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Abstract

In-memory (transactional) data stores, also referred to as data
grids, are recognized as a first-class data management technology for
cloud platforms, thanks to their ability to match the elasticity re-
quirements imposed by the pay-as-you-go cost model. On the other
hand, defining the well-suited amount of cache servers to be deployed,
and the degree of in-memory replication of slices of data, in order to
optimize reliability/availability and performance tradeoffs, is far from
being a trivial task. Yet, it is an essential aspect of the provisioning
process of cloud platforms, given that it has an impact on how well
cloud resources are actually exploited. To cope with the issue of de-
termining optimized configurations of cloud in-memory data stores, in
this article we present a flexible simulation framework offering skeleton
simulation models that can be easily specialized in order to capture
the dynamics of diverse data grid systems, such as those related to
the specific (distributed) protocol used to provide data consistency
and/or transactional guarantees. Besides its flexibility, another pecu-
liar aspect of the framework lies in that it integrates simulation and
machine-learning (black-box) techniques, the latter being essentially
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used to capture the dynamics of the data-exchange layer (e.g. the mes-
sage passing layer) across the cache servers. This is a relevant aspect
when considering that the actual data-transport/networking infras-
tructure on top of which the data grid is deployed might be unknown,
hence being not feasible to be modeled via white-box (namely purely
simulative) approaches. We also provide an extended experimental
study aimed at validating instances of simulation models supported
by our framework against execution dynamics of real data grid systems
deployed on top of either private or public cloud infrastructures. Par-
ticularly, our validation test-bed has been based on an industrial-grade
open-source data grid, namely Infinispan by JBoss/Red-Hat, and a
de-facto standard benchmark for NoSQL platforms, namely YCSB by
Yahoo. The validation study has been conducted by relying on both
public and private cloud systems, scaling the underlying infrastructure
up to 100 (resp. 140) Virtual Machines for the public (resp. private)
cloud case.

1 Introduction

The advent of cloud computing has led to the proliferation of a new genera-
tion of in-memory, transactional data platforms, often referred to as NoSQL
data grids, among which we can find products such as Red Hat’s Infinispan
[1], VMware vFabric GemFire [2], Oracle Coherence [3] and Apache Cassan-
dra [4]. These platforms well meet the elasticity requirements imposed by the
pay-as-you-go cost model since they (a) rely on a simplified key-value data
model (as opposed to the traditional relational model), (b) employ efficient
in-memory replication mechanisms to achieve data durability (as opposed to
disk-based logging) and (c) natively offer facilities for dynamically resizing
the amount of hosts within the platform. They are therefore widely recog-
nized as a core technology for, e.g., emerging big data applications to be
hosted in the cloud.

However, beyond the simplicity in their deploy and use, one aspect that
still represents a core issue to cope with when adopting in-memory NoSQL
data grids is related to the (dynamic) resize and configuration of the system.
This is of paramount importance in the cloud anytime some predetermined
Service Level Agreement (SLA) needs to be matched while also minimizing
operating costs related to, e.g., renting the underlying virtualized infrastruc-
ture. However, accomplishing this goal is far from being trivial, as fore-
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casting the scalability trends of real-life, complex applications deployed on
distributed in-memory transactional platforms is very challenging. In fact, as
also shown in [5], when the number of nodes in the system grows and/or the
workload intensity/profile changes, the performance of these platforms may
exhibit strong non-linear behaviors, which are imputable to the simultane-
ous, and often inter-dependent, effects of contention affecting both physical
(CPU, memory, network) and logical (conflicting data accesses by concurrent
transactions) resources.

Recent approaches have tackled the issue of predicting the performance of
these in-memory data grid platforms (e.g. to assist dynamic reconfiguration
processes) by relying on analytical modeling, machine learning or a combi-
nation of the two approaches (see, e.g., [6, 5]). In this article we provide
an orthogonal solution which is based on the combination of discrete event
simulation and machine learning techniques.

Specifically, we provide a framework for instantiating discrete event mod-
els of data grid platforms, which can be exploited for what-if analysis in order
to determine what would be the effects of reconfiguring various parameters,
like: (i) the number of cache servers within the platform; (ii) the degree of
replication of the data-objects; (iii) the placement of data-copies across the
platform. Hence, it can be used in order to determine well suited configura-
tions (e.g. minimizing the cost for the underlying virtualized infrastructure)
vs variations of the volume of client requests, the actual data conflict and the
locality of data accesses. It can also be used for long term SLA-driven plan-
ning in order to determine whether the data grid can sustain an increase in
the load volume and at what operational cost - as a reflection of the increased
amount of resources that shall be provisioned from the cloud infrastructures.

The framework has been developed as a C static library implementing
data grid models developed according to the traditional event-driven simula-
tive approach, where the evolution of each individual entity to be simulated
within the model is expressed by a specific event-handler (1). On the other
hand, the library has been structured in order to allow easy development
of models of data grid systems offering specific facilities and supporting spe-
cific data management algorithms (e.g. for ensuring consistency of replicated
data). As for this aspect, distributed data grids relying on two-phase-commit
(2PC) as the native scheme for cache server coordination, as typical of most

1The actual code implementing the framework is freely available for download at the
URL http://www.dis.uniroma1.it/˜hpdcs/software/dags-with-cubist.tar
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of the mainstream implementations (see, e.g., [1]), have an execution pattern
already captured by the skeleton model offered by the library. Hence, models
of differentiated 2PC-based data management protocols could be easily im-
plemented on top of the framework. Further, models natively offered within
the framework include those of data grids ensuring repeatable read seman-
tics, which are based on lazy locking. Models of primary data ownership vs
multi-master schemes are also natively supported.

The ability of our simulation framework to reliably capture the dynamics
of data grid systems deployed in real cloud environments is strengthened by
the combination of the white-box simulative approach with black-box ma-
chine learning techniques. The latter aim to capture (and to predict) the
data-transport/networking sub-system dynamics. This kind of integration
spares us (and any framework user) from the burden of explicitly model-
ing the dynamics of the network layer within the simulation code, which is
known to be an error-prone task given the complexity and heterogeneity of ex-
isting network architectures and/or message-passing/group-communication
systems [7] (2). Also, the reliance on machine learning for modeling network
dynamics widens the framework practical usability in modeling data grid
systems deployed over virtualized cloud environments where users have little
or no knowledge of the underlying network topology/infrastructure and of
how the lower level message passing sub-systems are structured. For these
scenarios, the construction of white-box simulative models would not only
be a complex task, rather it would be unfeasible.

