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Abstract

As distributed computing infrastructures become nowadays ever more com-
plex and heterogeneous, scientists are confronted with multiple competing
goals such as makespan in high-performance computing and economic cost
in Clouds. Existing approaches typically aim at finding a single tradeoff so-
lution by aggregating or constraining the objectives in an a-priory fashion,
which negatively impacts the quality of the solutions. In contrast, Pareto-
based approaches aiming to approximate the complete set of (nearly-) opti-
mal tradeoff solutions have been scarcely studied. In this paper, we extend
the popular Heterogeneous Earliest Finish Time (HEFT) workflow scheduling
heuristic for dealing with multiple conflicting objectives and approximating
the Pareto frontier optimal schedules. We evaluate our new algorithm for
performance and cost tradeoff optimisation of synthetic and real-world ap-
plications in Distributed Computing Infrastructures (DCIs) and federated
Clouds and compare it with a state-of-the-art meta-heuristic from the multi-
objective optimisation community.
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1. Introduction

Scientific workflows are a popular way of modelling applications to be
executed on distributed computing infrastructures (DCI), such as Clouds. In
this context, one of the most challenging tasks in the workflow lifecycle is how
to schedule its tasks onto the heterogeneous available resources. Traditionally



in parallel and distributed systems, workflow scheduling has been targeted to
optimise the performance, measured in terms of makespan or the completion
time of all tasks [1, 2, 3], which has been shown to be NP-complete.

In the context of Cloud computing, the user needs to care about an ad-
ditional metric represented by the cost incurred by renting resources. Most
of the commercial Clouds offer different types of resources at different prices.
For example, in Amazon EC21 a user can choose among four different types
of resources, where the fastest is eight times more expensive than the slowest.
Federated Clouds bring new opportunities when using commercial Clouds, as
different providers may offer resources with different performance and pric-
ing models. In such situations, a customer may be interested in scheduling
low-priority tasks on the slow resources offered by a cheap provider, and
high-priority critical tasks on the expensive fast resources offered by a high-
performance provider. Scheduling a workflow application becomes therefore
a multi-objective optimisation problem with at least two in-conflict criteria,
makespan and financial cost, to which no single solution exists, but a set of
tradeoff solutions called Pareto front. Moreover, federated Clouds pose ad-
ditional drawbacks limiting the range of applications that can benefit from
them. For example, resources belonging to different providers may be lo-
cated in different areas connected via best-effort Internet, which is particu-
larly problematic in the context of data-intensive applications. In addition,
companies may impose restrictions over sensitive data that must stay within
the frontiers of a single institution, limiting optimisation opportunities. In
this situations, it is not clear whether federated Clouds are an appealing
alternative for workflow applications.

In most related works, workflow scheduling optimising several compet-
ing objectives has been simplified either to a single-objective problem either
by aggregating all the objectives in a single analytical function or by con-
straining the others. The main drawback of these approaches is that the
aggregation and constraining are applied a-priori, with a complete knowl-
edge about the workflow, infrastructure, and in general about the problem
being solved. Therefore, the computed solution may not properly capture
the user preferences. On the other hand, few approaches that approximate
the Pareto set of tradeoff solutions have been proposed. Computing the com-
plete Pareto front provides the user with a set of optimal solutions to select

1http://aws.amazon.com/ec2/pricing/
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based on personal preferences and requirements, and may reveal solutions
impossible to see beforehand.

In this paper, we extend the popular Heterogeneous Earliest Finish Time
(HEFT) workflow scheduling algorithm for dealing with multiple conflicting
objectives and approximating the Pareto frontier of tradeoff schedules on
DCIs. Our new algorithm called Multi-Objective HEFT (MOHEFT) is able
to deal with an arbitrary number of objectives, instantiated in this paper
by makespan and financial cost. We tackle the problem from the point of
view of a broker coordinating the services of two federated Clouds with dif-
ferent performance and pricing models: Amazon EC2 and GoGrid. For this
purpose, we customise the algorithm to deal with the peculiarities encoun-
tered today in public commercial Clouds, such as limited number of simul-
taneous resources and hourly billing intervals. We analyse the performance
and cost tradeoffs for scheduling workflows with different shapes (degree of
parallelism), number of activities, and computation and communication re-
quirements on DCIs and federated Clouds by comparing MOHEFT with a
genetic state-of-the-art meta-heuristic from the multi-objective optimisation
theory called SPEA2* [4].

The paper is organised as follows. In the next section we describe the re-
lated work. Section 3 gives a short background on multi-criteria optimisation
required for a better understanding. Section 4 defines the abstract workflow,
resource, and scheduling models underneath our approach. Section 5 presents
the MOHEFT algorithm as an extension to the original HEFT heuristic, in-
cluding a customisation for commercial Cloud infrastructures. We describe
the experimental setup for validating our algorithm in Section 6, followed by
the results in Section 7. Section 8 concludes the paper.

2. Related Work

The most common technique combines the multiple objectives in a single
objective, for example by assigning different weights to the different objec-
tives and optimising the resulting aggregation function. The main differences
in these approaches is the way in which preferences are expressed. For ex-
ample, [5] combines reliability (in terms of resource failures) and makespan
using a weight vector. A similar approach has been used in [6] and [7], also for
optimising reliability and time. A general disadvantage of these approaches
is that the computed solution depends on the combination of the multiple
objectives, which is made a-priori and without a complete information about
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the problem being solved. This fact implies that, if the tradeoff or aggrega-
tion function does not capture the user preferences in an accurate way, the
computed solution may not be satisfactory for the solved problem. Addition-
ally, the objective functions require to be normalised to the same interval in
order to properly capture these preferences.

Another way of combining the different objectives in a single objective
function is by imposing user-defined constraints to each objective function
(i.e. a desired value for each function to be optimised). Once the constraints
have been set, the idea is to compute a solution optimised for one objec-
tive. After computing this solution, several modifications are made with the
aim of improving according to another objective, as long as the constrains
are not violated. An example work using this approach has been proposed
in [8, 9] for optimising makespan and economical cost in utility Grids. The
main weakness of this approach is that the number of objectives that can
be optimised is limited to a few. Furthermore, it is required to established
an order on which objective to optimise first, hence including some sort of
preference information. Finally, reasonable a-priori values for the constraints
are often unknown until the first schedule is computed.

