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Abstract

Large environments that are designed for travel, leisure, and for everyday life —
such as transport hubs, amusement parks, and shopping centers — feature dif-
ferent locations that are frequently visited by pedestrians. Each visit is evoked
by one’s motivation to engage in some kind of activity at a certain location. By
means of modeling the pedestrians’ interests in locations with the aid of com-
puter simulations, it is possible to forecast the occupancy at locations by utiliz-
ing sophisticated pedestrian destination choice models. In the field of pedestrian
dynamics research, location preference modeling is not common, but it is all the
more rare to include a psychological grounding into such choice models. Here
we show that our psychologically inspired and mathematically defined model to
describe pedestrians’ interests in locations is able to improve the exactness of
pedestrian destination choice models. The interest function model is based on
the psychological concept of goal-related memory accessibility and on fundamen-
tal coherences found in pedestrian-related data that is measurable at locations.
We validated the interest function model and our results provide evidence that
our approach improves the simulation fidelity regarding occupancy forecasting.
Because the interest concept is designed as a framework that can be coupled to
existing microscopic pedestrian simulators, it can be used in most pedestrian
destination choice models to describe pedestrian visiting preferences. Conse-
quently, the reliability of the occupancy predictions of pedestrian simulations
can be enhanced by integrating the interest function model into choices models.
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1. Introduction

Pedestrian simulations aim to predict pedestrian movement behavior in dif-
ferent environments. Decision makers can identify dangerous situations and in-
crease pedestrian safety by evaluating the prediction models’ simulation results.
We describe these results as macroscopic pedestrian performance indicators.
An important indicator is the pedestrian flow that describes the throughput of
pedestrians in time and space between two locations [58], e.g., a route connected
by two junctions. The pedestrian flow decreases with an increasing number of
pedestrians [52]. Additionally, the flow changes if the geometric layout of the
surroundings impedes walking [42]. Another important indicator is to be seen
in high pedestrian densities [50]. A well-known tragic example in which high
pedestrian densities played a key factor is the Love Parade disaster [28]. In con-
trast to the macroscopic indicators, microscopic indicators account for people’s
walking properties such as the position, the direction and the velocity. Hence,
it is the microscopic pedestrian walking behavior that leads to macroscopic
pedestrian-related performance indicators. Therefore, microscopic pedestrian
computer simulations are used to forecast macroscopic performance indicators
[1, 16, 36, 56, 60].

In our work, we focus on a specific macroscopic factor: the number of visi-
tors at a location over time, in other words, the location’s occupancy. This time
dependent value ultimately describes the pedestrians’ visiting patterns at a loca-
tion, which is a macroscopic indicator for capacity caps and safety issues [50, 57].
The occupancy emerges due to microscopic behavior of pedestrians comprising
repeated stays at locations and travel among locations. Hence, chains of desti-
nation choices describe a complex visiting process. In the literature, this process
is referred to as trip chain [46], multipurpose trip [15], plan [25], or spatial se-
quential choice [23]. In pedestrian dynamics, the selection of the next location
to visit is defined as strategic behavior [30] and is also known as destination
choice or goal selection. In general, a pedestrian selects a destination to visit
because he/she prefers to engage in an activity on offer at that location over
another activity. Thus, choice of destination includes a range of motivational
properties, which guide and drive pedestrian behavior.

One issue in contemporary pedestrian dynamics research is that there are
only very few models of pedestrian destination choice that takes psychologi-
cal factors into account. Because modeling pedestrian behavior is essentially
about modeling human behavior, we believe that introducing a psychologically
grounded methodology to model pedestrians’ location preferences will improve
destination choice models. We approach this research gap by proposing a new
framework to model pedestrians’ interests in form of a mathematical function.
The theoretical groundings of the interest function model are the psychological
concept of goal-related memory accessibility and the fundamental coherences
found in measurements of pedestrians visiting locations. Drawing on computer
simulations, we can show that the interest function model is valid as stand-alone
concept. Additionally, we are able to improve an existing task queuing destina-
tion choice model [53] with the interest function model and provide evidence that



the approach outperforms the widely used origin-destination matrix approach
on a multi-location simulation scenario. The results provide evidence that ap-
plying the interest function model improves pedestrian occupancy forecasts by
improving destination choice simulations.

The remainder of this paper is structured as follows. In Section 2, we present
contemporary strategic behavioral modeling approaches and related work. Sec-
tion 3 begins with a recapitulation of the necessary psychological groundings,
followed by a mathematical description of the interest functions framework.
Additionally, the regeneration of the occupancy at a location is explained. The
validation of the interest function framework for a single location concludes
Section 3. In Section 4, we show how to integrate the model into existing mi-
croscopic models of pedestrian behavior. Furthermore, we present and evaluate
results of interest-based pedestrian computer simulations for multiple locations.
The paper closes with a discussion about challenges in Section 5 and concluding
remarks in Section 6.

