
ALVEC: Auto-scaling by Lotka Volterra Elastic Cloud: A QoS aware Non
Linear Dynamical Allocation Model

Bidisha Goswamia, Jyotirmoy Sarkarb, Snehanshu Sahaa, Saibal Karc, Poulami Sarkara

aDepartment of Computer Science and Engineering, PESIT-BSC, Bangalore
bGE Healthcare, India.

cCenter for Studies in Social Sciences, Calcutta, India and IZA Bonn.

Abstract

Elasticity in resource allocation is still a relevant problem in cloud computing. There are many academic
and white papers which have investigated the problem and offered solutions. Unfortunately, there is scant
evidence of determining scaling quotient dynamically. Scaling is essential to maintaining elasticity in resource
allocation. Elasticity is defined as the ability to adapt with the changing workloads by provisioning and de-
provisioning Cloud resources. We propose ALVEC, a novel model of resource allocation in Cloud data
centers, inspired by population dynamics and Mathematical Biology, which addresses dynamic allocation
by auto-tuning model parameters. The proposed model, governed by a coupled differential equation known
as Lotka Volterra (LV), fares better in Service level agreement (SLA) management and Quality of Services
(QoS). We show evidence of true elasticity, in theory and empirical comparisons. Additionally, ALVEC is
able to predict the future load and allocate VM’s accordingly. The proposed model, ALVEC is the first
example of unsupervised resource allocation scheme.

Keywords: Cloud data centers, resource allocation, elasticity, Lotka Volterra (LV), population dynamics,
Cloud Systems modelling, simulation, Resource allocation.

1. Introduction

Let us consider a hypothetical scenario in the Amazon rain forest where goats roam free without fear of
being attacked or ambushed. Except natural death, the population doesn’t diminish, in fact, is balanced by
reproduction. The grassland may lose all the green since the goat population is not controlled. Whenever
that happens, it is disastrous for goats as well since they’ll have nothing left to eat. This may lead to
migration and other critical consequences. On the contrary, if all goats are either killed or dead because
of some natural calamity, the grassland is not consumed and for the lack of predators (goats) grass may
grow in an uncontrolled fashion. Evidently, the balance between the two populations need to be maintained
for a healthy ecosystem. Let us extrapolate this to a classical supply-demand scenario where regular and
substantial supply of resources need to be fed to a stream of demands for jobs (not necessarily constant, may
fluctuate with time). It is not impractical to associate the demand and supply with predator (goat) and prey
(grass) population respectively. In turn, the predator-prey dynamics may be thought of as relevant interaction
between the resources i.e. virtual machines (VM) as prey and demand i.e requested jobs (represented by
cloudlets in cloudsim1) as predators. It is well known that these terms, VM and jobs are integral to cloud
computing (Subhashini), (Beloglazov et al.).

Cloud computing is an Internet-based computing. The computing paradigm revolves around providing
shared resources and data to computers and other devices (Xiangzhen et al. (2011). However, instead
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1The cloudsim is a well known framework for modeling and simulating the cloud computing infrastructure
and services. It is written in Java
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of an apriori or ad-hoc distribution, the policy is implemented on demand. The shared pool of computing
resources or prey as we may call those (VM), may be rapidly furnished and released to jobs or demands,
conveniently re-coined as predators. This needs to be achieved with minimal effort and oversight. The cloud
user may subscribe to these resources on short notice. The flexibility in pricing policy allows a subscriber
to exploit these resources on pay-per-use/short term as well. Cloud computing allows the entrepreneur shun
upfront infrastructure costs. Rather than mulling over infrastructure, he/she may focus on other operational
and strategic initiatives. The fact that the unit cost of operating a server in large farms is relatively lower
than small data-centers is an added incentive. Cloud provides virtual machines (prey) which accept the user
requests (predators) and allocate the available physical resources accordingly. Cloud service provider acts
as a broker between user requests and the cloud. The major challenges that confront these Cloud service
providers are provisioning the Cloud resources in a dynamic environment without compromising the quality
of service. Highly volatile nature of the demand of Cloud resources makes the chances of over-provisioning
/ under-provisioning of resources a common occurrence. Furthermore, maintaining competitive cost and
pricing model adds to the complexity of the problem.

Predator-Prey interaction forms the founding principle of population dynamics where the population are
inter-dependent on each other. The study of population dynamics focuses on all the members of a single
species who live together in the same habitat and are likely to interbreed, their unique physical distribution
in time and space, growing or shrinking rate of population, etc. The predator-prey behavior signifies, if
food is available in large quantity, then high food consumption increases the population of predator and
large amount of prey consumption reduces the number of prey. At this point, because of scarcity of food
available, number of predators may decrease. This is how the predator-prey model maintains both the
populations dynamically. A similar kind of inter-dependency is observed between resources and the jobs.
Let us assume the resources (VM’s in CloudSim) as prey population and jobs as predators. When huge
resources are available, Jobs can make use of sufficient options to avail the resources i.e VM’s. However,
when large amount of resources is consumed by jobs, the unavailability of resources (VM’s) can deprive new
jobs. This is the point where we face the challenge of elasticity triggering violation of SLA (Service Level
Agreement), or additional resource provisioning which increases the cost. Moreover, there is always a threat
of being penalized for frequent SLA violations in terms of either billing adjustments or even worse, migration
of consumers to another provider.

A certain discourse in Mathematical Biology models predator-prey behavior based on differential equa-
tions (see chapter 5 of (Saha)). The first of those models is known as Lotka-Volterra (LV) population
dynamics model Lotka-Voltera (1990). The model discusses various situations that can take place based on
the behavior of job and the available resources. The model has two fundamental equations which control
the jobs and Virtual Machines(VM). Different parameters in the LV equations may control and interpret
stability of the model. The LV model may fit a resource scheduling scenario, where different levels of dy-
namics between predator and prey population can be controlled by varying the parameters of the equations.
According to LV, there must be provisions to control the system breakdown. The model boasts of a math-
ematical property, known as the limit cycle, which is described in contour portraits. Also known as phase
portraits of the system, the graphical analysis help visualizing the balance between the two populations.
Limit cycle describes a qualitative limit for the stability of a system whose parameters are differed such that
the system grows out of stability. The difference acquired by these parameters is measured to describe the
domain of stability. This may have direct application in understanding the stability of a web-server with
incoming requests. Limit cycle of a system along with rate of incoming requests, can help us understand
performance bounds of a system.
The dynamic interaction, observed in the natural habitat of predator and the prey presents a compelling
problem. Any service computing platform, distributed or otherwise needs to adapt to dynamically changing
circumstances including adjusting to market volatility, fluctuating demand and supply etc. Some degree of
autonomy must be granted to enable the components of service computing/IT enabled services to respond
to system uncertainties. Therefore, the natural problems in the ecosystem and the challenge of balancing
various issues may find a suitable sibling in cloud computing. The concepts imbibed from population biology
need to be applied skillfully to address similar problems in cloud. To be more specific, solving the allocation
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problem in cloud data center by using the Lotka Volterra (LV) model is pertinent.

2. Related Work

In order to attain horizontal scaling, the user should define a fixed amount, say VM’s to be allocated or
deallocated. However, for vertical scaling, the same number signifies the amount of resources(CPU, RAM)
required to be added (Lorido et al.). There are a couple of papers where upper and lower utilization threshold
values of reactive scaling is the objective. Beloglazov et.al., introduces efficient adaptive threshold to meet
the high level of SLA (Beloglazov et. al.). Automated cloud-based scalability is a hot research topic in cloud
computing. Fuzzy logic has been implemented in elasticity controller which enables qualitative specification
of elasticity rules (Jamshidi et al.). Fuzzy logic in elasticity controller, utilized by Xu. et.al., has been used
to learn the relationship between workload, resources and applied during resources allocation subsequently
(Xu et al.). Another approach in cloud controller is known as the black-box surrogate model, which evolves
over time and uses machine learning to predict the performance (Gambi et al.). Lim et. al. (Lim et al.)
employed a linear equation to calculate the VM population in case of threshold violation (elasticity). The
equation is heavily dependent on two parameters, actuator values and sensor measurement. CPU utilization
is considered as sensor variable and actuator represents the number of virtual storage instances allocated
as storage nodes. The relationship between workload and CPU utilization has been established empirically.
Whereas in Lotka-Volterra model, the major contributors in the equations are the number of virtual machines
and the jobs. It is noteworthy that the biological model Lotka-Volterra (Kolmogoroff et al.) (Keller et
al.) (Goel et al.) is a non-linear equation, which is reasonable as linearity may fail to explain the problem
scenario. Chieu et.al. (Chieu et al.) have written a dynamic scaling algorithm for automated provisioning of
virtual machine resources based on threshold number of active sessions. A hybrid controller, an amalgam of
proactive and reactive controllers has been suggested by Urgaonkar et al. (2008). Another work subscribes to
the same concept and demonstrates the different possible scenarios of proactive elastic controller deployment
in cloud incorporation with reactive elastic controller (Ali-Eldin et al.). Tesauro et al. (2006) demonstrates
the strength of reinforcement learning in a sequential decision process, in which reinforcement learning (trains
off-line) on data collected in combination with a queuing model policy controls the system. Arabnejad et
al. (2017) proposed reinforcement learning with fuzzy logic to decide when to up /down scale instead of
a predefined threshold and the scaling action is a number from a fixed set -2, -1, 0, +1, +2. Though
most of the authors consider two threshold values, upper and lower but Hasan et al. (2012) have proposed
4 threshold values. ThrbU, is slightly below the upper threshold and ThroL is slightly above the lower
threshold. A model-predictive algorithm defined by Roy et.al., is responsible for auto-scaling of resources.
A second order autoregressive moving average method (ARMA) is used to predict the workload and the
optimization of the system behavior is achieved by minimizing various costs such as SLO violations, cost of
leasing resources and reconfiguration cost (Roy et al.). Waheed et.al. proposed a prototype based on reactive
scaling, which continuously keeps monitoring the average response time. If the required response time is
violated, it adds a VM (Iqbal et al.), which is static way of deciding the scale number. SCADS has leveraged
the utility function to scale-up and scale-down the storage resources dynamically and machine learning is
utilized to predict the resource requirement of new queries before execution (Armbrust et al.). Chaisiri et al.
(2012) proposed an algorithm for optimal cloud resource provisioning using stochastic programming model
to overcome the problem of On-demand cloud resource allocation plan. The author applied a decomposition
algorithm to divide the actual optimization problem into multiple smaller problems such that these can be
solved independently and in parallel. However the methodology has several complexities. The papers by
(Luck et al.) and (Kang et al. (2004) used agent technology to control dynamic environment like cloud.
Singh et.al. have proposed a QoS based resource provisioning and scheduling framework, where workloads
are clustered using workload pattern and reclustered by k-means clustering algorithm to identify the Qos
requirements. Different scheduling policies are employed to accomplish the scheduling task (Singh et al.).
Load balancing Ant Colony Optimization problem (LBACO) has been explored as a task scheduling policy
which is a NP hard optimization problem. It incorporates the dynamic behavior of the cloud and balances
the entire system (Li et al.). Particle swarm optimization is another approach exploited in a previous
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paper, where computation cost and data transmission cost have been considered (Pandey et al.). Identical
algorithm has been implemented in grid environment to achieve the optimized scheduling task (Zhang et al.).
Varalakshmi et al. (2011) presented an optimal work-flow based scheduling (OWS) framework to identify
a solution that can satisfy various user-desired QoS constraints, such as execution time. A comprehensive
cost model, driven by partial utility, provided by client been been proposed. The cost model is effective in
a scenario, where client is ready to accept a certain level of degradation (Simao et al. (2014).

