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Abstract—Community networks are IP networks constantly
being improved that evolve into large-scale computing platforms.
This has resulted from the effort to adapt the cloud computing
model towards services that can operate and utilize the resources
inside the community network. The network and its infrastruc-
ture are contributed by individuals, companies, organizations
and are maintained by the community itself. Community cloud
devices are often low computing resource devices, such as home
gateways, with limited capabilities. Currently, these devices are
configured to run community services only. This has become a
drawback for further adoption because of contributor’s difficulty
to also use the donated cloud device for private purposes. We
apply container-based virtualization for the problem of resource
sharing in low-capacity devices in order to create a multi-purpose
execution environment in a single device. Thus, a single device
can be configured to deliver to the user and the community a
multi-purpose environment, such as personal and public, isolated
from one another, while preserving the community cloud services.
Our comparative analysis with the current infrastructure in
community networks gives evidence that the capability of the
devices to run concurrent services is maintained.

Keywords: virtualization, community networks, cloud ser-
vices, computing constrained-devices

I. INTRODUCTION

Community networks are large-scale, self-organised and
decentralised communication infrastructures built and operated
by the community itself. They are open, free and neutral IP
networks. As of now, hundreds of community networks are
operated across the world, which are geographically distributed
in different parts of the world without relying on any specific
social or economic reasons. The larger networks have from
500 to 28,000 nodes, such as Guifi.net!, FunkFeuer?, AWMN?3,
Freifunk®. The infrastructure is contributed by individuals,
companies and organizations in a joint effort.

Resource sharing within the community networks refer
in practice to the sharing of network bandwidth from each
device. This enables traffic from devices to be routed through
others to its destination. The sharing of services, such as video
streaming, storage, VoIP, which through cloud computing
have become common practice in the Internet, hardly exists
in community networks. The community cloud model could
suit to accommodate services and/or resource sharing among
community members.

The CONFINE project® was initiated to advance the under-
standing of the community network model, to explore the ways
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of improving the users quality of experience in a shared plat-
form and to measure the sustainability of the network. For this
purpose, the CONFINE project has developed an infrastructure
called Community-Lab [1], which provides an environment to
perform community network related experiments. The physical
devices in the Community-Lab are mini-PCs and are low-
power devices. This complements the energy-efficient hosting
of services and/or sharing resources among other community
members.

Currently, the Community-Lab infrastructure has a limited
number of physical devices, therefore the scalability for exper-
imentation is limited. Besides, all these devices are configured
to perform only community cloud services and this has become
a drawback for the device owners. The result is that the owners
of the devices have been restricted from accessing resources for
their private purposes. We address this limitation by creating
an environment in a single device, which can benefit both the
community and the device owner. Consequently, this produces
a multi-purpose environment in a single device, such as one
environment for the device owner and other environments to
be shared with the community network.

Our main contributions include:

e  The creation of container-based resource virtualization
on top of low-power devices, enabling a multi-purpose
environment isolated from each other;

e Users can share a portion of the device resources,
preserving the owners multi-service allocated virtual
space in the devices;

e  Evaluation of the performance of devices when run-
ning services on the virtual environments, and compar-
ison with the current settings of the Community-Lab
devices.

In order to validate the proposed approach, we create
a small scale physical Community-Lab infrastructure using
several low-power devices together as compute and storage
devices and, separately, deploy the Community-Lab controller
in a virtual machine inside a desktop PC. In this experimental
system we deploy two applications, Tahoe-LAFS [2], [3] and
PeerStreamer [4], [5], as community cloud services and mea-
sure the performance of these applications in the environment
given by our approach.

The rest of the paper is organised as follows. Section II
explains the Community cloud and relates to the CONFINE
project, including the formation of Community-Lab testbed
with its functionality and the technologies that are being
deployed. Section III describes the system architecture and the
deployment approaches. Section IV refers to the experimental
setup used. The evaluation and results are presented in section
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V. The related work is described in section VI. Conclusion and
future work is explained in section VIIL.