2. Related work

The concept of categorizing pedestrian behaviors as strategic, tactical, and
operational behavior is an accepted approach in pedestrian dynamics [14, 30, 31].
Strategic behavior describes destination choice and models sequencing activities
— while tactical models depict the pedestrians’ navigation behavior by defining
an approximated walking route that starts at the pedestrian’s current position
and ends at a certain destination. Operational models relate to the manner of
walking to the next visible intermediate navigation node, adjoining the walking
route and interacting with other pedestrians and obstacles along the way.

The history of strategic pedestrian behavioral research is well summarized
by Timmermans et al. [55]. Early approaches to model strategic behavior were
driven by attempts to assess the efficiency of shopping malls [15]. However,
many strategic pedestrian behavioral models are application-independent, and
the most widely used generic approach is the origin-destination matrix (OD
matrix) concept. An OD matrix is a Markov chain model [55] that describes
the probability of visiting a destination if a pedestrian is at a specific origin
location. The model is time-invariant and quite easy to apply. Nonetheless,
the OD matrix approach is difficult to apply in larger application scenarios [14]
and is still being studied [20, 34]. In addition, more sophisticated approaches
have been developed in recent years [16, 19, 25, 30]. The research highly related
to our work are the need-based approach of Arentze and Timmermans [7] and
the potential attractivity measure concept of Danalet et al. [17]. Both models
are original approaches, but based on other grounds than those of the interest
function model. Hence, we provide a new perspective to this branch of research.

In general, psychology-based concepts receive increasing attention in pedes-
trian dynamics research. Approaches considering human psychology and cog-
nitive abilities are already established in operational models [32, 45, 47] and
tactical models [10, 37, 38]. Even if rare, there are examples for psychologically
enhanced strategic pedestrian behavioral models [35, 41, 59, 61].



The development of computationally implementable models regarding hu-
man cognition, behavior, and decision making is nowadays highly advanced
[11, 29, 54]. For example, the adaptive control of thought (ACT) by Anderson
[3] is widely used in different variations and has been continuously improved.
Balke and Gilbert [8] presented an in-depth survey about models and architec-
tures of human decision making for social simulations. One of the main draw-
backs of many of these highly advanced models and architectures is that they
are not designed for strategic pedestrian behavior modeling. However, there are
exceptions — such as work of Pelechano et al. [48] and Wijermans et al. [61].

Despite different approaches and modeling paradigms for strategic behavior,
a surprising void was identified in most strategic models. Often, the destination
choice is modeled based on a change in motivation, desire, urge, drive, or will
— but there are hardly any implementable mathematical functions presented
to describe these factors. If such functions are defined, they are mostly not
based on a profound psychological grounding or, conversely, the concepts are
not designed for applications in the scope of pedestrian dynamics.

3. The interest function model

In this Section, we first elucidate the theoretical groundings of the interest
function model. Afterwards, we describe the mathematical framework of the
interest function model for a single location!. With this background, we will
show how the interest functions of multiple pedestrians lead to the occupancy
of a single location.

8.1. Psychological groundings

Here we clarify the interest function’s psychological groundings, most im-
portantly drawing on the work of Masicampo and Ambady [43]. They provide
important findings regarding the interconnections of widespread interest and
individuals’ interests.

Anderson [4] describes that humans store knowledge conceptually; thus, in-
formation is stored and linked according to meaning and context in a propo-
sitional network. As a consequence of this theory, the process of recalling an
item will also increase the probability of recalling other items that are associ-
ated [2, 4]. A possible example in our context might be that if an amusement
park visitor is hungry, then he/she will be more aware of information related to
restaurants, will remember a meal’s taste, or a restaurant’s location. Hence, the
effectiveness of recalling information connected to hunger is enhanced. Nonethe-
less, a mathematical function to account for the recall probability has to be
included. Anderson and Milson [5] and Anderson and Schooler [6] provide the
so-called need probability theory according to which a sigmoid function is the
best choice for a mathematical model of the recall probability (see Figure 1 (a)).

1We provide our pseudo-code of the framework in the Appendix.



The theory induces that if memory recall increases regarding items associated
to a certain goal, the mental state of a person is more and more directed to-
wards it. Forster et al. [22] provided evidence for this hypothesis and showed
that if people are given goals, this will increase the accessibility of goal-related
information. Thus, while pursuing a goal, a person will focus on goal-related
information, leading to an increase of the recall-effect. Further, this effect will
become all the more distinct the closer a person is to fulfilling the goal (or seems
to be). If a goal is reached, it would be a burden for pursuing other goals if
the active information connected to the fulfilled goal were to be kept — so the
enhanced accessibility is discarded [21].

Masicampo and Ambady [43] connected the concepts of goal-related accessi-
bility, need probability, and widespread interest. Based on — and in agreement
with Anderson and Schooler [6] and Forster et al. [22], they argue that mem-
ory patterns describe a cognitive approach towards goals. These patterns are
a good substitution and approximation for the peoples’ interest in goals. This
similarity allows them to describe goal-related interest and goal-related memory
accessibility likewise as sigmoid functions. They also provided evidence for their
hypothesis by analyzing Internet-based search trends, showing that a sigmoid
pattern can be regenerated if the interests of many people in a single goal are
accumulation. Hence, group interest is created by the individuals’ interests and
the widespread goal-related patterns follow the need-probability concept. A
qualitative visualization of the concept is shown in Figure 1 (b). The important
conceptual difference of our approach to the work of Masicampo and Ambady
[43] is that they focused solely on public triggering events (e.g. elections or
holidays), whereas this work’s primary focus lies on triggering events concern-
ing individuals (e.g. the need to satisfy hunger or interest in a shop window).
Naturally, the internal triggering events of pedestrians are not synchronized like
the public triggering events. Additionally, the goals we describe are physically
approachable; thus, a goal is always directly associable to a location.

