges? In this
paper, we analyze the state of the art of parallel and distributed simulation techniques,
and assess their applicability to multi-core architectures or Clouds. It turns out that
most of the current approaches exhibit limitations in terms of usability and adaptivity
which may hinder their application to these new computing architectures. We propose
an adaptive simulation mechanism, based on the multi-agent system paradigm, to par-
tially address some of those limitations. While it is unlikely that a single approach will
work well on both settings above, we argue that the proposed adaptive mechanism has
useful features which make it attractive both in a multi-core processor and in a Cloud
system. These features include the ability to reduce communication costs by migrating
simulation components, and the support for adding (or removing) nodes to the execution
architecture at runtime. We will also show that, with the help of an additional support
layer, parallel and distributed simulations can be executed on top of unreliable resources.
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1. Introduction

In the last decade, computing architectures were subject to a significant evolution.
Improvements happened across the whole spectrum of architectures, from individual
processors to geographically distributed systems.

In 2002, Intel introduced the Hyper-threading (HT) technology in its processors [2].
An HT-enabled CPU has a single execution unit but can store two architecture states at
the same time. HT processors appear as two “logical” CPUs, so that the Operating Sys-
tem can schedule two independent execution threads. This allows a marginal increase of
execution speed due to the more efficient use of the shared execution unit. Improvements
of miniaturization and chip manufacturing technologies naturally led to the next step,
where multiple execution units (“cores”) are put on the same processor die. Multi-core
CPUs can actually execute multiple instructions at the same time. These types of CPUs
are now quite ubiquitous, being found on devices ranging from high-end servers to smart-
phones and tablets; CPUs with tens or hundreds of processors are already available [3].
The current generation of desktop processors often combines a multi-core design with
HT. This means that each physical core will be seen by the Operating System as two
virtual processors.

While many multi-core processors are homogeneous shared-memory architectures,
meaning that all cores are identical, asymmetric or heterogeneous multi-core systems also
exist. A notable example is the Cell Broadband Engine [4], that contains two PowerPC
cores and additional vector units called Synergistic Processing Elements (SPE). Each
SPE is a programmable vector co-processor with a separate instruction set and local
memory for instructions and data. Other widely used asymmetric multi-core systems
include General-Purpose Graphics Processing Units (GP-GPU) [5], which are massively
parallel devices containing up to thousands of simple execution units connected to a
shared memory. The memory is organized in a complex hierarchy, since RAM chips
do not provide enough bandwidth to feed all cores at maximum speed. GP-GPUs are
generally implemented as add-on cards which are inserted into a host computer. The host
CPU then sends data and computation to the GPU through data transfers from host to
device memory; results are fetched back to host memory when computation completes.

In modern multi-core processors, the level of complexity introduced by the hardware
is quite high; unfortunately, this complexity can not be ignored, and instead it has to
be carefully exploited at the application level. In fact, writing efficient applications for
multi/many-core processors requires a detailed knowledge of the processor internals to
orchestrate communication and computation across the available cores.

Not only hardware is undergoing the major changes just described: at the software
layer the Everything as a Service (EaaS) is gaining momentum thanks to Cloud Com-
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puting. According to NIST [6], Cloud Computing is a model for enabling on-demand
network access to a shared pool of resources.

Depending on the type of resource which is provided, we can identify different Cloud
service models. In a Software as a Service (SaaS) Cloud, customer receives access to
application services running in the Cloud infrastructure;“Google Apps” is an example of
a SaaS Cloud. A Platform as a Service (PaaS) Cloud provides programming languages,
tools and a hosting environment for applications developed by the Cloud customer. Ex-
amples of PaaS solutions are AppEngine by Google, Force.com from SalesForce, Mi-
crosoft’s Azure and Amazon’s Elastic Beanstalk. Finally, an Infrastructure as a Service
(IaaS) Cloud provides its customers with low level computing capabilities such as pro-
cessing, storage and networks where the customer can run arbitrary software, including
operating systems and applications.

The architectural evolutions described above are not completely transparent to ex-
isting applications, which therefore should be modified to take full advantage of new
features. In this paper, we focus on a specific class of software applications, namely sim-
ulation tools. Simulation can be very demanding in terms of computational resources,
for example when dealing with large and detailed models [7]. Parallel and Distributed
Simulation (PADS) [7] aims at studying methodologies and techniques for defining and
executing simulation models on parallel and distributed computing architectures. PADS
can be considered a specialized sub-field of parallel computing and simulation; as such, it
shares many common issues with other types of parallel application domains (e.g., load
balancing, partitioning, optimizing communication/computation ratio, and so on).

After a brief introduction on PADS, we review the most important challenges faced
by PADS on multi-core processors and Clouds, and argue that it needs ad-hoc solutions
which are quite different from those commonly used to develop parallel or distributed
applications. We see that, the most common PADS technologies are not adequate for
coping with such architectural evolution. In particular, we analyze the limitations of cur-
rent PADS approaches in terms of performance, functionality and usability. Moreover,
we discuss the problem of finding new metrics for the evaluation of the PADS perfor-
mance. In fact, in our view, such metrics have to consider many different aspects such
as the execution speed, the cost of resources and the simulation reliability. Finally, we
suppose that an adaptive approach can overcome many of these problems and therefore
we describe a new parallel/distributed simulation technique that is based on the dynamic
partitioning of the simulation model.

This paper is organized as follows. In Section 2 we give some background notions
on Parallel and Distributed Simulation. Section 3 deals with the challenges presented
to PADS by many-core architectures and Clouds. In Section 4 we describe and discuss
our proposal aimed to obtain more adaptable PADS. Finally, concluding remarks will be
discussed in Section 5.

2. Background

A computer simulation is a software program that models the evolution of some real
or abstract system over time. Simulation can be useful to evaluate systems before they
are built, to analyze the impact of changes on existing systems without the need to
physically apply the changes, or to explore different design alternatives.
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In this paper, we focus on Discrete Event Simulation (DES) [8]: in a DES, the model
evolution happens at discrete points in time by means of simulation events. Hence, the
simulation model is evolved through the creation, delivery and execution of events. In
its simplest form, a DES is implemented using a set of state variables, an event list, and
a global clock representing the current simulation time [8].