II. CoMMUNITY CLOUDS

Community clouds are formed by a collaborative effort
to create a computing platform where the infrastructure is
shared between a number of organizations in order to provide
a platform for common computing concerns. One particular
objective is to provide a scalable computing platform to
conduct community network related research. In this section,
we explain the system overview of the CONFINE Community-
Lab infrastructure.
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Fig. 1. System Overview of the Community-Lab Testbed

A. CONFINE Project: Community Networks Testbed for the
Future Internet

The CONFINE project goal is to augment the capabilities
of community networks by providing a platform for the exist-
ing community network in which users can use services with
ease [6], as if they were deploying in any commodity cloud
platform. Members of the CONFINE community network
testbed are privileged to get a set of IP addresses (IPv4) in
order for them to be able to run multiple services, as they
may require. This enables members to run multiple services
on top of the existing network, while sharing the resources
with the community.

Community-Lab, shown in Fig. 1, is an infrastructure
that provides a set of tools allowing researchers to easily
deploy, run, monitor and experiment community cloud ser-
vices, protocols and applications in a real community IP
network (Guifi.net, FunkFeuer, AWMN and Freifunk) instead
of simulated environments.

The platform is monitored by a single entity named
Community-Lab controller, which allows users to lease the re-
sources from the network, and deploy their experiments on the
selected nodes. Particularly, users can choose geographically
distributed computing resources through the controller and are
able to customize the deployment according to their specific
requirements. In addition, users are allowed to choose the
appropriate configurations for the computing resources, i.e., to
have public IPv4 addresses, which can be used to communicate
within the community network.

Each Community-Lab node can contain several slivers,
shown in Fig. 1, which are grouped at a higher level in slices.
As such, a slice is defined as a set of resources spread across
several physical devices in the testbed which allows users to
run experiments over it. A sliver is defined as the partition

of the resources (or virtual machine) of a community node
assigned to a specific slice.

The purpose of the controller is to manage and control
the testbed through simple operations such as managing users,
nodes, slices and slivers. This controller provides an aggre-
gation point where members can register their devices as
Community-Lab nodes. In the web interface researchers can
choose geographically dispersed nodes to create slices for
their experiments. The nodes retrieve the given information
to deploy local slivers acting as containers in the devices.
Whenever users make a request to deploy a new sliver the
controller creates a Linux container on the node by allocating
the resources required to run the new sliver. Therefore each
sliver runs on the node isolated from one another.

Linux containers guarantee isolation in terms of security
and resources however the host kernel system is shared be-
tween all containers. In this way, users can deploy many slivers
in a single node to run many services concurrently.

To be part of the Community-Lab infrastructure the devices
require to operate a specific operating system, based on Open-
Wit® configured to provide automatically an open network
connection with the Community-Lab controller, becoming part
of the testbed for the experiments. These devices serve as the
infrastructure layer of the Community-Lab and most are low-
resource devices which can be affordable to have at the edges
of these types of networks.

B. CLOUDY: Community Cloud Distribution

Cloudy Distribution’ (Cloudy OS) has been created under
the CLOMMUNITY project® to provide community networks
an easy way to manage and deploy cloud infrastructures and
interfaces for service discovery and deployment. The result is
that any user can enjoy the benefits of cloud services which
are freely available in the community without relying on any
specific cloud infrastructure. The Cloudy OS is a free and open
source software and is a customized version of Debian Linux.
By default, it comes with an installation of tinc” VPN daemon
which creates a secured private overlay network between hosts
on the Internet. With the help of tinc VPN, networked nodes
can communicate securely with each other.

In addition, Cloudy OS uses Avahi'® (or Serf!! in latest
versions), which is a zero-configuration networking implemen-
tation, to publish and discover the services in the community.
For the simplicity of service discovery, the Cloudy OS provides
an interface that fetches the services in the overlay and lists
the services in order for the users to easily connect them.