More recently, several approaches computing the complete set of trade-
off solutions emerged grouped in two main lines: (1) genetic algorithms-
based techniques for optimising makespan and cost [4], makespan and energy
consumption [10], or makespan, cost and reliability [11]; and (2) list-based
heuristics for optimising makespan and cost or makespan [12, 13] and energy
consumption [14]. Only few of these works targeted workflwow scheduling
on Clouds and none of them considers Cloud federations.

While most Cloud-related research deals with the placement of virtual
machines onto physical machines [15, 16, 17, 18], scheduling of tasks has
been scarcely studied on the context of a Cloud federation. In this sense, [19]
analyses and proposes several heuristics for task scheduling onto resources
belonging to the same provider but geographically located in different ar-
eas. Though not purely a federation of Clouds, the authors address a similar
problem to the one arising in a federated system. The authors in [20] present
a semantic architecture to build schedulers for federated Clouds with em-
phasis on the system architecture with no special focus to the optimality of
the scheduler. None of these approaches consider a purely multi-objective
formulation of the problem.
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3. Multi-Objective Optimisation Background

In this section, we formally define the concepts of the multi-objective
optimisation problem, Pareto dominance and Pareto frontier for a better
understanding of this work. We assume without loss of generality that min-
imisation is the goal for all the objectives, as any maximisation problem can
be defined in terms of a minimisation too.

A general multi-objective optimisation problem aims to find a vector
~x∗ = [x∗1, x

∗
2, . . . , x

∗
n] which satisfies the m inequality constraints gi (~x) ≥

0, i = 1, 2, . . . ,m, the p equality constraints hi (~x) = 0, i = 1, 2, . . . , p,

and minimises the vector function ~f (~x) = [f1(~x), f2(~x), . . . , fk(~x)]T , where
~x = [x1, x2, . . . , xn]T is the vector of decision variables.

Taking into account this definition, a solution x1 = [x1
1, x

1
2, . . . , x

1
n] is said

to dominate a solution x2 = [x2
1, x

2
2, . . . , x

2
n] if and only if fi(x

1) ≤ fi(x
2) for

i = 1, 2, . . . ,m, and there exist at least one j (1 ≤ j ≤ m) such that fi (x1) <
fi (x2). Conversely, two points are said to be non-dominated whenever none
of them dominates the other. Figure 1 depicts some examples of dominated
and non-dominated solutions. Assuming that f1 is makespan and f2, the
cost, a dominates b because f1(a) < f1(b) and f2(a) < f2(b). Similarly, a
dominates c too. Meanwhile, a and d are non-dominated because a is better
than d in makespan, but d is better in financial cost. A set of non-dominated
solutions is called Pareto set of tradeoff solutions. The value of the solutions
in the Pareto set is known as Pareto frontier.

A Pareto frontier represents a powerful tool for decision support and
preferences discovery. For example, the shape of the frontier can be used
to provide insight to decision makers such as scientists or simple operators,
allowing them to explore the possible space of non-dominated solutions with
certain properties, and possibly revealing regions of particular interest which
cannot be seen until the Pareto frontier is known. This way, the users does
not have to set their preferences before finding a solution, instead the pref-
erences are discovered afterwards. A high quality Pareto frontier needs to
fulfill two properties, accuracy and diversity, by uniformly covering all the
possible ranges of optimal solutions, as close as possible to the optimal ones.
A metric of measuring the quality of a set of tradeoff solutions X is the hy-
pervolume HV (X) representing the area enclosed between the points in X
and a reference point W (see Figure 1), usually selected as the nadir or anti-
utopia point (e.g. with the maximum makespan and cost). This way, the
better and the more diverse the points in X are, the higher HV (X) gets. In
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Figure 1 for example, the set containing the solid round points is better than
the set containing the squared solutions because the area enclosed within the
dashed lines is larger than the one represented by the sold lines. A method
to ensure the diversity of the solutions is to maximise the crowding distance
defined in [21] and graphically depicted in Figure 1, which gives a measure
of the area surrounding a solution where no other tradeoff solution is placed.

4. Model
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1) Makespan: For computing the workflow makespan, it
is first necessary to define the execution time t(Ai,Rj) of an
activity Ai on a resource Rj = sched (Ai) as the sum of the
time required for transferring the biggest input data from any
Ap ∈ pred(Ap) and the time required to execute Ai in Rj :

t(Ai,Rj) = max
Ap∈pred(Ai)

{
Datapi

bjq

}
+

workload (Ai)

sj
, (1)

where Datapi is the size of the data to be transferred between
Ap and Ai, bpj is the bandwidth of one TCP stream between
the resource where task Ap was executed and the resource
Rj , workload(Ai) the length of the task Ai in machine
instructions, and sj the speed of the resource Rj in number
of machine instructions per second. Next, we can compute the
completion time TAi

of activity Ai considering the execution
time of itself and its predecessors, as follows:

TAi
=

{
t(Ai,sched(Ai)), pred (Ai) = ∅;

max
Ap∈pred(Ai)

{
TAp

+ t(Ai,sched(Ai))

}
, pred (Ai) �= ∅.

(2)
The workflow makespan is finally defined as the maximum
completion time of all the activities in the workflow:

TW = max
i∈[1,n]

{
T(Ai,sched(Ai))

}
. (3)

2) Economic Cost: We define the economical cost C(Ai,Rj)

of executing an activity Ai on a resource Rj as the sum of
the four cost components introduced in Section III-B:

C(Ai,Rj) = t(Ai,Rj) · peRj
+ Data (Ai) · t(Ai,Rj) · psRi

+
+In(Ai) · piRi

+ Out (Ai) · poRi
,

(4)
where Data (Ai) represents the total data storage required
for executing the activity Ai (including input, output, and
temporary data) and In (Ai) / Out (Ai) is the sum of the data
sizes transferred to / from Ai from / to activities executed on
resource other than Rj . The economical cost of executing the
entire workflow W the simple sum of executing all its tasks:

CW =

n∑

i=1

C(Ai,Rj) (5)

IV. MULTI-OBJECTIVE OPTIMIZATION BACKGROUND

In this section, we introduce concepts from the multi-
objective optimization theory for a better understanding of this
work. We assume without loss of generality that minimization
is the goal for all the objectives, as any maximization problem
can be defined in terms of a minimization too.