A simulator capable of exploiting a single execution unit (e.g., a single CPU core)
is called a sequential (monolithic) simulator. In a sequential simulation the execution
unit processes events in non-decreasing timestamp order, and updates the model state
variables and the global clock accordingly. The main advantage of this approach is its
simplicity, but is clearly inappropriate for large and complex models. First, complex
models might generate a large number of events, putting a significant workload on the
CPU. Furthermore, the memory space required to hold all state information may exceed
the RAM available on a single processor [9].

Parallel and Distributed Simulation (PADS) relies on partitioning the simulation
model across multiple execution units. Each execution unit manages only a part of the
model; in PADS each execution unit handles its local event list, but locally generated
events may need to be delivered to remote execution units. Partitioning of the simulation
model allows each processor to handle a portion of the state space and a fraction of
the events; the parallel execution of concurrent events can also lead to a reduction of
the simulation run time. Additional advantages of PADS include: the possibility to
integrate simulators that are geographically distributed, the possibility to integrate a set
of commercial off-the-shelf simulators, and to compose different simulation models in a
single simulator [7].

A PADS is obtained through the interconnection of a set of model components, usually
called Logical Processes (LPs). Therefore, each LP is responsible for the management
of the evolution of a subset of the system and interacts with the other LPs for all the
synchronization and data distribution operations [7]. In practice, each LP is usually
executed by a processor core.

The scientific literature distinguishes between parallel and distributed simulation al-
though the difference is quite elusive. Usually, the term parallel simulation refers to
simulation modeling techniques using shared-memory multiprocessors or tightly coupled
parallel machines. Conversely, distributed simulation refers to simulation techniques us-
ing loosely coupled (e.g., distributed memory) architectures [10]. It should be observed
that, in practice, execution platforms are often hybrid architectures with a number of
shared-memory multiprocessors connected through a LAN.

The lack of a global state and the presence of a network that interconnects the different
parts of the simulator has some important consequences:

• the simulation model must be partitioned in components (the LPs) [11]. In some
cases, the partitioning is guided by the structure and the semantics of the simulated
system. For example, if the simulation involves groups of objects such that most
interactions happen among objects of the same group, then it is natural to partition
the model by assigning all the objects in the same group to the same LP. However,
in the general case, it may be difficult if not impossible to identify an easy way
to partition the model. As a general rule, partitioning should guarantee that the
workload is balanced across the available LPs, and the communication between the
LPs is reduced [12, 13, 14, 15]. Therefore, the partitioning criteria strictly depends

4



both on the simulation model to be partitioned [16], on the underlying hardware
architecture on which the model will be executed, and the characteristics of the
synchronization algorithm that is implemented [17];

• the results of a parallel/distributed simulation must be identical to those of a
sequential execution. This means that causal consistency [18, 7] among simula-
tion events must be guaranteed (see Section 2.1). While causal consistency can
be trivially achieved in sequential simulations by simply executing events in non-
decreasing timestamp order, it is much harder to achieve in PADS, especially on
distributed-memory systems where LPs do not share a global view of the model.
Therefore, PADS must resort to some kind of synchronization among the different
parts that compose the simulator. Specific algorithms are needed for the synchro-
nization of the LPs involved in the execution process;

• each component of the simulator will produce state updates that are possibly rel-
evant for other components. The distribution of such updates in the execution
architecture is called data distribution. For obvious reasons, sending all state up-
dates to all LPs is impractical. A better approach is to match the data production
and consumption using some publish-subscribe method in which LPs can declare
which type of data they are interested in and what they produce [19].

Partitioning, synchronization and data distribution are important problems in the
context of PADS. Synchronization is of particular interest since parallel and distributed
simulations tend to be communication bound rather than computation bound. Therefore,
the choice of the synchronization algorithm, as well as the type of communication network
used by the execution host, plays the most important role in determining the performance
and scalability of the simulation model.

2.1. Synchronization

Implementing a parallel simulation requires that all simulation events are delivered
following a message-based approach. Two events are said to be in causal order if one
of them may depend on the other [18]. Enforcing causal order in a PADS requires that
the different LPs are synchronized. That is because every LP can proceed at different
speed, and therefore each partition of the simulation model may evolve at a different rate.
Different solutions to this problem have been proposed, which can be broadly summarized
in three main families: time-stepped, optimistic and conservative simulations.

In a time-stepped synchronization, the simulated time is divided in fixed-size intervals
called timesteps. All LPs are required to complete the current timestep before moving to
the next one [20]. The implementation of this approach requires a barrier synchronization
between all LPs at the end of each step. Time-stepped synchronization is quite easy to
implement, and it is most appropriate for models which already exhibit some form of
lockstep synchronization (e.g., VLSI circuit simulation, where the clock signal is used to
synchronize the functional blocks of the circuit). For other applications, it may be difficult
to define the correct timestep size; furthermore, time-stepped mechanisms require that
all newly generated events must be scheduled for future timesteps only (i.e., it is not
possible to generate a new event to be executed during the current timestep), and this
requirement can be too limiting for some applications.
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The goal of the conservative synchronization approach is to prevent causality viola-
tions while allowing the global simulation time to advance at an arbitrary rate. Therefore,
a LP can process an event with timestamp t only if no other event with timestamp t′ < t
will be received in the future. The Chandy-Misra-Bryant (CMB) [21] algorithm can be
used to guarantee causal delivery of simulation events in a distributed system. The CMB
algorithm requires that each LP i has a separate incoming message queue Qji for each
LP j it receives events from. Each LP is required to generate events in non-decreasing
timestamp order, so that LP i can identify the next “safe” event to process by simply
checking all incoming queues Qji: if all queues are nonempty, then the event with lowest
timestamp t is safe and can be processed. If there are empty queues, this mechanism can
lead to deadlock, which can be avoided by introducing null messages with no semantic
content. The goal of these messages is to break the circular chain that is a necessary
condition for deadlock. The main drawback of the CMB synchronization mechanism
is the high overhead introduced by null messages in terms of both network load and
computational overhead.