Based on the aforementioned findings of psychological research, the interest
function is modeled as a sigmoid function. A sigmoid function can represent the
cognitive approach to a goal, which is interpreted as the interest of a pedestrian
in a location.

3.2. Model construction

An interest function is a non-continuous composition comprising a sigmoid
function part and a linear function part. The sigmoid part models the increas-
ing interest of a pedestrian in a goal at a location, and the linear fulfillment
part describes the realization of that goal, including waiting times. The higher
the magnitude of the function, the higher the probability of visiting a certain
location. Therefore, the motivation of performing an activity associated to a lo-
cation is directly connected to the magnitude of the interest function. Because it
is common that pedestrians visit a location more than once, the interest concept
integrates a repetition mechanism. Figure 2 (a) provides a qualitative descrip-
tion of an interest function and Figure 2 (b) an interest function repetition.
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(a) Example from Anderson and Milson [5] (§ = —5 and s = 0.5). The abscissa describes
the abstract concept of the need to remember and the ordinate represents the probability for
recalling the memory.

(b) Generic example of the increasing widespread interest and inhibition in a goal before and
after a triggering event [43]. The abscissa is a time scale and the ordinate is an interest scale.
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Figure 2:

(a) Qualitative description of the interest function. The abscissa is a time scale and the
ordinate is an interest magnitude between zero (not interested) and one (interested).
(b) Example of a repetitive interest function. The abscissa represents the time in seconds

and the ordinate accounts for an interest magnitude between zero (not interested) and one
(interested).



The duration between the extreme values of a pedestrian being not interested
and being very interested is unknown. To determine the unknown duration and
to model the interest function, we use statistical field data that can be collected
from pedestrians at a location. The data sources are the service time distri-
bution p of a location, the interarrival time distribution v of a location, the
number of measurements creating the interarrival time distribution |v|, and 7,
which comprises the number of pedestrians and the maximal number of inflow-
ing pedestrians at a scenario. The interarrival time distribution indicates the
duration between the successive arrivals of two pedestrians at a location. The
service time distribution accounts for the time a pedestrian spends at a certain
location; thus including the duration of waiting and engaging in the activity.
The distributions’ data is always measured in an observation time frame [t;,;]
and at a location a.

Fundamental dependencies can be found in the data, which helps to define
a mathematical function of the interest raising duration. A very prominent
coherence is that the moments at which pedestrians appear at a location a is
based on the interarrival time distribution v of the location a and the maximal
number of pedestrians n at the scenario. These fundamental dependencies are
qualitatively described in Figure 3, but shown without borderline cases (e.g.
capacity caps). Based on the fundamentals, the interest raising duration wq ¢, ¢,
can be estimated. For that we use 74, ¢;, an interarrival time value v, 4, ¢, that
is drawn out of the interarrival time distribution, and a springing term spq ¢, ¢,
which compensates normalization of the interarrival distribution regarding a low
or high number of visitors.

Wa,t;,t; = SPats,t; “Ta,ts t; * Vat;t; (1)

The spring term is based on a polynomial function that includes 74, ¢, and the
measured number of pedestrian interarrival times |vq ¢, ¢, |-

k=a/h,, = Mot - B)") (2)
SPat;t; = k - (|V(l7ti7tj ‘h - ng,ti,tj) (3)

The spring term introduces important constraints, e.g., if less interarrival data
could be measured, wq ¢, ,; goes towards infinity. The model constants o and
B are calibrated by stepwise optimization (see Section 3.4). For the constant h
we use the value —1.55, a number we found by preliminary simulation tests.

The next step is to model the interest repetition time span d,, ¢, between
two repetitive visits of a pedestrian. The repetition is described as the sum of
the time wq ¢, ¢; until a pedestrian visits the location a and a service duration
Ma,t; t;» Which is drawn from the service time distribution.

Oastirt; = Watit; T Hatit (4)

The interest rises until a threshold is reached and then drops to a lower
threshold after performing the activity. Afterwards, the interest rises gradually
until the upper threshold is met again. The maximal interest threshold €,,4: is



set to 0.99 interest and the minimal interest threshold €2,,,;: is set to 0.01. These
thresholds are changeable model constants, which are based on the simulation
time step discretization. Based on the previous equations, one can calculate the
interest duration parameter (4 ¢, ¢; for reaching 2,4¢ in W t, ¢, The parameter
Ca,t;,t; changes for each repetition and each pedestrian due to changing values
drawn from the underlying distribution.