Plenty of literature is available on task scheduling algorithm. Achar et al (2012) presents a novel
scheduling algorithm which utilizes the tree based data structure called Virtual Machine Tree (VMT) for
efficient execution of the tasks. Vijayalakshmi et al (2013) proposed a priority based task scheduling
algorithm. In this algorithm, user tasks are prioritized and the task with highest priority will be assigned
to a VM with highest processing power. Kumar et al. (2012) has enhanced the existing genetic algorithm
in which the traditional algorithm Min-Min and Max-Min are merged with the standard Genetic algorithm.
Min-Min and Max-Min are used to generate the initial population and it results in better solutions compared
to standard Genetic Algorithm in which initial population is generated randomly. In order to improve the
energy efficiency and reduce carbon emission, a conceptual model and practical design guidelines for cloud
resource management have been devised by Buyya et al. (2018).

Lotka-Volterra model is widely used in the field of biological science especially to describe the population
dynamics of two interacting species. Takeuchi et.al. considered the evolution system having predator prey
deterministic systems denoted by Lotka-Volterra equations in random environment (Takeuchi et al.). The
periodic Lotka-Volterra predator-prey system is investigated with impulsive effect (Tang et al.). Chaos in
three chain systems with LV model type interactions is showcased in another paper (Liu et al.). Nicola
has made an attempt to establish a relationship between the LV model and predator-prey utility functions
(Serra et al.).

The proposed Lotka-Volterra model, ALVEC has been integrated with standard task scheduling algorithm
and improvement is observed by evaluating the performance on different QoS metrics. The intuition behind
the LV time shared scheduling algorithm is to improve the performance and avoiding under-provisioning/
over-provisioning. Please note, load balance is not accommodated in ALVEC. However, LV timeshared
algorithm is not dedicated to a particular environment, unlike some of the other work discussed in this
section.

3. Problem Statement:

Achieving elasticity dynamically in allocating resources in cloud is a challenging problem. Though, there
is some evidence of dynamic allocation of resources in cloud, but our proposed solution is first of its kind
in this category with minimal oversight and control. Lack of sophisticated models inspired us to propose a
novel method of resource allocation in Cloud which addresses dynamic allocation and tunes the parameters
of the model as per the on-demand service. However, design of such an automated strategy to scale resources
up/down based on demand should not impact SLA management and Quality of services (QoS). The model
should meet the standards of resource optimality, which signifies in improvements of quality metrics in
cloud (simulated environment) such as vm utilization, SLA violation rate, average completion time etc.
Additionally, the proposed model should be capable of predicting the future load and allocate the resources
(VM) accordingly.

NOTE: In the context of IoT/Edge computing, cloudlet it is a tiny datacenter. In the context of
CloudSim, it is a class. Resource allocation is an abstract term, it can mean adding resources to a VM
or add more VMs. We mean adding more VMs, rather than adding resources to a VM. Our theory and
model are validated in a simulated environment, CloudSim.

4. Our Contribution:

This paper introduces a new model inspired from population dynamics (LV) to control the system for
maximizing the utilization of every resource. The goal is to handle resource under/over provisioning.
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• Elasticity: Elasticity is defined as an ability to adapt with the changing workloads by provisioning
and de-provisioning resources. The ability should be autonomic requiring minimal supervision. The
proposed model implements elasticity by adjusting virtual machines in accordance with cloudlet de-
mand. Most algorithms and strategies designed handle elasticity by increasing/decreasing VM’s by
one, by manual intervention or predefined rules. This is a supervised approach, even though not
identified explicitly. We control the change in number of VM allocation/de-allocation exploiting the
model dynamics proposed in our approach. Our approach is unsupervised and in contrast with the
existing solution approaches. Unlike other well known approaches, agents or job managers are not
required to allocate resources. Agents or Job managers are solely responsible to find out the number
of resources, are required to allocate/deallocate by understanding the demand of resources, therefore
the entire process involves a considerable amount time and in some cases involve manual intervention.
In the proposed case, the model decides the number of VMs considering the current resource demands
and provides the input to the cloud VM allocation process. Auto-Scaling is equated to addition or
removal of VM’s in unsupervised fashion. Our model is adaptive, can auto correct allocation number
based on demand in a completely unsupervised manner. Dynamic scaling is a well known feature of
a commercial cloud provider but in many cases, the scaling number is being decided in a pre-defined
manner. This is where our approach is distinct since we don’t pre-determine the number of VMs while
scaling. However, this didn’t cause under-utilization of the VMs and as discussed in conclusion further
(See 12.3).

• Novelty of the model: LV is extensively used in population biology. However, to the best of our
knowledge, no application of the Lotka Volterra (LV) model in Cloud computing, in particular or
communication networks, in general is found. This has the potential to set new baseline of research in
Cloud Computing (See sections 5-8).

• Resource Optimality: The proposed approach requires provisioning pooled resources. This may
impact the performance metrics. However, we found that resource utilization is better compared to
other algorithms in literature. At the same time, SLA violation minimization is ensured. The challenge
in cloud resource optimization is scaling up or scaling down of resources based on dynamic need. An
autonomous balancing model is proposed here which addresses equilibrium under volatility.

• VM prediction based on population parameters: The proposed model specifies a upper and
lower threshold. Threshold can be considered on any QoS metric (the model is not tightly coupled
with any QoS metrics for the same) but VM utilization and response time have been employed as
threshold parameters. In the case of upper threshold violation by future response time prediction, new
VM’s need to be added to service to neutralize the situation. In the case of lower threshold violation,
VM’s need to be deallocated from the user service, as more than required number of VM’s have been
allocated to increase utilization of the resources (Details are discussed in section 10).

• Improvement in QoS metrics: make-span, response time and utilization: Make-span is the
total duration between the job or service submission time and the completion time. Response time
is computed by taking the sum of waiting time and execution time. Both are considered important
quality metrics in analyzing performance of cloud data centers. The experiments based on our model
show significant improvement in these metrics (detailed discussion may be found in section 12).

• Parameter Tuning: Parameter tuning implies controlling/ influencing the outcome of the parame-
ters, which are nothing but VM’s and jobs specified in LV model by changing the different coefficient
parameters and satisfying the relevant conditions. The intention is to influence the values of the pa-
rameters as needed by manipulating the coefficients2 of the parameters in the model. In this paper, we

2There are total 4 coefficients in LV model α, γ, β, δ. For the sake of simplicity, β, δ are considered as constant and α, γ are
allowed to fluctuate (increase or decrease) based on demand-service dynamics. Manipulating these aforementioned parameters
acording to requirements such as prey increasing-predator decreasing, predator-prey stability is called parameter tuning.
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have exhibited how to cater to three different situations such as Prey Increasing-Predator Decreasing,
Prey Decreasing-Predator Increasing and stability of Prey-Predator by tuning the parameters (See
subsection 12.1).

• Scheduling algorithm: The proposed scheduling algorithm mimicking the existing ecological model
(non-linear in nature) address the dynamic nature adequately. The related papers show that the
increase in the VM population is static and linear. The LV model decides the number of future VM
allocation as per predicted need. Outside the purview of SLA, the model accommodates unanticipated
load to be handled.

• Application significance: The proposed model is the first of its kind to balance the dynamics
and auto-correct over/under utilization of resources. The applications are relevant in general cloud
dynamics and data centers in particular.

Remainder of the paper is organized as follows. Section 5 presents key definitions used from population
biology and the relevant mathematical model. It is important to familiarize the readership with these
definitions so that the mapping between LV and the Cloud problem be established clearly in section 6. The
analytical model presented in section 6 has to be solved numerically and qualitatively. These solutions along
with the interpretation have been documented in sections 7 and 10 respectively. Section 10 presents the
simulation and outcome in detail. A numerical approach has bee discussed in section 8 and various standard
task scheduling algorithm are documented in section 9. This is followed by a detailed analysis of the benefits
of service based outcomes in sections 11 and 12. We conclude the paper by discussing the advantages and
pitfalls of our approach and background work.

5. Key Definitions

• Stability: As per dynamic stability definition, the trajectories do not change too much under small
perturbations. In cloud environment, stability is a condition where no significant changes occur in the
VM or jobs. Hence, if perceptible change is not observed in the VM and job population (something
that affects the gradient of both curves abruptly), there would not be any volatility in the model. This
is the condition of stability. Steady state persists between VM and job when the stability condition is
achieved. In other words, elasticity handling is not required at steady state.

• Predator(Cloudlet): Predator are the consumers of Prey. In this paper, we refer to job(cloudlets in
cloudsim) as predator which consume VM’s. In CloudSim, cloudlet is a class.

• Prey: Prey are consumed by the next layer of food-chain. We use a single layer of prey, which is Virtual
Machine. Resource allocation, in our case, implies adding/removing VM’s in an elastic manner.

• Qualitative theory of differential equations: In mathematics, the qualitative theory of differential
equations studies the behavior of solutions without computing those. This is a visual exercise since
finding solutions analytically is excruciatingly difficult, if not impossible. The paper studies equations
1 and 2 which portray the dynamics of prey and predator population under different circumstances.