The optimistic synchronization approach does not impose the execution of safe mes-
sages only: each LP can process the events as soon as they are received. Causality
violations can happen if some message (called a straggler) with timestamp in the past is
received by some LP. When a causality violation is detected, the affected LP must roll
back its local state to a simulation time prior to the straggler timestamp. The roll back
mechanism must be propagated to all other LPs whose simulation time has advanced
past that of the straggler [22, 23]. This may trigger a rollback cascade that brings back
the whole simulation to a previous state, from where it can be re-executed and process
the straggler in the appropriate order. Optimistic synchronization mechanisms require
that each LP maintains enough state data and a log of sent messages, in order to be
able to perform rollbacks and propagate them to other affected LPs. A suitable snap-
shot mechanism must be executed periodically in order to compute a global state that is
“safe”, meaning that it can not be rolled back. This is essential to reclaim memory used
for events and state variables that become no longer necessary. This problem is known
as the Global Virtual Time (GVT) computation, where the GVT denotes the earliest
timestamp of an unprocessed message in an optimistic simulation. Computing the GVT
is not unlikely taking a snapshot of a distributed computation, for which the well known
Chandy-Lamport algorithm [24] can be used. However, in the context of PADS, more
efficient ad-hoc algorithms have been proposed [25].

2.2. Software tools

Many tools have been developed to support the implementation of PADS, some of
which are described below.

µsik [26] is a multi-platform micro-kernel for the implementation of parallel and dis-
tributed simulations. The micro-kernel provides a rich set of advanced features such as
the support for reverse computation and some kind of automated-load balancing. The
last version of µsik was released in 2005 and now the development seems to have stopped.
SPEEDES [27] and the WarpIV Kernel [28] have been used as testbeds for investigating
new technologies, such as the Qheap, a new data structure for event list management.
Furthermore, SPEEDES has been used for many seminal works on load-balancing in op-
timistic synchronization [29, 30]. Finally, PRIME [31] and PrimoGENI [32] have specific
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Name Author Bindings Compliance License

RTI NG Pro [39] Raytheon C++, Java Full Commercial
FDK [40] Georgia Tech C/C++ Partial Non-free
MAK RTI [41] VT MAK C/C++, Java Full Commercial
Pitch pRTI [42] Pitch Technologies Multiple Full Commercial
CERTI [43] ONERA Multiple Partial GPL/LGPL
OpenSkies RTI [44] Cybernet Systems C++ Partial Commercial
Chronos RTI [45] Magnetar Games C++/.NET Unknown Commercial
The Portico Project [46] - C++, Java Partial CDDL
SimWare RTI [47] Nextel Aerospace C++ Partial Commercial
Open HLA [48] - Java Partial Apache
OpenRTI [49] FlightGear C++,Python Unknown LGPL

Table 1: Some implementations of the HLA specification.

focus on very high scalability and real-time constraints, mainly in complex networking
environments.

One important advance in the field of PADS is the IEEE 1516–High Level Architec-
ture (HLA) standard [33] that has been approved in 2000 and recently revised under
the SISO HLA-Evolved Product Development Group [34]. HLA is a standard architec-
ture for distributed simulation that allows computer simulations to interact with other
simulations using standard interfaces.

The interest in IEEE 1516 has been initially very strong and it is still fundamental for
interoperability and reusability of simulators. Despite of this, some drawbacks have been
reported: the software architecture required by HLA [35], the lack of interoperability
among different implementations [36], its complexity and steep learning curve [37] and,
in some cases, poor execution time [38].

Table 1 shows some of the available (full or partial) implementations of the HLA
specification. In general, as expected, commercial proprietary implementations are more
compliant with the specification and feature-rich. However, the Portico Project im-
plementation is very promising even if it still does not support the new HLA-evolved
interface specification.

2.3. PADS on Many-core and Cloud Computing Platforms

The usage of many-core chips for running PADS is not a novel topic. Most of the
existing works deal with the usage of optimistic Time Warp-based tools and their per-
formance evaluation [50, 51, 52]. For example, in [50] it is shown that the architecture
of many-core processors is rather complex and that some techniques are needed for in-
creasing the execution speed (e.g., multi-level Time Warp, multi-level memory-aware
algorithms, detailed frequency control of cores). The opportunity to control the speed
of each CPU core is further investigated in [51]. In this case, the idea is that by con-
trolling the execution speed of each core, it is possible to limit the number of roll-backs
in optimistic synchronization. This approach is not different from adjusting the speed
of CPUs, a widely investigated topic, but in this case the adjustment is done on differ-
ent regions of the same chip. In [52] a multi-threaded implementation of an optimistic
simulator is studied on a 48 core computing platform. This implementation, avoiding
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multiple message copying and reducing the communication latency, is able to reduce the
synchronization overhead and improve performance. Finally, [53] shows how the Godson-
T Architecture Simulator (GAS) has been ported to a many-core architecture with very
good performance results but this has been possible mainly thanks to the loosely coupled
nature of events in the specific simulation model of the GAS.
In [54] the authors evaluate the performance of a conservative simulator on a multi-core
processor. Since the performance of conservative synchronization protocols can be af-
fected by the large number of null messages generated to avoid deadlock conditions, the
authors evaluate a number of known optimizations to reduce this overhead. A new hy-
brid protocol is finally proposed in order to combine the effectiveness of existing solutions.

A growing number of papers address the problem of running PADS on Cloud exe-
cution architectures. The early works on this topic have mainly considered the usage
of Private Clouds [55, 56, 57]; more recent works deal with the usage of Public Clouds
and the related problems [58, 59, 60]. In [61, 62] the authors describe the state of the
art of PADS on Cloud and propose a specific architecture based on a two-tier process
partitioning for workload consolidation. In [63] an optimistic HLA-based simulation is
considered and a mechanism for advancing the execution speed of federates at compa-
rable speed is proposed. In [64], an approach based on concurrent simulation (that we
have investigated in the past [65]) has been ported to the Cloud. Finally, it is worth
to mention [66] in which the authors propose to build simulations on the Cloud using
handheld devices and a web-based simulation approach.

Even if many-core CPUs and Cloud Computing environments are very different ex-
ecution architectures, with specific problems, it should be clear that the state of the
art is, in both cases, made of quite specific solutions. Solutions that are tailored for a
specific problem or a given simulation mechanism. In all cases with its own benefits and
drawbacks.