C. Virtualization Systems

Most of the Community network devices that are used in
the Community-Lab infrastructure are low-power devices such
as Home gateways, set-up boxes, research devices. However
these devices are capable of running multiple community
cloud services simultaneously. For instance, the Cloudy OS
comes with a few pre-installed services such as Tahoe-LAFS 2
distributed file storage system and PeerStreamer '3: P2P video
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streaming framework. As we discussed previously, these de-
vices are configured to serve only community cloud services.
We can say that, as an entry-point, virtualization can give us the
means to create multi-purpose environments in a single device.
Therefore, we can study two main virtualization techniques
and measure the system behaviour of each case in terms
of performance and complexity. Users can choose one of
these mechanisms considering the complexity of the platform
configurations, system performance and the hardware support
that the devices have.

One type of virtualization system is called Virtual machines
(or machine emulation) such as QEMU which is an open
source machine emulator, used to run virtual machines on
top of an operating system such as Linux. It is also capable
of direct virtualization when using the KVM (Kernel-based
Virtual Machine) kernel module in Linux and having hardware
compatible with virtualization technology. Otherwise, it can
only emulate machines, and thus the virtual machines created
cannot directly access some of the hardware which can provide
a better guest performance.

Another virtualization technology, also available with most
Linux kernels, is called Linux Containers (LXC), and it is
comparable to other virtualization technologies. However it
may lack some of the security and isolation methods that
other virtualization technologies have, such as OpenVZ.'*
Also, it can be more lightweight since it uses the already in
place features of the Linux kernels that adopted this type of
virtualization. It separates the user context for each container
and maintains a shared link to the host kernel in order to run
multiple systems in an OS-Level virtualization method.

ITII. SYSTEM ARCHITECTURES

The architecture for our proposed system includes two
approaches for virtualization. In the first approach we used
a virtual machine (QEMU) in order to separate the context
in which a service can be deployed. In the second approach
we used a LXC based approach in which the virtualization is
lightweight in order to have a better performance while running
services.

A. Services Deployment

The proposed approaches, leveraging virtualization re-
sources, are enhanced with different contexts where owners
can share (shared context) only part of the devices resources
while also accessing their own (private) context, where they
can run their own independent services, as demonstrated in
Fig. 2.

B. QEMU deployment approach

Our initial approach includes a deployment of virtual
machines with the use of QEMU, installed on top of the
Cloudy OS. This allows us to concurrently run services while
still isolating the device to be used by its owner. In a physical
device we install Cloudy OS where we can execute several
instances of QEMU creating virtual environments in order
to run multiple services. As an example, Fig. 3 shows the
deployment of this scenario using two Community-Lab nodes
and its slivers as independent services on top of the Cloudy OS.
This is done in order to gain control over the device to enable
multiple services running from different user contexts while
maintaining the owners’ ability to execute his own services.

4http://openvz.org
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Fig. 2. Example of two device deployment. Devices are divided in two
contexts for owner and shared to the CN. In shared context several slivers run
as nested containers belonging to each slice deployed.
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Fig. 3. Example of QEMU deployment approach. Two services running
(serving as Community-Lab nodes) on virtual machines. LXC runs from within
the Community-Lab node to create slivers.

The performance of QEMU is greatly increased when run-
ning it with kernel integration (KVM) or virtualization support
from the hardware. This guarantees that each virtual machine
has higher performance and some of the physical resources
can be directly utilized by the virtual machines. However in
low-power devices such option may not be available, instead
QEMU has to emulate the whole process of the virtual machine
which hinders the performance of the virtual machine.

Under this scenario within certain conditions (such as
KVM enabled or virtualization support) we can achieve a
separation of services and utilize a physical device to be shared
between the owner and the community network. This type of
deployment is a quick and easy way of fostering multiple
services in a single device. Furthermore, this approach can
be fairly enough when services need higher isolation from
the host system by enhancing its security or when the service
performance is not affected.