A general, multi-objective optimisation problem can be
formally defined as follows: find all the vectors �x =
[x1, x2, . . . , xn] which minimize the vector function �f (�x) =
[f1(�x), f2(�x), . . . , ft(�x)]

T . For our particular problem, n rep-
resents the cardinality of the task set A (n = |A|) and the i-th
component of a solution �x represents the resource where task
Ai is going to be executed: sched (Ai) = xi, xi ∈ R. In our
bi-objective optimisation case, we have t = 2, where f1(�x)
represents the makespan and f2(�x) the economical cost.

Fig. 1. Comparison of multi-objective
tradeoff solutions.

As it is not possible to
find a solution minimiz-
ing makespan and econom-
ical cost simultaneously, we
need to introduce the con-
cept of dominance. A so-
lution �x1 dominates a so-
lution �x2, if the makespan
and economical cost of �x1

are smaller than those of
�x2. Conversely, two solu-
tions are said to be non-
dominated whenever none
of them dominates the other
(i.e. one is better in makespan and the other is better in eco-
nomical cost). In Figure 1 for example, the solution labelled
a dominates the one labelled b because it has better makespan
and economical cost. Similarly, a dominates c too. Meanwhile,
a and d are non-dominated because a is better in makespan,
but d is better in economical cost. A set of non-dominated
solutions is called Pareto set (the trend line containing the a,
d, and e solutions) and represents a set of tradeoff solutions
among the different objectives. Every solution in this set
represents a different mapping of the workflow tasks with
different makespans and economical costs.

A Pareto front can be seen as a tool for decision support
and preferences discovery. Its shape can provide insight to
researches or scientists (from now decision makers), allowing
them in many cases to explore the possible space of non-
dominated solutions with certain properties, and possibly
revealing regions of particular interest which cannot be seen
until the Pareto front is known. In this way, the users do
not have to set their preferences before finding a solution,
instead the preferences are discovered afterwards. To this
end, not all the Pareto fronts are valid. A good Pareto front
is one which provides accuracy (solutions close the optimal
ones) and diversity (uniformly cover all the possible ranges
of optimal solutions). A way of measuring the quality of a
set of tradeoff solutions is the hypervolume. Given a set of
tradeoff solutions X , the hypervolume HV (X) measures the
area enclosed between the points in X and a reference point
W (see Figure 1), usually selected as the maximum objective
value (e.g. between the makespan and economical cost). This
way, the better the points contained in X and the most diverse
they are, the higher HV (X). In Figure 1 for example, the
set containing the solid round points is better than the set
containing the squared solutions because the area enclosed
within the dashed lines is larger than the one represented by
the dotted lines.

V. MOHEFT: MULTI-OBJECTIVE HETEROGENOUS
EARLIEST FINISH TIME ALGORITHM

In this section we describe our proposed multi-objective
scheduling algorithm for computing a set of tradeoff solutions
(instead of a single one) as an extension to the HEFT list
scheduling algorithm. For a better understanding, we start by
describing the mono-objective version of the algorithm and
extend it afterwards for dealing with multiples objectives.

Figure 1: Pareto frontier, HV and
crowding distance.

In this section, we formally describe the
workflow scheduling problem on a DCI and
the two metrics of interest.

4.1. Workflow model

A workflow application is usually mod-
elled as a directed acyclic graph (DAG),
W = (A,D) consisting of n activ-
ities (or tasks) A = ∪ni=1 {Ai}, in-
terconnected through a set of control
flow and data flow dependencies D =
{Ai,Aj,Dataij} | (Ai, Aj) ∈ A × A, where
Dataij represents the size of the data which
needs to be transferred from activity Ai to
activity Aj. We use pred(Aj) to denote the
predecessor set of activity Aj, (i.e. those ac-
tivities which should be finished before executing Aj) where Ai ∈ pred (Aj).
Finally, we assume that the computational workload of every activity Ai is
known and is given by the number of machine instructions required to be
executed.

4.2. Resource Model

Let us assume that our hardware platform consists of a set of m heteroge-
neous resources R = ∪mj=1Rj. For every resource Ri we assume that we know
its speed s measured in the number of instructions per second. Additionally,
every resource has a price model consisting of four components:

1. peRi
is the price of using the resource per second;

2. psRi
is the price for storing the data on that resource in MB per second;
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3. piRi
is the price of receiving data in terms of incoming MB;

4. poRi
is the price of sending data in terms of outgoing MB.

Without loss of generality, this pricing model can be adapted to match any
of the existing commercial Clouds.

4.3. Problem Definition

The problem here consists in scheduling the execution of the workflow
activities in the resources in such a way that the makespan and economical
costs are minimised. In the rest of this work, we use sched(Ai) to denote the
resource in which activity Ai is plan to be executed.

4.3.1. Makespan

For computing the workflow makespan, it is first necessary to define the
execution time t(Ai,Rj) of an activity Ai on a resource Rj = sched (Ai) as the
sum of the time required for transferring the biggest input data from any
Ap ∈ pred(Ai) and the time required to execute Ai in Rj:

t(Ai,Rj) = max
Ap∈pred(Ai)

{
Datapi

bjq

}
+

workload (Ai)

sj
, (1)

where Datapi is the size of the data to be transferred between Ap and Ai,
bpj is the bandwidth of one TCP stream between the resource where task Ap

has been executed and the resource Rj, workload(Ai) the length of the task
Ai in machine instructions, and sj the speed of the resource Rj in number of
machine instructions per second. We can compute the completion time TAi

of activity Ai considering the execution time of itself and its predecessors as:

TAi
=

{
TAi

, pred (Ai) = ∅;
max

Ap∈pred(Ai)

{
TAp + t(Ai,sched(Ai))

}
, pred (Ai) 6= ∅. (2)

The workflow makespan is the maximum completion time of all its activities.