3. Challenges

As already observed in the introduction, recent technological evolutions of comput-
ing systems require software developers to adapt their applications to new computing
paradigms. Simulation developers, in particular those working on PADS, are no excep-
tion. In this section we discuss more specifically how multi-core processors and Cloud
Computing affect simulation users.

The following issues that needs to be addressed by future PADS systems:

1. Transparency: parallel simulation systems should provide the possibility to hide
low level details (e.g., synchronization and state-management issues) to the mod-
eler, should the modeler be unwilling to deal manually with these issues.

2. Simulation as a Service: what are the main challenges that should be addressed
in order to provide simulation “as a service” using a Cloud?

3. Cost Models: Cloud resources are usually provisioned on a pay-per-use pricing
model, with “better” resources (e.g., more powerful virtual processors, more mem-
ory) having higher cost. Is this pricing model suitable for PADS?
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4. Performance: Cloud Computing allows applications to dynamically shape the
underlying computing infrastructure by requesting resources to be added/removed
at run time. Cloud-enabled PADS systems should be extended to make use of this
opportunity.

3.1. Transparency

Two of the main goals of the research work on PADS in the last decades were: i)
make it fast ; ii) make it easy to use [67]. Today, PADS can be very fast when executed
in the right conditions [68], e.g., when the simulation model is properly partitioned,
the appropriate synchronization algorithm is used and the execution architecture is fast,
reliable and possibly homogeneous. In terms of usability, however, PADS does not yet
work “out of the box”.

In principle, the user of simulation tools should focus on modeling and analysis of the
results. In practice, the choice of a specific tool (e.g., a sequential simulator of some kind)
will preclude a future easy migration of the model towards another sequential simulator
of a different kind, or towards a PADS system. For example, if a user wishes to migrate
from a sequential to a parallel simulation, he will likely need to cope with such details
as the choice of synchronization algorithm (optimistic or conservative), the allocation
of simulated entities on physical execution units, details of the messaging system that
allows simulated entities to communicate, and so on.

Specifically, in PADS it is necessary to partition the simulation model across the
available execution units. A good partitioning strategy requires that the communication
among the partitions are minimized (cluster interactions) and the workload is evenly
distributed across the execution units (load balancing). In case of static simulation
models, i.e., models where the communication patterns among partitions do not change
significantly over time, it is possible to statically define the partitions at model definition
time. It should be observed that, even in the static scenario, identifying an optimal
simulation model partitioning where inter-partition communication is minimized is a
known NP-complete problem [69]. If the communication pattern changes over time, then
some form of adaptive load balancing should be employed [70]. Adaptive load balancing
is appealing since it can be applied also to static models to allow the “best” partitioning
to be automatically identified without any specific application-level knowledge. Adaptive
load balancing is difficult to implement (see [71] for an heuristic approach based on game
theory), and is still subject of active research

A better way to deal with the problems above would be to separate the simula-
tion model from the underlying implementation mechanisms, which in the case of PADS
means that low level details such as synchronization, data distribution, partitioning, load
balancing and so on should be hidden to the user. This proved to be quite difficult to
achieve in practice: an example is again the High Level Architecture (IEEE 1516) [33]
that supports optimistic synchronization, but the low-level implementation of all the sup-
port mechanisms (such as rollbacks, see Section 2) is left to the simulation modeler [72].
Therefore, an existing conservative HLA simulation can hardly be ported to an optimistic
simulation engine.

3.2. Simulation as a Service

As already described in Section 2, some work on Cloud-based PADS has already been
done [55, 56, 57]. In many of these works, Cloud technology is used for executing simu-
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lations in private Clouds. The goal is to enjoy the typical benefits of Cloud Computing
(elasticity, scalability, workload consolidation) without giving up the guarantees offered
by an execution environment over which the user has a high degree of control. However,
the vast majority of simulation users do not own a Private Cloud, therefore it would
be much more interesting to run parallel simulations on a Public Cloud, using resources
rented with a pay-per-usage model.

Obviously, the partitioning problem described above still holds; additionally, due to its
nature, a Public Cloud provides a somewhat less predictable environment to applications.
For example, execution nodes provided to users may be located in different data centers,
have slightly different raw processing power, and be based on physical resources (e.g.,
processors) that are shared with other Cloud customers through virtualization techniques.

Considering the non-technical aspects, one of the potential advantages of the Public
Cloud is the existence of multiple competing providers, that could – at least in principle
– lead to a a “market of services”. In other words, the same service (e.g., computation)
could be provided by many vendors and therefore the price is the result of a market econ-
omy of supply and demand. To take advantage of the competition among vendors, and
the resulting price differences, the user must be able to compose services from different
providers. The result is an heterogeneous architecture where performance and reliability
aspects must be carefully taken into account.

However, the scenario above is unlikely, due to the lack of interoperability and the
use of different APIs by different vendors. While in the short term vendor lock-in is
beneficial to service providers, there already is pressure towards the use of open standards
in Cloud Computing, especially in the academic/research community, culminated in the
Open Cloud Computing Interface (OCCI) specifications [73]. It remains to be seen if
and when open Cloud standards will be able to carve into the corporate community.

3.3. Cost Models

The performance of a simulator is usually evaluated on the basis of the time needed
to complete a simulation run (Wall-Clock-Time, WCT). However, this is not the only
metric, and in some scenario it may also not be the most relevant one. For example, if the
simulation is going to be executed on resources acquired from a Cloud provider, another
important metric is the total cost of running the simulation, which is related both to
to the WCT and also to the amount of computation and storage resources acquired.
Therefore, the user of simulation tools will have to decide:

• How much time he can wait for the results;

• How much he wants to pay for running the simulation.

The first constraint (how much time the user is willing to wait) should be always taken
into consideration in any cost model. If no upper bound is set on the total execution
time, then the cost of running the simulation essentially drops to zero, since that would
allow the use of extremely cheap (if not totally free) resources of proportionally low
performance. In practice, nobody is really willing to wait an arbitrary long time; hence
a maximum waiting time is always defined, and this influences the cost of the resources
that must be allocated to run the simulation: faster (and therefore expensive) resources
are needed if the simulation result has to be provided quickly; slower (cheaper) resources
can be employed if the user can tolerate a longer waiting time.
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It is clear that, in a Public Cloud scenario, every computation and communication
overhead should be minimized or at least carefully scrutinized. However, the two tradi-
tional synchronization mechanisms used in PADS (the Chandy-Misra-Bryant algorithm
and the Time Warp protocol) have not been developed with these considerations in mind.