C. Linux Containers deployment approach

Our proposed approach includes a deployment of Linux
containers (LXC). This allows running concurrent services
with a low overhead of the virtual resources and processes.
LXC creates different user contexts in the host machine to
deploy separate systems, but shares the same kernel (OS-Level
virtualization)

In this approach we consider the isolation of the services
while still guaranteeing a higher performance for services
since there is no emulation involved. The virtualization layer
considered is in the OS-Level, where the host kernel is shared
between containers and the host system. In Fig. 4 we show
an example of the deployment of this approach using the
Cloudy OS as the host system and deploying a Community-
Lab node in a LXC container. It is worth mentioning that
the Community-Lab nodes deploy their own slivers as LXC



containers and with our approach this does not change. This is
provided by tuning the configurations of LXC to deploy nested
containers, while adding the AppArmor '3 security policies for
the security concerns.
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Fig. 4. Example of LXC deployment approach. One service running (serving
as Community-Lab node) on a container virtualization occurring in OS-level.
Nested LXC runs from Community-Lab node only configuration is needed to
run nested containers.

With this approach, we can use the device as a shared
environment between the owner and the community cloud
environment maintaining the isolation from each user context.
The security issues that arise from such usage are respectfully
handled by LXC or the Linux security policies. Therefore the
containers have access to the host kernel which may prove to
be a minor isolation for some services, requiring more isolation
should be handled with the virtual machines approach.

Under this scenario we can achieve a lighter isolation and
a concurrent access to the physical devices. This makes the
services running with higher performance than with the QEMU
approach.

It is relevant to mention that in this approach the system
running in the containers only have access to the host kernel
as such the host kernel requires to be compatible (or with
the required kernel modules loaded) in order to correctly
run the system inside the container, i.e. the Community-Lab
nodes require that the overlayFS file system should be natively,
enabling it to deploy the requested slivers on the devices.

A main feature of our proposed deployment scenario is the
introduction of a virtual environment in which services are able
to run with different contexts and maintaining an isolated part
of the device to be used by the owner. As a result when using
the Community-Lab node as a service each node registered
in the Community-Lab controller can deploy its own slivers
in the physical device without interfering with other services
or the owner usage. This enables sharing of resources for a
community cloud environment and maintaining the owners
exclusive access to the device.

IV. EXPERIMENTAL SETUP

For our experimental setup, we used four physical research
devices with different configurations. These devices are built
with Intel powered Atom N2600 CPU processors. Two of them
have 2 GB of RAM, 60 GB storage and 2 GB of RAM, 120 GB
storage, and the other device has 4 GB of RAM with 500 GB of
storage disk and linked to the community network (Guifi.net).
A desktop computer setup with the Proxmox system'® and built
with an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz (8 cores),
with 1TB of storage disk and 16 GB of RAM was used to

Bhttp://wiki.apparmor.net
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deploy a local Community-Lab controller in a virtual machine
environment. It was necessary to use such deployment in order
to not affect the performance of the current Community-Lab
infrastructure, which is in a production state.

For our experiments, we setup a replica of the Community-
Lab testbed architecture, such as, one local controller which
controls the overall system and a set of computing nodes
(Community-Lab nodes) that can be used to deploy slivers
from the controller. In this case, the local controller can be
deployed either in a container or in a separate virtual machine
instance. However, this depends on the users’ requirements and
the resources which are available.

The reason for the layered virtualization in the physical
devices is that we intend to augment the current services of the
Cloudy OS such that the users can have a service that deploys
Community-Lab nodes in an automatic manner. This allows
taking advantage of the virtualization environment in order
for users to share their resources through the Community-
Lab platform and extending the number of nodes present
in the Community-Lab. Furthermore we can examine the
applicability and measure the efficiency to deploy community
cloud services in order to understand the feasibility for sharing
devices in community networks while maintaining the owners’
space in the device.