Fidelity of the framework in modeling the dynamics of real systems is
demonstrated via a case study where we compare simulation outputs with
measurements obtained running the YCSB benchmark by Yahoo [9], in differ-
ent configurations, on top of the Infinispan data grid system by JBoss/Red-
Hat [1], namely the mainstream data layer for the JBoss application server.
We note that the YCSB benchmark has been designed to explicitly assess
the run-time behavior of cloud data stores, and has been already exploited
as a reference in a set of recent studies (see, e.g., [5]), hence looking as an
ideal candidate for the our validation study. Also, Infinispan supports dis-
tributed data management schemes that can be considered as instances of
“archetypal” ones, which strengths the relevance of our study in assessing

2Group communication systems such as [8] are often used as data exchange layers
within real data grid products. They typically exhibit complex dynamics that can vary on
the basis of several parameters, hence being difficult to be reliably captured via white-box
models.
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the actual quality of the models that can be instantiated via the framework.
Further, the experiments have been conducted by relying on both private
and public (namely FutureGrid [31]) cloud systems, by scaling the under-
lying infrastructure up to 140 Virtual Machines for the private cloud, and
up to 100 Virtual Machines for the public one. By the validation study, the
framework provides (at least) 80% accuracy in predicting core performance
metrics such as the system throughput across all the tested configurations,
and on the order of 95% accuracy for most of them.

The remainder of this paper is structured as follows. In Section 2 we
discuss related work. The framework organization is presented in Section 3.
Experimental data are reported in Section 4.

2 Related Work

The issue of optimizing the configuration of data grids has been addressed
in literature according to differentiated methodologies. The recent works
in [5, 10, 11] provide approaches where analytical modeling and machine
learning are jointly exploited in the context of performance prediction of
data grid systems hosted on top of cloud-based infrastructures. The analytic
part is mainly focused to capturing dynamics related to the specific con-
currency control algorithm adopted by the data grid system, while machine
learning is targeted at capturing contention effects on infrastructure-level
resources. Differently from our approach, these works cope with specific
data grid configurations (e.g. specific data management algorithms and/or
specific workload profiles) to which the analytical models are targeted. For
example, they assume arrivals of transactions to the system to form a Pois-
son process; however, recent works suggest that, in large scale data centers,
the inter-arrival time of requests to a data grid may not follow the exponen-
tial distribution [12]. In the same guise, those models are bound to specific
data access pattern dynamics (e.g., in terms of data locality), which are not
general enough to encompass complex data-partitioning schemes across the
servers [13]. Instead, we offer a framework allowing the user to flexibly model,
e.g., differentiated data management schemes without imposing specific as-
sumptions on the workload and data access profile (in fact real execution
traces can be used to drive the simulated data access).

The proposals in [14, 15] are based on the exclusive usage of machine
learning, hence they provide performance prediction tools that do not have
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the capability to support what-if analysis in the wide (e.g. by studying the
effects of –significant– workload shifts outside the workload-domain used dur-
ing the machine learning training phase). Rather, once a machine learning-
based model is instantiated via these tools, it stays bound to a specific sce-
nario (e.g. to a specific deploy onto a given infrastructure), and can only be
used to (dynamically) reconfigure the target data grid that has been mod-
eled. We retain similar capabilities; however, by limiting the usage of the
machine learning component to predicting messagging/networking dynam-
ics, we also offer the possibility to perform what-if analysis and exploration
of non-instantiated configurations (e.g. in terms of both system setting and
workload profile/intensity).

One approach close to our proposal has been presented in [16]. This
work presents a simulation layer entailing the capabilities of simulating data
grid systems. Differently from this proposal, which is purely simulative, our
approach exhibits higher flexibility in terms of its ability to reliably model
the dynamics of data grid systems in the cloud thanks to the combination
of simulative and machine learning approaches. In fact, as already pointed
out, the machine learning part allows for employing the framework in sce-
narios where no (detailed) knowledge on the structure/internals of the net-
working/messaging system to be modeled is provided to the user. As for
this aspect, the usage of machine learning for the performance prediction of
group communication systems has been pioneered in [7]. However, the idea
of combining simulative and machine learning-based models is, to the best
of our knowledge, still unexplored in the literature.

Simulation of data grid systems has also been addressed in [17]. In this
proposal, the modeling scheme of the data grid is based on Petri nets, which
are then solved via simulation. With respect to this solution, we propose
a functional model that does not explicitly rely on modeling formalisms,
except for the case of the CPU, which is modeled via queuing approaches
rather than Petri nets. Further, one relevant difference between the work
in [17] and our proposal lies in that our simulation models are able to simu-
late complex transactional interactions entailing multiple read/write (namely
get/put) operations within a same transaction. Instead, the work in [17] only
models single get/put interactions to be issued by the clients, thus making
our approach more general.

Also related to our proposal are the simulation models developed in [18].
However, unlike this article, the focus of that work is on modelling lower
levels dynamics related to IaaS management (e.g., scheduling of VMs to a
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set of physical resources). Finally, a work still marginally related to our
proposal can be found in [19], where a simulation environment for backup
data storage systems in peer-to-peer networks is presented. Compared to our
proposal, this work is focused on lower level data management aspects, such
as the explicit modeling of actual stable storage devices. Instead, our focus
is on distributed dynamics at the level of in-memory data storing systems,
which are essentially independent of (and orthogonal to) those typical of
stable storage technologies.

3 The Framework

The data grid architectures we target in our framework can be schematized
(at high level) as shown in Figure 1. In particular, they are essentially
composed of two types of entities, namely:

• cache servers, which are in charge of maintaining copies of entire, or
partial, data-sets;

• clients, which issue transactional data accesses and/or updates towards
the cache servers.

The cache servers can be configured to run different distributed protocols
in order to guarantee specific levels of isolation and data consistency while
supporting transactional data accesses. For instance, the 2PC protocol can
be exploited in order to guarantee atomicity while updating distributed repli-
cas of the same data-object, as it typically occurs in commercial in-memory
data platform implementations (see, e.g., [1]). Also, an individual transac-
tional interaction issued by any client can be mapped onto either a single
put/get operation of a data-object, or a more complex transactional manip-
ulation involving several put/get operations on multiple data-objects, which
is demarcated via begin and end statements.