The Chandy-Misra-Bryant (CMB) algorithm [21] is one of the most well-known mech-
anisms used for conservative synchronization. Due to its nature, it requires the definition
of some artificial events with the aim of making the simulation proceed. The number of
such messages introduced by the synchronization algorithm can be very large [74, 75].
Obviously, this communication overhead has a big effect on the WCT. Over the years,
many variants have been proposed to reduce the number of such messages [76] and there-
fore reduce the communication cost. Despite of this, in some cases, the CMB synchro-
nization can still be prohibitive under the performance viewpoint. On the other hand,
the consideration that computation is much faster and cheaper than communication is
at the basis of optimistic synchronization, e.g., the Time Warp protocol [22].

Both the conservative and optimistic synchronization mechanisms described above
are not well suited for execution environments based on a “pay per use” pricing policy.
Conservative synchronization is in general communication-bound and does not make
effective use of CPUs. On the other hand, in a optimistic simulation, a very large part
of the computation can be thrown away due to roll-backs. Very often the roll-backs do
not remain clustered in a part of the simulator as they spread to the whole distributed
execution architecture. This diffusion is usually implemented using specially crafted
messages (called anti-messages) that consume a non-negligible amount of bandwidth.
Finally, to implement the roll-back support mechanism it is necessary to over-provision
many parts of the execution architecture (e.g., volatile memory). In a Public Cloud
environment, all these aspects can have a very large impact on the final cost paid for
running the simulation.

To summarize, the Public Cloud comes with a new cost model. Up to now most of
the budget was for the hardware, the simulation software tools and writing the simula-
tion model. Now it is no longer necessary to buy hardware for running the simulations,
as computation is one of the many services that can be rented. If the goal is to have
simulations that really follow the “everything as a service” paradigm, then we need some
better way for building PADS, with mechanisms that need to be less “expensive”, both
in terms of computation and communication requirements. In this case, the main eval-
uation metric should not be the execution speed but the execution cost (or more likely
a combination of both). A deeper look at the cost model of Public Clouds (e.g. Ama-
zon [77]) reveals some interesting facts. The pricing is often complex, with many different
choices, configurations and options. For example, a new customer willing to implement
a new service on top of the Amazon EC2 Cloud has to choose among several options:
“On-Demand Instances2”, “Reserved Instances” (Light, Medium or Heavy Utilization
versions) and “Spot Instances”. Furthermore, there are many instance types to choose
from (e.g., General Purpose, Compute Optimized, GPU, Memory Optimized, Storage
Optimized, Micro), each of them with many available options. Finally, for the dismay of
many costumers, the price of each instance changes in the different regions (i.e., zones

2In the Cloud Computing terminology, an instance is a virtual machine running some operating
system and application software. A new instance can usually be obtained and booted in some minutes
or less.
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of the world). It is clear that each price and the detailed service specifications (e.g., the
amount of free data transfer provided to each virtual instance) are part of a business strat-
egy and therefore can change very quickly. Focusing more on the technical aspects, many
of the “elastic” features (the possibility to dynamically scale up or down the resources
(e.g. computation, memory, storage) provided by the Cloud have been built specifically
for Web applications and therefore cannot be easily used for building simulators.

In [58], the authors analyze the cost optimization of parallel/distributed simulations
run on the Amazon EC2 platform. More in detail, a cost to performance metric is defined
and it used to find what EC2 instance type delivers the highest performance per dollar.
In the paper, the most common EC2 instance types are analyzed under some assumptions
(e.g. it is not considered that each partial instance-hour consumed is billed as a full hour).
More in detail, the authors find that, under their metric, the best strategy is to use large
(and costly) instances. This happens because in this kind of instance it is possible to
cluster together many LPs and therefore minimize the network load.

3.4. Performance

We now focus our attention on the performance of a PADS implemented on a Public
Cloud, when then goal is to obtain the results as fast as possible (i.e. the minimizing the
WCT).

As usual, even if there are many aspects that could be considered, we focus on syn-
chronization. Limiting the discussion on synchronization is not a concern given that if
synchronization has poor performances then the rest of the simulator will not do much
better. What would happen if the synchronization algorithms described in Section 2.1 are
run on a Public Cloud without any modification? What performance can be expected?

Our analysis starts with the simplest synchronization algorithm: the time-stepped.
As said before, the simulation time is divided in a sequence of steps and it is possible to
proceed to the next timestep only when all the LPs have completed the current one. It
is clear that the execution speed is bounded by the slowest component. This can be very
dangerous in execution environments in which the performance variability is quite high.
The whole simulation could have to stop due to a single LP that is slow in responding.
This could happen for an imbalance in the model partitioning or for some network issues.

What about the Chandy-Misra-Bryant algorithm? We have already said that this
algorithm is very demanding in terms of communication resources and that, in this case
too, a slow LP could be the bottleneck of the whole simulation. The last possibility
is to use an optimistic synchronization algorithm such as the Jefferson’s timewarp [22].
This algorithm is not very promising either: timewarp is well-known to have very good
performance when all LPs can proceed with an execution speed that is almost the same.
This usually means that all LPs have to be very homogeneous in terms of hardware,
network performance and load. Otherwise, the whole simulation would be slowed down
by the roll-backs caused by the slow LPs. A requirement that is hard to satisfy in a Public
Cloud environment. All these synchronization approaches have some characteristics that
do not fit well with the Public Cloud architecture. A more detailed analysis shows that
each approach has some pros and cons but the key problem is that all of them are not
adaptable. It is just like working on dynamic problems with a static methodology.

In [58], the authors assess the performance and cost efficiency of different conservative
time synchronization protocols (i.e. null-message sending strategies) when a distributed
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simulation is run on a range of Cloud resource types that are available on Amazon
EC2 (i.e., different instance types). This work demonstrates that the simulation execu-
tion time can be significantly reduced using synchronization algorithms that are tailored
for this specific execution environment and furthermore it shows that the performance
variability, which is typical in low price instance types, has a noticeable impact on per-
formance. Moreover, the authors foresee the adoption of dynamic forms of partitioning
of the simulation model.