TW = max
i∈{1,...,n}

{
T(Ai,sched(Ai))

}
. (3)

4.3.2. Financial Cost

We define the financial cost cost(Ai,Rj) of executing an activity Ai on a
resource Rj as the sum of the four cost components introduced in Section 4.2:

C(Ai,Rj) = t(Ai,Rj) · peRj
+ Data (Ai) · t(Ai,Rj) · psRi

+
In(Ai) · piRi

+ Out (Ai) · poRi
,

(4)
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where Data (Ai) represents the total data storage required for executing the
activity Ai (including input, output, and temporary data) and In (Ai) /
Out (Ai) is the sum of the data sizes transferred to / from Ai from / to
activities executed on resource other than Rj. The financial cost of executing
the entire workflow W is the simple sum of the costs of all its activities:

CW =
n∑

i=1

C(Ai,sched(Ai)) (5)

5. MOHEFT: Multi-Objective Heterogenous Earliest Finish Time

In this section we describe our proposed multi-objective scheduling algo-
rithm based on extending an existing list scheduling algorithm for computing
a set of tradeoff solutions instead of a single one. For a better understand-
ing, we start by describing the mono-objective version of the algorithm and
extend it afterwards for dealing with multiples objectives.

5.1. HEFT: Heterogeneous Earliest Finish Time Algorithm

The Heterogeneous Earliest Finish Time Algorithm (HEFT) is a popular
list-based heuristic scheduling algorithm for optimizing the makespan [1] in
workflow applications, described in pseudo-code in Algorithm 1. The method
consists of two phases: ranking and mapping. In the ranking phase (line 2),
the order in which the activities are being mapped is computed using the
B-rank metric (distance of the activity to the end of the workflow). The idea
of this ranking is to schedule first the critical path tasks from the set of ready
tasks. Further details about how to sort the tasks can be found in [1]. Once
the execution order is determined, the second phase consists in assigning each
task to the resources (lines 4–14) following the order computed in the first
phase. For each task (line 4) and for each resource (line 6), the completion
time of that task on that resource is computed (line 7). Finally, the task is
mapped onto the resource where it is finished earlier (line 13). After all tasks
have been mapped, the workflow schedule is returned (line 15).

5.2. MOHEFT: Multi-Objective Heterogenous Earliest Finish Time

As described before, HEFT builds a solution by sequentially mapping
tasks onto resources. That mapping is aimed at minimising the completion
time of every single task, so in every iteration only the resource which min-
imises this goal is considered. When multiple objectives are considered, the
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Algorithm 1 HEFT algorithm.
Require: W = (A,D), A =

⋃n
i=1 Ai . Workflow application

Require: R =
⋃m

i=1 Ri . Set of resources
Ensure: schedW = {(Ai, sched (Ai)) |∀Ai ∈ A} . Workflow schedule
1: function HEFT(W ,R)
2: Ranking ← B-rank(A) . Order the tasks according to B-rank
3: schedW ← ∅ . Initialize workflow schedule with empty set
4: for i← 1, n do . Iterate over the ranked tasks
5: Tmin ←∞
6: for j ← 1,m do . Iterate over all resources

7: TRankingi
← max

Ap∈pred(Rankingi)

{
TAp + t(Rankingi,Rj)

}
. Compute completion of Rankingi

8: if TRankingi
< Tmin then . Save the minimum completion time

9: Tmin ← TRankingi
10: Rmin ← Rj

11: end if
12: end for
13: schedW ← schedW ∪ (Rankingi, Rmin) . Schedule the task
14: end for
15: return schedW

16: end function

goal is to compute a set of tradeoff solutions. To this end, we must allow the
creation of several solutions at the same time instead of building a single so-
lution. Additionally, instead of mapping every task onto the resource where
it is finished earlier, we should allow mapping of tasks also to resources that
provide a tradeoff between the considered objectives.

The MOHEFT algorithm extends HEFT with these ideas, as depicted in
pseudocode in Algorithm 2. The only additional input parameter of MO-
HEFT is the desired size of the set of tradeoff solutions K. Our method
also ranks the tasks using the B-rank (line 2). After that, instead of creat-
ing an empty solution as in HEFT, it creates a set S of K empty solutions
(lines 3–5). Afterwards, the mapping phase of MOHEFT begins (lines 6–15).
MOHEFT iterates first over the list of tasks (line 6) sorted by execution or-
der. The idea is to extend every solution in S by mapping the next task to
be executed onto all possible resources creating m new solutions. We store
all the created solutions in a temporal set S ′ which is initially empty (line 7).
For creating these new solutions, we iterate over the set of resources (line 8)
and the set S (line 9), and add the new extended intermediate schedules to
the new set S ′ (line 10). This strategy results in an exhaustive search if we
do not include any restrictions, therefore MOHEFT only saves the best K
tradeoffs solutions from the temporary set S ′ to the set S (lines 13–14). We
consider that a solution belongs to the best tradeoff if it is not dominated
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Algorithm 2 MOHEFT algorithm.
Require: W = (A,D), A =

⋃n
i=1 Ai . Workflow application

Require: R =
⋃m

i=1 Ri . Set of resources
Require: K . Number of workflow tradeoff schedules
Ensure: S =

⋃K
i=1 schedW , schedW = {(Ai, sched (Ai)) |∀Ai ∈ A} . Pareto set of tradeoff schedules

1: function MOHEFT(W ,R,K)
2: Ranking ← B-rank(A) . Order the tasks according to B-rank
3: for k ← 1,K do . Create K empty workflow schedules
4: Sk ← ∅
5: end for
6: for i← 1, n do . Iterate over the ranked tasks
7: S′ ← ∅
8: for j ← 1,m do . Iterate over all resources
9: for k ← 1,K do . Iterate over all tradeoff schedules
10: S′ ← S′ ∪ {Sk ∪ (Rankingi, Rj)} . Add new mapping to all intermediate schedules
11: end for
12: end for
13: S′ ← sortCrowdDist(S′,K) . Sort according to crowding distance
14: S ← First(S′,K) . Choose K schedules with highest crowding distance
15: end for
16: return S
17: end function

by any other solution and if it contributes to the diversity of the set. Our
criterion is to prefer solutions with a higher crowding distance (defined in
Section 3), which ensures that the selected Pareto set represents a wider
area of different tradeoff solutions. After assigning all the tasks (line 16), the
algorithm returns the set of K best tradeoff solutions.