As already mentioned, our framework has been designed in order to be
layered on top of a combination of simulative models and machine learning
ones. The simulative part of our data grid models is mapped onto a sys-
tem representation only entailing two types of simulation objects: (A) client
objects and (B) cache server objects. On the other hand, network dynam-
ics and the associated transfer delays for messages sent across the different
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Figure 1: Reference system architecture.

components within the simulation model are not simulated by explicitly in-
cluding some network simulation-object. Instead, a kind of machine learning
oracle is queried while the simulation is in progress in order to determine the
expected latency for message delivery, depending on parameters such as the
system scale, the message size and the current system load. In fact, higher
volumes of concurrent data accesses may lead to scenarios where the mes-
saging layer at the bottom of the software stack characterizing the data grid
system would tend to be stressed more than what would happen with lower
load volumes. This is because more coordination actions across the cache
servers are requested per time unit due to either (i) data transfer (e.g., in
case the local cache server does not already store locally a replica of the data
slice accessed in read mode by a locally handled transaction), or (ii) the han-
dling of the commit phase of the transaction (since more control messages
needs to be concurrently handled by the messaging system during, e.g., the
2PC-based commit phase). Also, the message size, which may in turn impact
the delivery delay of the messaging system, depends on the amount of per-
transaction accessed data. In fact it is typical that data grid systems handle
the transaction commit phase by transferring information on (at least) the
write set of the transaction across the involved cache servers.

In the next subsections we initially focus on the structure and discrete-
event patterns of cache server and client simulation objects. In particular,
we focus on the corresponding skeleton exposed by the framework and on the
support for easy modifiability of the simulated logic so as to allow easy (re-
)implementation of differentiated data grid simulation models, particularly
w.r.t. different concurrency control schemes and protocols for distributed
transaction atomicity. Successively, we enter the details of the machine
learning approach used to model message delivery latencies across the system
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Figure 2: Client and Cache-Server Simulation Objects.

components, and of its integration with the simulative part of the framework.

3.1 The Cache Server Simulation-Object

A cache-sever simulation object can be schematized as shown in Figure 2.
By the scheme we can identify four main software components:

• the transaction manager (TM);

• the distribution manager (DM);

• the concurrency control (CC); and

• the CPU.

Any simulation event destined to the cache server is eventually passed as
input to TM, which acts therefore as a front-end for event processing. Upon
the scheduling of any event, TM determines the amount of time required to
process the requested activity, which depends on the type of the scheduled
event, and on the current CPU load. Then, the CPU load is updated on the
basis of the newly scheduled activity. Additionally, the completion time for
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the activity is determined, which depends on the current CPU load. Finally,
a CPU-complete event is scheduled at the corresponding simulation time.

To determine the CPU processing delay, the CPU has been modeled as
a G/M/K queue, which allows capturing scenarios entailing multiple CPU-
cores. Although more sophisticated models could be employed (see, e.g.,
[20]), we relied on G/M/K queues since, in our target simulation scenarios,
the core dynamics of interest are the ones related to contention on logical
resources, namely data-objects, rather than physical resources, and to dis-
tributed (locking) strategies for the management of atomicity of the updates
of distributed/replicated data copies. Hence, distributed coordination delays
play a major role in the determination of the achievable performance, as com-
pared to CPU delays for processing local activities. As a consequence, the
G/M/K queue is expected to be a fairly adequate model for the objectives of
the framework. For the same reason depicted above, effects by virtual mem-
ory on the latency of operations provided within the data grid simulation
model are not explicitly considered.

When a local processing activity is completed, TM takes again control (via
the aforementioned CPU-complete event) and performs the actual updates
related to the activity. These updates are different depending on the exact
type of event that triggered CPU work.

As for events scheduled by client simulation objects towards the cache
servers, the corresponding event-types within the framework skeleton are
listed below:

• begin, used to notify TM that a new transactional interaction has been
issued by some client, which must be processed by the cache server;

• get, used to notify that a read operation on some data object has been
issued by the client within a transaction;

• put, used to notify that a write operation on some data object has been
issued by the client within a transaction; and

• commit, used to indicate that the client ended issuing operations within
a transaction, whose commit can therefore be attempted.

The handling of the begin event at the side of TM is implemented via
the internal function setupTransaction, which simply takes as input the
current simulation time and pointers to two records of type TxInfo and
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TxStatistics. These records are both automatically allocated by the frame-
work and linked to the corresponding records of already active transactions.

The actual internal structure of both the TxInfo and TxStatistics

records can be defined by the simulation modeler. In fact, the framework
provides a proper header file, named transaction.h, where the modeler can
specify such structure. The only constraint is that the top standing field of
TxInfo, must be of type TxId, which keeps the transaction unique identi-
fier, automatically generated by the cache server just to facilitate the actual
management within model execution.

This is one of the core facilities on top of which lies the framework flexi-
bility wrt the actual model implementation. In fact, with this organization,
the modeler can keep track of management information (i.e. TxInfo) and
statistics information (i.e. TxStatistics) associated with active transac-
tions within whichever modeler-defined data structure, which is automati-
cally allocated and managed by the framework into the heap.

The reason for allowing the modeler to exploit two different data types
lies in that the content of TxInfo is made valid according to a cross cache-
server scheme. In fact, it is automatically transferred to remote cache server
simulation objects when cross scheduling of events is actuated, as we shall
discuss. This is relevant in any simulated scenario where some transaction
set-up information needs to be made available to remote cache servers, e.g.,
for distributed contention management purposes.

On the other hand, the content of TxStatistics is not transferred across
different simulation objects, being it locally handled by the cache server act-
ing as the coordinator of the transaction. In particular, upon finalization of
a transaction, TM automatically invokes the module finalizeTransaction,
which receives as input the current simulation time, and again pointers to
both TxInfo and TxStatistics records so to allow for their update (par-
ticularly the statistics). The release of these buffers within the framework
is again handled automatically. However, before releasing any of them, a
special module statisticsLog is called, passing as input pointers to both
of them, allowing the modeler to finally log, e.g. onto the file system, any
provided statistical data.