• Nullcline: In mathematical analysis, nullclines are encountered in a system of ordinary differential
equations. The nullclines divide the phase portraits into regions. In this paper, the nullcline is equiva-
lent to making equations 1 and 2 zero. The subsequent calculations yield the conditions for stability in
terms of the parameters of the LV model. This indicates the range of values of the parameters needed
to be chosen such that elastic handling of resources is accomplished.

• Equilibrium and stable condition: Equilibrium point is a constant solution to a differential equation.
Fig. 2 explains a phase plot with a stationary point. The tentative point has no impact on existing
VM or Cloudlet population. Controlling parameters helps ensure the system stability.
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• Phase plane: Phase plane analysis is one of the most important techniques for studying the behavior
of nonlinear systems. There is a direct method to show the existence of limit cycles. Fig. 2 is a phase-
plane between Virtual Machines and jobs which explains the area where neither population creates
impact on the other and shows the area where both the population are independent of each other.

Figure 1: Classical Lotka-Volterra plot for parameters
computed: The graph consists of two different species of
Food chain : Prey and Predator. In the proposed cloud
model, Prey is Virtual Machine (VM) and Predator is
jobs. The intersection point of predator and prey popu-
lation is the NullCline point. If the VM population starts
declining, then with a phase difference the jobs also de-
cline for lack of resources.

Figure 2: This explains the stationary point ( γ
δ
, α

β
). The

stationary point has no impact on resource or job popula-
tion. Controlling these parameters enables us to control
the population dynamics and also control both Q and P
populations. External management of these parameters
determine the stability or instability of the system. Com-
putation of stationery points may be found in Appendix
A in additional file LV (2017).

6. Our Model: Theory, Relevance and Applications

6.1. Relevance of Predator-Prey Model and Population Dynamics in Cloud Data Center
The biological population dynamics model, Predator-Prey, is implemented to solve the problem. This

model is germane to the different scenarios involving VM and job population. VM and jobs are be considered
as the Prey and Predator respectively. The VM’s can be consumed as long as enough number of VM’s exist
in the system or may be replenished (scaled up) to fulfill the need. Annihilation of prey population ensures
similar consequences for the predator (please refer to the Amazon rain forest analogy in the introduction). In
the same way, if all VM’s are consumed or no VM is present in the system, the jobs (Predator here) gradually
start loosing relevance which is equivalent to death or whole scale migration to another prey population.
The herding tendency, though natural, increases the operational cost. The Predator-Prey model can be
mathematically represented as VM-job model in the following manner:

dP

dt
= αP − βPQ (1)

dQ

dt
= δPQ− γQ (2)

where, P is the number of VM’s (Prey); Q is the number of jobs (Predators);
dP
dt represents the growth rates of VM and dQ

dt represents growth rate of jobs over time;
α is the upscaling rate of VMs in the case of demand (jobs);
β is the allocation rate of VM due to the incoming jobs;
γ is the completion rate of jobs; δ is the job incoming rate into the system. To analyze the model in detail,
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the trend of P and the trend of Q need to be investigated. To make the dynamics stable, both the popula-
tions have to satisfy: dP

dt = 0 and dQ
dt = 0

α− βQ = 0, δP − γ = 0 (3)

Equation 3 evaluates a stationary point (γδ ,
α
β ). Fig. 2 represents the phase-portrait for the above dynamics.

Notice from Fig. 2 that all variations of population encircle around a stationary point. 3

6.2. Predator Prey Equilibrium and Regions
Equations 1 and 2 determine both the populations. Clearly, a greater number of VM’s in the system is

good for the model as multiple resources are present for consumption which makes it robust. Whereas, more
population of jobs is a challenge as it may consume and thereby reduce the number of available VM’s. To
understand the stability, nullcline scenario of the predator-prey model should be discussed. In this model,
two nullcline situations are possible, P-nullcline and Q-nullcline. P-nullcline is the set of points where
∂P
∂t = 0. Similarly, Q-nullcline is the set of points where ∂Q

∂t = 0. Now, by definition, equilibrium points
are the locations, where growth rate of predator and prey both become zero. Hence, it can be said that
P-nullcline is the location where growth rate of prey becomes zero. This signifies that prey population is
neither increasing nor decreasing. On the other hand, the growth rate of predator becomes zero in the region
of Q-nullcline. Apart from P-nullcline and Q-nullcline regions, the growth rate of Predator and Prey would
be either positive or negative. Therefore the equilibrium points are located in the intersection of P-nullcline
and Q-nullcline. Therefore, the neighborhood of P and Q nullclines are regions where the VM’s and jobs
do not fluctuate and elasticity management module (our hallmark contribution) is not invoked. However, in
the other regions apart from the nullclines, elasticity management is a must!
The P-nullcline and Q-nullcline can be defined as below

αP − βPQ = 0, δPQ− γQ = 0 (4)

The above equations can be rewritten as

P (α− βQ) = 0, Q(δP − γ) = 0 (5)

From the above equations, it can be derived P = 0 or α− βQ = 0 and Q = 0 or δP − γ = 0
The equilibrium points are (0, 0), (γδ ,

α
β ). For simplifying the equation, we consider δ = 1, β = 1, hence

the co-ordinate points are (0, 0), (γ, α) in the phase-plane. The situation where stability can be achieved is
described by

αP = γQ (6)

This can be derived from equations above. As in stable situation, there is no growth for predator and prey.
Hence,

αP − βPQ = 0
=> αP = βPQ

δPQ− γQ = 0
=> γQ = δPQ

3In a cloud datacenter, it is not possible to control the inflow of jobs/ resources requests.But a cloud
datacenter can maintain a pool of VMs to satisfy the incoming job requests.If there is a scarcity of prey(VM),
the predator will migrate to another location(datacenter). The model never tries to manipulate the job number
rather it suggests the possible VM number require to satisfy the current job requests
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After considering β = 1, δ = 1, the above equation can be rewritten as below

=> αP = γQ

It is already proven that in stable situation, the value of α = Q, γ = P

PQ = PQ

Figure 3: represents the P-nullcline and Q-nullcline equations, where the x-axis depicts the prey P (jobs) and y-axis
showcases the predator Q (VM). The equilibrium points and different regions are visible in the figure. Two equations α = Q
and γ = P are plotted in the graph. The intersection of these two equations yields equilibrium points (γ, α). A is the region
enclosed by P = γ,Q = α, P, Q axis, where growth of P(Prey) is positive and the growth of Q(Predator) is negative. B is the
region, which is the upper side of Q = α and left side of P = γ. In this region, the growth of P(Prey) is negative and the growth
of Q is negative. Region C is the right side of P = γ and the lower side of Q = α. The growth rate of P is positive and
the growth rate of Q is positive. Region D defines the upper side of Q = α and the right side of P = γ. The growth
rate of P and Q are negative and positive respectively.

7. Solution to the proposed model

• The solution to the proposed system is critical in order to exploit the solution in the simulation and
to explore QoS metrics. In this case, a closed form solution is the most convenient way of bringing out
direct relations between the variables, predator (jobs) and prey (VM). Such direct relationship is often
solicited since it explains the dynamics between the two key entities in Cloud computing. Regrettably,
LV equations are inherently complex and do not admit of closed form, analytical solutions. Therefore,
alternative methods to interpret and utilize the relationship between predator (jobs) and prey (VM)
must be sought.

• There are two ways to handle this. We use the qualitative theory to interpret the solutions and
represent those in the phase plane (refer to definitions and relevant theory sections, section V). The
representation of the solution qualitatively re-establishes our claim that the model is relevant in the
context of resource allocation and related issues in Cloud. However, in the absence of ex-
plicit solutions, it is difficult to proceed further in the direction of exploiting the solutions in simulation
and compute/tune parameters for performance enhancement (refer to QoS figs in discussion section).
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• We mitigate the problem by computing the solution to LV numerically. The numerical solution is
central to our efforts in computing the parameters/coefficients in LV which further aids in accomplishing
efficient VM allocation. This is accomplished by Runge Kutta and described in the next section.

8. Numerical Solution of Lotka-Volterra

To retrieve result more accurately from LV model, we have employed the use of Runge kutta methods of
fourth and fifth order, implemented by Fehlberge and denoted as RKF45. Numerical analysis to solve LV
model is appreciated due to the inherent difficulty of solving the LV model analytically. We proceed in the
following manner:
RKF45 produces an approximate solution in vector form yn by dividing the solution domain (Euclidean or
Hilbert space, typically) into a set of discrete points. We begin with the initial data at time t0 = 0 and
estimate the approximation solution at time ti = i ∗ h, i = 1, 2, ...n. The step size h is chosen suitably
such that it is not too big or too small. We use RK4 and RK5 (Runge Kutta 4th order and 5th order
respectively) at each step i to generate two different solutions and compare the proximity of the solutions thus
generated. The approximation is acceptable within a certain tolerance as long as the difference between the
two approximations doesn’t exceed the predefined tolerance. The step size may be modified to accommodate
the tolerance criterion. However, we need to increase the step size if the two approximate solutions agree to
more significant digits than required. Numerical methods are sensitive to approximation and thus
the following points must be stressed:

1. We use Taylor series expansion of the function around the iteration point at each step to approximate a
function. This produces truncation error, large or small depending on the number of terms used in the
expansion. If hn denotes the difference between n+ 1th and nth iteration, then a fourth order method
produces an error of the form Ch5 for some constant C. This means that a step size of magnitude hn

2
shall reduce the error by a factor of 25 = 32.

2. A 5th order Runge-Kutta method requires executing four function evaluations to obtain local truncation
error of order 5. We observe, the numerical solution to the ordinary differential equation can be 5th
order accurate locally but may still not address the issue of global convergence adequately.

3. Roundoff error is inevitable. The estimate of VM’s turns out to be a ballpark figure, precisely for this
reason.

4. The population dynamics may deviate slightly from the standard assumption about the model for the
above reasons.

We adopted Runge-Kutta-Fehlberg 45 (RKF45) method, (ode 45 in Matlab) symbolized by function evalu-
ations with an additional evaluation to accomplish 5th order accuracy. This generates a local error of the
order h6, significantly small if h is chosen to be small enough. Please note, h is chosen to be between 0 and
1.

The parameters for simulation are computed using this method. ode45 of matlab (Appendix B in Ad-
ditional File), which employs Runge-kutta method is used rigorously to derive the datasets table 1, 3 and
4 corresponding to the three cases: Prey Increasing-Predator Decreasing, Prey-Predator stability and Prey
Decreasing-Predator Increasing.