Complexity. Given a set of n activities and m resources, the computational
complexity of HEFT’s mapping phase is O(n ·m). MOHEFT introduces two
extensions with respect to HEFT: the creation of several solutions in parallel,
and the possibility of considering resources providing a tradeoff solution. We
implemented these capabilities by introducing a new loop that iterates over
the set tradeoff solutions (line 9). Thus, considering that the set of tradeoff
solutions is M , the complexity of MOHEFT becomes O(n ·m ·M). Usually,
the number of tradeoff solutions is a constant much lower than n and m.
For example, a workflow can be composed of thousands of tasks, and a set of
tradeoff solutions can be accurately represented with tens of solutions. Thus,
the complexity could be considered as almost O(n ·m), as in HEFT.

5.3. Multi-Objective Scheduling on Federated Clouds

In this section, we extend our multi-objective scheduling approach to deal
with the characteristics of federated Cloud environments. For this purpose,
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we first redefine the financial cost metric to fit the cost models applied today
by commercial Clouds, and then customise the MOHEFT algorithm to deal
with their resource provisioning peculiarities.

5.4. Cloud Financial Cost

The financial cost for executing an activity in a commercial Cloud depends
on two terms: the computation cost C(comp) and the cost of data transfer and
storage C(data). We assume that all providers charge the customers using an
hourly based model (i.e. per hour of computation). We define C

(data)
(Ai,Rj) as the

cost of the data transfers In(Ai) and Out (Ai) and storage Data (Ai) resulting
from executing activity Ai on resource Rj:

C
(data)
(Ai,Rj) = Data (Ai) · t(Ai,Rj) · psRi

+ In(Ai) · piRi
+ Out (Ai) · poRi

, (6)

In defining the cost C
(comp)
Rj

of using a resource Rj, we assume that for each

task Ai executed on Rj we record two timestamps: t
(start)
Ai

when the activity

starts and t
(end)
Ai

when the activity finishes its execution. We consider without
loss of generality that the times for transferring the input In (Ai) and the

output data Out (Ai) are included in the interval between t
(start)
Ai

and t
(end)
Ai

.
Let us consider now the set of all p activities scheduled on resource Rj

denoted as {J1, . . . , Jp}, where p < n and sched (Ji) = Rj, i ∈ [1, p], sorted

based on their start timestamp: t
(start)
J1

< . . . < t
(start)
Jp

. Based on this order-

ing, we cluster these activities in q ≤ p different groups G
(j)
k , 1 ≤ k ≤ q.

All activities in one group are executed consecutively without releasing the
resource. After the activity with the largest start timestamp in the group
completes, the resource is released.

We construct the first group G
(j)
1 = {J1, . . . , Jr} , r ≤ p following three

rules:

1. The first activity J1 belongs to the first group: J1 ∈ G
(j)
1 ;

2. Every activity Ji ∈ G
(j)
1 , 2 ≤ i ≤ r, starts before the current leased

hour expires and before the machine is released:

t
(start)
Ji

< t
(start)
J1

+

⌈
t
(end)
Ji−1
− t

(start)
J1

3600

⌉
· 3600. (7)

We convert the total time of using a resource to hours by dividing it
by 3600 and using the ceiling operator. This equation guarantees a
contiguous resource allocation of activities within one hour slot;
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3. The next activity not in the first group Jr+1 6∈ G
(j)
1 , r + 1 ≤ p, starts

after the last hour of computation elapses and the resource is released:

t
(start)
J1

+

⌈
t
(end)
Jr
− t

(start)
J1

3600

⌉
· 3600 < t

(start)
Jr+1

. (8)

Successive groups are built until the last activity Jp has been assigned to

one group. The second group G
(j)
2 is constructed in the same way starting

from Jr+1 instead of J1, and similarly for the rest of the groups. Once all

groups have been created, we define the cost C
(comp)
Rj

of using the resource Rj

as the time in hours for executing all groups multiplied by the hourly cost:

C
(comp)
Rj

= peRj
·

q∑

k=1

⌈∑
Ai∈G

(j)
k

t(Ai,Rj)

3600

⌉
. (9)

The cost of executing the workflow W = (A,D) is the sum of the cost of
all m the used resources and the cost for transferring and storing the data:

CW =
m∑

j=1

C
(comp)
Rj

+
∑

(Ai,Aj ,Dataij)∈D

C
(data)
(Ai,Rj). (10)

5.5. Federated MOHEFT Cloud Algorithm

Algorithm 3 requires as input the instance types offered by all Cloud
providers, the maximum number of resources that can be simultaneously
rented from each provider ~N , and the number of tradeoff solutions K.

Firstly, the algorithm ranks the tasks in the workflow using the B-rank
metric and creates a set S of K empty schedules (lines 2 and 3). Afterwards,
it iterates over the list of tasks and extends every solution in S by mapping
the next task onto different possible instances. For every task, the algorithm
builds a list of possible resources where the task can be executed, either by
reusing an instance already assigned to a previous task, or by acquiring a
new instance (lines 8 and 12, respectively). This list is used for building new
schedules that also consider the current task (line 16). The newly produced
schedules are stored in a temporary set S ′, initially empty (line 21). After
each iteration, S ′ replaces S before the next task in the list is considered
(line 24). Obviously, this strategy results in an exhaustive search if we do
not include any restrictions. To avoid this, we save only the best K trade-
off solutions from the temporary set S ′ to the set S, selected based on the
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Algorithm 3 Federated MOHEFT Cloud algorithm.
Require: W = (A,D), A =

⋃n
i=1 Ai . Workflow application

Require: ~N = (N1, ..., Nc) . Maximum instances allowed by each of the c Cloud providers
Require: I =

⋃m
i=1 Ii . Instance types offered by all c Cloud providers

Require: K . Number of workflow tradeoff schedules
Ensure: S =

⋃K
i=1 schedW , schedW = {(Ai, sched (Ai)) |∀Ai ∈ A} . Pareto set of tradeoff schedules