As for get and put simulation events, they cause the TM module to simply
query (via synchronous procedure invocation) the DM module. This is done
in order to get information about what cache servers figure as the owners
of the data object to be accessed. In our architecture, the DM module
provides this information back in the form of a pointer to a list of cache
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server identifiers (hence simulation object identifiers), where each record also
keeps additional information specifying whether a given cache sever is (or is
not) the primary owner of a copy of the data object to be accessed. Once TM
gets this information, it then determines the pattern of additional simulation
events to be scheduled. More in details, primary ownership has relevance for
put (namely write) operations on data objects. Instead, get operations are
not affected by the presence of a primary owner, if any. Let us discuss this
aspect in detail.

In case of get simulated events, the cache sever determines whether it is
the owner of a copy of the data object. In the positive case, the read operation
on the data object will simply result in an invocation of the CC module on
this same cache server instance. Otherwise, remote get simulation events are
scheduled for all the cache servers figuring as owners of a copy of the data
object. As we shall see in Section 3.3, remote get events are scheduler at later
time to model the corresponding request transmission delay as determined
by a query to the machine-learning component included in the framework.
Upon their execution at the destination cache severs, which will still entail
passing through the simulated CPU processing stage, these events will trigger
CC invocations on those cache server simulation objects.

One important aspect associated with the above scheme is that the get
operation may be blocked at the level of CC, depending on the actual policy
for controlling concurrency. On the other hand, even in case of CC simu-
lated algorithms implementing non-blocking read access to data (as is the
case for most data grid products guaranteeing weak data consistency, such
as read committed or repeatable read semantics [1]), the read operation may
anyway be blocked in case no local copy exists and needs to be fetched by
some remote cache sever. This is automatically handled by our framework
since the TM module records information on any pending simulated read
operation within a proper data structure. When setting up the record for
a given operation, information on the remotely-contacted cache servers, if
any, is also installed. That record will be removed only after processing the
corresponding reply simulation events from all those cache servers, which is
done for allowing an optimized execution flow for those reply events. On the
other hand, the operation is unlocked (and a reply event is scheduled towards
the corresponding client) when the first copy of the data becomes available
from whichever cache server, hence after processing the first simulation event
associated with a read-reply. Note that this architectural organization auto-
matically covers the case where the transaction operation is blocked locally,
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due to the current state of CC. In such a case, the contacted-server list will
be filled with the identifier of the local cache server, and a read-reply event
from this same server (which will be scheduled by the local CC module, as
we shall discuss) will be used to unlock the request and to schedule the reply
towards the client simulation object.

In case of put operations (namely data object updates) the corresponding
simulation events only trigger the update of some meta-data locally hosted
by the cache server, which are embedded into records treated at the same
manner as the above-mentioned (modeler-defined) TxInfo record. These in-
clude the operation identifier, and the key associated with the data object to
be updated. This behavior simulates a simple local update of the transaction
write set, which is again reflected into a cross cache sever valid record (in
case cross server events for that transaction are scheduled) which we name
TxWriteSet.

On the other hand, the meta-data are queried upon simulating a get
operation to determine whether the data object to be read already belongs
to the transaction read/write set (hence whether the get operation can be
served immediately via information within the read/write set). In such a
case, the simulation-event pattern for handling the get is different from the
general one depicted above since it only entails simulating local CPU usage
required for providing the value extracted from the transaction read/write
set to the client. This implicitly leads the framework to provide support
for simulating transactional data management protocols ensuring at least
repeatable-read semantic.

More complex treatments are actuated when handling commit simulation
events incoming at the cache servers. In particular, differentiated simula-
tion event patterns are triggered by TM depending on whether the simulated
scheme entails a primary owner for each data object or not. For primary own-
ership scenarios, the prepare will result in scheduling remote prepare events
towards all the primary cache servers that keep copies of the data to be
updated (each event carries the keys associated with the data objects to
be updated, which are again retrieved via the TxWriteSet data structure
maintained by the cache server acting as transaction coordinator). TM can
determine this set of cache servers by exploiting the keys associated with the
written data objects (which are kept within the transaction write set). If
one of these cache servers corresponds to the server currently processing the
prepare request, then, after passing through the CPU processing stage, the
local CC module is immediately invoked. At this point we are in a situation
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similar to the one depicted above for the case of read access to remote data.
In particular, for the preparing transaction, the framework logs the identities
of the contacted servers, and then waits for the occurrence of prepare reply
simulation events scheduled by any of these servers. For homogeneity, even
when one of the contacted CC module is the local one, the reply from this
module occurs via the scheduling of such a prepare reply event, thus giving
rise to the situation where the CC module exhibits the same simulated be-
havior (in terms of notification of its decisions) independently of whether the
prepare phase for the transaction needs to run local tasks on the same cache
server, or remote tasks. Hence, the CC module operates seamless of any
simulated data distribution/replication scheme. The above simulation-event
pattern is only slightly varied in case of non-primary ownership of data ob-
jects since the framework will schedule these prepare events for all the servers
keeping copies of the data to be updated. This again allows the CC module
to operate transparently to the ownership scheme.

For both the schemes, in case the prepare reply events are positive from all
the contacted servers, final commit events are scheduled for all of them, which
will ultimately result in invocations of the CC module. On the other hand,
abort events are scheduled in case of negative prepare outcome. Further,
for the case of primary ownership, the commit events are propagated to the
non-primary owners, in order to let them reflect data update operations.

Let us now detail the behavior of the CC simulation model, which rep-
resents one core component of our framework architecture. By the above
description, this module is invoked upon the occurrence of get or remote get
events, remote prepare events, and commit events. However, all these events
are actually intercepted and initially processed by the TM module which, as
said, is the front end simulation-handler within the cache server simulation
object. Hence, ultimately, the CC module is oblivious of whether a requested
action is associated with some local or remotely-executed transaction. It only
takes the following input parameters:

• a pointer to the TxInfo record (recall that, in the simulation flow,
the field TxId at the top of this record has been automatically set
by TM upon processing the begin event, while additional transac-
tion information can be defined by the modeler by setting it via the
setupTransaction module);

• a pointer to TxStatistics (or NULL if the cache server is not the
transaction coordinator);
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• the type of the operation to be performed (read, prepare or commit);

• the key of the data object to be involved in the operation (this is for
read operations); and

• the TxWriteSet to be used for CC purposes (this is for the prepare
case).