Catit; = Watit;/2)) = In(1/Qnar — 1) ()
Finally, the rising phase of the interest function v for a repetition is:
wt’a»ti;tj = (1 + e_t/camiwtj )_1 for t € [_wa,tz‘,tj /2; Wa,t;,t; /2] (6)

The function 1/1t7a,ti7t_7. is valid for the phase of rising interest with 2,,;; <
Yiatit; < Qmat- After reaching €2,,,4¢, the fulfilling phase is valid:

Viartit; = T for t €lwat,e;/250a,t,,t; — Watit; /2] (7)

The parameter = equals one if the interest function represents the visiting
desire of a single pedestrian. Nonetheless, pedestrians often travel in groups
and visit locations together. Examples of such continuous group cohesiveness
regarding walking behavior are described in Bandini et al. [9] and Peters and
Ennis [49]. The interest function can account for pedestrian groups if parameter
x is changed according to the group size. Based on this extension, the function
describes the homogenized and joint interest of a group of x members in a certain
location.

In general, the function ¢y 4+, +; describes a repetition of an interest phase.
The transitions between the rising interest and the interest fulfillment phase
are not explicitly modeled; thus, the phases change in an instant. This is due
to the assumption that the presented level of detail is sufficient for pedestrian
dynamics applications.

Under realistic conditions, a pedestrian may begin the fulfillment phase at a
location later in time, e.g., due to congestions, capacity issues, or other interfer-
ences. Vice versa, pedestrian may visit a location earlier in time, e.g., to a lack
of alternative locations. Such conditions can be integrated by implementing the
interest function model in a pedestrian simulator (see Section 4).

3.8. Single location occupancy regeneration

The interest function approach models the reoccurring motivation of a pedes-
trian to visit a specific location. By applying the concept in a computer sim-
ulation, the model can describe the interest in a certain location for multiple
pedestrians. In an idealized system without spatial based interferences, the oc-
cupancy of a location is acquired based on the fulfillment parts of the interest
functions for a time frame [t;,¢;]. Figure 4 presents an example occupancy. The
occupancy V¥ of location a is regenerated by summing up the fulfillment parts
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(a) Qualitative fundamental dependency between the interests in a location for all pedestrians
and the mean interarrival time at a location, if the number of pedestrians at a scenario is
constant.

(b) Qualitative fundamental dependency between the number of pedestrians at a scenario and
the mean interarrival time at a location, if the interest magnitude for a certain location is
constant for all pedestrians.

(¢) Qualitative fundamental dependency between the number of pedestrians at a scenario and
the interest in a location for all pedestrians, if the mean interarrival time at a location is
constant.

of ¢ a.1,,¢, of all corresponding interest functions of all simulated pedestrians or
group P for each discrete simulation time step At.

P
‘Ilt,a,ti,tj = Zl_wk(t,a,ti,tj)J (8)
1=k

0 500 1000 1500 [sec]

Figure 4:
Occupancy results of an example simulation. The abscissa describes the time in seconds and
the ordinate describes the number of pedestrians.

Pedestrians mostly have an initial interest in a certain objective before an
initial observation time frame begins at 3. We account for this property by
introducing a virtual relaxation time shift based on a value 7.

Ta,to,ty = MNa,to,ty max(l/a,to,h) + max(:u‘a,to,tl) (9)

The value 7 describes a past point in time were the interest calculation has
started. Additionally, the beginning initial interest magnitude is randomized for
this starting point in time. If the relaxation and the randomization are ignored,
this leads to unrealistic interest functions. Consequently, the occupancy will



follow an unrealistic form, which is generated by starting all interest functions
at the threshold €,,;+ at ty and by emerging anomalies based on the interarrival
times distribution. The error can be identified by multiple simulation runs
because the results of simulations utilized with incorrect 7 values yield data
which are not in accordance with measured real data (see Section 3.4). Figure 5
shows the mean occupancy results for three times 100 example simulations, each
calculated with a different 7 value.
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Figure 5:

Mean occupancy over time, each out of 100 example simulations, as a result of three different
7 values and randomized initial interest magnitudes. The first function (brown/red) without
a time shift. The second function (orange) has a 1/3 time shift, and the third function has a
correct time shift (blue). The abscissa describes the time in seconds and the ordinate describes
the number of pedestrians.

8.4. Single location interest validation

For the sake of model validation, we collected the data of a one-day music
festival with approximately 5000 visitors. Different locations at the music festi-
val were captured by camera and the videos were evaluated in post-processing
steps [12]. We focused on a single location for an in-depth validation of the
model.

The layout of the surveyed festival is presented in Figure 6 (a). The festival
ground is a closed system comprising only one entrance and exit, excluding
closed emergency exits. The following validation explanations are based on
data collected within a 30 minute time frame. The data set begins two hours
and 40 minutes after the festival opening at 12:00 noon. The data comprise
the examination results of the video footage of a temporary building location
at the festival. Additionally, the data of the maximal pedestrian inflow of the
festival over time is known. At tg, the number of pedestrians at the festival is
707, and the inflow of pedestrian on the scenario till ¢; is 467. Therefore, the
maximum number of pedestrians is 1174. Figure 6 (b) features the plot of the
increasing number of pedestrians during the 30-minute observation time frame,
while Figure 6 (c) shows the camera’s view of the temporary building. The
location’s occupancy is assessed by measuring incoming and exiting pedestrians
at the temporary building. The occupancy of the temporary building area
over the 30-minute time frame conforms to the black plots in Figure 8.In the
30-minute time frame, the maximum capacity of the temporary building was
never exceeded, waiting times were less than one second, and no clogging was
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observed. Hence, the data represents highly normal and relaxed conditions —
making it perfectly suitable for genuine validation purposes.
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Figure 6:

(a) The festival layout. The camera position is indicated by the blue circle and the camera’s
view is indicated by the circular segment.

