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Abstract

In this paper, a methodology is presented and employed for simulating the Internet of
Things (IoT). The requirement for scalability, due to the possibly huge amount of in-
volved sensors and devices, and the heterogeneous scenarios that might occur, impose
resorting to sophisticated modeling and simulation techniques. In particular, multi-level
simulation is regarded as a main framework that allows simulating large-scale IoT en-
vironments while keeping high levels of detail, when it is needed. We consider a use
case based on the deployment of smart services in decentralized territories. A two level
simulator is employed, which is based on a coarse agent-based, adaptive parallel and
distributed simulation approach to model the general life of simulated entities. However,
when needed a finer grained simulator (based on OMNeT++) is triggered on a restricted
portion of the simulated area, which allows considering all issues concerned with wire-
less communications. Based on this use case, it is confirmed that the ad-hoc wireless
networking technologies do represent a principle tool to deploy smart services over de-
centralized countrysides. Moreover, the performance evaluation confirms the viability of
utilizing multi-level simulation for simulating large scale IoT environments.
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1. Introduction

The Internet is growing at an incredible pace. A multitude of mobile users’ terminals,
sensors, RFID devices, and “things” in general has been (and it is going to be) designed
to offer novel services in smart cities and territories [4, 5, 6]. All these devices vary
in terms of hardware and software characteristics. The variety of these devices and the
services that form such Internet of Things (IoT) represents a very interesting opportunity
with an important impact on social good initiatives around the world.

In this extremely heterogeneous scenario, it becomes essential being able to under-
stand and to simulate the IoT. The complex networks obtained by the interaction of
IoT devices are hard to design and to manage. In real deployment scenarios, many
possible configurations of IoT networks are possible. Devices connectivity is influenced
by their geographical location, distribution, communication and network capabilities [1].
IoT simulation is necessary for both quantitative and qualitative aspects. To name a
few issues: capacity planning, what-if simulation and analysis, proactive management
and support for many specific security-related evaluations. The scale of the IoT is the
main problem in the usage of existing simulation tools. Traditional approaches (that are
single CPU-based) are often unable to scale to the number of nodes (and level of detail)
required by the IoT.

In this paper we propose a technique to simulate IoT using a multi-level simulation
approach [7]. This approach is able to provide scalability and real-time execution of
massively populated IoT environments without forcing the simulationist to over-simply
the models. In essence, in a multi-level simulation multiple simulation models are glued
together, each one with a specific task and working at a different level of detail [8]. The
idea is to exploit a “high level” simulator that works at a coarse grained level of detail.
This coordinates the execution of a set of domain specific “lower level” simulators that
are used only when a fine grained level of detail is necessary. Such lower level simulators
can in turn trigger further simulations that act at an even finer level of detail, and so on.
Based on the specific simulation, care should be put in the interoperability among the
simulators and the design of the inter-model interactions (e.g. synchronization and state
exchanges at runtime between model components).

We demonstrate the validity of the proposed approach by focusing on the simulation
of “smart territories” [2, 3]. This is a novel view of devising smart services over urban
and decentralized environments. Indeed, in these last months/years focus has been given
on the development of smart cities services, i.e. a set of strategies aiming at improving
and optimizing services offered to citizens living in metropolitan areas. As a matter
of fact, the possibility to offering services for territorial districts with low population
density is an almost ignored problem. Thus, the idea here is to create a geographical
space able to manage resources (natural, human, equipment, buildings and infrastruc-
ture) in a way that is sustainable and not harmful to the environment. This goal to
bridge the urban-rural divide needs means to leverage novel wireless and mobile tech-
nologies, together with smart computing services. In fact, smart services would make
good use of a deployment of cheap sensors in these areas, together with ad-hoc config-
urations of mobile devices, without the need of costly (communication) infrastructures.
Examples of technologies that might compose the substrate for developing a “smart
shire” platform are: multihoming mobile services, mobile ad hoc networks, opportunistic
networks, peer-to-peer, cloud and fog computing systems. A smart middleware can be
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built that leverages these services; such a middleware would simplify the development
of new services and the integration of legacy technologies into new ones [5]. On top
of the middleware, smart services will be deployed, whose application domains include
information dissemination, tourist services in areas where a communication infrastruc-
ture is not present, info-mobility, weather services, pollution in rural areas (e.g., dumps),
sustainable (sub)urban environment, healthy services for ageing population, continuous
care, emergency response, smart renewable energy.

We show that the design and configuration of smart services in (decentralized) ter-
ritories impose the simulation of wide area networks; however, in certain cases a highly
detailed simulation is required. This need for scalability and high level of detail can
be reached only through properly configured multi-level simulation techniques. An ad-
vantage of this approach is that the detailed (and thus, more costly) simulation can
be performed only when needed, in a limited simulated area, only for the needed time
interval of the simulation.

As a use case, we describe the implementation of a multi-level approach to simulate
a smart market scenario. The market is composed of several producers that publish
availability of offered products. Interested clients can subscribe to these advertisements
and go to the market to buy these (and other products). Let imagine that the market is
particularly crowded and the client might desire to have further information on presence
of possible alternative products and position of the producers. Thus, producers might
provide information on the fly, thanks to smart proximity-based services that guide cus-
tomers through market. Different wireless technologies can be exploited to deploy such
a kind of proximity-based applications.

In this scenario, while the first part of the interaction can be modeled through a classic
agent-based simulation, the proximity-based interactions require finer grained simulation
details, involving wireless communication protocols. In this case, we show that the use
of multi-level simulation provides means to define and manage the whole picture in a
proper way.

We provide results from an experimental assessment demonstrating that multi-level
simulation offers a better scalability with respect to a classic fine grained simulation,
while offering the same level of detail, when needed.

The remainder of this paper is organized as follows. Section 2 describes the main
issues concerned with the development of smart shires and smart territories. This pre-
liminary discussion allows introducing the main issues that need to be addressed when
employing simulation in this described scenario. Section 3 introduces multi-level sim-
ulation. Section 4 provides a discussion on the approach we propose to simulate large
scale IoT environments on smart territories. In Section 5 a preliminary performance
evaluation of the implemented simulators is shown. Section 6 discusses on related work.
Finally, Section 7 provides some concluding remarks.

2. Smart Territories

Pervasive computing technologies represent a novel means to offer services that may
have a big impact and add several benefits to citizens in their daily activities. It is a
fact that the current trend is to devise and deploy services in metropolitan and crowded
areas, based on the idea that the higher the amount of possible users, the higher the
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amount of people that would benefit from these services (and the higher the amount of
clients).

However, recent proposals claim a need to put focus on the development of cheap
and sustainable services for non-metropolitan areas and countrysides in general [2, 3].
The goal is to promote and take advantage of the potential of decentralized areas via
deployment of smart services, which would be probably different to those that can be
deployed in metropolitan areas. Rather, self-configuring opportunistic solutions should
be devised, possibly not strictly dependent to the presence of a classic urban services and
networking infrastructure.