On the other hand, CC can reply to invocations by generating one or
more of the events listed below towards TM:

• TX WAIT, indicating that the currently requested operation leads to a
temporary block of the transaction execution;

• READ DONE, indicating that the data object can be returned to the read-
ing transaction;

• PREPARE DONE, indicating that the transaction has been successfully
prepared;

• PREPARE FAIL, indicating that the transaction prepare stage has not
been completed correctly; and

• COMMIT DONE, indicating that the transaction commit request has been
processed.

Each of the above events is not directly routed towards the destination
simulation object (hence these events are not actual simulation events, rather
only event generation indications), just because CC is not aware of whether
they must represent replies for the local cache server or remote cache servers,
or even the client. Hence, within the framework they are intercepted by a
dedicated layer, which buffers these CC triggered event-generation requests
so as to make them available for actual scheduling (towards the correct des-
tinations). The latter is actuated by the TM module once it takes back
control upon the return of CC. As such, the events triggered by CC can be
re-mapped onto actual simulation events to be exchanged across different
simulation objects. As an example, PREPARE DONE and PREPARE FAIL events
are re-mapped and actually scheduled as the aforementioned prepare reply

events, with proper payload (indicating positive or negative prepare out-
comes). Further, the CC module can raise the request for issuing TIMEOUT
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events, which can be useful in scenarios where CC actions are also triggered
on the basis of passage of time.

Overall, the simulation modeler is easily allowed to implement different
concurrency control algorithms by completely ignoring data distribution and
replication schemes. She only needs to deal with transaction identifiers, basic
transaction setup information and relations across different transactions, on
the basis of the actual data objects locally hosted by a given cache server.
This is a relevant achievement when considering that great research effort is
currently being spent in the design of concurrency control algorithms suited
for cloud data stores, which provide differentiated consistency vs scalability
tradeoffs (see, e.g., [21, 22, 23, 24, 25]), each one fitting the needs of different
application contexts. Having the possibility to provide simulation models
for such differentiated algorithms by exploiting our framework can definitely
reduce the time and effort required for assessing their potential.

To determine what are the locally hosted data objects, hence the locally
hosted keys, CC accesses a hash table that gets automatically setup upon sim-
ulation startup. On the other hand, the meta-data required to keep relations
across active transactions, (e.g. wait-for relations), and the corresponding
data structure is completely left to programming by the simulation-modeler.
It can be again defined, in terms of types, within the transaction.h header
file. However, the actual instance of this data structure can be accessed via
a special pointer which is passed to the CC module by the framework as an
additional input parameter. We note that if the pointer value is NULL, then
CC has not yet allocated and initialized the structure, hence this must be
done, and the actual pointer to be used in subsequent calls to CC can be
setup and returned upon completion of the current CC execution.

Let us go back to the TxInfo record. As we have said, this is modeler-
defined and can keep track of per-transaction meta-data, which can be ex-
ploited by the CC module in order to support the actual concurrency control
logic.

Let us finally consider two different examples of how to model via the
framework different CC algorithms. One is a classical 2PC based data-grid
CC algorithm where every transaction is successfully prepared at any site
in case the target data object to be updated is not currently locked upon
the prepare request. On the other hand, the second scenario shows how to
model cases where the transaction is prepared only in case the target data
has a timestamp lower than the transaction timestamp. The examples are
presented via pseudo-code for simplicity.

16



3.1.1 Example One: Base 2PC

In Figure 3 we show the pseudo-code defining the entries of TxInfo and
some part of the core logic at the level of CC. In this case, TxInfo is not
required to keep transaction control information targeted at contention man-
agement; it simply maintains transaction identification information. On the
other hand, the base setup for concurrency management can be actuated by
simply setting up a wait-for table where transaction identifiers are queued
in different rows depending on what other transaction holds the lock they
would like to get on a given data object (the top standing transaction is
therefore the one to which the lock has been granted). In the pseudo-code
we show a scheme where, upon simulating a prepare request, the associated
transaction is always queued. On the other hand, upon commit or abort
events for a pending transaction, the subsequent transaction in the wait-for
list is reactivated, with positive reply to the original prepare request.

3.1.2 Example Two: Timestamp Based 2PC

In Figure 4 we show the pseudo-code defining the entries of TxInfo and some
parts of the core logic at the level of CC, where this time we have a vari-
ation that leads the TxInfo record to keep cross-server control information
specifically targeted at data contention management, namely a timestamp
value. In this case, differently from the previous scenario, a transaction for
which a prepare event has been issued can get successfully prepared only in
case its timestamp is greater than the timestamp of any data object accessed
in write mode. We note that in this scenario, the CC module, upon setting
up the CC-Table, needs to take care of setting up meta-data for the explicit
maintenance of data object timestamp values.

3.2 The Client Simulation-Object

Client simulation objects have an internal structure that does not need to
be changed by the simulation modeler. In fact, she only needs to specify,
via configuration files within the framework, what type of probability dis-
tribution must be used for determining the data to be accessed, and what
distributions need to be used for determining the number of operations to be
executed within a transaction and the type (read or write) of each operation.

As for this aspect, the framework already offers the possibility to use
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record TxInfo{

TxId

...

} //end record

CC-logic(input: task T, pointer CC-Table){

if (CC-table == NULL)

allocate and initialize [wait-for,active-tx] table;

// keys are data object identifiers or TxId values

// entries are lists of TxInfo records or TxId values

set CC-table point to the allocated table

case T.type

prepare:

link T.TxInfo.TxId to CC-Table.active-tx

AllPrepareKeys = T.TxWriteSet

link T.TxInfo to CC-Table.wait-for[AllPrepareKeys]

if T.TxInfo not top standing for some key

generate event TX_WAIT[T.TxInfo]

generate event TIMEOUT[T.TxInfo]

else generate event PREPARE_DONE[T.TxInfo]

....

timeout:

commit:

unlink T.TxInfo.TxId from CC-Table.active-tx

unlink T.TxInfo from CC-Table[AllOccurrences]

if (T.type == commit) generate COMMIT_DONE[T.TxInfo]

else generate PREPARE_FAIL[T.TxInfo]

for all TxInfo top standing in CC-Table[AnyPresenceRow]

generate event PREPARE_DONE[TxInfo]

....

return CC-Table

} //end CC

Figure 3: Example One.

differentiated access distributions, some of which are analytic, while others
have been determined by relying on traces of known benchmarks. Further,
the clients can be configured in order to simulate either an open or a closed
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record TxInfo{

TxId

timestamp

...