Challenges: One of the main challenges when creating
our experimental environment is to set up the Community-Lab
controller in a local environment using a virtual machine, and
using Cloudy OS as the base or host operating system. The
process of deployment of the Community-Lab controller in a
local environment can be a challenging task for the common
community user. The CONFINE Project wiki'’, however,
contains tutorials on how a user can manage to install the
controller with ease. It is also noted that some of the steps
are dependent on the operating system used, and that it can
break the communication overlay if not correctly configured
(i.e. Tinc misconfiguration).

Another challenge faced is the fact that the current
Community-Lab node system requires specific Linux kernel
modules. These must be enabled in the host system, and
without it, the slivers may not work as expected and therefore
not function correctly when deploying/running the slivers.

V.  EVALUATION

In the evaluation of the proposed approach (LXC deploy-
ment approach) we used physical research devices connected
to Guifi.net. These devices are low-power, have less resources
compared to desktop PCs, are mostly the same devices used
within the Community-Lab infrastructure and are generally
similar to the shared devices from community networks. These
devices are deployed with scenario LXC, previously described.

A. Experiments

Our experiments were performed in order to evaluate the
proposed deployment, summarized in Table I, by utilizing
different services with different purposes. In the first evalu-
ation scenario we used Tahoe-LAFS distributed storage, and
a storage benchmark application to evaluate the impact of the
proposed deployment on the physical devices. In the second
evaluation scenario we used PeerStreamer, a peer-to-peer video
streaming application, in order to evaluate the impact on
services that have time sensitive data processing. The third

7http://wiki.confine-project.eu



TABLE 1. SUMMARY OF OUR SCENARIOS AND SETTINGS

Scenario 1 2 3
Number of local 8 8 8
Community-Lab nodes
Number of slivers 8 8 16
Services deployed Tahoe-LAFS Peerstreamer Tahoe-LAFS
and Peerstreamer
Performance Storage Chunks Received | Storage benchmark
Metrics benchmark and Played-out Chunks Received

and Played-out

evaluation scenario combines both services and allows an
evaluation of the concurrency of services within the same
physical devices with our proposed deployment.

For each scenario we collected results and plotted them
against the baseline values. The baseline values were obtained
by running the same set of experiments on the Community-Lab
infrastructure (from our groups’ earlier works [7]) under the
same set of configurations. This gives us the behaviour of the
proposed system in terms of performance and user experience.

In the Tahoe-LAFS experiments we measured the perfor-
mance for read and write operations in order to understand
the impact these type of operations have on the proposed
deployment. In the PeerStreamer experiments we measured
the average chunk rates (data that is received in the peers side)
and average chunks played out on peers (data that is sent to be
watched in the peers side) in order to measure the quality of the
video stream. In both cases we measured the CPU utilization
to demonstrate that these low-power devices can deliver the
multi-purpose execution environment while maintaining the
multi-service community cloud model.

First Scenario: In our first evaluation scenario, we created
one sliver for each available Commmunity-Lab node (eight
slivers in total) and each sliver running the Cloudy OS. For
each of the slivers we ran a Tahoe instance, Tahoe-LAFS is a
service that comes bundled with the Cloudy OS and is used
for distributed storage.

The scenario was tested in several runs using the same
configuration for each, extending to an amount of 3 hours
each. We used seven slivers as Tahoe-LAFS storage instances
(these instances serve as storage for the files written by any
client). One of these slivers ran Tahoe’s Introducer (a publish-
subscribe hub responsible to notify clients and storage nodes
about each other) and the eighth sliver operates the Tahoe-
LAFS client instance which can write or read files from a
mounted folder that accesses directly the Tahoe-LAFS system.
This is done through the use of sshfs and fuse kernel module'®
allowing a folder on the Tahoe-LAFS system to become
available on any computer system seamlessly.

Furthermore we ran a well-established disk benchmark
application, i.e. IOZone [8], to measure the storage operations
of each node in order to evaluate the proposed deployment and
compare it with the performance of the same services when
using the current Community-Lab, at present time.