9. Task Scheduling Algorithms

We compared our model performance with Standard task scheduling algorithms in CloudSim later in the
manuscript. We list those frequently used algorithms below:

9.1. First Come First Serve
This is one of the most simple algorithms and very easy to implement. The job/ task arriving first in

the queue is assigned accordingly to a VM for execution. As it doesn’t consider the execution time of the
arrived task before allocation, sometimes it doesn’t result in an efficient load balancing. A short job has to
wait for longer time until a longer job finishes its execution. Therefore, it does not guarantee good response
time.
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9.2. Round-Robin Algorithm
It is a well known algorithm widely used in scheduling and load balancing. It selects the first VM

randomly, assigns the tasks and selects the next VM/node in a circular manner (Kashyap et al. (2014)).The
advantage of the Round-Robin (RR) algorithm is it’s simplicity. Sometimes, RR algorithm doesn’t allocate
the tasks to VM efficiently because it doesn’t consider load, space, response time or any other parameter
while allocating. Another variant of RR algorithm is weighted RR algorithm where each VM/node is assinged
with a weight. The VM with more weight receives more tasks. If two VMs have equal weight, they both will
be allocated with equal number of tasks.

9.3. Shortest Job First
This scheduling algorithm selects the task having lowest execution time and assigns to a VM first. The

job which has the highest execution time will be given the lowest priority. If two jobs demand equal execution
time, it follows FCFS scheduling.

9.4. Longest Job First
The job with the longest execution time is assigned to a VM. This is in stark contrast to SJF algorithm.

SJF has disadvantages such as starvation, where a job with longest execution time waits for long time. If
there is a flow of jobs which are shorter in execution time, then the longest job will not be assigned to any
VM. To overcome this, LJF can be used in Cloud environment.

9.5. Opportunistic Load Balancing Algorithm
Opportunistic Load Balancing (OLB) algorithm tries to keep the nodes busy irrespective of their current

workloads. It assigns the task to a node in a random fashion. As it doesn’t consider the current workload
before assigning the task, sometimes it doesn’t produce desired performance.

9.6. Min-min Load Balancing Algorithm
This is a static load balancing algorithm as it needs to know all relevant parameters before assigning

the task to a node. It calculates the probable execution time and the completion time of all the tasks
waiting in the queue. Then the task with minimum execution time is allocated to a node/VM, which
requires minimum completion time. Therefore, tasks with maximum execution time has to wait until other
tasks/jobs are assigned to the VMs. The completion time has to be updated when a task is assigned to a
VM so that the task is removed from the meta task list. The entire process continues till the meta task
list becomes empty. The Min-min algorithm performs better than many other load balancing algorithms.
But the algorithm needs to have knowledge of the execution time, completion time in advance before taking
decision regarding allocation of the tasks.

10. Simulation in CloudSim

For the lack of access to physical data centers, CloudSim offers a simulation framework for modeling
Computing infrastructures and services. Here, the biological model, Lotka-Volterra, explaining dynamic
simulation, is implemented on the simulation platform (Refer section 10). In CloudSim, cloudlet is a class
and is used to models jobs/demands in data centers. Resource allocation is equated to addition or removal
of VM’s. The quality metrics, which is being compared within different simulations, is Performance/Request
Completion time, which is nothing but the time difference between the first time cloudlet request is submitted
to the broker and the cloudlet completion time. We have kept the VM number constant for each data point
across simulations and vary the cloudlet number, as more available VM will lead to better performance,
which in turn disrupt the fair comparison. All jobs have been submitted dynamically. In almost every
simulation, the jobs are dynamically submitted within a time frame, which is 1000 ms. Two situations
are highlighted in this section. We consider a situation where the cloudlets for each simulation have been
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submitted in three batches. The CloudSim code has been modified to meet that objective.4 Initial batch of
VM and cloudlets are identical for each simulation to have a fair comparison. We have made use of two data
centers in cloudsim, data center 1 and data center 2. Each data center has 2 host machines, having quad
core and dual core processing capability respectively. Each host has 16384 MB of RAM, 1 GB of storage and
bandwidth of 10000 Kbps. The RAM size of VM is specified at 124 MB. As we wish to auto-scale from 100
VM’s to 150 VM’s, the RAM size of host machines is kept approximately 133 times that of the RAM size
of a VM. Each VM has identical configuration. MIPS of VM is kept at 100 while the MIPS of host machine
is 240 times bigger of any VM. Bandwidth allowed to a VM is 100 while a host machine enjoys 100 times
larger bandwidth. Each VM consumes a single CPU.

10.1. Case 1: Prey Increasing-Predator Decreasing
This scenario may arise, when there is no VM available to provision or number of available VM is nearly

0 and requests for VM is rising. Such situation can be managed by reducing the number of cloudlets (either
rejecting the incoming cloudlets or putting the cloudlets in queue) and increasing the number of VM’s. LV
model in such cases may suggest the required VM to mitigate the demands of cloudlets and the incoming
cloudlets can be pushed to a queue till the data center is replenished with feasible VM population. Say, we
have 30 VM’s available and at that moment the number of cloudlets is 50. Now, we would like to shoot
up the number of VM’s by increasing/deceasing the constants of the proposed model while the condition
γQ > αP , mentioned in the algorithm 1, has to be met. 5

Figure 4: Variation of cloudlets and VMs w.r.t time (Case 1). In the figure blue, green display the VM and cloudlets respectively.
Y- axis represents the time-span, which is taken 0 to 100 duration. Each data point has been plotted at 0.01 time span interval.
It is palpable from the figure that VM occupies the upper part of the figure, whereas the cloudlets cover the lower
part. Hence, in maximum cases the values of VM are higher than cloudlets. The region, where VM and cloudlets values are
overlapping lies within 60 to 35. The maximum value, which is belongs to VM lies in the region nearby 90, whereas the lowest
value, belonging to cloudlets is nearby 10.

4We equate resource with VM and job with cloudlet thorough out section 8 and wherever simulation using cloudsim is
discussed.

5As we don’t impose any control on the incoming job requests, it will be more convenient to retrieve the required VM
population from the model as per the cloudlet requests and letting the VM allocation process allocate the VMs from the pool.
The model does not interfere in the allocation methodology, it only suggests the scaling number. VM is the only entity, which
the data center has control of.
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The Lotka-Volterra model, depicted in the Fig. 4 following the equations:

∂P

∂t
= 30P − PQ; ∂Q

∂t
= −50P + PQ

where α = 30, γ = 50, β = 1, δ = 1

8 simulations have been performed where 2 simulation datasets are collected from Table 1 and remaining
datasets are randomly chosen. VM number is kept constant across the simulations. Initial data points
remain unchanged for simulations to have a fair comparison. Lowest avg completion time is 400, which is
visible in simulation 1. Though the difference among various average completion time is few milliseconds,
the performance of simulation 1, which is derived from model is better than others. Here, dynamic influx
of cloudlets within 1000 ms is considered, i.e. within 1000 ms, all the cloudlet requests arrive at the data
center.

The simulation 1 dataset is part of table 1, which is the master dataset derived from the proposed model.
Table 2 contains the average request completion time of Simulation 2. Here the initial data point, which

is nothing but the first batch of Cloudlet submission is same as 1st simulation. But for the 2nd and 3rd data
points, cloudlets are higher than the 1st simulation. The simulation 3 presents another random dataset,
where the 2nd data point is lower and 3rd data point is higher in comparison than Simulation 1. The
simulation 4 is the reverse of simulation 3 as the 3rd data point cloudlet number is higher than simulation
1 and the 2nd data point is higher than the 2nd data point of simulation 1. Simulation 5 dataset belongs
to the master dataset in table 1. Simulations 6, 7 and 8 are performed in random datasets which have been
generated based on simulation 5 in a controlled manner. The 2nd and 3rd data points of simulation 6 are
higher than 5th simulation which is originated from proposed model. Simulation 7 delivers almost the same
performance as simulation 5. The 2nd data point is lower and 3rd is higher than the corresponding data
points in simulation 5. In the case of simulation 8, the 2nd data point is higher and the 3rd data point is
lower than corresponding data point in simulation 1.6 We conclude from simulations 5, 6, 7 and 8 that the
average completion time of simulation 5 is better than others.

10.2. Case 2 :Prey-Predator stability
This section highlights the situation where data center has achieved its maximum VM utilization target.

Therefore, same number of VM and jobs need to be maintained afterwards (no volatility). The growth and
decay rates of VM and cloudlets are 0. Stability implies no change in VM and cloudlet population as time
passes. Same population of VM and cloudlet needs to be maintained once the desired utilization is reached.
This situation is applicable if it is possible to maintain the same VM population for a certain period of time
and the incoming cloudlets’ requests do not fall below the expected number. Every data center might have
a utilization threshold, beyond which it does not intend to stretch. It can be 80% of total VM utilization or
can be any number based on their business model and other criteria. The proof of stability in the proposed
model is presented mathematically in Appendix A in Additional File LV (2017). To keep the same number
of VM and cloudlets, the acceptable range of α, γ parameter values of Lotka-Volterra model has also been
elaborated in Appendix in Additional file.

The Lotka-Volterra model, which is plotted in the Fig. 5 is as follows:

∂P

∂t
= 150P − PQ

∂Q

∂t
= −80P + PQ

Where α = 150, γ = 80, β = 1, δ = 1
The condition which needs to be satisfied to reach stable situation is: γQ = αP , where γ = P and α = P .

6We equate resource with VM and job with cloudlet throught section 8 and wherever simulation using cloudsim is discuused.
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Time VM cloudlets
0 30 50

0.1 73.817541 14.87
0.2 25.19 23.96
0.3 84 42.70
0.4 36.78 12.97
0.5 37.24 58.28
0.6 63.62 12.56
0.7 24.35 30.050
0.8 89.46 30.17
0.9 31.52 14.92
1.0 49.80 62.49
1.1 53.56 11.46
1.2 25.13 38.34
1.4 85.68 20.72
1.5 27.62 18.14
1.6 67.18 57.75
1.7 44.61 11.51
1.8 28.59 48.25
1.9 76.06 15.35
2.0 25.04 22.87

Table 1: This table demonstrates a scenario (Case 1),
where it is required to increase the Prey(VM) number.
In the table, time-span from 0 to 2.0 has been taken for
better understanding of how the model works. Initially,
the predator and the prey numbers are taken as 30 and
50 respectively. Time-span is displayed in the table for
every 0.1 interval. As the intention was to increase the
number of prey from 30, in the next immediate time-span
it can be noticed that the prey number surges to 73, a
two fold jump from the initial value. Apart from a few
occurrences, through out the period till 2.0, the number of
prey is higher than initial value. In the case of predators,
the number of predators are less than the initial value 50.
Only one occurrence at time-span 1.0, the predator pop-
ulation is more than the initial value. The prey-predator
numbers in the table and the figure will be different, if
any other initial values are considered. As the proposed
model is not a linear function, there is no pattern visible
in the prey-predator numbers.