2.1. The need for smart services in smart shires

Making a territory smart involves leading innovative solutions on countrysides; we call
this novel view of equipping smart services in countrysides “smart shires”. The domain
of services that may provide some benefit to these areas is quite broad. They range from
services to citizens to services for municipalities. Examples of services for citizens are
improved Internet access, digital municipalities, apps promoting citizen participation,
geo-referenced information for a multitude of user applications (e.g., for tourists). A
main use case for smart territories in general is that of proximity-based applications,
where devices detect their proximity and subsequently trigger different services.

Services might allow federating neighbor municipalities/towns, private or public or-
ganizations so as to form a critical mass of both offered services and potential users.
In this scenario, wireless networks, with specific focus on ad-hoc, 5G Device-to-Device
(D2D) communications and multihoming, have great significance for the organization of
a smart territory.

It makes sense to consider the scenario of various heterogeneous devices intercon-
nected one to each other and to exploit these interconnections to create novel services [9].
Data sensed by the sensors’ devices are disseminated and collected by an information pro-
cessing system, managed as open data within the middleware, to be used by applications.
Such a middleware should enable a context-aware data distribution, i.e. it should be able
to distribute context data to interested entities [10].

2.2. Enabling technologies for smart territories/shires

Several enabling technologies can be put to good use to build effective services in
smart shires and smart territories in general. The main constraint to consider is the
need for cheap and sustainable solutions. IoT, mobile and pervasive computing, crowd-
sourcing and crowd-sensing are thus main pieces of the puzzle.

Sensors are relatively cheap in terms of costs. Thus, their deployment in a coun-
tryside is feasible. Problems may arise to interconnect these sensors to form a sensor
network and to make them communicate with the intelligent services placed in the Inter-
net. This requires the use of smart services employing D2D and multi-hop/multi-path
communications [11].

2.2.1. Communication strategies

The multitude of data generated by sensors, users, public and private organizations,
to be made available for a plethora of possible services requires a careful management and
dissemination of data. The standard client/server approach might be useful in certain
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Figure 1: Multipoint and multihoming communications.

contexts, but other dissemination strategies have to be made available. Smart territories
should be able to exploit pervasive solutions, where IoT, wireless sensor networks and
ubiquitous computing are merged in a single platform.

Figure 1 summarizes the different types of communications that may arise in the
considered smart shire scenarios. In the figure, nodes d, e and f perform an ad-hoc
communication, without the intervention of a network infrastructure. Node a is able to
connect to Internet services via a wireless mesh network, that exploits a multi-hop com-
munication to let messages reaching a network infrastructure [12]. Finally, h connects
to Internet services thanks to the use of multi-homing, that allows utilizing its multiple
network interface cards concurrently, in a seamless way [13]. This means ensuring that
if a mobile node changes its point of attachment to the Internet, while in movement,
no communication interruptions are perceived at the application level, and if such inter-
ruptions occur, they do not significantly degrade the Quality of Service delivered at the
application level [14].

2.2.2. Dissemination strategies

At a different, higher level of abstraction, general approaches such as publish/subscribe
and gossip-style dissemination schemes can be exploited [2, 15, 16]. Depending on the
application scenario a message might have to be sent from a device towards a certain
physical area of the territory (e.g., the device is looking for a sensor to understand
weather conditions) or towards a specific destination (as in classic MANET/VANET
scenarios), or the message “is looking for an access point”, trying to reach an Internet
host or service. In other cases, applications might require a broadcast of a message;
this is the case for alert messages, critical situations, or more simply general information
or advertisements. To this aim, an efficient broadcast scheme might be employed that
spread messages across devices, trying to avoid transmissions’ collisions. The broadcast

5



might contain aggregate contents (marshalling), in order to optimize transmissions. This
provides a useful scheme to be employed at higher levels and disseminate requests and
contents [3].

As concerns publish-subscribe strategies, there are several alternatives. For exam-
ple, when dealing with publish-subscribe for pervasive computing and IoT, it is worth
citing MQ Telemetry Transport (MQTT), a lightweight broker-based publish/subscribe
messaging protocol [17]. Its simplicity makes it an ideal messaging protocol for the IoT
and mobile communications. Another option is the Advanced Message Queuing Protocol
(AMQP), an application layer protocol for the IoT focusing on message-oriented environ-
ments [18]. Data Distribution Service (DDS) is a publish-subscribe protocol, developed
by Object Management Group (OMG), that relies on multicasting, through a broker-less
architecture [19].

2.3. A use case with smart marketplaces

Let consider an application scenario concerned with the “km 0” phenomenon. This
is the abbreviation for “zero kilometers”, that signifies local, low impact primary food
ingredients. It refers to a shopping style that gained a lot of interests in Italian and Euro-
pean foodie circles to improve the quality of products and promote sustainable cooking.
It gives priority to the use of local and seasonal foods, avoiding genetically modified or-
ganisms. In spite of the growing interest in local products, there are relatively few places
where one can buy these products directly from the producer. Thus, customers have to
look for specialized weekend farmers’ markets or for farm direct purchases. Customers
might be single users, ethical purchasing groups, restaurant owners. And quite often,
this products’ research reveals to be not a simple task for customers.

Thus, let imagine a service that allows consumers subscribing to the availability of a
certain product. Upon availability, a producer (e.g. the farmer) can notify his subscribers
of product availability plus other related information such as, for instance, his presence
in next, nearby markets or other possible purchasing opportunities. In view of such
details, the consumer can plan visiting the market (and select the products directly),
book some specific items, quantities and so on. The plethora of publish-subscribe systems
available can easily do this job. However, more sophisticated services are possible. Several
(apparently similar) producers can be present at the market, the customer might do not
know the location, he might have some physical disabilities and thus he might need to
be guided to the exact location of the producer, that is dynamically determined (hence,
without the possibility of knowing the position in advance). Then, once there, he might
be possibly interested in finding other products. Moreover, once there, he might want
checking out for other interesting stands.

Thus, it would be an added value if producers might provide information on the
fly, thanks to smart proximity-based services that could guide customers through the
market. Such services can be deployed by adapting the interactions and the commu-
nications among end-nodes based on the locally available communication technologies.
For instance, in presence of a wireless infrastructure, all the communications can pass
through the access point and the Internet. Otherwise, some ad-hoc solution should be
dynamically built, with producers that exploit their smart devices (e.g. smartphones)
to build multihop wireless communication and information dissemination strategies [3].
Moreover, in case of intermittent connections, seamless (multihoming based) commu-
nication strategies should be employed [13]. Being partly composed of advertisements,
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general information on the market, published messages looking for their subscribers, dis-
semination over such dynamic, opportunistic ad-hoc overlay might be based on epidemic
dissemination protocols, used in conjunction with application filtering techniques [20, 11].

The efficient simulation of such a wide scenario in a smart territory is not an easy
task, since it involves several activities and different domains. This is a perfect example
of a simulation scenario requiring different levels of granularity. Thus, it is necessary to
employ multi-level simulation. This methodology is described in the next section.