(b) Maximal inflow of pedestrians at the festival in the observed time frame. The abscissa
describes the time in seconds and the ordinate describes the number of pedestrians. The time
frame starts two hours and 40 minutes after the festival opening.

(¢) Temporary building location without visitors and blacked-out company names.

Figure 7 (a) shows the cumulative interarrival time distribution density func-
tion, comprising 317 measurements. The cumulative service time distribution
function is shown in Figure 7 (b). Additionally, we found out that the mean
group size for pedestrians who approach the location together is two.
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Figure 7:

(a) Cumulative density function of the temporary building’s interarrival time distribution. The
abscissa describes the interarrival times in seconds and the ordinate describes the cumulative
probability p.

(b) Cumulative density function of the temporary building’s service time distribution. The
abscissa describes the service times in seconds and the ordinate describes the cumulative
probability p

For the sake of model validation, we recreated the occupancy data of the
music festival as accurately as possible via computer simulations. The goal was
to reproduce the linear fit, the mean, the minimum, the maximum, and the stan-
dard deviation of the real occupancy data. The occupancy simulation results
are based on probabilities; thus, the regenerated occupancy of a single simula-
tion cannot be directly compared to real data. Hence, we run 500 simulations to
account for the comparison problem. The simulations are parameterized with
the data of the 30 minute time frame of the music festival and we found that the
models’ value of « is 1.1502 and 3 is 0.2703 by stepwise optimization regarding
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the mean occupancy. In Figure 8, we present the best and the worst results of
the 500 simulations of the music festival regarding least squared differences. The
statistical mean data of the simulation is compared to the real data in Table 1.

0 500 1000 1500 [sec]
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Figure 8:

The black plots represent each the same measured occupancy. The abscissa describes the time
in seconds and the ordinate describes the number of pedestrians occupying the location. (a)
The blue plot is the best-fitting occupancy simulation result regarding least squared differ-
ences. (b) The orange plot is the worst-fitting occupancy simulation result regarding least
squared differences.

‘ Real Simulation  |Error| Error%

E [ped] | 10.367 10.537 0.17 1.6398

o [ped] | 4.3625 4.375 0.0125  0.2865

maximum [ped] | 22.0 23.508 1.508 6.8545
minimum [ped] | 1.0 1.268 0.268 26.8

Table 1: Comparison of the simulation results and the real occupancy data of the music festival
case study. The simulation results comprise the mean results of 500 interest simulations.

Pedestrian simulations are not to be seen as simulations of deterministic sys-
tems, but as an approach to reconstruct the complexity of pedestrian decisions
within reasonable bounds. These bounds are hard to acquire and can only be
evaluated by running a very large number of simulations. Hence, we run 450k
interest simulations for the music festival case study — of which the results are
represented in Figure 9. The results describe the distribution of the y-intercepts
and the slopes for the linear fittings of the simulations. The position of the real
slope and y-intercept is indicated in Figure 9 (b). Simulation results that ap-
proximate the real linear fit of the results are quite frequent. At the same time,
the simulation provides a wide range of more extreme results which account
for unpredictable properties of pedestrian behavior. Nonetheless, such extreme
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results are less frequent and stay in realistic limits regarding the minimal and
maximal number of visitors of the temporary building.
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Figure 9:

(a) 3D histogram of the slopes and y-intercepts of 450k simulations of the music festival case
study.

(b) Top view of the 3D histogram of the slopes and y-intercepts of 450k simulations of the
music festival case study. The pink marker indicates the position of the measured real data
slope and y-intercept.

4. The interest function model in multi-location simulations

In this Section, we describe how the model is integrated into existent pedes-
trian simulators. We implemented our model according to our integration con-
cept and were able to show that the model can improve predictions of pedestrian
destination choice in comparison to the widely used origin-destination (OD) ma-
trix approach?. The real data for comparing the models is acquired at our case
study, a student career fair. Drawing on the fact that there are several identifi-
able locations present at the fair, we are able to provide practical evidence that
the model can be used for more multi-location scenarios.

4.1. Model integration in microscopic simulators

The interest function model can be coupled to microscopic pedestrian mod-
els and simulators. In contemporary pedestrian dynamics research, the coupling
of models is an established approach [13, 33, 40]. The goal of model coupling

2The OD matrix method is a model that is not psychologically grounded. Still, we use
it for comparison due to its high prominence and its applicability in microscopic pedestrian
simulations. Furthermore, there are no other suitable pedestrians’ destination choice models
available that are based on psychological findings, are designed to be used in a microscopic
pedestrian simulation, and are well known.
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is to assemble different approaches, each with specific features and purposes, to
create more sophisticated models. The differentiation between strategic, tacti-
cal, and operational behavior according to Hoogendoorn and Bovy [30] is in fact
a coupling of models (see Section 2).