} //end record

CC-module(input: task T, pointer CC-Table){

if (CC-Table == NULL)

allocate and initialize [wait-for,DOT] table;

// DOT stands for data-object-timestamp

// table access keys are data object identifiers

// entries are lists of TxInfo records or DOT values

set CC-Table point to the allocated table

case T.type

prepare:

AllPrepareKeys = T.TxWriteSet

if T.TxInfo.timestamp > CC-Table.DOT[AllPrepareKeys]

link T.TxInfo to CC-Table[AllPrepareKeys]

else generate event PREPARE_FAIL[T.TxInfo]

goto out

if T.TxInfo not top standing for some key

generate event TX_WAIT[T.TxInfo]

generate event TIMEOUT[T.TxInfo]

else generate event PREPARE_DONE[T.TxInfo]

....

out:

return CC-Table

} //end CC

Figure 4: Example Two.

system. For the former case, the simulation modeler needs to specify the rate
of generation of transactions at the client side. As a final note, our clients
also embed the possibility to generate the workload by directly relying on
traces (rather than on distributions derived from the traces).
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3.3 Modeling Message Exchange Dynamics via Machine-
Learning

As hinted, our framework relies on black-box, machine-learning-based model-
ing techniques to forecast the dynamics at the level of the message-passing/networking
sub-system. Developing white-box models (e.g. simulative models) capable
of capturing accurately the effects by contention at the network level on mes-
sage exchange latencies can in fact be very complex (or even non-feasible,
especially in virtualized cloud infrastructures), given the difficulty to gain
access to detailed information on the exact dynamics of messaging/network-
level components [7].

As already mentioned, contention on the network layer, and the associated
message delivery delay, can have a direct impact on the latency of two key
transaction execution phases within the data grid, namely the distributed
commit phase, and the fetch of data whose copies are not locally kept by the
cache server, given that the whole data-set might be only partially replicated
across the nodes (e.g. for scalability purposes). These latencies, in their
turn, may affect the rate of message exchange, and so the actual load on the
messaging system (in the simulated configuration of the workload and for the
specific data grid settings).

More in general, estimating (hence predicting) the message transfer delay
while simulating some data grid system deployed over a specific networking
software/hardware (virtualized) stack boils down in our approach to a non-
linear regression problem, in which we want to learn the value of continuous
functions defined on multivariate domains. Given the nature of the problem,
we decided to rely on the Cubist machine learning framework [26], which
is a decision-tree regressor that approximates non-linear multivariate func-
tions by means of piece-wise linear approximations. Analogously to classic
decision-tree-based classifiers, such as C4.5 and ID3 [27], Cubist builds de-
cision trees choosing the branching attribute such that the resulting split
maximizes the normalized information gain. However, unlike C4.5 and ID3,
which contain elements in a finite discrete domain (i.e., the predicted class)
as leaves of the decision tree, Cubist places a multivariate linear model at
each leaf.

Clearly, the reliance on machine-learning requires building an initial knowl-
edge base in relation to the networking dynamics of the target virtualized
infrastructure, for which we need to simulate the behavior of some specific
data grid system (or configuration) run on top of it. This can be achieved by
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running (possibly once) a suite of (synthetic) benchmarks that generate het-
erogeneous workloads in terms of mean size of messages, memory footprint at
each node, CPU utilization, and network load (e.g. number of transactions
that activate the commit phase per second). As for this aspect, one could
exploit some (open source) data grid system relying on the specific messag-
ing layer for which the machine learner must provide the predictions. This
approach looks perfectly suited for data-grid providers (namely for scenar-
ios where the data-grid system is provided as a PaaS [28]), given that they
can take advantage of (historical) profiling data related to specific (group)
communication and messaging systems run on top of given (consolidated)
virtualized platforms.

Also, it is well known that the selection of the features to be used by
machine-learning toolkits plays a role of paramount importance, since it has
a dramatic impact on the quality of the resulting prediction models. When
performing such a choice, we took two aspects into consideration: first, the
set of parameters has to be large enough to guarantee good accuracy, but at
the same time it has to be small enough to keep low the time taken by the
machine learner to create its model and invoke it.

Second, the set of features has to be highly correlated to the parameters
the machine learner is going to predict, namely the message transfer delay
across nodes within the system. In the following, we list the set of features
we selected, also motivating our choices:

• Used memory: it has been shown that the memory footprint of appli-
cations can affect significantly the performance of the messaging layer
[5, 7].

• CPU utilization: this parameter is required given that the message
delivery latency predicted by our machine learner includes a portion
related to CPU processing (such as the marshalling/unmarshalling of
the message payload).

• The message size: this parameter is of course highly related to the
time needed to transmit messages over the (virtualized) networking
infrastructure.

• The number of message exchange requests per second: this parameter
provides a good indicator of the network utilization.
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Figure 5: Coupling of simulative and machine learning components.

Clearly, predicting metrics such as the message delivery latency under
a specific simulation scenario depends on how the simulation model pro-
gresses, e.g., in terms of simulated system throughput and consequent actual
number of message exchange operations per second (see the last parameter
listed above). These parameters, as well as others (like the average size of
exchanged messages), are in their turn targeted in the estimation by sim-
ulation. Hence they might be unknown at the time in which the machine
learner is queried during the simulation run.

This problem is intrinsically solved by the specific way we couple simu-
lative and machine learning components. Particularly, when a prediction on
the delay of message delivery is required for a specific message send operation,
the simulative components compute (estimate) the values needed as input by
the machine learning component, depending on the current simulated system
state. This is done easily and efficiently given that in our framework all the
values of the parameters required in input by the machine learner (e.g. the
current CPU utilization) to carry out its prediction are constantly updated,
hence they are readily available. By using these values, the actual query to
the machine learner is issued to determine the timestamp of the discrete-
event associated with the message delivery along the simulation time axis.
This coupling scheme is depicted in Figure 5, and the actual implementation
of this kind of interaction within our framework has been based on linking
Cubist as a library directly accessible (invocable) by the simulation software.