An interesting aspect of Cloud Computing is that it allows the application to shape
the underlying execution infrastructure, rather than the other way around. This means
that the application may require more resources (e.g., instantiate other computing nodes)
or release them at run time. Focusing on computing power, a Cloud application may
require a larger/lower number of computing nodes of the same type of those already
running (horizontal scaling), or request to upgrade some or all the current computing
nodes to a higher configuration, e.g., by asking for a faster processor or more memory
(vertical scaling).

PADS could benefit from the above scaling opportunities, since they could be used to
overcome the load balancing issues. Specifically, a simulator could request more comput-
ing nodes to reduce the granularity of the model partitioning (horizontal scaling), with
the goal of reducing the CPU utilization of processor-bound simulations. On the other
hand, for communication-bound models the simulator could consolidate highly interact-
ing LPs on the same processor to replace remote communications with local ones. In this
case, the simulator may request the Cloud to upgrade the nodes where the higher number
of LPs are located (vertical scaling) in order to avoid the introduction of a CPU-bound
bottleneck.

Deciding when and how to scale is still an open problem. For the when part, the
user needs to define a decision procedure that tells when additional resources must be
requested (upscaling) or when some of the resources being used can be relinquished to the
Cloud provider (downscaling). Upscaling may be required to speed up the simulation,
e.g., to meet some deadline on the completion time; upscaling may also be used during
interactive simulations to focus on some interesting phenomena with a higher level of
detail. Upscaling brings the issue of how to scale, i.e., choosing between horizontal and
vertical scaling. The decision ultimately depends on the cost model being used (refer
again to Section 3.3). If the user is only interested in maximizing the performance
of PADS, then vertical scaling is more likely to provide benefits since it consolidates
the workload on a lower number of more powerful nodes, thus reducing the impact of
communication costs. If the cost model takes into consideration both performance and
cost, then the choice between vertical and horizontal scaling becomes less obvious.

4. The Quest for Adaptivity

So far, we have analyzed some of the limitations of current PADS approaches. Before
attempting to address these limitations, it is important to realize that there is no “silver
bullet”, i.e., no single solution that addresses them all in a comprehensive and coherent
way. The last attempt to obtain a “one size fits all” approach to PADS resulted in the
the IEEE 1516 standard [33] that, as we mentioned, attracted several criticisms due to
its complexity and limitations [35, 36, 37, 38].
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In this section we describe an approach to build scalable and adaptive simulation
models by addressing the partitioning problem [15], that is the decomposition of the
simulation model into a number of components and their allocation among the execu-
tion units. Our approach aims at achieving two goals: balance the computation load
in the execution architecture and minimize the communication overhead [11]. If both
these requirements are satisfied, then the simulation execution is likely to be carried out
efficiently. The difficult part is that the balancing procedure should be transparent to
users and adaptive. Adaptivity is of extreme importance given that both the behavior
of the simulation model and the state of the underlying execution architecture can not
be accurately predicted.

In our view, the adaptive partitioning of the simulation model is a prerequisite for a
solution to most of the PADS problems described in the previous sections.

4.1. Model Decomposition

A complex simulation model should be partitioned in smaller parts referred to as
Simulated Entities (SEs). Each SE interacts through message exchanges with other SEs
to implement the expected behavior. We assume that the execution environment consists
of a set of interconnected Physical Execution Units (PEUs). For example, each PEU can
be a core in a modern multi-core CPU, a processor in a shared memory multiprocessor,
a node in a LAN-based cluster or even a Cloud instance. Following the PADS approach,
the simulated model is partitioned among all the PEUs and each PEU is responsible
for the execution of only a part of the model. In a traditional PADS, the model is
partitioned in a set of Logical Processes (LPs) and each LP runs on a different PEU.
Instead, in our case the LPs act as containers of SEs. In other words, the simulation
model is partitioned in basic components (i.e., the SEs) that are allocated within the
LPs. The SEs does not need to be statically allocated on a specific LP; indeed, each SE
can migrate to improve the runtime efficiency of the simulator [78], as will be described
shortly. For better scalability, new LPs can be allocated during the simulation, and idle
ones can be disposed.

In practice, the simulation is organized as a Multi Agent System (MAS) [79]. The
MAS paradigm has the potential to enhance usability and transparency of simulation
tools (as discussed in Section 3.1). Choosing the proper granularity of the SEs can be
problematic. Having a large number of very simple entities will probably increase the
communication and management overhead. Conversely, having only a few big entities
means that the workload can be spread less effectively across the available PEUs, re-
sulting in bad load balancing. The appropriate granularity of entities can sometimes be
“suggested” by the simulation model itself; for example, it is pretty natural to model
each node in a wireless network as a single SE.

4.2. Dynamic Partitioning

To properly partition the model, we have to consider two main aspects. First, a
PADS has to deal with a significant communication cost due to network latency and
bandwidth limitations. Second, the execution speed of the simulator is bounded by its
slowest component and therefore effective load balancing strategies must be implemented
to quickly identify and remove performance “hot spots”. As seen in Section 3.4, both
the communication overhead and the computation bottlenecks have a big influence on
the simulators performance (e.g., synchronization).
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An effective strategy to reduce communication costs is to cluster the strongly in-
teracting SEs together within the same LP [80]. However, a too aggressive clustering
may result in poor load balancing if too many SEs are brought inside the same LP.
Since communication patterns may change over time, the optimal partitioning is in gen-
eral time-dependent, and is the result of a dynamic optimization problem with multiple
conflicting goals and unknown, time-varying parameters.

(a)

(b)

Figure 1: A PADS with three LPs and ten SEs. 1a) Initial situation; 1b) After migration.

Figure 1a shows an example where a distributed simulation runs on two hosts con-
nected by a local area network. Host 1 has a single PEU (e.g., a processor with a single
core) and executes one LP, Host 2 has two PEUs executing one LP each. An LP is the
container of a set of SEs that interact through message exchanges (depicted as dotted
lines in the figure). The colors used to draw the SEs represent the different interac-
tion groups, that is, groups of SEs that interact the most. The interaction groups are
{SE1,SE3,SE7,SE10}, {SE2,SE5,SE6} and {SE4,SE8,SE9}. If these interaction groups
are expected to last for some amount of time, a more efficient allocation that reduces the
communication overhead would be to migrate SEs as shown in Figure 1b, so that each
interaction group lies within the same LP. In this simple example, interaction groups are
of approximately the same size, and therefore the new allocation is well balanced.