Simulation No VM cloudlets Avg Request Completion time
1 30 50 499.76
1 36 12 400
1 76 15 400
2 30 50 548.24
2 36 112 536.67
2 76 115 540.62
3 30 50 531.92
3 36 8 506.25
3 76 115 543.64
4 30 50 513
4 36 200 530
4 76 5 487
5 30 50 493.28
5 85 20 400
5 44 11 400
6 30 50 514.1188
6 85 200 686.6909
6 44 150 692.715
7 30 50 543.08
7 85 10 400
7 44 110 400
8 30 50 512.52
8 85 110 479.44
8 44 8 552.5

Table 2: This table represents the simulations where Cloudlets
(Predator) need to decrease and VM (Prey) number is supposed
to increase (Case 1). Total 8 simulations have been performed.
Out of these 8 simulations, for 2 simulations (Simulation No 1
and 5) data points are taken from LV model, whereas rest of
the simulations consist of random data points generated in con-
trolled manner. The average request completion time is calcu-
lated for each VM-Cloudlet pair. We have kept the VM number
constant for each data point across simulations while varying
the cloudlet number (since more available VMs will lead to bet-
ter performance, which in turn disrupt the fair comparison). All
cloudlets have been submitted dynamically

a

aThe random data points are generated in a controlled man-
ner. If we observe simulation 3, 2nd data point corresponding
to a cloudlet is lower but 3rd data point is higher than the first
simulation. In case of 2nd simulation, 2nd and 3rd data point
cloudlets numbers are greater than the first one.

10.3. Case 3: Prey decreases-Predator Increases
This scenario may arise when VM number reaches maximum available capacity and there is a need to

allocate more VMs to incoming cloudlets to improve utilization. Such a situation, where data center needs
to concentrate on provision of idle VMs, requires to decrease available VM (prey) and increase cloudlets
number(Predator). Available VM number decreases as it is being provisioned to different incoming requests.
Number of Cloudlets rises because more VMs are available and ready to serve incoming requests. As the
dynamics keep changing, the LV model plays a crucial role by suggesting the available VM pool to be dropped
from the current VM pool.
According to the algorithm, the condition αP > γQ has to be met, where α > Q, γ < P The Lotka-Volterra
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Figure 5: Illustration of variation of cloudlets and VMs wrt time in stable situation (Case 2). The X axis represents the VM,
cloudlets number, whereas the Y axis represents time span. Blue color depicts VM and green color represents cloudlets. It is
observed from the figure that there is no change in the number of predator or prey throughout the time period (0-100). VM
and cloudlets maintain the same initial values, which are 80 and 150 respectively from time 0 to 100.

Figure 6: Variation of cloudlets and VMs wrt time, when prey number is required to decrease (Case 3). X axis represents
Time-span and Y axis represents VM and cloudlets number. The values are spread out between 0 to 350. The blue region,
belonging to VM occupies the lower part of the figure, whereas the upper region is covered by green, which signifies cloudlets.
There is a significant region overlapped by VM and cloudlets but maximum places of the figure are free from overlapping. The
maximum value in the figure, which is attained by the cloudlets, is near by the region 300. Minimum value, which is belongs
to VM is near by 0.
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Time VM cloudlets
0 80 150

0.1 80 150
0.2 80 150
0.3 80 150
0.4 80 150
0.5 80 150
0.6 80 150
0.7 80 150
0.8 80 150
0.9 80 150
1.0 80 150
1.1 80 150
1.2 80 150
1.4 80 150
1.5 80 150
1.6 80 150
1.7 80 150
1.8 80 150
1.9 80 150
2.0 80 150

Table 3: Predator Prey stability is the scenario (Case 2) where the same VM(prey) and cloudlets(Predator) numbers need to
be maintained. The table 3 displays the predator, prey numbers at each time point, which are collected after 0.1 time interval.
The table also supports the conclusion drawn from the fig 5 that there is no change in VM, cloudlets number as time passes
from 0 to 100.

model, which is plotted in the Fig. 6 is the following:

∂P

∂t
= 120P − PQ

∂Q

∂t
= −30P + PQ

Where α = 120, γ = 30, β = 1, δ = 1

A total of 8 simulations are conducted to calculate average completion time for each batch. Out of these
8 simulations, 2 simulations are executed using datasets, which belong to Table 4. For comparison purpose,
6 simulations are done over random datasets but in a controlled manner. The Simulation 1 dataset is derived
from the proposed model and average Cloud request completions are calculated from Cloudsim. Simulations
2, 3 and 4 are performed on the random datasets to compare performance with simulation 1.

The difference of Simulation 2 with the first simulation is that the 2nd and 3rd data point cloudlet
numbers are greater than the first one. The 2nd data point Cloudlet number of simulation 3 is higher but
3rd data point Cloudlet number is lower than the first simulation.

In simulation 4, 2nd data point Cloudlet number is lower whereas 3rd data point Cloudlet number is
higher in comparison to the first simulation. The simulation 5 dataset is derived from predator-prey model
(ALVEC). In simulation 6 dataset, the 2nd and 3rd data points are higher than the 5th simulation. In
simulation 7, the 3rd data point performance is better than the 5th simulation, which is derived from our
model. In simulation 7, the 2nd data point is lower whereas the 3rd data point is higher in comparison to the
5th simulation. In the case of simulation 8, 3rd data point cloudlet number is lower than 5th simulation and
2nd data point is higher than the corresponding point in 5th simulation. The 1st and 5th simulation (using
dataset derived from our model) performed better than other random data sets. We noticed one exception
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Time VM cloudlets
0 60 80

0.1 34.73 66.19
0.2 18.97 69.16
0.3 11.40 82.47
0.4 8.33 103.14
0.5 7.99 132.47
0.6 11.21 168.11
0.7 23.44 197.33
0.8 55.89 180.68
0.9 76.83 112.69
1.0 53.72 72.76
1.1 28.69 64.30
1.2 15.14 71.04
1.4 9.29 87.74
1.5 7.23 114.07
1.6 8.34 150.29
1.7 15.28 189.09
1.8 40.13 200.55
1.9 77.98 137.38
2.0 64.06 78.36

Table 4: This table captures the situation where the
VM(Prey) needs to reduce but cloudlets(Predator) num-
ber is required to increase (Case 3). The table displays
a few data points used to plot the figure. The initial
VM, cloudlets values are 60,80. Except a few, all the
VM values are less than initial VM value. In the case
of cloudlets, there are a few occurrences, where cloulets
values are less than initial value but maximum cloudlets
values are higher than initial cloudlet value.

Simulation No VM cloudlets Avg Request Completion time
1 60 80 440.25
1 11 82 2832.10
1 8 103 3165.24
2 60 80 435.95
2 11 182 5751.57
2 8 203 6505.15
3 60 80 432.45
3 11 182 3591.95
3 8 43 3636.95
4 60 80 425.1
4 11 52 2626.45
4 8 143 3310.23
5 60 80 445.90
5 55 180 1028.18
5 9 87 1074.31
6 60 80 485.1785
6 55 300 2672.91
6 9 245 2655.57
7 60 80 452
7 55 90 1071.68
7 9 175 1066.44
8 60 80 462.026
8 55 350 1570.62
8 9 15 1804.732

Table 5: This is the simulation scenario, where it is required
to increase cloudlets (Predator) and to reduce VM (Prey) num-
ber (Case 3). Simulation No 1 and 5 are derived from the LV
model and data points for remaining simulations are randomly
generated but in a controlled manner

in simulation 4, where data point 2 needs lesser average completion time in comparison to simulation 1 (it
has same VM number, 11 but lesser number of cloudlets). Simulations 6, 7 and 8 are random datasets in
comparison to the derived dataset from simulation 5. Hence, we conclude that the dataset derived from
ALVEC, performed better than random datasets (which follows no pattern).

The stable scenario is achieved, when α = Q, γ = P condition satisfies. Other two scenarios discussed
above, can be achieved by fluctuating the α, β values from the stable situation. The difference between the
αP and γQ determines the behavior of the data points in the table and the figure. Therefore, this model
exhibits an advantage, where the constants for the predator and prey can be chosen to decide the expected
behavior.

10.4. The modeling approach in CloudSim
CloudSim is a framework for modeling and simulation of Cloud computing infrastructures and services. 7

An acceptable ecosystem of Cloud environment satisfying increasing demand for energy-efficient IT technolo-
gies, expects timely, repeatable, and reliable methodologies for evaluation of algorithms, applications, and
policies before actual development of Cloud products. Utilization of real testbeds makes the reproduction
of results an extremely difficult undertaking. Surrogate approaches need to be leveraged for testing and

7We equate resource with VM and job with cloudlet throught section 8 and wherever simulation using cloudsim is discuused.
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experimentation facilitating the development of new Cloud technologies. However, simulation tools can be
effectively exploited to evaluating the hypothesis for software development apriori. This has to be accom-
plished in a reproducibility- friendly environment. CloudSim is one such tool used for our simulation in two
different ways and comparison of experimental results.

The initial approach is to allocate all the resources statically at the beginning of simulation. When the
resources are allocated statically at the beginning of simulation, it results in over / under utilization and over
/ under provisioning of resources. Over-provisioning of resources occurs when the user requests gets surplus
resources than demand. Under-provisioning of resources occurs when the user requests are assigned with
fewer number of resources than the demand. Both over-provisioning and under-provisioning of resources
result in poor optimization of resource allocation.

Next, we dynamically add the resources on-demand. Adding resources dynamically into the system avoids
over / under provisioning of resources. Here the dynamic simulation model is compared with a biological
model called Lotka-Volterra.