3. Multi-level Simulation Architecture

This section describes multi-level simulation, an approach for large scale simulation
setups [1, 7]. The rationale is to take multiple simulation models, glued together into a
hierarchical structure, each one with a specific task and working at a different level of
detail [8]. The simulation starts with the “high level” simulator that works at a coarse
grained level of detail. Such a simulator coordinates the execution of a set of domain
specific “middle” or “low” level simulators that are used only when a fine grained level of
detail is necessary. The switch between coarse and fine grained models can be automatic
or triggered by the simulation modeler. For example, imagine to have an agent-based
simulator that works at a coarse level of detail (this is actually the solution employed in
this work, and described in Section 4). When it is required to simulate an area that, for
instance, is populated by a large number of wireless devices, then a detailed simulation
model could be employed and executed by typical simulators that have been designed
for this purpose e.g. OMNeT++ [21], ns-3 [22], SUMO [23].

Figure 2: Multi-level simulation.

Figure 2 provides a overview of this approach [1]. At the simulation bootstrap the
whole scenario is executed at Level 0 (that is, with minimal details). Hence, the high
level simulator manages the evolution of all the model components and their interactions
following a time-stepped synchronization approach. [24]. At timestep t2, it is found that
a part of the simulated scenario (for example a specific zone in the simulated area or a
specific group of modeled nodes) has to be simulated with more details. This means that,
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in the figure, a part of the simulated area is still modeled at Level 0 while a specific zone
is now managed by the Level 1 model. If necessary, in the following of the simulation, a
specific area can be further detailed using a Level 2 model (and simulator). To simplify
this discussion, if we consider only two levels, then all the model components managed
by the Level 0 simulator are evolved using t-sized (coarse grained) timesteps and all the
others use t′-sized (fine grained) timesteps. Timestep t2 (that is the same of t′1 for Level
1) is the moment in which a part of the model components is transferred from the coarse
grained simulator to the finer one. In the following, the components at Level 0 will jump
from t2 to t3 while the components simulated at Level 1 will be updated at t′2, t′3 and
t′4 (that is the same of t3 for Level 0). Then, since there is no more need for such a
level of detail, all the components simulated at Level 1 are transferred again to the Level
0 simulator. Following the constraints imposed by the time-stepped synchronization
algorithm, all the interactions among Level 0 simulated components can happen at every
coarse grained timestep while the interactions at Level 1 can happen at every fine grained
timestep. Finally, the interaction between components managed at different levels can
happen only at the coarse grained timesteps; that is, when there is a match between the
timesteps at the different levels.

From the discussion above it should be clear that when designing a multi-level sim-
ulation approach, the main issues are the interoperability among the simulators and the
design of the inter-model interactions (e.g. synchronization and state exchanges at run-
time between model components). Moreover, while in Figure 2 both shown levels are
following a time-stepped approach, it might be possible that different simulators, acting
at different levels of detail, employ different simulation advancement approaches. For in-
stance, in the implementation of the use case discussed in the next section, we will show
that Level 0 (coarse grained) is a time-stepped simulator, while Level 1 (fine grained) is
an event-driven OMNeT++ based simulator.

Multi-level simulation can be employed by the industry and the academia in a plethora
of different contexts, ranging from scientific environments to manufacturing and indus-
trial systems. Focusing on the IoT and smart cities, the novel trends in automation and
manufacturing technologies are leading to what is called the fourth industrial revolution.
The idea is that, currently, cyber-physical systems can communicate and cooperate with
each other and with humans in real time, hence creating a modular and complex produc-
tion chain that promotes interoperability, information transparency and decentralized
decisions. The modular structure of this production chain takes into consideration sev-
eral factors and issues, ranging from the use of small sensors to the use of big data in
order to take management decisions. Multi-level simulation might be a perfect tool to
understand how organizing and managing such a complex production chain. In this pa-
per, we will show how multi-level simulation can be proficiently employed to simulate a
smart territory, focusing on the smart-market use case scenario.

4. Multi-level Simulator for Smart Territories

In this section, we describe the implementation of a multi-level approach to simulate
the smart market scenario in smart shire environments, described in Section 2. The first,
main requirement is scalability, in terms of modeled entities and granularity of events.
Even a small size smart shire will be composed by thousands of interconnected devices.
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Many of them will be mobile and each with very specific behavior and technical charac-
teristics. Another requirement is that the simulator should be able to run in (almost)
real-time average size model instances. This enables proactive approach (e.g. simulation
in the loop) and to perform “what-if analysis” during the management of the deployed
architecture.

Considering the characteristics of the model to be simulated and the requirements
described above, in our view the best way is to use a multi-level approach that combines
a discrete-event simulation engine coupled with an agent-based smart shire model.

The simulator exploits two levels of granularity, as shown in Figure 3. The two
levels of simulations are two sophisticated, but in some sense standard, simulators. The
coarse level (Level 0) simulates the whole smart territory, where different actors produce
products, subscribe their interests, move towards different geographical areas. This has
been implemented using an agent-based simulator equipped with parallel and distributed
execution capabilities [25].

Then, the specific interactions within the smart market impose more simulation de-
tails to consider wireless communication issues, fine-grained interactions and movements.
Thus, an instance of OMNeT++ simulation has been implemented (i.e. Level 1 in Fig-
ure 3). In this case, each simulation step of the coarse grained simulation layer (e.g.,
t3, t4 in Level 0, Figure 3) is decomposed into a set of events at the fine grained layer,
organized as a pending event list (Level 1). Following this approach, Level 1 is able to
notify Level 0 with its simulation advancements.

In this case, the main issue is to provide means to let the two simulators interact.
In fact, Level 0 has to trigger Level 1 when needed, passing some arguments to it that
would serve as configuration and initialization parameters (see Figure 3). Then, Level
1 must run for a certain amount of timesteps and at the end of each Level 0 timestep,
it has to notify Level 0 with its outputs. In turn, Level 0 must ask Level 1 to continue
its simulation or end the simulator. The operating principles of the two simulators and
their interface is described with more details in the next subsections.

Figure 3: Smart Territory/Market multi-level simulation.
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4.1. Level 0: agent-based simulator

Smart Shire Simulator (S3) is a prototypal simulator based on the GAIA/ARTÌS sim-
ulation middleware [24, 26]. ARTÌS permits the seamless sequential/parallel/distributed
execution of large scale simulation runs using different communication approaches (e.g. shared
memory, TCP/IP, MPI) and synchronization methods (e.g. time-stepped, conservative,
optimistic). The GAIA part of the software tool aims to ease the development of simula-
tion models with high level application program interfaces. Furthermore, it implements
communication and computational load-balancing strategies (based on the adaptive par-
titioning of the simulation model), for reducing the simulation execution time.