Figure 10 shows a pedestrian-specific behavioral model architecture. The
architecture describes the integration of the interest function model into the
strategic, tactical, and operational behavior modeling concept. In a micro-
scopic simulator, each pedestrian is simulated individually; thus, they interact
with other simulated pedestrians and the simulated environment. The behavior
of each virtual pedestrian is described by the three different models, each re-
spectively implemented on the strategic, tactical, and operational layers. Here,
the tactical and operational behavior models are handled as black boxes. Typ-
ical examples for tactical models that could be used in this architecture are
described by Hartmann [26] or Geraerts and Overmars [24]. As an operational
model, the concept of Helbing et al. [27] or Seitz and Koster [51] can be used.
The strategic behavioral model in the architecture is coupled with the interest
function model. Therefore, the interest function is the source of the interest,
drive, will, or motivation for the strategic destination choice method. We have
already implemented the proposed architecture in previous work [35]. In Sec-
tion 4.2, we also provide an implementation based on the work of Shao and
Terzopoulos [53].

destination choice
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Figure 10:

The strategic, tactical, and operational pedestrian behavioral concept of Hoogendoorn and
Bovy [30], extended by the interest function model. The parameters are associated to locations
and time frames of the simulation scenario. The results of the interest function model are
the interest magnitudes for each pedestrian in each location. The interest magnitudes of the
pedestrians are passed on to the strategic behavioral model as a decision basis.

4.2. Computational model comparison

We surveyed a student career fair with cameras and used the collected data to
show that the pedestrian interest model is applicable for multiple locations and
superior to the origin-destination matrix (OD matrix) approach. Figure 11 (a)
presents the camera’s visual field of an area at the student career fair. We
extracted the geometry layout of the area as a scenario layout for our pedestrian
computer simulations. The geometry layout is shown in Figure 11 (b). The
scenario comprises five sub-locations (1 to 5) and frequently used doorways
(A to E). The simulation input data are the interarrival time distributions,
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the service time distributions, and the pedestrian inflow at the student career
fair. Similarly to the music festival case study, we collected the data in a post-
processing step. The time frame associated to the data is approximately 33
minutes and 20 seconds. The exit-interarrival times of the doorways are used
in the same fashion as the interarrival times were applied for the locations.
Naturally, we define the service time duration of an exit to be zero.

The computer simulations were executed in our generic pedestrian simulator3
MomenTUMuv2, whose implementation includes the architecture of Section 4.1.
The implemented operational model is a social force model [27], and the tactical
model is a shortest path routing concept based on Dijkstra’s algorithm [18].
We used the algorithm of Kneidl et al. [39] to generate routing graphs. As
strategic models, we implemented the interest function model coupled with the
task queuing concept of Shao and Terzopoulos [53] and the OD matrix approach.
For each of the strategic models we run pedestrian computer simulations to
compare the results. For both simulation cases, we simulated 5000 seconds and
clipped the first 3000 seconds of the simulation results. This ensures that the
simulations reach a stable state. The entry-interarrival times for doorways were
used to calibrate the pedestrian generators. Simulated pedestrians are removed
from the system if a doorway goal location is reached. Generally speaking, the
simulations for both strategic model approaches are executed in the exact same
computational environment and for the same simulation scenario layout.

First, we simulated the scenario with the OD matrix approach. The OD ma-
trix strategic model distributes pedestrians according to the number of visitors
measured at the locations. Therefore, the algorithm randomly selects a new
destination based on the locations’ arrival percentages every time a pedestrian
finishes visiting a location. We prohibit pedestrians from visiting the same lo-
cation in a row by probability adjustments because highly interesting locations
would otherwise be heavily overestimated by the OD matrix model. A drawback
of the OD matrix approach is that it does not feature a service time concept.
We added our fulfillment phase term to the OD matrix model to enable virtual
pedestrians to dwell at a location for certain a duration. If the mean, median,
minimal, or maximal service time values are used, the pedestrians will either
congest locations or visit them to fast to account for useful occupancy data.

We implemented our interest function model by integrating it to the goal
queuing concept of the strategic model of [53]*. Hence, each virtual pedestrian
implements an interest function for each location and doorway of the career fair.
In the model, destinations are added to a pedestrian’s goal stack according the
interest magnitude. A pedestrian will always visit the location at the top of
the goal stack. If other interest magnitudes reach the linear fulfillment phase
and the goal is not on the top of the stack, the algorithm queues the goals

Shttps://www.cms.bgu.tum.de/en /research /projects/31-forschung/projekte/456-
momentum

4The strategic model of Shao and Terzopoulos [53] offers a direct interface to implement a
desire (interest) function — but it does not provide a mathematical desire concept.
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Figure 11:

(a) The fish-eye camera’s view of the student career fair scenario.