1: function MOHEFT(W, ~N, I,K)
2: Ranking ← B-rank(A) . Order tasks according to the B-rank
3: S ← {S1, . . . , SK}, where Sk = ∅, ∀k ∈ [1,K] . Create K empty workflow schedules
4: for i← 1, n do . Iterate over the ordered tasks in the Ranking list
5: S′ ← ∅
6: for k ← 1,K do . Iterate over all tradeoff schedules
7: R← ∅ . Build a set of possible instances for executing next task
8: for r ← 1, |Sk| do . Reuse instance where tasks in Sk are executing
9: (A′, R′) = Skr

10: R← R ∪R′

11: end for
12: for r ← 1,m do . Consider a new instance of each type
13: R← R ∪ Ir
14: end for
15: for j ← 1, |R| do . Iterate over all resources
16: s← Sk ∪ (Rankingi, Rj) . Extend all intermediate schedules

17: if violationConstraints(s, ~N) then . Check if too many instances from a provider
18: Ts ←∞ . Mark schedule as non-valid
19: Cs ←∞
20: end if
21: S′ ← S′ ∪ {s} . Add new mapping to intermediate schedules
22: end for
23: end for
24: S′ ← sortCrowdDist(S′,K) . Sort according to the crowding distance
25: S ← First(S′,K) . Choose K schedules with the highest crowding distance
26: end for
27: return S
28: end function

objective functions and the diversity of the set, i.e., how different these solu-
tions are (see [13]). To deal with the restriction on the maximum number of
instances that can be simultaneously rented from a provider, we discard any
schedule that violates this constraint (line 17) by setting its financial costs
and makespan to infinite. This way, the partial solution will be always worse
(dominated) than any other schedule and will be discarded in line 24.

6. Experimental Setup

We evaluated the MOHEFT algorithm in different configurations involv-
ing synthetic and real-world workflows with different properties on synthetic
DCIs and federated commercial public Clouds.
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6.1. Synthetic Workflows

We started our evaluation on synthetic workflows of three types, gener-
ated as described in [4, 22] (see Figure 2):

• Type-1 with maximum two parallel activities;

• Type-2 where the number of parallel activities is high and the work-
flow is balanced (same number of activities in every level), with many
independent activities sharing one successor and one predecessor;

• Type-3 where the number of parallel activities is high, but the workflow
is unbalanced (the number of activities in every level is different) and
most tasks have different successors and predecessors.

Figure 2: Balanced and unbalanced
workflow examples.

We generated workflows with a number
of activities between 100 and 1000. We gen-
erated the length of each activity using a
Gaussian distribution with the mean execu-
tion time of 10 seconds on an average single
core instance. For the experiments on fed-
erated Clouds, we considered three activity
classes with different data requirements: (1)
low where each activity produces/consumes
around 10MB of data, (2) medium produc-
ing/consuming around 100MB, and (3) high
producing/consuming around 1GB.

6.2. Synthetic DCIs

We simulated two synthetic resource infrastructures: (1) DCI-1, where
the number of resources ranges between 10 and 100; (2) DCI-2, where the
number of resources are similar to the number of tasks in the workflow.
We generated the speed and price of each resource using a random uniform
distribution limited within a maximum and minimum speed and cost limits.

6.3. Real-World Applications

We complement our evaluation on synthetic workflows with two real ap-
plications. Both applications can be modelled with different parallelization
sizes involving different number of activities. In this work we considered 100
different instances, each of them having between 100 and 1500 activities.
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Figure 3: Real-world workflow applications.

WIEN2k [23] is a material science workflow for performing electronic
structure calculations of solids using density functional theory based on the
full-potential (linearised) augmented plane-wave ((L)APW) and local orbital
(lo) method. WIEN2k is a workflow of Type-2 consisting of two parallel
sections with sequential synchronisation activities in between (see Figure 3a).

The Persistence Of Vision Raytracer (POV-Ray) (http://www.povray.
org) is a free tool for creating time consuming three-dimensional graphics not
only by hobbyists and artists, but also in biochemistry research, medicine,
architecture and mathematical visualisation. We modelled a POV-Ray ren-
dering scenario as a Type-2 workflow depicted in Figure 3b, where the de-
scription of a movie is separated in several scenes, each scene being composed
of several frames which can be rendered as parallel activities. Finally, all
frames are merged into an mpeg movie. The data volume consumed by this
application also depends on the number of frames which have to be trans-
ferred to the merger activity after being rendered. We consider here three
instances of this application rendering 512, 1024, and 4096 frames.

6.4. Federated Cloud

With respect to the real federated infrastructure, we simulated two com-
mercial Cloud providers: Amazon EC2 and GoGrid. We use for modelling
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Fig. 1: System architecture.

Instance Speed PriceGFLOPS/
[GFLOPS] [$/h] $

Amazon EC2 Instances
m1.small 2.0 0.1 19.6
m1.large 7.1 0.4 17.9
m1.xlarge 11.4 0.8 14.2
c1.medium 3.9 0.2 19.6
c1.xlarge 50.0 0.8 62.5

GoGrid Instances
GG.large 8.8 0.16 46.4
GG.xlarge 28.1 0.76 37.0

Fig. 2: EC2 and GoGrid per-
formance and prices.

this paper Amazon EC2 and GoGrid. In particular, we consider in this paper the
five Amazon EC2 resources and the two GoGrid instances analysed in [2] and
summarized in Table 2. For a given resource Rj of a certain type, we know its av-
erage performance measured in GFLOPs and its price per hour of computation.
The final price of a schedule is based the resources’ usage and the data stored
and transferred. This price depends on four components: (1) price per hours of
resource usage PERi , (2) price per MB of data storage PSRi , (3) price per MB
of data received PI Ri , and (4) price per MB of data sent PORi . The prices of
these components depend on the Cloud provider. As mentioned before, Cloud
providers may impose some constraints too. While in theory a user can access an
infinite pool of resources, most providers restrict this number to a maximum of N
instances that can be simultaneously acquired. These N resources can be of any
type and do not have to be kept invariant during execution. We use sched(Ai)
to denote the resource on which the task Ai is scheduled for execution.