This coupling approach leads the machine learner to output “updated”
prediction for the message transfer delay (as a function of the message size),
while the simulation run approaches the steady state value for the targeted
parameters to be estimated (e.g. the system throughput, which may in turn
depend on parameters like CPU usage). Hence, the process of “rejuvenating”
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the predictions by the machine learner ends upon converging towards the
actual final estimation of the target parameters by the simulation run.

4 Experimental Validation

The skeleton operations described in the former session, such as the ones re-
lated to 2PC coordination, compose the foundational/base simulative model
of our framework, (which users can extend and customize to meet their
needs). For this reason, we have decided to validate the framework against
real data achieved by running a data grid system exactly exploiting such an
archetypal 2PC coordination paradigm. In particular, we present validation
data obtained by comparing simulated performance results with the corre-
sponding ones achieved by running the 2PC-based mainstream Infinispan
data grid system by JBoss/Red-Hat [1]. Also, our experimentation has been
based on a wide spectrum of system settings given that we consider large scale
deployments on top of both public and private cloud systems. Finally, the
workloads generated in our tests are based on various configurations of the
YCSB benchmark by Yahoo [9]. Given that this benchmark has been devised
just to assess (cloud suited) in-memory data stores, its employment further
contributes to the relevance of the experimental configurations selected for
validating the framework.

4.1 Overview of the Infinispan Data Grid Platform

Infinispan is a popular open source in-memory data grid currently represent-
ing both the reference data platform and the clustering technology for JBoss,
which is the mainstream open source J2EE application server. Infinispan ex-
poses a pure key-value data model (NoSQL), and maintains data entirely
in main-memory relying on replication as its primary mechanism to ensure
fault-tolerance and data durability. As other recent NoSQL platforms, In-
finispan opts for weakening consistency in order to maximize performance.
Specifically, it does not ensure serializability [29], but only guarantees the
Repeatable Read ANSI/ISO isolation level [30]. At the same time, atomic-
ity of distributed updates is achieved via 2PC. This is used to lock all the
data object belonging to the write-set of the committing transaction, so as to
atomically install the corresponding new data versions. The old committed
version of any data object remains anyhow available for read operations until
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it gets superseded by the new one.
In the Infinispan version selected for our experiments, namely V5.1, the

2PC protocol operates according to a primary-owner scheme. Hence, dur-
ing the prepare phase, lock acquisition is attempted at all the primary-owner
cache servers keeping copies of the data objects to be updated. If the lock ac-
quisition phase is successful, the transaction originator broadcasts a commit
message, in order to apply the modifications on these remote cache servers,
which are propagated to the non-primary owners.

4.2 Exploited Cloud Infrastructures

The experimental test-bed for our validation study consists of a private and
a public cloud infrastructure. The Virtual Machines (VMs) deployed on both
clouds are equipped with 1 Virtual CPU (VCPU) and 2GBs of RAM. They
all run a Fedora 17 Linux distribution with kernel 3.3.4.

The private cloud consists of 140 VMs deployed over a cluster composed
of 18 machines equipped with two 2.13 GHz Quad-Core Intel(R) Xeon(R)
processors and 32 GB of RAM and interconnected via a private Gigabit
Ethernet. Openstack Folsom is employed to regulate the provisioning of re-
sources and Xen is used as virtualization software. The public cloud consists
of 100 VMs, deployed over the FutureGrid India infrastructure [31], which
exploits the Openstack Havana virtualization software.

4.3 Workload Configurations

We rely on three different workload configurations provided by YCSB, which
we refer to as A, B and F. Workload A has a mix of 50% read and 50%
write (namely update) transactions; workload B contains a mix with 90%
read and 10% write transactions, while in workload F records are first read
and then modified within a transaction. Also, we have ran experiments with
two different data access profiles. In the first case, the popularity of data
items follows a zipfian distribution with YCSB’s zipfian constant set to the
value 0.7. In the second one, which we name hot spot case, 99% of the data
requests are issued against the 1% of the whole data set. A total amount of
100000 data objects constitutes the data set in all the experiments.

In the plots, we will refer to a specific workload configuration using the
notation N-D-P-I, where: ‘N’ refers to the original workload’s YCSB notation
[9]; ‘D’ is the number of distinct data items that are read by a read-only
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transaction; for update transactions, it is the number of distinct data items
that are written (for the ‘F’ workload, which exhibits a read-modify pattern
of update transactions, any accessed data is both read and written); ’P’
encodes the data access pattern (‘Z’ stands for zipfian, ‘H’ for hot-spot);
finally, ‘I’ specifies the cloud infrastructure over which the benchmark has
been run (‘PC’ stands for private cloud, ‘FG’ for FutureGrid).

4.3.1 Achieved Results

All the above illustrated workload configurations have been run on top of the
selected cloud systems while scaling the number of VMs, and relying on a
classical consistent hashing [32] scheme for placing the data copies across the
servers. The run outcomes have been exploited both to collect statistically
relevant values for core performance parameters in the real system deploy
and to determine the value of the parameters input parameters for the sim-
ulated data grid. Specifically, we instrumented the YCSB implementation,
as well as the Infinispan data grid system in order to be able to measure
(for the different workload configurations and system deployments) a wide
set of parameters, the most relevant of which are listed in Table 1. The
latter all refer to CPU demand for the different modeled activities at the
cache servers, given that networking/messaging (expected) delays across the
servers do not represent input parameters to the discrete event models, and
are instead predicted by the Cubist machine learning component while the
simulation run is in progress. To this end, the knowledge base to be acquired
by Cubist consists of simple textual files, which have been populated while
profiling netwoking/messaging dynamics in real runs of the system.

We note that the parameters reported in Table 1, together with others,
such as the data placement across the different cache servers (namely the
association of replicated 〈key, value〉 pairs to the cache servers) and the inter-
time between subsequent put/get commands by the client, can be the object
of tuning by the user, e.g., for what-if analysis purposes. Given that in this
study we have a different target, namely the validation of the framework
taking the selected set of workload/deploy configurations as the reference,
we fixed the tunable parameters’ values to the ones measured/set for the
corresponding target configuration used as an individual validation sample.