(b) A screen-shot of the pedestrian computer simulation utilizing the interest function model.
The visible paths represent the walking trajectory describing the visiting pattern of some
pedestrians. The simulation layout of the scenario was extracted from a building information
model [44].
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accordingly and freezes the execution of the corresponding interest function.
By applying this approach, we can account for preemptive fulfillment behavior
as well as for delayed fulfillment, which emerges due to microscopic effects and
competing interests. Figure 12 presents a state-chart that describes the destina-
tion choice model. The constants o and S of the interest model are taken from
the music festival case study of Section 3.4. Figure 11 (b) presents an image of
the visualization of the interest-based pedestrian simulation.

for all pedestrians in for all destinations for
the simulation the current pedestrian
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update interest magnitude |

simulation
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interest
maximal
?

—b' set top stack destination as walking target
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time and not start) on the stack

interest
fulfilled
?

update fulfillment time

no

remove destination from stack

all
updated
?

yes

‘- resetinterest calculation

Figure 12:

A state-chart describing how pedestrian select a destination based on the interest function
magnitudes including the queuing concept of Shao and Terzopoulos [53]. The decision points
regarding the interest magnitude on the right hand side always refer to the current destination
of the loop.

In Table 2 and Figure 13, we summarize the comparison data of the OD
matrix and interest function simulation results. The results are each the mean
results of 150 simulations of the case study scenario; thus, we present the mean
of the means and the mean of the standard deviations. To calculate the results,
we measured the generated occupancy at each location computationally. For
doorways, we measured the number of pedestrians leaving the simulation sce-
nario regarding a time discretization of one second. The real data sets are also
discretized on the seconds scale. As the results prove, the relative performance
improvement of the interest function model compared with the OD matrix is
150.39% for the means and 6.99% for the standard deviations. In general, the
OD matrix model generates a very homogeneous occupancy for each location.
Nonetheless, it accounts little for variations of the dynamic destination selec-
tion of pedestrians. We realized that the resulting variations in the OD matrix
simulations could most probably be improved by introducing the fulfillment
phase term. This is especially recognizable for doorways without service times,
for which the results of both models are quite similar. Pedestrians visiting a
doorway are computationally removed from the simulation scenario, so no con-
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tinuous visiting concept is necessary for them. Using this argumentation, we
can determine that the interest function model improves simulations in which
pedestrians do not simply leave a system (e.g. evacuations) but travel within
the system. This is especially true for location 1 and 5, which include long
service durations.

real E real o AE AE% Ao Ac%

A 0.337 0.66155 -0.01829 -5.4273 -0.00024 -0.03656
B 0.4 0.71572 -0.00101 -0.2525 0.00931 1.30078
C | 0.0265 0.18389 0.00413 15.57233 0.02832 15.40122
D 0.018 0.17802  -0.00091 -5.05556  -0.00393 -2.20773
E | 0.0515 0.2447 0.00991 19.24919 0.02235 9.13415
1 9.449 1.6667 7.65795 81.04508 -0.0754 -4.52417
2 | 3.2445 1.3366 0.18186 5.60518 0.17527 13.11304
3 1.896 1.5111 0.41415 21.84353 -0.33224 -21.98692
4 | 3.8625 2.4242  -0.40755 -10.55137 -0.24139 -9.95732
5 | 39.967 5.4084 11.33554 28.36225 0.36548 6.75761
sum 19.17579  150.39083 -0.05248 6.9941

Table 2:

The simulations’ occupancy results for the OD matrix and the interest function in comparison
to the real data set. The values describe the relative accuracy of the interest function model in
comparison with the OD matrix regarding the measured data. The interest function model is
superior if a positive value is given and inferior if a negative value is shown. The A calculations
are based on the formula [real data — OD data| — |real data — interest datal.

5. Discussion

Pedestrians tend to visit certain locations based on some kind of motivation.
Even if the motive itself cannot be assessed, evaluating real data helps to model
interest as a mathematical function. As shown in Sections 3.4 and 4.2, the in-
troduced approach improves pedestrian destination choice models. Nonetheless,
some challenges will have to be addressed in future.

As briefly described in Section 3.2, groups often travel and visit locations
together. Each pedestrian in a group should have a set of own interest functions
— but these are still homogenized with the interests of other group members.
The current approach models groups by a joint interest function shared by the
group members. A challenge for the interest function model is to include a
group interest function that can be split up or joined together, based on various
spatial, temporal, and social dependencies.

The distributions used for the parameterization of the interest calculation are
the interarrival times and the service times. Both distributions inherit critical
aspects. For example, if a set of pedestrians visits a location more frequently and
another set of pedestrians ignores the location completely, then a visit-blurring
effect occurs. The discrepancy in visits will lead to interarrival time distributions
that are averaged. This challenge can be addressed by using a classification
analysis to identify sub-populations. The same argument holds true for service
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Figure 13:

The mean occupancy results in plot (a) and (b) as well as the standard deviation results in
plot (c) and (d), based on 150 OD matrix simulations (OD) and on 150 interest function based
simulations (IN) in comparison to the real data (R). The error plots describe the standard
deviation of the data regarding the variances within 150 simulations.
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times. In general, poorly measured or non-representative distributions lead to
imprecise visiting pattern forecasts. Since simulation-based predictions usually
required parameters a-priori, it is necessary to identify and rely on classes of
events and visitors. This emphasizes that a-priori information of poor quality
will lead to a less suitable interest function model.