Results: Fig. 5 shows the measurements of the baseline
system corresponding to the current Community-Lab environ-
ment, and the same set of operations on the proposed de-
ployment (named setl). Note that all operations are completed
when the transactions between instances are finished therefore
the results account with the performance of all Community-

8http://fuse.sourceforge.net/sshfs.html
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Fig. 6. CPU utilization on Tahoe-LAFS client node in the first evaluation

scenario

Lab nodes used. In the proposed deployment there are two
services running on the same physical devices therefore each
Tahoe-LAFS system has concurrent access to the resources
which is, as expected, reflected by a general lower operation
speed for all the operations measured. However this still
accomplishes the operations with the approximated speeds as
the baseline evaluation.

The benchmark application stresses the device resources
in order to find the maximum speed for operations such as
reading/writing of files. It is important to notice that while
network part is an important process in distributing files
throughout the instances, our evaluation accounts more for the
resource usage locally. Thus, CPU utilization is important to
understand the system behaviour in the proposed deployment.

Fig. 6 shows the average CPU utilization during three hours
of running the I0OZone benchmarking application in the Tahoe-
LAFS client instance. It has consumed around 20% of CPU
time on average during the complete test. The client node
performs encryption/decryption and erasure code computation
on each file block in the phase of writing and/or reading
to/from the disk. Furthermore the Tahoe-LAFS client instance
consumes more CPU time as opposed to Tahoe-LAFS storages.

Second Scenario: In our second evaluation scenario, we
used the same sliver deployment (one per node), running
concurrently a Cloudy OS template. In each of these slivers,
we ran a PeerStreamer experiment.

For this scenario, we ran four tests in different time periods,
with 1 hour each run, in order to account for different network
activity. We used seven slivers as peers (each peer retrieves
data from the network in order to play out the streaming video
locally). PeerStreamer uses an overlay network to exchange
data (known as chunks) between its peers. We also setup one



sliver to serve as the source peer which disseminates the source
video partitioned in chunks (as default, one frame of the video
is one chunk) to be played out by the other peers.

The PeerStreamer source peer gets a live camera stream
and sends the chunks to the overlay network between each
peer that watches that stream. This results in each peer trying
to fetch chunks from other peers to play out the continuous
stream and display it locally to the users.
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Fig. 7. Average chunks received rate at peers from PeerStreamer execution
in the second evaluation scenario. Baseline as the current deployment in
Community-Lab.
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second evaluation scenario. Baseline as the current deployment in Community-
Lab.

Results: Fig. 7 and Fig. 8 depict the measurements of the
average of chunks that a peer can receive and the chunks
percentage that were sent to be played out averaged by all
peers. As a baseline we have the current deployment from
previous experiments with the Community-Lab testbed in
which the proposed deployment is able to reach without losing
too much data on average. It is also noted that because of
the shared resources there is a minimum amount of chunks
that are not received in the proposed deployment. These time
sensitive applications require that data should arrive on time to
be displayed/processed, if the data does not appear in the time
allotted it is discarded. Therefore in the proposed deployment
this amount does not vary much from the baseline.

Fig. 9 shows the average measurements of CPU utilization
during an hour, when the service runs continuously. The
alterations we see in the CPU utilization is in fact because
the PeerStreamer neighbourhood size changes over time (the
overlay network is constantly updated even when there are no
new peers) and therefore the utilization of the resources change
when the operations of redoing the topology of the network is
performed. Moreover the CPU utilization on the source node
is higher than on the peer nodes since it transcodes the video
stream and partitions it into chunks that will be sent to the
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Fig. 9. CPU utilization on PeerStreamer (PS) source node on second

evaluation scenario . . .
peers. Thus the CPU utilization on the peers is considerably

lower and do not interfere as much with other services running
concurrently. This is a result of the peers running a more
lightweight process such as gathering and decoding of chunks.