The current version of S3 is preliminary and implements only a limited set of func-
tionalities. The many elements composing the smart shire are represented as a set of
interacting entities. Some entities are static (e.g. sensors, traffic lights and road signs)
while the others (e.g. cars and smart-phones) follow specific mobility models. All the en-
tities in the simulated model are equipped with a wireless device. The interaction among
entities is based on a “Priority-based Broadcast” (PbB) strategy that implements a prob-
abilistic broadcast approach [27]. In PbB, every messages that is generated by a node is
broadcasted to all the nodes that are in proximity of the sender. The message contains a
Time-To-Live (TTL) to limit its lifespan and the forwarding is based on two conditions.
The first is a probabilistic evaluation (i.e. probabilistic broadcast) while the second is
based on the distance between sender and receiver. In fact, to limit the number of for-
warded messages, there is a message forward only if the distance between the nodes is
larger than a given threshold. Under the implementation viewpoint, this can be done
using a positioning system (e.g. GPS) if available. Otherwise, the network signal level as-
sociated to each received message is used. As will be discussed in Section 5, this approach
can generate a very large number of duplicated messages. For this reasons, the tuning
of PdB parameters is very important and furthermore a message caching mechanism has
been added.

4.2. Level 1: OMNeT++ simulator

The finer grained simulator was implemented using OMNeT++ v. 4.4.1, with the
INET framework v. 2.3.0. It simulates a grid of fixed nodes (during the tests, a 10 × 10
grid was used), representing the market sellers. Each seller is equipped with a WiFi
enabled technology. In the simulated scenario, no WiFi infrastructure was present, hence
nodes organize themselves as a MANET exploiting DYMOUM [28], an implementation
of the Dynamic MANET On-demand (DYMO) routing protocol [29].

In such a MANET a number N of mobile nodes, representing pedestrian users, was
introduced by the higher Level 0 simulator. These N nodes are equipped with a mobile
device with a WiFi networking technology. Pedestrian users move at walking speed.
The user application running on the mobile client broadcasts messages looking for the
identifier of the specific seller. The seller replies with his geographical position. All these
messages are delivered through the mentioned MANET routing protocol. Based on the
provided position, the mobile user moves towards his destination.

4.3. Interface between the two simulators

The interface between the Level 0 and Level 1 simulators is in charge of their interop-
erability and synchronization. That is, communicating the inputs and outputs between
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the two simulators, as well as of triggering the “continue the simulation” or “end of
simulation” commands sent, at the end of each Level 0 timestep, from Level 0 to Level
1. To this aim, a message-passing approach is utilized, which has been realized through
the use of a TCP connection in which the Level 0 simulator plays the role of server while
the Level 1 simulator works as the client. Then, Level 0 waits for messages at a properly
configured socket open to a certain port. At the end of each Level 0 timestep, Level
1 sends a set of messages which describe its status and waits for a response. Level 0
receives the data sent by Level 1 and decides what message has to be sent to Level 1 (i.e.
continue or end the lower level simulation). The TCP connection is maintained until the
Level 0 simulator decides that the lower level simulation must end.

In essence, this is a simple strategy that allows interactions between the simulators
without requiring a complete re-engineering of the simulators. In this approach, the
higher levels simulator must be able to freeze the simulation of certain parts of the simu-
lated scenario, waiting for updates from other sources. Moreover, lower level simulators
should be enabled to obtain input from outside, and notify results outside. However, no
knowledge on the external simulators are needed. This is an example demonstrating that
existing products can be employed to create more complex multi-level simulations.

Going into some technical detail, the Level 0 establishes a different TCP connection
for each given Level 1 simulation instance. Before starting a Level 1 instance, the Level
0 opens a listening TCP port and passes that port number as a command-line parameter
of the Level 1 simulator. Analogously, the Level 0 dedicates a different directory for each
given Level 1 simulation instance. The Level 0 writes the description of the scenario to
be simulated in a set of files inside the directory associated to that given Level 1 instance.
These two mechanisms ensure the isolation between the Level 1 instances.

4.4. Multi-level granularity and simulation approaches

The multi-level approach described before can be combined with even finer grained
simulation or emulation (and even analytic models). Moreover, many different simulation
paradigms can be used for the implementation of both the coarser (i.e. Level 0) and the
finer grained simulator (i.e. Level 1). If the coarser grained level simulator (i.e. Level
0) uses a time-stepped approach, then there are only two requirements that must be
fulfilled by the Level 1 simulator. Firstly, when the Level 0 simulator spawns a Level
1 instance this must be able to evolve its simulation state up to the end of the next
Level 0 timestep without any external interaction (that is, in isolation from the Level
0 simulator). Secondly, at the end of the Level 0 timestep, the Level 1 simulator must
be able to provide to Level 0 a correct simulation state. If even the Level 1 simulator
uses a time-stepped synchronization, then these requirements can be easily satisfied by
choosing the appropriate sizes for both the simulators timesteps. In mathematical terms,
the Level 0 timestep size must be a multiple of the Level 1 timestep size. On the other
hand, if the Level 0 or Level 1 simulators use a time advancing scheme that is not time-
stepped then synchronization barriers (or time checkpoints) can be used to coordinate
the simulators.

5. Performance Evaluation

In this section, firstly we evaluate the scalability of both Level 0 and Level 1 simula-
tors. Secondly, we assess the performance of the multi-level simulator.
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All the results reported in this section are averages of multiple independent runs.
This performance evaluation has been performed on a DELL R620 with 2 CPUs and
128 GB of RAM. Each CPU is a Xeon E-2640v2, 2 GHz, 8 physical cores. Each CPU
core supports Hyper-Threading and therefore the number of logical cores is 32. The
computer is equipped with Ubuntu 14.04.3 LTS, GAIA/ARTÌS version 2.1.0, OMNeT++
v. 4.4.1 (with the INET framework v. 2.3.0). S3 and the OMNeT++ model used for
the multi-level simulator will be freely available as source code in the next release of
GAIA/ARTÌS [26] or upon request.

5.1. Level 0: agent-based simulator

The performance evaluation of S3 is based on a bidimensional toroidal space (with no
obstacles) that is populated by a given number of devices called Simulated Entities (SEs).
A subset of the SEs follows a Random Waypoint (RWP) [30] mobility model while the
others are static. The interaction among SEs is based on proximity and implements the
multi-hop dissemination protocol previously described. In Table 1 the main parameters of
this performance evaluation are reported. With respect to the simulation model described
in [2], this new version of the simulator implements a caching mechanism used by each
node to discard (some of) the duplicated messages generated by the PbB dissemination
scheme. This caching system is based on a LRU (Least Recently Used) replacement
algorithm.

Under the IoT simulation viewpoint, it is obvious that the model parameters to be
chosen are strictly dependent on the specific scenario characterized by the geographical
and architectural issues of each specific smart shire deployment. In our view, this confirms
that a simulation based approach is needed to support the design of the architecture and
for the appropriate tuning of runtime parameters.