The resources on CloudSim compared with Lotka-Volterra model are described as:

• P is the number of Virtual Machines (Prey)

• Q is the number of cloudlets (Predators) where Cloudlet specifies the user request

• α is birth rate of Virtual machines in the absence of predation by cloudlets

• β is death rate of Virtual machines due to predation

• γ is natural death rate of cloudlets in the absence of Virtual Machines

• δ is reproducing rate of cloudlets

The simulation model is used to compute the parameters of Lotka-Volterra model. These parameters are
used to control the system.

10.5. Resource Allocation algorithm using Predator Prey
Cloud computing provisions resources on the basis of demand. One of the major aspects of Cloud com-

puting is that it allows to scale up and scale down resource allocation based on needs. Predator-Prey model,
Lotka- Volterra, can be employed to understand the behavior of need based resource allocation. Cloud
computing has been built upon virtualization and distributed computing to maximize resource utilization.
Here, resources can be considered as prey and individual requests as predator. The objective is to establish
that resources(VM) and requests(cloudlets) follow the Lotka-Volterra, Predator-Prey relationship.

Algorithm Explanation: The algorithm starts with the initialization of prey(VM) and predator(Cloudlet).
In a Cloud data center, if such situation occurs when no VM is available for allocation to newly arrived jobs,
then the value of γ needs to increase in such a way that it satisfies γQ > αP where γ > P, α < Q. Therefore
the VM number increases and cloudlets number decreases. If the VM number is near the maximum available
VM and cloudlets are available then the value of α (weight of P) needs to increase so that αP > γQ satisfies,
where α > Qandγ < P . Hence Q resources (cloudlets) in the system will increase and P (available VM) will
decrease. In that case, VM attains the maximum utilization level and needs to maintain the same VM and
cloudlets numbers. γQ = αP condition needs to be met, where γ = P, α = Q. Considering all the scenarios
β, δ = 1.
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Algorithm 1 Lotka-Volterra algorithm in Cloud Dynamics
1: procedure Lotka-Volterra(p,q) . p is prey(VM), q is predator(Cloudlet)
2: p← VMs . Initialize VM
3: q ← cloudlets . Initialize cloudlets
4: while VM = 0 do
5: while (γ ≥ P )and(Q ≥ α) do
6: γ ← γ + ε . ε is infinite small number
7: γQ ≥ αP
8: end while
9: end while

10: while VM ← maxVMandcloudlets 6= 0 do
11: while (α > Q)and(γ < P ) do
12: α← α+ ε . ε is infinite small number
13: αP ≥ γQ
14: end while
15: end while
16: return
17: end procedure

11. How is LV helping in achieving what was not accomplished before? The Benefit Analysis

Ecological balance is one of the major areas of study for an ecologist. This model is important for the
continued survival and existence of organisms without compromising the stability of the environment. As
explained in Joe Scott et.al. (2011), the systems are complex. The model describes a hierarchal structure
of food chain and describes how every layer of predators have significant importance. Removal of any layer
of predator challenges ecological stability by regulating the impacts of grazing. This ensures the overall
productivity of the following layer of animals. Lotka-VolterraLotka-Voltera (1990) is one of the most dis-
cussed model in food-chain system which describes the dynamics between any two corresponding layers of
predator-prey relation. In service computing like Cloud computing, users can be considered as a predators.
The user demands computing as a service and consumes the resources that Cloud provides. The Cloud
resources are prey, which is consumed by the higher layer of food-chain, i.e users. The model proposed in
paper (Goswami et al.) based on the dynamic interaction between the predator and the prey. A multi-agent
model was proposed to control the heterogeneous and volatile demand handling environment like Cloud.
To address the volatility, some degree of autonomy is needed to enable the components to respond to dy-
namically changing circumstances. To address the above mentioned scenario, an elastic, autonomous and
balancing model is needed to address the equilibrium under volatility. The proposed model addresses all the
qualitative parameters with Lotka-Volterra model mimicking the ecological balance in ecology.

The paper uses LV( Lotka-Volterra) model to address more than one issue. These are parameter tuning,
elasticity in VM, an improved Timeshared algorithm, improvement in QoS, reduction in SLA Violation
and predictive Analysis for VM allocation. The following section contains details with explanation and
experimental results.

12. Model Implementation and Outcome: Technical Discussion

12.1. Parameter Tuning
Lotka-Volterra model can give a different direction regarding resources provisioning and de-provisioning

dynamically as per workload changes. Lotka-Volterra will be very efficient to predict the number of virtual
machines based on the number of incoming job requests and VM number when workload changes as per
demand.

Algorithm Explanation
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Algorithm 2 Scaling by Parameter Tuning
1: procedure LV-Parameter-Tuning .
2: maxT ←MaximumThreshold
3: minT ←MinimumThreshold
4: VM ← Number − of − VMs− in− present− VM − pool . Initialize VM
5: T ← Time
6: while T 6= 0 do
7: while CPU − Utilization > maxT do . Trigger LV, VM increasing cloudlets decreasing
8: (new − VM > allocated− VM)and(new − VM < allocated− VM + VM .
9: VM ← VM + additional − VM − in− pool

10: end while
11: while CPU − Utilization < minT do . Trigger LV, VM decreasing cloudlets increasing
12: (new − VM < allocated− VM)and(new − VM > 0) .
13: VM ← VM − LV − generated− number
14: end while
15: T ← T − 1
16: end while
17: return
18: end procedure

• Define maxThreshold and minThreshold of VMs and initialize VM pool.

• Calculate VM utilization for every particular time interval.

• If CPU utilization > maxThreshold.

• Trigger Lotka-Volterra (Prey Increasing and Predator decreasing situation). Lotka-volterra returns a
set of VM number, cloudlets number.

• From this set select the particular VM number which is > current allocated VM and < current allocated
VM + VMs in pool.

• Add the additional VM from VM pool.

• if CPU utilization < minThreshold

• Trigger LK (Prey Decreasing and Predator Increasing situation). select the VM number ¡currentOn-
lineVmnumber, and VM number > 0.

• Deallocate the VMs based on LK generated number and returned to the VM pool.

The parameter which is used as a criteria of provisioning and de-provisioning of VMs is utilization. Say a
Cloud provider has decided to implement a monitoring algorithm, where the maxThreshold and minThresh-
old are defined as 80% and 20%. Every 30 seconds the algorithm will keep checking the VMs average
utilization by using the formula given below (Aslanpour et al.).

VMutilization =
∑currentcloudlets
I=1 CloudletLength(i) ∗ CloudletPEs(i)

PEs ∗MIPS
(7)

VMsavg.Utilization =
∑OnlineV ms
i VMiUtilization

OnlineVMs
(8)

In 7 currentcloudlets is nothing but the number of cloudlets arriving for a particular VM. PE is the number
of processors in the VM. MIPS is the processing power of each processor core. CloudletLength is the number
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of instructions to be run. We have considered all the cloudlets as homogeneous (number of instruction or
cloudlet length is fixed for every cloudlet). CloudletPE is the number of processors required by the Cloudlet
request. In equation 8 OnlineVMs is the total number of VMs allocated for execution and VMiUtilization is
the utilization of a single VM, calculated using 7. VM’s average utilization is compared with maxThreshold
and minThreshold. If it violates the maxThreshold, it means VMs are over occupied and the number of VMs
are not adequate to meet the spike of demand at that point of time. Hence, it is required to add more VMs
from VM pool to serve all the incoming cloudlet requests without SLA violation and reducing the overhead
on individual VM. But the question is how many VMs are needed to be pulled from the pool. Here the
Lotka-Volterra algorithm plays its role by providing the VM number based on currently allocated VMs and
total cloudlet number, executing in different VMs. In this particular scenario, Prey increasing and Predator
decreasing condition is suitable as we need to increase online VM number. This monitoring algorithm never
controls the incoming cloudlet number. If it does not satisfy the minThreshold criteria, it signifies that more
than required VMs are allocated to the incoming cloudlets and VMs are under utilized. The number of
VM needed to de-provision is rendered by Lotka-Volterra (Prey Decreasing Predator Increasing situation)
algorithm. The VMs, which are not executing any cloudlets are selected and returned back to VM pool.

12.2. Experiment
The monitoring algorithm is implemented in Cloudsim 3.03 version. There is a class named DataCenter-

Broker, which is responsible for VM creation, cloudlets submission to a particular VM, destroying the VM
once it executed all the cloudlets submitted to it, etc. The DataCenterBroker class is the perfect place, from
where it is feasible to monitor the VMs utilization and addition and de-provisioning of VMs based on the
pre-decided threshold. Few decisions are taken prior to the experiment that the cloudlets are going to be
submitted dynamically. The VM pool number will be predefined and monitor will keep checking the VMs
average utilization for every 100 milliseconds. There is a CloudletScheduler, which decides the request to
be allocated to a VM. In this experiment , time shared Cloudlet scheduler is used to serve the purpose.
This particular scheduler allocates a time slot for every submitted Cloudlet request. On the other hand,
VmAllocationPolicySimple is responsible for the determination of the host where a VM will be created. A
single data center is utilized through out the experiments. The data center consists of two host machines
with one host machine powered by four processors(quad core), and the other host machine contains two
processors(dual-core machine). The computation speed for each processor is 1000 MIPS. Hence the data
center contains two host machines, where one host machine is quad core and another host machine is dual
core. We have submitted cloudlets and VMs in three phases. First phase submits predefined cloudlets and
VMs before starting the simulation. Other phases add more VMs and cloudlets intermittently after the
beginning and before the completion of the simulation so that it can create a replica of a real time scenario.
Apart form this, for every 100 milliseconds, 10 cloudlets are submitted during the simulation to maintain
the continuation of incoming requests. DormandPrince853Integrator of the commons-math library is used
to extract values from Lotka-Volterra model. In the table 6, three metrics, Average Request Completion
time, SLA violation rate and makespan time are displayed. Total three phases of submission are represented
in the table and above mentioned metrics are calculated for every phase. Completion time is calculated as
below

Avg Completion time =
∑Cloudletnumber
i=1 Completion timei

Number of Cloudlet
(9)

For each phase the average completion time is calculated, whereas in equation 9 number of cloudlets signifies
the number of cloudlets of each phase. Makespan is the total duration between the beginning and the end.
Here the makespan is defined as the time difference from the last request finish time and the first request
submission time of a phase.

makespan = finishing time of last request− submission time of first request (10)

Another parameter estimated along with makespan is SLA violation rate. If the completion time of any
request exceeds the SLA mentioned expected completion time, then the request violates the SLA. In such
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Exp No VM cloudlets Avg Req Compln time SLA violation MakeSpan time
1 10 98 514.1188 0.744 1697.94
1 15 135 686.6909 0.407 1446.94
1 16 155 692.715 0.419 1657.25
2 10 98 612.66 0.744 1648.94
2 15 135 336.72 0.29 1356.0
2 16 165 333.785 0.315 1633.01
3 10 98 550.51 0.755 1811.93
3 15 135 334.84 0.37 1450.48
3 16 165 312.19 0.32 1774.481
4 10 98 611.77 0.80 1630.61
4 15 135 317.35 0.31 1438.14
4 16 165 315.72 0.30 1636.961

Table 6: In the table, the performance of the Reactive scaling with LV modeling monitoring algorithm has been demonstrated.
Three metrics Average Request Completion time, SLA violation rate and makespan time are displayed. Total three phases of
submission are represented in the table for each experiment and above mentioned metrics are calculated for every phase. The
experiments are conducted a total of 4 times and to maintain the uniformity, same VM, cloudlets numbers are used for every
experiment.

a scenario, the Cloud service provider has to pay for the SLA violation. Hence in an ideal scenario, SLA
violation rate should be minimum.