Third Scenario: In our third evaluation scenario, we ran
both services (Tahoe-LAFS and PeerStreamer) in separate
slices, running concurrently in a Cloudy OS template on
the same local Community-Lab nodes. We measured the
performance of our proposed approach while running different
services in a concurrent way.

In this scenario we ran the same number of experiments as
before, while cutting down the Tahoe-LAFS test to 1 hour. It
also uses the same deployment of slivers as before, however,
each physical device runs concurrently four slivers each with
its own service and groups of two from the same slice.
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Fig. 10. Performance of Tahoe-LAFS service, baseline as the current
deployment and setl as within the proposed deployment in third evaluation
scenario (operations shown as Average All, write, re-write, read, re-read,
among others). Representing average, and deviations for each operation.

Results: Fig. 10 shows the results from the current de-
ployment in Community-Lab as baseline, against the proposed
deployment in Setl. It also shows that when different concur-
rent services are running on the same device, the impact on
the services are noticeable, when there is a higher load of the
system. However, in a normal usage of services the impact on
the operations is attenuated with time, or with scheduling.

Fig. 11 and Fig. 12 show the results of the current de-
ployment on the Community-Lab as a baseline against the
proposed deployment results. We can see a noticeable, to
a certain degree, variation of the chunks played out which
affects the video quality perceived. This is due to the CPU
time being shared among more processes. However, while
concurrent services may differ, for our results we can say
that the loss is minimal when using the proposed deployment
against the current Community-Lab deployment.

The average CPU utilization of the Tahoe-LAFS client
instance is shown in Fig. 13. These measurements were taken
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Community-Lab.
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Fig. 13. Average CPU utilization of Tahoe-LAFS and PeerStreamer (PS) in

third evaluation scenario

over one hour period in the third evaluation scenario. The
figure shows the CPU utilization of the Tahoe-LAFS client
instance is around 35% - 40% on average over the course of
experiment, meaning that it uses at most half of one core of
the device. This is a result of the added processing in the client
instances while the storage instances have a lower process
utilization, performing only read and write operations.

On the other hand, the average CPU consumption for
PeerStreamer is nearly five times higher than what Tahoe-
LAFS uses. This is because while running the last scenario we
also recorded the video to the disk (in all peers) influencing
more the resource utilization for the service in order to get the
most utilization for each service. The CPU utilization on the
peers remains lower than in the source peer and still feasible
to be running concurrently with other services.

B. Discussion

We could observe that the proposed deployment has an
impact on the service performance. However, we can say that it
is minimal while achieving more services within one physical

device. We can also state that both scenarios, LXC and QEMU,
can be used according to the resources available. QEMU
is suitable when services require higher security features,
higher isolation of the kernel system and when resources are
not constrained (high-power devices with hardware-enabled
virtualization). LXC targets low-capacity devices to achieve
concurrency between services.

The quality impact that the services have is minimum,
when using services that do not require high demand of the
resources. In our experiments the resource utilization was key
to understand the impact and how we can optimize the shared
resources. The results of our evaluation indicate variability on
the execution of concurrent services. One of the factors for this
is the user context has to be changed for each process. This
can result in minor delays until the service can fully utilize
the CPU.

Moreover we can say that using such deployments may
guarantee isolation of services and maintain mostly the same
quality of service. Therefore, our approach showed to be
feasible for the current deployment of devices on community
networks with minimal performance loss in the services. Also
achieving user context isolation on the devices for multiple
purposes and guaranteeing the owners isolation and utilization
of the devices. Further study to achieve and optimize the
maximum amount of contexts or services within a device will
be dealt in future work.

VI. RELATED WORK

In this section we review some works which address
similar issues as this paper. In [9] the authors report on
how the deployment of the cloud model on top of IP-based
community networks in the case of Guifi.net was undertaken.
They elaborate a system for the proposition that the users
can benefit from cloud-based services inside of the network
without having to consume them from the Internet. Instead they
can utilize the resources that already exist in their community
network, while also granting access to cloud-based services.