Model parameter Description/Value
Number of SEs [1000, 32000]
Mobility of SEs 50% Random Waypoint

(RWP)
50% static

Speed of RWP Uniform in the range
[1,14] spaceunits/timestep

Sleep time of RWP 0 (disabled)
Interaction range 250 spaceunits
Density of SEs 1 node every 10000

spaceunits2

Forwarding range > 200 spaceunits
Simulated time 900 timeunits
Simulation granularity 1 timestep = 1 timeunit
Time-To-Live (TTL) 4 hops
Dissemination probability (gossip) 0.6
Cache size (positions) 0 (disabled) or 256

Table 1: Simulation model parameters.
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First of all, we assess the scalability of S3 in a sequential setup (that is, 1 CPU core
is used). Figure 4 reports the Wall-Clock Time (WCT) to complete a single simulation
with both message caching turned ON and OFF. The number of SEs has been set in
the range [1000, 32000]. For each configuration, the size of the simulated area has been
adjusted to maintain a fixed density of nodes. As expected, S3 shows a good scalability
but the performance are strongly affected by the number of SEs.
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Figure 4: Scalability evaluation: increasing number of SEs, sequential (#CPU core=1) simulator, mes-
sage caching OFF and ON.

The figure shows that the message caching mechanism introduces a significant over-
head in terms of WCT and strongly affects the scalability of the simulator. We would
have expected that the additional computational overhead introduced by caching would
be balanced by the reduction in the overhead due to delivered duplicated messages, but
this does not happen.

More in detail, Figure 5 shows the total number of messages (i.e. interactions among
devices) for each scenario. It results that even few SEs generate a very high number of
messages and most of them are duplicated (forwarded) messages. In other words, most
of the network traffic is overhead, since each new message is forwarded multiple times.
The effect of this model behavior is a limitation in the simulator scalability and a clear
design problem for the smart shire architecture. As a first effort to fix this problem,
we have added to S3 a message caching mechanism that operates in every node. This
is an approach that is very common in presence of dissemination algorithms based on
gossip [31].

Figure 6 shows that, in this simulation model, the effect of message caching is neg-
ligible in terms of reduction of the communication overhead. In fact, only a very small
part of the duplicated messages is discarded thanks to caching. This means that, more
complex overhead reduction strategies will have to be designed and implemented or dif-
ferent dissemination protocols will have to be employed. Due to the lack of effectiveness
of the message caching mechanism, in the rest of this performance evaluation we will
always disable the caching mechanism.

Going back to the scalability of the Level 0 simulator, as seen before, the sequential
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Figure 5: Number of delivered messages in a single simulation run (cache OFF): increasing number of
SEs, total delivered messages vs. forwarded messages

setup shows a limited scalability. An alternative is to implement a parallel simulation [24].
In this case, the simulator uses two or more of the available CPU cores in the execution
architecture to process the simulation evolution. The set of SEs was partitioned among
the CPU cores and a message passing scheme was used to deliver the interactions among
SEs. In this case, the software component executed on each CPU core is called Logical
Process (LP).

Figure 7 shows the speedup (i.e. the ratio between the WCT of the sequential simu-
lation and the WCT of the parallel execution) that can be obtained by GAIA/ARTÌS in
different configurations of LPs. In terms of performance, a speedup lower than 1 means
that the parallel simulation is slower than the sequential one. On the other hand, a
speedup larger than 1 is a gain for the parallel execution. The main advantage of the
parallel approach is that it is possible to share the workload among many LPs (and
therefore CPU cores). The drawback is the communication costs among LPs.

In the range 1000-8000 SEs (i.e. moderate loads) there is no speedup for the 2 LPs
setup. This means that the communication cost is larger than the benefit of the load
sharing of the model computation. The situation is different for larger loads (e.g. 4000 up
to 32000), in fact there is always a gain. In general, adding LPs permits a higher speedup.
In both scenarios with 16000 and 32000 SEs, the best speedup is obtained when all the
physical cores provided by the CPU are used (i.e., 16 cores). In fact, the configuration
with 32 LPs is obtained using the CPU logical cores provided by the Hyper-Threading
technology. In this case, the Hyper-Threading is unable to improve the performance.

In every parallel setup there is a configuration that has better performance than the
sequential one but the speedup is not as good as expected. This is due to the characteris-
tics of the simulated model. In fact, the model is characterized by very little computation
performed by each SE and a huge amount of interactions among SEs. With this kind
of simulated model, a linear speedup for parallel/distributed execution architectures can
not be expected.

For a better assessment of the Level 0 simulator, its memory usage has been measured
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Figure 6: Number of delivered messages in a single simulation run (cache ON): increasing number of
SEs, total delivered messages, forwarded messages and discarded messages (by the cache)

and analyzed. More in detail, sequential and parallel configurations of the simulator have
been evaluated in terms of peak virtual memory usage (VmPeak, i.e., size of the allo-
cated address space) and peak resident set size (VmHWM, i.e., used physically resident
memory). Both measures give insights into the simulator scalability but often with very
different outcomes. In fact, in the Linux kernel, a form of lazy memory management is
implemented in which the real allocation of memory is deferred until the new memory
is actually used [32]. Tables 2 and 3 show the VmPeak and VmHWM of the Level 0
simulator with different numbers of LPs and SEs. For each configuration, we show the
amount of used memory (KB), as well as the “overhead”, i.e., the ratio between the
memory consumed in the parallel setup (i.e. #LPs > 2) and the memory used in the
respective sequential configuration (i.e. #LPs = 1).

As obvious, the amount of used memory increases with the number of SEs and LPs.
Up to now, during its development, the S3 simulator has never been optimized in terms
of used memory since the main goal is the execution speed. Despite of this, the usage of
memory is acceptable even if, for some configurations, the amount of allocated memory
is quite large (e.g. Table 2 with #LPs = 32 and #SEs = 32000) but the physically
memory actually used is much lower. This behavior is mainly due to an implementation
that makes a large use of static data structures that are used only in part.

Figure 8 shows the memory overhead (as defined above) for both VmHWM and Vm-
Peak. In general, it is quite limited but it has a sharp increment for configurations
with a large number of LPs and few SEs. Anyway, it is worth noting that these con-
figurations are unrealistic, since when the number of SEs is limited then a sequential
simulation setup should be preferred. Nevertheless, as future work, the memory usage
in the parallel/distributed configuration will be improved.