Finally, interest alone is not the only factor that drives strategic pedestrian
behavior. Thus, it is mandatory for further research to include other influence
factors in a mathematical fashion and based on psychological findings. Similarly
to the interest concept, the new functions will serve as input to strategic behavior
models. We assume that a high level spatial cognitive approach for strategic
pedestrian behavior modeling must feature multiple input functions as well as an
internal pedestrian state system. Initial approaches to holistic cognitive models
were already developed by [61] and [35], but these might be in need of further
research.

6. Conclusion

In this work we introduced a new methodological framework to model pedes-
trians’ interests or preferences in locations. Interest is a fundamental factor for
pedestrian decision making with respect to the next location to visit. The in-
terest function model is especially suitable for simulations in which pedestrians
do not simply leave a scenario (e.g. evacuations) but travel within the scenario.
In contemporary research, the shortcomings of strategic pedestrian behavior
models are often grounded in insufficient soundness regarding mathematical
descriptions or psychological background. We addressed this research gap by
presenting the interest function concept, which models a tendency source for
pedestrian destination choice models.

The interest function model is grounded on the goal-related memory accessi-
bility concept, which is an approach found in psychological research. Addition-
ally, fundamental dependencies of pedestrian behavior were taken into account.
By combining these interdisciplinary aspects, we created the mathematics-based
interest function model. The model describes the re-occurring and time-dependent
internal drive to visit a certain location. We provided evidence that the inter-
est function model is able to represent the occupancy at a specific location of
our first case study accurately. The results also show that the model operates
in realistic bounds and accounts for the high internal variability of pedestrian
destination choices. In addition, we designed the interest function model as an
includable component for existing pedestrian destination choice models. There-
fore, we provide a pedestrian behavior architecture that guides the coupling of
the interest function model to existing behavioral models. For a proof of concept,
we implemented the architecture and extended a strategic model found in the
literature. Additionally, we compared simulation results of the extended model
to simulation results of the widely used origin-destination matrix approach for
our second multi-location case study. Our simulation results provided evidence
that the interest function model outperforms the origin-destination matrix es-
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pecially for locations that exhibit long service durations and a high number of
visitors.

The interest function model is a validated new framework to model pedestri-
ans’ interests to visit a single as well as multiple locations. Still, some challenges
are left. An interest function that accounts for groups is far more complex
than assumed, so there has to be further research. Additionally, destination
choice models are in need of other psychology-based and mathematically mod-
eled decision functions because the literature seldom provide appropriate func-
tion that are implementable in microscopic pedestrian simulations. For this
reasons, future model approaches will be designed to account for other generic
and psychology-based sources for pedestrian destination choice.
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Appendix

The interest function model is designed as a framework to be used in pedes-
trian simulators. For the sake of better understanding as well as an easier model
integration, we present the algorithm 1 describing the interest function model
in pseudo-code regarding single location simulations.
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Algorithm 1 Interest function model for single location simulations

1: function output INTERESTSIMULATIONSINGLELOCATION(tmaz, peds,
gSize, inCount, arrCount, arrDist, serDist)

2: Initialization:
3 a4 1.1502; 8 < 0.2703; maz + 0.99; min < 0.01;h + —1.55
4: k + —a/(inCount™ — (inCount - B)")
5: w < —k/inCount™; sp + a/arrCount" + w; peds < [peds/gSize]
6: relax < inCount - max(arrDist) + max(serDist)
7: inz,inHalf, finLen < array of size peds with zeros
8: output < array of size tmax X peds
9: Relazation:
10: for ped < 1 to peds do
11: finLen[ped] < draw from serDist
12: curArr < sp - inCount - draw from arrDist
13: sInz = random of [0, 1] - (curArr + finLen[ped])
14: while {rue do
15: if relax — sInx < 0 then
16: sInz < sInz — (finLen[ped] + curArr)
17: inz[ped] < round(—curArr/2 + (relax — sInz))
18: inHal f[ped] < round(curArr/2)
19: break while
20: else
21: finLen[ped] + draw from serDist
22: curArr < sp - inCount - draw from arrDist
23: sInz < sInx + curArr + finLen|[ped]
24: end if
25: end while
26: end for
27: Simulation:
28: for ¢t < 1 to tmaz do
29: for ped <~ 1 to p do
30: if inz[ped] < inHal f[ped)] then
31 output[t] [ped] — (1 + e—ina:[ped]/(inHalf[ped]/—ln(l/maa:—l)))—1
32: else if inx[ped] < inHal f[ped] + finLen[ped] then
33: output(t][ped] < gSize
34: else
35: finLen[ped] < draw from serDist
36: inHal f[ped] + round(0.5 - sp - inCount - draw from arrDist)
37: inz[ped] < round(—inHal f [ped)); output[t][ped] + min
38: end if
39: inz[ped] < inz[ped] + 1;
40: end for
41: end for
42: return output

43: end function
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