3.4 Makespan

To compute the makespan, it is necessary to define the execution time t(Ai,Rj)

of an activity Ai on a resource Rj = sched (Ai) as the sum of the time required
for transferring the biggest input data from any Ap ∈ pred (Ap) and the time
required to execute Ai on Rj :

t(Ai,Rj) = max
Ap∈pred(Ai)

{
Datapi

bpj

}
+

workload (Ai)

sj
, (1)

where Datapi is the size of the data to be transferred between Ap and Ai, bpj

is the bandwidth between the resource where task Ap was executed and the
resource Rj (corresponding to the bandwidth of the local network in case both
resources belong to the same provider, or to the Internet connection in case they
belong to different providers), workload(Ai) represents the length of the task
Ai in machine instructions, and sj the speed of the resource Rj in number of
machine instructions per second (see second column of Table 2). Next, we can
compute the completion time TAi of activity Ai considering the execution time

Figure 4: Federated Cloud infrastructure.

Table 1: Amazon EC2 and
GoGrid instances.

Instance Speed PriceGFLOPS/
[GFLOPS] [$/h] $

Amazon EC2
m1.small 2.0 0.1 19.6
m1.large 7.1 0.4 17.9
m1.xlarge 11.4 0.8 14.2
c1.medium 3.9 0.2 19.6
c1.xlarge 50.0 0.8 62.5

GoGrid
GG.large 8.8 0.16 46.4
GG.xlarge 28.1 0.76 37.0

the workflows’ makespan the average performance in millions of floating point
operations per second (GFLOPs) of five different instance types of Amazon
EC2 and two instances of GoGrid, as reported in [24] (see Table 1). We
assume that the resources of the same provider are connected using a local
gigabit network and the different providers are connected using a 150 MB
per second wide area network. We consider that a user can simultaneously
rent 20 instances from both Amazon EC2 and GoGrid, which can be of any
of the types summarised in Table 1. Although these limits can be usually
extended upon request, we intend in this paper to evaluate how MOHEFT
can deal with the default configurations.

6.5. Evaluation metrics

We evaluated the results of the MOHEFT algorithm in terms of three
different metrics: shortest makespan, lowest financial cost, and hypervolume
as a measure for the quality of tradeoff solutions (see Section 3). We com-
pared our results MOHEFT with the original HEFT and SPEA2, a genetic
algorithm from the multi-objective optimisation theory proposed by Zitzler et
al. [25]. SPEA2 starts with a population of candidate solutions and iteratively
recombines them with the aim of producing better ones. We used a custom
version of the algorithm called SPEA2* [4] initialised with a nearly-optimal
solution in terms of makespan (computed using HEFT) and financial cost
(by using the cheapest resources). In our work, We implemented SPEA2* in
the jMetal framework [26], initialised it with a population size equal to the
number of tradeoff solutions M , and run it for 1000 generations. In all the
cases, we set the size of the Pareto set of tradeoff solutions to M = 10.
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Figure 5: Synthetic Type-1 workflows with low parallelism.

Figure 6: Synthetic Type-2 workflows with high parallelism and balanced structure.

7. Experimental Results

We present the experimental results organised in four categories covering
the four combinations of synthetic and real-world workflows and DCIs.

7.0.1. Synthetic Workflows on Synthetic DCIs

We used for these experiments the DCI-2 resource infrastructure.

Type-1 workflows. For Type-1 workflows, we observe in Figure 5 that all
three methods computed solutions with the same makespan, while HEFT
delivered worse financial costs than MOHEFT and SPEA2*. While the re-
sult for SPEA2* is not surprising since the algorithm is initialised with HEFT
schedules in terms of makespan and the cheapest in terms of cost, it demon-
strate that MOHEFT does not degrade its performance either. We further
observe that MOHEFT and SPEA2* computed solutions with similar HV
which indicates a similar quality of solutions.

Type-2 workflows. The makespan and financial costs for Type-2 workflows
are similar to the previous case as displayed in Figure 6. In terms of quality
of the Pareto set, MOHEFT outperforms SPEA2* in all the evaluated vases.
In particular, the higher the number of activities in the workflow is, the
higher is the difference in HV between the two techniques. This means that
for a high number of parallel activities, MOHEFT is able of producing better
tradeoff solutions than SPEA2* genetic operators.
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Figure 7: Synthetic Type-3 workflows with high parallelism and unbalanced structure.

(a) DCI-1 infrastructure.

(b) DCI-2 infrastructure.

Figure 8: WIEN2k workflow results.

Type-3 workflows. For the Type-3 workflows, MOHEFT outperformed the
results of HEFT and SPEA2* in terms of makespan, as observed in Figure 7.
The explanation is that HEFT is a greedy heuristic and, hence, selects in
every iteration the resource that minimises the makespan of the next task
in the list. On the contrary, MOHEFT builds several solutions in parallel
achieving a better exploration of the search space. In terms of cost, MOHEFT
and SPEA2* computed the best solutions as in the previous case, and the
improvements to HEFT are higher when the number of activities increases.
Finally, the HV metric indicates that MOHEFT outperforms again SPEA2*
in terms of quality of solutions. Similar to Type-2 workflows, the difference
between the two methods increases with the number of activities.

7.1. Real-World Applications on Synthetic DCIs

In this section, we extend our validation with two real-world workflow
applications: WIEN2k and POV-Ray.

WIEN2k. The results for the WIEN2k workflow are depicted in Figure 8
for DCI-1 and DCI-2 resource configurations. In both cases, MOHEFT
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(a) DCI-1 infrastructure.

(b) DCI-2 infrastructure.

Figure 9: POV-Ray workflow results.

and SPEA* were able to compute a solution with the same makespan as
HEFT. While this the result is not surprising for SPEA* since the algorithm
is initialised in part with solutions delivered by HEFT, it demonstrates that
MOHEFT does not degrade the HEFT performance either. In terms of finan-
cial cost, MOHEFT and SPEA2* clearly outperform HEFT. The differences
cost are also small for small workflows, but it increased with the number of
activities. The results of SPEA2* are similar to MOHEFT, which is again
no surprise since SPEA2* is initialised in part with the cheapest scheduled.
Finally, we observe that the quality of the Pareto set computed by MOHEFT
in terms of HV is always better than the one computed by SPEA*.

Figure 10: POV-Ray Pareto sets.