Finally, the adaptive partitioning supported by GAIA/ARTÌS has been activated.
The goal of the mechanism is to cluster the SEs with the aim to reduce the amount of
communication between the LPs. More in detail, SEs that are near in the simulated
area are clustered in the same LP. This approach, that is based on the analysis of the
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#SEs

#LPs

1000 2000 4000 8000 16000 32000
1 40192 (1) 67440 (1) 121876 (1) 234640 (1) 459720 (1) 913588 (1)
2 371744 (9.25) 372016 (5.52) 372296 (3.05) 465792 (1.99) 694728 (1.51) 1286312 (1.41)
4 753104 (18.74) 753088 (11.17) 753616 (6.18) 754960 (3.22) 950320 (2.07) 1678512 (1.84)
8 1543712 (38.41) 1543360 (22.88) 1544416 (12.67) 1547328 (6.59) 1551456 (3.37) 1993312 (2.18)
16 3233728 (80.46) 3238464 (48.02) 3240512 (26.59) 2436992 (10.39) 3252672 (7.08) 3267200 (3.58)
32 7067520 (175.84) 7072128 (104.87) 7081216 (58.10) 7077248 (30.16) 7091968 (15.43) 7134592 (7.81)

Table 2: Level 0 simulator, peak virtual memory usage (VmPeak) in KB. The ratio between the memory
consumed in a given parallel setup and the memory used in the sequential configuration is reported.

interaction pattern of each SE, is often able to reduce the communication cost and hence
to speedup the simulation runs. Furthermore, it can be also extended to deal with
computational imbalances in the execution architecture (e.g. background load) or in the
simulation model (e.g. hotspots).

Figure 9 studies the effect of the adaptive mechanism on 32000 SEs and in presence
of an increasing number of LPs. The adaptive mechanism (in red) always gives a gain
with respect to static partitioning (in black). The gain is limited for 2 LPs but increases
in the larger setups. The best results (that is 3.34 vs. 2.61) is obtained with 8 LPs while
with 16 and 32 LPs the gain is lower. This behavior can be explained as follows: up to
8 LPs the load parallelization gives a speedup. With a higher number of LPs, the load

#SEs

#LPs

1000 2000 4000 8000 16000 32000
1 29564 (1) 56840 (1) 111416 (1) 223908 (1) 449068 (1) 903156 (1)
2 105416 (3.57) 138784 (2.44) 230624 (2.07) 351600 (1.57) 635880 (1.42) 1208936 (1.34)
4 132880 (4.49) 171728 (3.02) 263488 (2.36) 396416 (1.77) 714720 (1.59) 1351072 (1.59)
8 187712 (6.35) 242176 (4.26) 327584 (2.94) 476480 (2.13) 815104 (1.82) 1521056 (1.68)
16 418176 (14.14) 456704 (8.03) 521664 (4.68) 734144 (3.28) 1088576 (2.42) 1820736 (2.02)
32 1349120 (45.63) 1395072 (24.54) 1466112 (13.16) 1621760 (7.24) 1955840 (4.36) 2923136 (3.24)

Table 3: Level 0 simulator, peak resident set size (VmHWM) in KB. The ratio between the memory
consumed in a given parallel setup and the memory used in the sequential configuration is reported.
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parallelization is exceeded by the extra cost for communication. This means that when
8 LPs are used, the computational load is properly partitioned, the adaptive mechanism
is able to reduce the communication cost and hence it obtains a significant performance
gain.

5.2. Level 1: OMNeT++ simulator

In this section, the performance of the finer grained simulator described in Section 4.2
is evaluated to assess its scalability. As mentioned above, this Level 1 model has been
implemented using OMNeT++ and, in our opinion, it is a good example of domain
specific simulator. In this case, our goal is twofold. Firstly, we provide evidence that
widely used domain specific simulators are unable to scale to the degree required by IoT
deployments. Secondly, we aim to evaluate the simulator that has been integrated in our
multi-level simulator before studying the performance of the integrated tool.

#SEs VmPeak (KB) VmHWM (KB) WCT (sec)
1 147976 43916 14.878
10 151476 47352 114.842
100 198380 94204 2012.684
1000 2069432 1958456 34103.106
10000 > 20694320 > 19584560 > 3 days

Table 4: Performance assessment of the Level 1: OMNeT++ simulator. VmPeak is the peak virtual
memory usage and VmHWM is the peak resident set size.
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Figure 9: Speedup of adaptive parallel simulation setup (different number of LPs, 32000 SEs).

Table 4 shows that the amount of memory used by OMNeT++ significantly increases
with the number of SEs. Furthermore, the WCT required by the simulator to complete
each run sharply increases. In all tested cases, the run length of the Level 1 OMNeT++
model is set equal to the timestep of the Level 0 simulator (as described in Section 3). This
confirms that, in this specific simulated model, the OMNeT++ scalability is adequate
for the simulation of small size systems but it does not fit with the requirements of large
scale IoT deployments.

5.3. Multi-level simulator

In this section, the performance of the prototypal multi-level simulator are assessed.
First of all, it is considered a sequential Level 0 simulation (with 1000 SEs and #LPs = 1)
in which, a given number of sequential OMNeT++ instances are spawned. As described
in Section 3, at given points in time, the Level 0 simulator triggers the execution of a
more detailed simulation for a specific zone of the simulated area. In this performance
evaluation, we consider a setup in which a single SE is transfered from the Level 0
simulator and it is managed by the Level 1 for the length of a single Level 0 timestep.
The results of this experiment are reported in Table 5 and they show that the total
WCT of the multi-level simulator increases linearly with the number of Level 1 simulator
spawns. As expected, the cost added by spawning an OMNeT++ is in line with what
reported in Section 4 and the interoperability overhead introduced by the coordination
between the two simulators (i.e. Level 0 and Level 1) is negligible.

The amount of memory used by the multi-level simulator is given by the memory
used by the Level 0 simulator and the allocations caused by the Level 1 instances. Even
if the impact of a single Level 1 instance is acceptable, it is worth noting that, in some
cases it may be necessary to run multiple concurrent Level 1 instances. This means that,
the peak used memory of the multi-level simulator can be very high and that, in these
cases, the distributed simulator configuration (based on multiple interconnected hosts)
is to be preferred to the sequential or parallel setups.
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# spawns WCT (multi-level) WCT (Level 0) WCT per spawn
1 52.31 37.69 14.62
2 66.825 37.69 14.56
3 79.68 37.69 14.00
4 93.16 37.69 13.86
5 108.12 37.69 14.08
6 122.35 37.69 14.11
7 135.81 37.69 14.01
8 150.94 37.69 14.15

Table 5: Performance assessment of the multi-level simulator, sequential (#LPs = 1) configuration with
1000 SEs.

Another aspect worth of consideration is the number of SEs managed by the Level
0 simulator. We have measured the WCT of the multi-level simulator, the Level 0
simulator (Table 6 columns 1 and 2) and computed the difference (that is ∆WCT).
∆WCT represents the overhead (in terms of WCT) that has been introduced by the
spawning of Level 1 simulator instances. As shown in the table, increasing the number of
SEs managed by the upper level simulator has the effect to reduce the ∆WCT. This is a
counterintuitive behavior but it is compliant with the design of the multi-level simulator.

In fact, ∆WCT is basically the time spent by Level 0 waiting for results from the
finer grained level. This means that the Level 0 simulator has computed its coarse
simulation step needed to advance its simulation, apart from updates coming from the
finer level (Level 1). In this case, the bottleneck is the lower level simulator. In general,
at every Level 0 timestep, the higher the amount of Level 0 simulated entities the higher
the workload at the higher level, thus the lower the time spent waiting for Level 1
advancements.