Since the interaction pattern between SEs may change unpredictably, it is necessary
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to rely on heuristics that monitor the communication and the load of each LP, and decide
if and when a migration should happen. Obviously migrations have a non-negligible cost
that includes the serialization of state variables of the SE to be migrated, the network
transfer delay, and the de-serialization step required before normal operations can be
restored at the destination LP.

The overall execution speed of the whole simulation is therefore the result of two
competing forces: one that tries to aggregate SEs to reduce communication costs, and
the other one that tries to migrate SEs away from overloaded LPs. Our experience with
the practical implementation of adaptive migration strategies is reported in the following.

4.3. ARTÌS and GAIA+

Figure 2: High level structure of the simulator and its main components

In the last years, we pursued the approach described so far with the realization of a
new simulation middleware called Advanced RTI System (ARTÌS) and the companion
GAIA+ framework (Generic Adaptive Interaction Architecture) [15, 78, 80]. The high
level structure of our simulator is shown in Figure 2. The upper layer (labeled Simulation
Model) is responsible for the allocation of the state variables to represent the evolution of
the modeled system, the implementation of the model behavior and the necessary event
handlers. The simulation model is built on top of the GAIA+ software framework, that
provides the simulation developer with a set of services such as high level communication
primitives between SEs, creation of SE instances and so on. GAIA+ can analyze the
interactions (i.e., message exchanges) between SEs to decide if and how SEs should be
clustered together, also providing the necessary support services. Given the distributed
nature of a PADS, each LP analyzes the interactions of all SEs it hosts, and takes mi-
gration decisions based on local information and information received from other LPs,
so that adaptivity can be achieved without resorting to any centralized component. Fi-
nally, in the layered architecture shown in the figure, the ARTÌS middleware [81] provides
common PADS functionalities such as synchronization, low level communication between
LPs, and simulation management services.

To validate ARTÌS and GAIA+, a number of models have been implemented, includ-
ing wired and wireless communication environments [82, 83]: using the ideas previously
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described, it has been possible to manage the fine grained simulation of complex commu-
nication protocols such as IEEE 802.11 in presence of a huge number of nodes (up to one
million) [15]. In the wired case, we are working on the design and evaluation of gossip
protocols in unstructured networks (e.g., scale-free, small-world, random) [84, 85]. Good
scalability has been achieved, using off-the-shelf hardware, thanks to the use of adaptive
migration and load balancing techniques. Both this software tools have been designed
to be platform-independent. In particular, the dynamic partitioning feature provided
by GAIA+ fits very well with the horizontal and vertical scalability provided by Cloud
Computing.

The ARTÌS middleware, the GAIA+ framework, sample simulation models, and the
support scripts and scenario definition files are freely available for research purposes [81].
A large part of the software is provided in both binary and source form. We expect to
make the source code for all components available through an open source license.

4.4. Case study

A complete evaluation of GAIA+/ARTÌS is outside the scope of this paper; however,
a simple case study can be useful to better understand the proposed mechanism, and will
be illustrated in this section. For the sake of simplicity, we consider only the adaptive
clustering approach used to reduce the communication overhead. Advanced forms of
load-balancing and reaction to background load have been implemented as well, but will
not be examined here.

We consider a time-stepped, ad hoc wireless network model of 9999 Mobile Hosts
(MHs). The simulated scenario is a two-dimensional area (10000 × 10000 units) with
periodic boundary conditions, in which each MH follows a random waypoint mobility
model (maxspeed = 10 space-units/time-unit, 70% of nodes move at each timestep).
The communication model is very simple and does not consider the details of low level
medium access control. At each timestep, a random subset of 20% of the MHs broadcasts
a ping message to all nodes that are within the transmission radius of 250 space units.
This model captures both the dynamicity of the simulated systems and the space locality
aspects of wireless communication. The MHs have been partitioned in 3 PEUs, each one
running a single LP.

Our analysis starts with a scenario in which simulated entities do not migrate across
LPs (the GAIA+ migration engine is turned off). To balance the workload evenly across
the three LPs, each one should receive approximately 9999/3 = 3333 MHs. A simple
metric that can be used to assess the ability to properly cluster the simulated components
is the Local Communication Ratio (LCR), defined as the percentage of local messages
with respect to the total messages sent or received by a simulated component (higher is

better). A random assignment of MHs to LPs results in a LCR of
100

#LP
(%), where #LP

as the number of LPs in the PADS. By taking into consideration the model semantics, we
know that the communication between entities exhibits a strong spatial locality within
the simulation area, since each MH only interacts with a local neighborhood. Therefore,
a better assignment of MHs to LPs can be obtained by partitioning the simulated area,
e.g., in vertical stripes, and to allocate all MHs in each stripe to the same LP, as shown
in Figure 3a. However, such allocation works well for the initial simulation steps, but
then quickly degenerates as the spatial position of MHs change as the results of their
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Figure 3: Spatial position and allocation in LPs of the mobile wireless nodes simulation at different time
steps. The color and shape of dots shows in which LP each node is allocated. Adaptive migration is not
active (GAIA+ off).

movement. The situation can be observed in Figures 3b through 3d, where the initial
spatial locality of MHs is rapidly destroyed.

Figure 4 shows what happens when the adaptive migration facility of GAIA+ is turned
on, starting from a completely random allocation of MHs to LPs. GAIA+ analyzes the
communication pattern of each MH and clusters the interacting hosts in the same LP.
A snapshot at the end of the run (Figure 4b) shows that the MHs have been clustered
in groups, and that each group is determined by its position in the simulated area. It is
interesting to observe that Figure 4b is similar to what would be produced by Schelling’s
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Figure 4: Spatial position and allocation in LPs of the mobile wireless nodes at different time steps.
The color and shape of dots shows in which LP each node is allocated. Adaptive migration is activated
(GAIA+ ON).

segregation model [86]; indeed, each MH has a preference towards the other MHs with
which it communicates the most, and GAIA+ tries to cluster those MHs together within
the same LP.
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Figure 5: Local Communication Ratio (LCR) evolution with different initial allocations.