The area of Fog computing [10] is related to our work
in the concept of integrating edge devices. To this end, Fog
computing aims to extend data center-based cloud computing
by integrating hosts at the edges of the networks into the cloud
process. Edges are seen as being proactive components for
services, data usage and storage.

In the Personal clouds proposal [11], the authors enhance
the capabilities of mobile devices, seen as low-powered de-
vices, by using either remote or nearby cloud resources, instead
of having to process data locally and thus reducing consump-
tion within the mobile devices. Furthermore, this work explains
how network resources are to be integrated in a heterogeneous
environment, while enhancing the user experience. In this way,
each device can be seen as a single device cloud and active
participants can run the services which are of interest to the
end users.

The work in [12] shows how clouds that have under-utilized
resources can be enhanced by sharing these resources with
other communities, while still maintaining the same aspects
that the cloud owners have agreed upon.

Work reported in [13] describes techniques that may satisfy
the offload computation of mobile devices. A comparison
is provided to better understand and succeed when doing
processing on low-powered devices. This system only accounts
for service concurrency and not user independent, thus only



considering the virtualization layer for service to run concur-
rently in a low-powered device.

In the Paradrop system [14] the authors have created a
platform in which low powered resources are used, such as
home gateways, in order to deploy different services running
and processing concurrently and with different data. Trying
to get the most use out of such devices, while also taking
advantage of the parallelism that devices can create between
computations. This system only accounts for service concur-
rency and not user independency, thus it only considers the
virtualization layer for services to run concurrently in a low-
powered device.

The work in [15] demonstrates that container-based system
virtualization is performed well over hypervisors by giving the
opportunity of isolation in terms of security and resources.
Their results show that container-based system virtualization
provides up to 2x the system performance of hypervisors for
server-type workloads and scale further while maintaining the
system performance at a higher level.

VII. CONCLUSION AND OUTLOOK

Community networks are IP-based networks that can have
many nodes that are connected by wireless links through a
territory. These networks were initially started to give their
members access to the Internet. We argue that these networks
are underutilized if only Internet access is targeted. The
resources in the network can actually support more services,
which can give community members advantages and benefits
when participating in shared services.

The container-based lightweight virtualization approach
proposed in this paper for contributed low-capacity devices,
maintains the benefits of running concurrent services on these
low-power devices and delivers a multi-purpose system. Also
it features isolation of both resources and security whereby
guaranteeing a better overall system performance even on
resource-constrained devices. This paper also addressed the
current limitations of community cloud infrastructures such as
the scalability of the existing infrastructure, and the perfor-
mance of low-power devices.

We demonstrated that through virtualization we can deliver
a multi-purpose environment. This leads us to run multiple ser-
vices in low-power devices (which are similar to the resources
shared in community networks) to guarantee the community
cloud environment remains feasible while giving the owners
a space for their own usage. We replicated the Community-
Lab infrastructure to deploy different services in the devices
available in order to understand the performance issues that
our proposed approach can have.

From the evaluation performed, we showed that the impact
on the performance of running concurrent services, while in
different user contexts is minimum compared to the current
state of the devices, deployed throughout the community
network. In fact, in the proposed approached the evaluated
services perform much the same way as in the current
Community-Lab approach, suggesting that the proposed ap-
proach is feasible to deploy on such infrastructures.

Moreover the proposed approach can augment the estab-
lished network infrastructure of community networks and the
ability for users to have access to more computing power,
exploring the community cloud environments and achieving
a multi-purpose system. This way we can add value to the
community networks, without deploying more physical de-

vices, and lowering the impact on the services when running
concurrently within the community network infrastructure.

As a next step, we consider to deploy and monitor resources
using the proposed approach in the Community-Lab testbed,
such that we can identify configuration or security issues that
may hinder the performance of the services. Also, we will
consider different types of services running concurrently to
specifically improve and optimize their performance applying
the proposed approach.
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