In other words, with a low number of SEs, the Level 0 simulator is so fast in processing
its coarse size timesteps that when a Level 1 instance is spawned then it has to block
up to when the instance ends its computation and reports the results (see Figure 10a).
Conversely, this does not happen when the number of SEs is large. In fact, in this case,
for the most part of the Level 0 timestep both the Level 0 and Level 1 simulator can
run in parallel (see Figure 10b). This concurrent execution of the Level 0 coarse grained
timestep and the fine grained Level 1 simulator has the effect to reduce the overhead
introduced by the spawn of Level 1 instances.

#SEs WCT (multi-level) WCT (Level 0) ∆WCT
1000 52.31 37.69 14.62
4000 278.68 263.87 14.81
8000 804.20 793.20 11.00

Table 6: Performance assessment of the multi-level simulator, sequential configuration (#LPs = 1) with
an increasing number of SEs.

In the parallel/distributed configuration (#LPs > 1), the performance of the multi-
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(a) Small #SEs, larger idle time.

(b) Large #SEs, smaller idle time.

Figure 10: Multi-level simulator: Level 0 allocates a number of SEs, it must block waiting for completion
of the Level 1 simulator.

level simulator is dominated by the behavior of the Level 0 simulator. In other words,
in most configurations the spawning of Level 1 instances results as a slow down of the
Level 0 simulator. As shown in Figures 10b and 10a, when the Level 0 computation is
larger than in the Level 1 there is some balancing. More often, the overhead introduced
by Level 1 results in a slow down of the LP that has spawned the Level 1 instance. In
other words, this specific LP becomes the bottleneck of the whole parallel/distributed
simulation and some computational and communication imbalances are introduced in
the execution architecture.

To better assess the performance of the multi-level simulator in a parallel setup, we
have firstly studied the behavior of the simulator when 4 LPs are used and in which
a single specific LP spawns a series of Level 1 instances. As before, the finer grained
instances are executed by the LP in sequence during the simulation run. Figure 11
shows the total WCT and how much time the spawning of each Level 1 instance has
added to the total time of execution (i.e. WCT per spawn). As expected, the total
WCT increases linearly with the number of spawns and the cost of each spawn is almost
constant.

The same setup has been used to investigate what happens if all the LPs in the parallel
execution architecture spawn a Level 1 instance at given points in the simulated time.
This means that the total number of triggered instances in the simulation run is much
higher and that multiple concurrent Level 1 instances are run. Figure 12 shows the WCT
of the multi-level simulator with an increasing number of concurrent instances. The goal
of this test is to demonstrate that while increasing the number of activations of lower
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Figure 11: WCT of the parallel multi-level simulator with #LPs = 4, 4000 SEs, increasing number of
spawned Level 1 instances (in sequence by a single LP).

level instances is costly (the WCT increases as the number of times that the instances
are triggered), there is no extra cost at running concurrent instances in different CPU
cores. In fact, if idle CPU cores are available then all the concurrent instances can be
run in parallel. In the case of this experiment, this can be verified comparing the WCT
per spawn reported in Figure 12 and in Figure 11.

Going back to the configuration in which a single Level 1 instance is spawned at
a given time by a specific LP, an interesting and counterintuitive result is obtained
when the number of SEs is varied. Figure 13 reports the total WCT of the multi-level
simulation and the ∆WCT (as defined before). It is in line with expectations that the
total WCT increases with the number of SEs but it is counterintuitive that also the
∆WCT is affected by the number of SEs. As mentioned above, in this performance
evaluation, a single SE is transfered from the Level 0 simulator and it is managed by the
Level 1 for the length of a single Level 0 timestep. In other words, the Level 1 spawn
is independent from the number of SEs managed in Level 0. Since ∆WCT represents
the overhead (in terms of WCT) that has been introduced by the spawning of Level 1
simulator instances, then it is counterintuitive that this overhead changes with respect
to an instance that is constant in terms of length and complexity. The reason of this
behavior is simple. In fact, the spawning of a Level 1 instance results in a temporary loss
of coordination in the parallel/distributed execution architecture. This mean that, due to
the synchronization mechanism, all the LPs except the one that has spawned the instance
will be blocked waiting for its completion of the current Level 0 timestep. Since the LP
that has spawned the instance will be late, then some operations needed for managing the
end of timestep have to be completed while all the other parts of the parallel/distributed
execution architecture are waiting. These end of step operations depend on the number
of SEs managed by the LP and therefore also the ∆WCT is influenced by the number of
SEs.
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Figure 12: WCT of the parallel multi-level simulator with #LPs = 4, 4000 SEs, increasing number of
concurrent spawned Level 1 instances. For example, 2x4 means that all the LPs for 2 times during the
simulation run trigger 4 concurrent Level 1 instances.

5.4. Discussion

Results obtained from our simulations confirm the viability of the proposal. The use
of multi-level simulation allows scaling up to higher numbers of SEs, with respect to
the use of a single fine-grained simulator that is able to capture the complexity and all
the technical details of the interactions among SEs. This approach allows mimicking all
these details only when needed. Hence, during the rest of the simulation the multi-level
simulator behaves as a coarse-grained simulator.

The use of an adaptive and parallel approach that distributes the execution of SEs in
multiple LPs (and CPU cores) shows benefits, provided that interacting SEs are clustered
into the same LP. Indeed, the best case scenario for this approach is when a simple
partitioning of SEs is possible. For example, imagine having separated simulated areas
(because of distance, obstacles, walls) that ease the partitioning and the clustering of
SEs. In this case, a migration of a SE from a cluster to another is needed only when the
SE moves from a simulated area to another.

Conversely, the worst case scenario is in presence of an hotspot, where the majority of
SEs stays in the same (restricted) simulated area. In this case, finding a good partitioning
might be a difficult task. Moreover, in presence of large size hotspots, it would be complex
to determine at which level of detail each SE needs to be simulated and to guarantee the
necessary isolation of the Level 0 simulator from the Level 1.

Another issue that might complicate a multi-level simulation such that proposed in
this work is when the higher level simulation (Level 0 in the scenario presented above)
exploits very short timesteps (with respect to the actions being simulated), making diffi-
cult splitting them into finer grained timesteps at lower levels. Finally, it is clear that the
higher the number of finer grained level instances to be triggered during the simulation,
the higher the complexity of the simulation and thus the higher the time to accomplish
it.
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Figure 13: WCT of the parallel multi-level simulator with #LPs = 4, single Level 1 spawn, increasing
number of SEs.