POV-Ray. The results for the POV-Ray
workflow summarised in Figure 9 are similar
to the ones reported for WIEN2k. First, the
three methods compute again the same so-
lution for the best makespan. Second, MO-
HEFT and SPEA2* provided the best re-
sults in terms of the financial cost, HEFT
being again the worst alternative. As before,
the difference in cost between MOHEFT and
HEFT increases with the number of activi-
ties. Finally, the analysis of the HV verifies
that MOHEFT outperformed SPEA2* also in this case. In the DCI-2 con-
figuration, we further observe that the difference in the quality of the Pareto
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set increases with the number of activities. An example of the set of tradeoff
solutions computed by the two methods for the same workflow instance is
depicted in Figure 10, which demonstrates that the scheduled computed by
MOHEFT dominate those computed by SPEA2*.

7.2. Synthetic Workflows on Federated Clouds

In this section, we analyse the schedules computed by MOHEFT for the
Type-2 and Type-3 workflows using a federation of EC2 and GoGrid Cloud.
We do not consider Type-1 workflows here that obviously do not benefit
from a Cloud federation. We display the tradeoff solutions in Figures 11, 12,
and 13, showing for each solution (numbered 0 − 9 on the horizontal axis)
the makespan and cost normalised in the interval [0, 1]. We performed this
normalisation using the maximum and minimum values within the Pareto
frontier for both the makespan and financial cost. These graphs also show
the percentage of simultaneously used instances from the maximum allowed
by each provider in form of bar charts, where the height of each bar indicates
the percentage normalised in the [0,0.5] interval. As we use a total of 40
resources (20 from each provider), a bar with a height of 0.5 indicates that
20 instances have been used. We use two different bar textures to differentiate
between the two considered providers. All experiments in this section report
results for workflows with 1000 activities. We omitted those with a different
number of activities showing the same behaviour due to space limitations.

Type-2 workflows. For Type-2 workflows, we focus first our analysis on the
advantages of using the Cloud federation and comment afterwards on the
makespan and cost of the computed solutions. The three graphs in Figure 11
show that the benefits of using a federation of Clouds decreases with the
volume of the data managed by the application. When the data volume
is low, the workflow makespan can be further decreased by considering the
joined use of services from the federation. We observe this behaviour in Fig-
ure 11a, where the three tradeoff schedules with smallest makespan (labelled
7, 8, 9) uses all available machines provided by the federation As long as the
data volume increases, aggregating resources from different providers does
not reduce the makespan, despite the fact that the number of independent
activities in the workflow is high. In particular, when the data volume is
medium, the percentage of machines used from the federation decreased and
never receased the maximum of 40. Finally, when the data volume is high,
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Figure 11: Normalised Type-2 workflow tradeoff schedules.
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Figure 12: Normalised Type-3 workflow tradeoff schedules.

the federated Cloud does not bring any advantage and the computed sched-
ules only use machines of one or the other provider. Regarding the makespan
and financial cost, we observe in all cases that a schedule with an overhead of
less than 10% with respect to the shortest computed makespan dramatically
increases the costs. For example, the difference between the makespan of the
schedules labelled 6 and 9 is smaller than 5%, while the difference in financial
costs are up to 80% (see Figure 11a). A deeper analysis of the results also re-
veals that cheap solutions rarely consider federated resources and rather use
resources from a single provider. A possible explanation for this behaviour is
the hourly based price model offered by the providers, cheap solutions trying
to increase resource utilisation instead of launching simultaneous instances.

Type-3 workflows. For Type-3 workflows, the results in Figure 12 show that
MOHEFT produced less than K = 10 tradeoff schedules which indicates
that the tradeoff between makespan and financial cost is lower for this kind
of workflows than for the Type-2. With respect to the used resources, only
few instances are required to execute this kind of workflows as a consequence
of the lower number of activities which can be executed in parallel. Therefore,
the use of a Cloud federation does not bring any benefit in this situation.
Similar to the previous case, the tradeoff analysis between makespan and
cost shows that reducing the makespan overhead to less than 10% over the
shortest one implies a strong economical investment, while schedules with
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Figure 13: Normalised POV-Ray workflow tradeoff schedules.

more than 10% overhead imply a small price fraction.

7.3. Real-World Workflows on Federated Clouds

As explained before, each activity of the POV-Ray workflow renders a
frame and transfers it to a final activity which merges all the frames and
stores them into a file. Each frame is of around 1 MB in size. Therefore, the
POV-Ray application can be considered as a Type-2 workflow and expects
to achieve benefits from using a federation of Clouds. As summarised in
Figure 13, it is obvious that the federation helps in reducing the makespan
of this application. The three evaluated cases show that the higher the
number of activities, the higher the benefit from the federation. This result
is a consequence of the high degree of parallelism showed by this workflow
application and the low volume of data required.

8. Conclusions and Future Work

We described a new multi-objective list-based scheduling algorithm for
scientific workflows called MOHEFT. In contrast to related work based on a-
priori aggregative functions and constrained objectives, MOHEFT is a truly
multi-criteria optimisation that approximates the Pareto frontier using a
number well-distributed tradeoff solutions selected by the crowding distance
and evaluated using the HV metric.

We compared our method with the HEFT algorithm and another state-of-
the-art heuristic from the multi-criteria optimisation theory (SPEA2*). We
considered in our evaluation both synthetic workflows with different char-
acteristics, as well as two real-world ones. In all experiments, MOHEFT
obtained equal or even better makespan as the mono-objective HEFT algo-
rithm and better economical cost. For workflows with a few parallel activi-
ties, MOHEFT and SPEA2* computed solutions of the same quality having
the same makespan as HEFT and better financial cost. For workflows with

22



a high number of parallel activities and a balanced structure, MOHEFT
outperformed SPEA2*, the difference increasing with the number of work-
flow activities. For workflows with a high number of independent activities
and unbalanced structure, MOHEFT delivered better makespan results than
HEFT and SPEA2* and higher quality tradeoff solutions than SPEA2*. Ex-
perimental results using Amazon EC2 and GoGrid as independent providers
illustrated that federated Clouds can help in shortening the makespan for
workflow applications which do not require transferring large amounts of
data among activities. In situations where data transfers dominate the com-
putation time, the workflows do not benefit from a federation of Clouds and
performs better in a single provider configuration.

In the future we plan to extend our analysis for other real-world applica-
tions and a wider set of Cloud providers. We will also analyse extensions to
MOHEFT to better deal with federated Clouds and big data problems.
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