As a final preliminary note, in the real system the workload generator has
been deployed as a thread running on each VM, which injects requests against
the collocated Infinispan cache sever instance, in closed loop. Consequently,
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Table 1: Measured Parameter Values (to Configure the Simulation Models).

local tx get cpu service demand

local tx put cpu service demand

local tx get from remote cpu service demand

tx send remote tx get cpu service demand

tx begin cpu service demand

tx abort cpu service demand

tx prepare cpu service demand

distributed final tx commit cpu service demand

in the simulation model configuration, no networking/messaging delays have
been modeled between clients and cache server instances. Yet, the (simu-
lated) networking/messaging system plays a core role in the data exchange
and coordination across the different cache server instances. This well fits
the relevant scenarios where the focus of performance analysis/prediction is
on sever side infrastructures.

The validation has been based on measuring the following set of Key Per-
formance Indicators (KPIs), and comparing them with the ones predicted via
simulation: (i) the system throughput, (ii) the transaction commit probability
(this parameter plays a role for update transactions, given that read-only
transactions are never aborted by the concurrency control algorithm con-
sidered in this study), and (iii) the execution latency of both read-only and
update transactions. The first KPI provides indications on the overall behav-
ior of the system, and hence on how accurate is the corresponding prediction
by the framework-supported models. The second one is more focused to the
internal dynamics of the data grid system (e.g. in terms of the effects of the
distributed concurrency control mechanism), which have anyhow a clear ef-
fect on the final delivered performance. Finally, the execution latency of the
different types of transactions has been included in order to provide indica-
tions on how the simulative models are able to reliably capture the dynamics
of different kinds of tasks (exhibiting different execution patters) within the
system. In fact, read-only transactions can require remote data fetches across
the cache severs but, differently from update transactions, they entail no 2PC
step.

The results for the case of data grid deploy on top of the private cloud
system are reported in Figure 6. For all these tests we considered a configura-
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Figure 6: Results for Deploy on the Private Cloud (up to 140 VMs).
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Figure 7: Results for Deploy on FutureGrid (up to 100 VMs).
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tion where each data-object is replicated two times across the cache servers,
which is a typical settings allowing for system scalability, especially in con-
texts where genuine distributed replication protocols are used to manage the
data access [33, 25] (3). Therefore, this value well matches the nature of
this particular validation study, given that we consider deployments on large
scale infrastructures (up to 140 VMs). Also, the variance of simulation results
across different runs (executed with different random seeds) is not explicitly
plotted given that the obtained simulative values were quite stable, differing
by at most 10%.

By the plotted curve we can see how the KPIs’ values predicted via sim-
ulation have a very good match with the corresponding ones measured in
the real system, at any system scale. As an example, the maximum error
on the overall throughput prediction is bounded by 20%, as observed for the
configuration F-5-H-PC when running on top of 25 VMs. However, except
for such a peak value, the error in the final throughput prediction is in most
of the cases lower than 5%. Similar considerations can be drawn for the other
reported KPIs.

Another interesting point is related to the fact that the simulative models
are able to correctly capture the real system dynamics when changing the
workload. As an example, while we observe higher commit probability for an
individual run of an update transaction in the scenario with the 50%/50%
read/write mix and zipfian data accesses, the hot spot configuration allows
for higher throughput values even though the update transaction commit
probability is lower. This is clearly due to the fact that in the used hot spot
configuration only 5% of the whole workload consists of update transactions
that, although being subject to retries due to aborts with non-minimal like-
lihood (especially at larger system scales), impact the system throughput in
a relatively reduced manner.

The results achieved for the case of deploys on top of the FutureGrid
public cloud systems, which are reported in Figure 7, additionally confirm the
accuracy of the models developed via the framework. In these experiments
we further enlarge the spectrum of tested scenarios not only because we
move to a public cloud, but also because (compared to the case of private
cloud deploy) we consider a different value for the replication degree of data-

3A distributed transactional replication protocol is said to be genuine if it requires
contacting only the nodes handling the data copies accessed by a transaction in order to
manage any phase of the transaction execution, including its commit phase.
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objects across the servers, namely 3. This value leads to the scenario where
fault resiliency is improved over the classical case of replication on only 2
cache servers, which is the usual configuration that has been considered in
the previous experiments. By the data we again observe very good match
between real and simulative results. Further, similarly to the previously
tested configurations, such a matching is maintained at any system scale, and,
importantly, when the actual dynamics of the data grid system significantly
change while scaling the system size. In fact, we observe that the commit
probability of update transactions significantly changes when increasing the
system scale. This phenomenon, and its effects on the delivered performance,
are faithfully captured by the simulator. This is a relevant achievement
when considering that the workload used for the experiments on top of the
FutureGrid public cloud system has been based on a 50%/50% read/write
transactions mix, which leads transaction retries to play a relevant role on
the final performance given that half of the workload can be subject to abort
events, which become increasingly frequent at larger scales of the system.

5 Conclusions

Optimized exploitation of cloud resources is a core topic to cope with, in
any scenario. In this article we have presented a simulation framework for
predicting the performance of cloud in-memory data grid systems which can
be used for, e.g., what-if analysis aimed at the identification of the configura-
tions (such as the number of virtual machines to be employed for hosting the
data grid system under a specific workload profile) optimizing specific cost-
vs-benefit tradeoffs. The design of the discrete event simulative framework
has been based on the use of flexible skeleton models, which can be easily ex-
tended/specialized to capture the dynamics of data grid systems supporting,
e.g., different distributed coordination schemes across the cache servers in
order to guarantee specific levels of consistency in the transactional manipu-
lation of data. The adequacy of the framework, and of its model instances, in
predicting the dynamics of data grid systems hosted in cloud environments
is a result of the combination of the discrete event simulative approach with
machine learning. In our framework architecture, the latter modeling tech-
nique is used to predict the dynamics at the level of networking/messaging
sub-subsystems which, in cloud contexts, are typically unknown in terms
of their internal structure and functioning, and are therefore difficult to be
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reliably modeled via white-box approaches.
We have also presented a validation study where the simulation output by

the framework has been compared with real data related to the execution of a
mainstream open source data grid system, namely Infinispan by JBoss/Red-
Hat, deployed on both a private and a public cloud infrastructure. This
validation study of the simulative model of Infinispan has been based on
large scale deploys on top of up to 140 Virtual Machines, and using the
YCSB benchmark by Yahoo, in different configurations, as the generator of
the test-cases workload profiles. By the data, the accuracy of the simulations
in estimating core parameters such as the system throughput has been on
the order of at least 80%, and on the order of 95% on the average, for all the
tested configurations. Finally, the framework has been released as an open
source package available to the community.
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