6. Related Work

The use of IoT to build “smart” services in territories raises several issues related to
the design, implementation and deployment of these services in real environments. In
fact, even a small size smart territory will be composed by thousands of interconnected
devices. Many of them will be mobile and each with very specific behavior and technical
characteristics [2]. Simulation provides means to better approach this issue. If a proactive
approach is needed (e.g. simulation in the loop), in order to perform “what-if analysis”
during the management of the deployed architecture, then the simulator should be able
to run in (almost) real-time, at least with average size model instances.

6.1. Simulation of the Internet of Things

IoT setups require simulating large scale testbeds producing a huge amount of data,
at a constant rate. This requires the use of scalable simulation tools, able to support a
massive amount of nodes in the scenario and fine level of detail in the nodes interactions.
This complicates the simulation.

Clearly enough, the need for scalability and high level of detail make existing network
simulators, such as OMNeT++, ns-2 or ns-3, quite often inadequate for the purpose,
when used alone [33]. On the other hand, agent-based simulation is a perfect tool to
create models that mimic wide area (e.g. urban) systems in general, that can be applied
at different time scales, such as short-term modeling, e.g. diurnal patterns in cities,
and long-term models for exploring change through strategic planning [34]. Tools such
as MASON [35] and SUMO [36] allow simulating moving entities (e.g. mobile users of
vehicles) that can interact with static ones. These tools have been successfully exploited
to study intelligent traffic control systems [37, 38, 39, 40], mobile applications that resort
to crowdsensed data and so on. The main problem of these approaches is that, due to
their nature, they do not allow considering high levels of details.

Probably, the most common approach to simulate IoT is that of resorting to dis-
crete event simulation approaches. However, different types of simulation have been
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considered to simulate IoT. For instance, MAMMotH is a software architecture based on
emulation [41]. Monte Carlo methods are employed in [42].

Model-driven simulation (based on the standard language SDL) is used to describe
an IoT scenario [43]. Then, an automatic code generation transforms the description
into an executable simulation model for the ns-3 network simulator.

Brambilla et al. propose to integrate the (monolithic, Java-based) DEUS general-
purpose discrete event simulation with the domain specific simulators Cooja and ns-3 for
implementing large-scale IoT simulations in urban environments [44]. In this case, the
performance evaluation is based on 6 scenarios with up to 200000 sensors, 400 hubs and
25000 vehicles. The execution time with respect to the number of events shows a quite
good scalability.

DPWSim is a simulation toolkit that supports the modeling of the OASIS standard
“Devices Profile for Web Services” (DPWS) [45]. Its main goal of is to provide a cross-
platform and easy-to-use assessment of DPWS devices and protocols. In other words, it
is not designed for very large-scale setups.

The use of cloud computing can provide better performance. SimIoT exploits cloud
environments for back-end operations [46]. The use case proposed in the paper is a
health monitoring system for emergency situations in which short range and wireless
communication devices are used to monitor the health of patients. The preliminary
performance evaluation is based on 160 identical jobs submitted by 16 IoT devices.

Finally, an interesting approach is described in [47]. The author proposes a hybrid
simulation environment in which the Cooja-based simulations (i.e. system level) are in-
tegrated with a domain specific network simulator (i.e. OMNeT++). In some sense, this
approach resembles the idea of exploiting a multi-level simulation, since it tries to keep
the best of the considered simulation approaches.

To sum up, we claim that a multi-level simulation is needed in order to simulate
reasonable IoT scenarios. In fact, running the whole model at the highest level of detail is
unfeasible. A better approach is to bind different simulators together, each one running
at its appropriate level of detail and with specific characteristics of the domain to be
simulated (e.g. mobility models, wireless/wired communications and so on).

7. Conclusions

In this paper, we have presented a principal instance of multi-level simulation of
the Internet of Things (IoT). The IoT is going to be composed of billions of devices,
generating a massive amount of data at a constant pace. This makes such a case study
particularly complex in terms of design and modeling. Simulation must be carefully
handled in order to create reasonably accurate models that can scale in terms of modeled
entities and granularity of events. The paradigm of multi-level simulation enables such
scalable and fast simulations, since fine level of details are employed when needed, only.
In other contexts, more coarse grained simulation scenarios are employed.

Our specific solution uses a two level simulation. An adaptive, parallel/distributed
agent-based simulation technique is employed to model the coarse level (Level 0), while
an OMNeT++ simulation implements the finer level (Level 1). During the simulation,
the coarse Level 0 is in charge of coordinating the different instances at Level 1 that may
have been triggered in different portions of the simulated world. In fact, Level 0 can
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decide when starting a Level 1 simulation, and at every time-step it decides if such Level
1 simulation should continue or if it must stop.

Our multi-level simulator has been specifically utilized to study novel solutions fos-
tering the creation of smart services for countrysides. The underlying idea is that de-
centralized territories need smart services that must be cheap, adaptive, self-configuring
and robust. As an application scenario, we considered a smart market, with customers
that can subscribe their interest to specific products that may become available in some
location of their neighborhood. Upon availability, the customer can travel to the market.
Once there, additional services can be provided to the users, such as detailed informa-
tion, advertisements, guidance through the market towards the location of the producer.
The coarse grained (Level 0) simulator models the publish/subscribe scheme and the
wide area movements, while the finer grained (Level 1) simulator implements all the
interactions and wireless communications occurring within the smart market. Based on
this use case, it is confirmed that the ad-hoc wireless networking technologies do repre-
sent a principle tool to deploy smart services over decentralized countrysides. Moreover,
we provided a performance evaluation that confirms the viability of utilizing multi-level
simulation for simulating large scale IoT environments.
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[9] R. Petrolo, V. Loscŕı, N. Mitton, Towards a smart city based on cloud of things, in: Proc. of the
International Workshop on Wireless and Mobile Technologies for Smart Cities, WiMobCity ’14,
ACM, 2014, pp. 61–66. doi:10.1145/2633661.2633667.
URL http://doi.acm.org/10.1145/2633661.2633667

[10] P. Bellavista, A. Corradi, M. Fanelli, L. Foschini, A survey of context data distribution for mo-
bile ubiquitous systems, ACM Comput. Surv. 44 (4) (2012) 24:1–24:45. doi:10.1145/2333112.
2333119.
URL http://doi.acm.org/10.1145/2333112.2333119

25

http://dx.doi.org/10.1109/HPCSim.2016.7568309
http://dx.doi.org/10.1109/HPCSim.2016.7568309
http://dx.doi.org/10.1109/ISCC.2016.7543862
http://dx.doi.org/10.1109/ISCC.2016.7543862
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dl.acm.org/citation.cfm?id=319541.319559
http://dl.acm.org/citation.cfm?id=319541.319559
http://doi.acm.org/10.1145/2633661.2633667
http://dx.doi.org/10.1145/2633661.2633667
http://doi.acm.org/10.1145/2633661.2633667
http://doi.acm.org/10.1145/2333112.2333119
http://doi.acm.org/10.1145/2333112.2333119
http://dx.doi.org/10.1145/2333112.2333119
http://dx.doi.org/10.1145/2333112.2333119
http://doi.acm.org/10.1145/2333112.2333119
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