SLA violation rate = number of requests violates SLA

total number of requests
(11)

12.3. VM Elasticity
Elasticity is a term, which is very common in the field of Physics and Economics but now-a-days the

same term is also frequently used in Cloud Computing. In the context of Cloud Computing, elasticity is
defined as an ability to adapt to the changing workloads by provisioning and de-provisioning Cloud resources
automatically such that it can meet the current demand of resources at any point of time (Herbst et al.).
Elasticity is defined in physics as a property of material capturing the capability of returning to its original
state after deformation. In economics, elasticity refers to the sensitivity of a dependent variable to the one
or more arguments (CHIANG et al.). A brief and simple example will help to understand ”How Elasticity
plays its role in Cloud Computing”. Consider a Website A, which is running in a certain data center and at
that point of time t0 as per the workload, 2 virtual machines are allocated. Due to the rising popularity of the
website at time t1, it has started receiving more requests and 2 virtual machines are not enough to serve all
the requests. Hence, it needs to allocate more virtual machines. Consider now that 6 more virtual machines
are required to cater to the changing workload. An elastic system should identify the situation and allocate
6 virtual machines immediately. Several hours later, at t3, the number of user requests dropped significantly
and 3 virtual machines are sufficient to handle all the incoming user requests. In such a scenario, an elastic
system should detect the change in incoming requests and de-provision 5 virtual machines allocated earlier.
However, over-provisioning is a situation, where more resources are allocated than required. Such a situation
needs to be avoided as service provider ends up spending more for the extra resources. It has dynamic impact
on the optimal levels of service provision, because, as opposed to the previous case, under-provisioning is
a situation where lesser number of resources are allocated for the service provider with serious impact on
the quality of service. Indeed, it may often lead to violation of service level agreement and service provider
loses jobs due to poor services.The economic losses faced is a direct outcome of this possibility. The scaling
decision between time points must therefore attend to the allocation problem with better precision than is
often the case.
Reactive Scaling: The methods used for resolving scaling decisions can be classified into two categories.
One is Reactive methods and the other is Proactive methods. Rules (or threshold) define reactive resource
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Exp No VM cloudlets Avg Req Compln time SLA violation MakeSpan time
1 10 98 814.08 0.89 1902.4
1 15 135 339.068 0.34 1432.05
1 16 155 466.15 0.49 1902.91
2 10 98 686.63 0.82 1726.91
2 15 135 371.87 0.41 1591.05
2 16 155 384.457 0.37 1724.37
3 10 98 788.20 0.89 1826.92
3 15 135 297.29 0.207 1315.98
3 16 155 400.55 0.361 1811.34
4 10 98 786.21 0.877 1867.93
4 15 135 341.06 0.325 1509.96
4 16 155 435.70 0.451 1861.81

Table 7: The table showcases the performance of the Reactive scaling algorithm without LV model. Total four experiments are
displayed and each experiment comprises of three phases. Three metrics: average request completion time, SLA violation rate
and makespan are evaluated for every experiment.

allocation method used to determine limitations for violating a series of guidelines and measures related to
resource scaling need to be carried out when these violations occur. Though, there are three major concerns
with this method

• When rule violation happens, the scaling decision may involve SLA violation, which affects QoS.

• It may also happen that scaling of decisions of resources due to some violations is not necessary, as the
violations are temporary. Scaling up and down of resources is not required.

• The on-demand VM requires a certain amount of time to initialize, boot-up and start the applications.
Therefore, new request for additional VM may fail as the VM was not ready within the required
time-frame.

In this experiment, the monitoring algorithm analyzes the VMs utilization for every equal interval of time.
In case it encounters a violation, it can take the right step to mitigate the situation. If the average utilization
violates the maximum threshold then it is going to add a VM from the VMs pool, whereas the violation
of minimum threshold will eradicate a VM and return it to the VM pool. As indicated in the tables, the
same number of sets are used across, and the experiment has been repeated four times, which has produced
results with small variations. Like Lotka-Volterra monitoring algorithm, the same metrics (Average Request
Completion time, SLA violation, Makespan time) are explored in Reactive scaling algorithm.

Resource Optimality: Now, if we compare the result of Lotka-Volterra with Reactive scaling algorithm,
it is evident from the tables that except for a few instances, Lotka-Volterra algorithm has outperformed the
Reactive scaling algorithm with respect to all the three metrics. (Aslanpour et al.) has shown that the
average utilization of VM is 55.1% during reactive scaling. The configuration of the experiment is as follow:
MaxThreshold is set to 80% while MinThreshold is set to 20%, MaxVMallocated= 18 and Monitoring interval
is 1 minute. It has been concluded that scaling rule based on CPU utilization caused poor performance
due to high number of scaling decisions. In contrast, ALVEC produces 95% VM utilization in the case
of reactive scaling and much lower scaling decisions, which in turn improves the performance of reactive
scaling algorithm. The similar threshold values are employed thoughout the simulation which lasts for few
milliseconds and involves higher number of VM’s.

12.4. Proactive Scaling
In this section, we are going to discuss and compare the performance of Proactive scaling after integration

with Lotka-Volterra model. Unlike reactive scaling, the QoS parameter that has been considered for threshold
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Figure 7: The Y axis represents the average completion
time. 1, 2 and 3 of X axis denotes the first, second and
third phase respectively. A in the figure depicts the Reac-
tive scaling with Lotka-Volterra average completion time
and B signifies the reactive scaling without LV average
completion time. It is visible that A has performed bet-
ter than B in all the three phases. The dataset of two
tables, exp no 2 of table 6 and exp no 2 of 7 are used in
the figure, which proves the superiority of Lotka-Volterra
over the other algorithm.

Figure 8: depicts the makespan comparison of the two
algorithms. Like the previous figure, A and B are repre-
senting Lotka-Volterra and Reactive scaling respectively.
The makespan time is shown alongside the Y axis whereas
the X axis shows the three phases. The first phase con-
sists of 98 cloudlets. 135 cloudlets are part of second phase
whereas third phase consists of 165 cloudlets. A has out-
performed B in makespan duration as the makespan du-
ration of A is lesser than B. Table 6, exp no 2 and Table
7, exp no 4 are illustrated in the makespan comparison
figure.

Figure 9: Illustrates the SLA violation comparison between the two algorithms. Table 6, exp no 4 and Table 7, exp no 4 are
discussed in the SLA comparison figure. Deadline considered for each phase is 400 milliseconds. A request would violate the
SLA, if its completion time exceeds the predefined time, which is 400 milliseconds here. Each phase SLA violation numbers of
both the algorithms have been displayed side by side. A depicts the Lotka-Volterra algorithm and B signifies Reactive scaling
algorithm. It is evident from the figure that SLA violation rate is lesser in the case of A than in B.

calculation is response time. In this experiment, the monitoring algorithm predicts the response time in
future for equal time intervals. If the monitoring algorithm identifies any SLA violation of response time, an
upscaling/downscaling decision has to be made. Response time threshold is predefined and decided when
the SLA is made between Cloud provider and user. Proactive scaling requires two types of thresholds. One
is upper threshold and the other is lower threshold. If any situation arises where upper threshold is violated
by future response time prediction, new VMs have to be added to service to neutralize the situation. In the
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No
SLA VLTN

WO LV
SLA VLTN

W LV
ExETN time

WO LV
ExETN time

W LV
Makespan WO

LV
Makespan

W LV
1st Scenario .458 .43 1711.95 1572.10 3046.74 3024.26
2nd Scenario .535 .45 529.72 453.81 2838.86 2271.20

Table 8: Lotka-Volterra Proactive algorithm comparison with Proactive scaling without LV has been illustrated in table 8. SLA
VLTN means SLA Violation, ExETN time stands for Execution time, WO LV represents without LV model and W LV denotes
with LV model. Total 630 cloudlets are used during 1st scenario simulation, where 550 cloudlets are fed into the data center
into three phases. 1st phase has pushed 98 cloudlets, 2nd phase consists of 302 cloudlets and third phase inserted 150 cloudlets.
Rest of the 80 cloudlets are generated during simulation time. The SLA deadline for all the cloudlets execution time, has been
decided as 2000 milliseconds. The total number of VM’s allocated initially is 27 and 100 VMs in pool, which will be used in
elasticity algorithm for further allocation based on situation. Upper threshold for scaling decision has been set at 400 ms and
lower threshold is 100 ms. 2nd scenario consists of total 394 cloudlets as an input to the data center, where all the cloudlets are
pushed into three batches. First batch consists of 12 cloudlets, second batch consists of 102 cloudlets and third batch pushed
200 cloudlets. 80 cloudlets are generated during simulation time. Total number of VM in VM pool is 100. SLA violation has
been set at 500 milliseconds for execution time quality of parameter. Like scenario 1, 27 VMs are allocated initially. Though
the cloudlets are part of three batches, all the cloudlets across the batches are submitted to data center broker for execution at
random time, which makes the entire process interactive similar to the real time data center operation. Both the scenarios are
applied on predictive scaling with and without Lotka-Volterra model. It is evident from the table that proactive scaling with
LV has outperformed its counter part in all three phases.

case of lower threshold violation, VMs need to be deallocated from the user service as more than required
number of VMs are allocated to increase utilization of the resources. We have compared the performances
between the two cases. In one case, Lotka-Volterra model is employed to calculate the number of VMs that
need to be added or removed based on threshold violation. In any case, a VM is allocated/ deallocated based
on SLA violation prediction. The method, which is used for the prediction of future response time is WMA
(Weighted Moving Average). It is widely used and very familiar in stock market strategy. It has multiplying
factors to give different weights to data at different positions (Fito et al.).