The performance of the static allocation versus the dynamic allocation implemented
by GAIA+ is shown in Figure 5. The green line shows the mean LCR as a function of
the simulated time step if MHs are statically assigned to the LPs at the beginning, while
the red line shows the mean LCR when the adaptive migration of GAIA+ is enabled.
Figure 5a corresponds to the situation in which all MHs are initially randomly assigned
to the LPs. As discussed above, the expected LCR in this situation is about 33%, which
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is the initial value at step t = 0. As the simulation proceeds, the LCR provided by
the static allocation remains at the initial value. On the other hand, if the adaptive
migration feature (GAIA+) is activated then the LCR rapidly increases.

In Figure 5b we use the “sliced” allocation at t = 0, where MHs are assigned to LPs
according to their initial position. In the case of static mapping (green line), the LCR
drops to 33% as the movement of MHs destroys the initial statically imposed locality. If
adaptive migration is used, the LCR remains stable at a nearly optimal value.

It is important to remark that a high LCR value does not guarantee, by itself, that
a PADS scales well. In fact, migrating simulation entities does have a cost that can
be significant if a large amount of state information needs to be moved from one PEU
to another. However, previous studies have shown that good scalability can indeed be
achieved even for models that do not exhibit the simple spatial locality of wireless ad-hoc
networks [87].

It is important to remark that the particular metric considered in this section (LCR)
is independent from the execution environment (e.g., private clusters, Private or Public
Clouds). In fact, a high LCR value demonstrates that the dynamic clustering of the
simulated entities performed by GAIA+ leads to a reduction in the communication over-
head since most communications are local. The actual impact of this reduction on the
simulation wall-clock time depends on the (absolute) communication costs of the specific
execution environment.

4.5. Fault Tolerance

So far, we have described our effort in building adaptive PADS. In our opinion, this
is a first step towards simulations that are able to run efficiently on modern computing
infrastructures. A key point is still missing: the support for fault tolerance in distributed
simulation. Usually, if a LP crashes (e.g., due to hardware failure of the underlying
PEU), then the whole simulation aborts. In the case of a long-running simulation that is
executed on hundreds or thousands of PEUs, the probability of a hardware failure during
execution can not be neglected. Therefore, fault tolerance is essential, especially if we
wish to run large-scale simulations on cheap but unreliable execution systems such as
resources provided by a Cloud infrastructure.

A new software layer called GAIA Fault-Tolerance (GAIA-FT) extends the interface
provided by GAIA+ with provisions for fault tolerant execution. A GAIA-FT simulation
is made by a set of interacting Virtual Simulated Entities (VSEs). A VSE is implemented
as a set of identical SEs running on different LPs, therefore achieving fault tolerance
through replication.

By selecting the number of replicas it is possible to decide how many crashes we want
to tolerate, and also cope with byzantine failures. From the user’s point of view, a VSE
is just a special type of SE; in other words, the replication introduced by GAIA-FT is
totally transparent and is built on the lower layers of the GAIA+ architecture. This
means that the adaptive strategies described so far are still available and can be used to
migrate replicas within a VSE to improve load balancing and communication. The basic
implementation of GAIA-FT has been recently completed, and we are in the process of
evaluating the replication mechanism.

Of course, fault tolerance comes at a cost, since replication increases the number of
SEs to be partitioned. Therefore requiring more resources to execute the simulation,
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both in term of execution nodes and wall-clock time. This means that, a larger number
of LPs will be used and that they will need to be kept synchronized in order for the
simulation to advance, so the issues already described in Section 3.4 apply. Finally, when
multiple copies of the same SE are created, the simulation middleware must ensure that
all copies reside in LPs that are run on different execution nodes, to avoid that a failed
processor brings down multiple replicas of the same SE. This makes the load balancing
task more complex, since a new constraint is introduced (namely, multiple copies of the
same SE must never reside on the same LP or on LPs that are run on the same execution
node). Identifying a reasonable trade-off between reliability and performance in a parallel
simulation is an interesting research topic that we are pursuing.

5. Conclusions

In this paper, we have reviewed the main ideas behind Parallel and Distributed Sim-
ulation (PADS), and we observed that current PADS technologies are unable to fulfill
many requirements (e.g. usability, adaptivity) in the context of the new parallel comput-
ing architectures.

Most computing devices are already equipped with multi-core CPUs, and Cloud-based
technologies, where computation, storage and communication resources can be acquired
“on demand” using a pay-as-you go model, are gaining traction very quickly. The “sim-
ulation as a service” paradigm has already been proposed as a possible application of
Cloud technologies to enhance simulation tools.

We have shown that, the current PADS techniques are unable to fit well with these
architectures, and that more work is needed to increase usability and performance of
simulators in such conditions. We claim that a solution for such problems is required
to deal with model partitioning across the execution nodes. To this aim, we propose an
approach based on multi-agent systems. Its main characteristic is the adaptive migration
of the simulated entities between the execution units. Heuristics can be used to reducing
the communication cost and to achieve better load balancing of the simulation workload.
Our proposal has been implemented in the ARTÌS/GAIA+ simulation middleware and
tested with different models, with promising results.

Finally, the horizontal and vertical scaling possibilities provided by Cloud systems (see
Section 3.4) deserve further investigations in the context of PADS. The Cloud Computing
paradigm allows applications to request the type and amount of resources of their choice
at run time, enabling dynamic sizing of the execution environment. How to enable a larger
class of applications to take advantage of these possibilities is yes to be understood.
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Acronyms

ARTIS Advanced RTI System
CMB Chandy-Misra-Bryant
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COTS Commercial Off-The-Shelf
DES Discrete Event Simulation
EOS End of Step
GAIA+ Generic Adaptive Interaction Architecture
GPU Graphics Processing Units
GVT Global Virtual Time
HLA High Level Architecture
HPC High Performance Computing
HT Hyper-Threading
LCR Local Communication Ratio
LP Logical Process
MAS Multi Agent System
MH Mobile Host
PADS Parallel and Distributed Simulation
PEU Physical Execution Unit
SE Simulated Entity
SIMD Single Instruction Multiple Data
VSE Virtual Simulated Entity
WCT Wall Clock Time
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