WMA(t) = n ∗ datat−1 + (n− 1) ∗ datat−2 + ..+ 2 ∗ datat−n+2 + datat−n+1

n+ (n− 1) + (n− 2) + ..+ 2 + 1 (12)

12.5. Predator-Prey cloudlets(job) Scheduling Timeshared Algorithm
In this section8, a Cloudlet time sharing algorithm is explored in a new dimension. We have integrated

the Lotka-Volterra model with the existing Cloudlet time sharing algorithm of Cloudsim and have taken
advantage of the predator-prey equation. The algorithm decides the VM occupancy before submitting the
incoming Cloudlet request to VM. If the occupancy or the VM utilization is more than the predefined
threshold, Lotka-Volterra (Prey increasing-Predator deceasing) model is invoked to retrieve VM number,
which is required to reduce the utilization within threshold. Here, prey denotes the number of available VM
and predator the number of cloudlets. Till the time the VM number has not reached the Lotka-Volterra
suggested number, all the incoming requests are pushed into a waiting list to the corresponding VM. Once
the normal situation attains, that is the utilization drops below threshold, the requests from waiting list are
sent for execution. In case the utilization of VM goes down the minimum threshold and incoming requests are
available then more cloudlets requests are submitted to VMs for processing as per Lotka-volterra model(Prey
decreasing-Predator increasing situation). This particular situation is applicable when incoming requests are
available. The formula used to identify the VMs utilization is below:

vm utilization = total vm executing the requests at that moment

total number of available V Ms
(13)

8Predtor is jobs i.e cloudlets, prey is resource i.e. VM
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Figure 10: This figure depicts the comparison of reactive
scaling algorithm with and without LV model. Y axis rep-
resents the VM number and X axis represents the time.
It is apparent from the figure that the simulation of reac-
tive algorithm with LV lasts for shortest period of time,
till 2000 milliseconds. On the other hand, the reactive
algorithm without LV goes on till 8000 milliseconds. But
LV model uses maximum number of VMs to complete all
the cloudlets task.

Figure 11: The figure illustrates the VM number and
Cloudlet number( represents jobs) against time for reac-
tive scaling algorithm with LV model. X axis plots the
Time and Y axis left side and right side represent the
VM number and Cloudlet number respectively. The fig-
ure demonstrates the behavior of the VM and cloudlets
as simulation progresses. The blue curve denotes the VM
number whereas the green curve showcases the Cloudlet
number. Initially, both the curves rise but VM number
reaches it’s threshold limit, hence the curve becomes flat
afterwards. But VM number curve starts declining as the
Cloudlet number starts falling.

Algorithm 3 LV-Timeshared Algorithm
1: procedure LV-Timeshared .
2: scloudlets← cloudlets− submitted− for − execution
3: cloudletsQ ← existing − cloudlets− in− queuee
4: T ← Time−Allocated
5: oVM ← occupancy − of − VMs
6: while T 6= 0 do
7: call procedure LV − PARAMETER− TUNING
8: if oVMs > MaxThreshold then
9: . VM increasing, cloudlets decreasing

10: while oVM > available− VM do
11: add cloudletsQ ← scloudlets+ cloudletsQ
12: end while
13: end if
14: if oVMs < MinThreshold then
15: . VM decreasing, cloudlets increasing
16: add cloudletsQ ← scloudlets+ cloudletsQ
17: end if
18: T ← T − 1
19: end while
20: return
21: end procedure
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Figure 12: The figure depicts the VM number, VM utilization against time by using Algorithm 2. X axis denotes the time.
Y axis left side represents the VM number and Y axis right side represents the VM utilization. In the first phase the utilization
starts falling as more VMs are being allocated due to the rising number of cloudlets(jobs). But the VM utilization rises up as
many more cloudlets start arriving and VM number reaches its threshold level. At the last lag, both the curves(VM number,
VM utilization) start declining as cloudlets arriving rate reduces. Blue, green curve depict the VM number, VM utilization
respectively.

Predator-Prey cloudlets Scheduling Timeshared Algorithm9

• cloudlets submitted for execution.

• Calculate occupancy of VMs.

• If(occupancy of VMs > thresholds) [very less number of VMs available]

• call Lotka-Volterra for Prey Increasing-Predator Decreasing [VM number will increase and Cloudlet
will decrease]

• add cloudlets to waiting queue till it drops to LV suggested VM occupancy/surges till LV suggested
available VMs.

• Once the LV suggested VM number reaches, start submitting the cloudlets from waiting queue.

• If the occupancy drops below the required level(Many VMS are available)

• Call Lotka-Volterra for Prey decreasing-Predator Increasing (VM occupancy will increase/available
VM will reduce and Cloudlet will increase)

• Submit cloudlets without keeping them in waiting queue till it ramps up to the LV suggested num-
ber.(This situation will work in case incoming cloudlets are available)

9Predtor is jobs i.e cloudlets, prey is resource i.e. VM
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VM Cloudlets

LV Time
Sharing Avg.

Execution Time

Cloudlet Time
Sharing Scheduling
avg execution time Deadline

LV Cloudlet
time sharing

SLA violation

Cloudlet Time
Sharing SLA

violation
60 80 437.97 472.84 450 0.2 0.3
55 180 873.007 1069.92 1000 0.37 0.65
9 87 876.26 1066.63 1000 0.45 .70

Table 9: This table comprises of three batch executions of VM and cloudlets. Each row represents one batch execution. The
comparison between Time shared scheduling algorithm of Cloudsim and Time shared scheduling algorithm with LV has been
demonstrated. Two metrics, SLA violation rate and avg execution time are highlighted in the table. It is evident from the table
data that time shared scheduling algorithm with LV has outperformed the other time shared algorithm.

Figure 13: Average Completion time Comparison between
time shared scheduling algorithm with LV and without
LV. A denotes the time shared scheduling algorithm with
LV and B represents the time shared scheduling algorithm
without LV. For all the batches, the average completion
time is better for time shared LV algorithm. Y axis repre-
sents the average completion time and X axis the batches.

Figure 14: SLA Comparison between time shared schedul-
ing algorithm with LV and without LV. A, B repre-
sent time shared scheduling algorithm with LV and time
shared scheduling algorithm without LV, respectively.
SLA violation rate is less in the case of LV time shared
algorithm.

12.6. Simulation of Timeshared Algorithm
Two metrics have been considered for the experiment purpose. These are average Cloudlet completion

time and SLA violation rate. The Lotka-Volterra time shared algorithm has been compared with the existing
Cloudlet time sharing algorithm of Cloudsim and it is shown how performance of the algorithm is improved.
The cloudlets are part of three batches but all the cloudlets are submitted to the broker of data center at
random time. This mimics the real time scenario, where we don’t have any control on the arrival time of
cloudlets.

Experiment 1:
In this experiment, the VM and cloudlets are submitted in three batches. The table explains all the batches
and the corresponding VM and cloudlets numbers of each batch. Deadline is a predefined number for each
Cloudlet request before the execution starts. If the Cloudlet execution time surpasses the deadline, it is con-
sidered as SLA violation. For 1st, 2nd and 3rd batch, the deadlines are 450, 1000 and 1000 milliseconds.This
experiment has been demonstrated in table 9.

Experiment 2
In the second experiment, VM and Cloudlet population for each batch have changed. The deadlines for
execution time are set at 450, 3000, 3000 milliseconds for 1st, 2nd and 3rd batch. Table 10 shows the result
of experiment 2.
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VM Cloudlets

LV Time
Sharing Avg.

Execution Time

Cloudlet Time
Sharing Scheduling
avg execution time Deadline

LV Cloudlet
time sharing

SLA violation

Cloudlet Time
Sharing SLA

violation
60 80 459.82 478.45 450 0.225 0.275
55 300 2229.98 2654.66 3000 0.096 0.24
9 245 2300.13 2659.14 3000 0.11 .15

Table 10: This table comprises of three batch executions of VM, cloudlets. Each row represents one batch execution. The
comparison between Time shared scheduling algorithm of Cloudsim and Time shared scheduling algorithm with LV has been
demonstrated. Two metrics SLA violation rate and average execution time are highlighted in the table. It is evident from the
table data that time shared scheduling algorithm with LV has outperformed the other time shared algorithm.

Figure 15: Average Completion time Comparison between
time shared scheduling algorithm with LV and without
LV. A denotes the time shared scheduling algorithm with
LV and B represents the time shared scheduling algorithm
without LV. For all the batches, the average completion
time is better for time shared LV algorithm. Y axis repre-
sents the average completion time and X axis the batches.

Figure 16: SLA Comparison between time shared schedul-
ing algorithm with LV and without LV. A, B repre-
sent time shared scheduling algorithm with LV and time
shared scheduling algorithm without LV. SLA violation
rate is less in the case of LV time shared algorithm.
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VM Cloudlets

LV Time
Sharing Avg.

Execution Time

Cloudlet Time
Sharing Scheduling
avg execution time Deadline

LV Cloudlet
time sharing

SLA violation

Cloudlet Time
Sharing SLA

violation
60 80 462.35 463.43 450 0.375 0.325
55 90 928.47 1066.84 1000 0.5 0.6
9 175 925.68 1121.98 1000 0.53 0.662

Table 11: This table comprises of three batch execution of VM and cloudlets. Each row represents one batch execution. The
comparison between Time shared scheduling algorithm of Cloudsim and Time shared scheduling algorithm with LV has been
demonstrated. Two metrics SLA violation rate and average execution time are highlighted in the table. It is evident from the
table data that time shared scheduling algorithm with LV has outperformed the other time shared algorithm.

Figure 17: Average Completion time Comparison between
time shared scheduling algorithm with LV and without
LV. A denotes the time shared scheduling algorithm with
LV and B represents the time shared scheduling algorithm
without LV. For all the batches, the average completion
time is better for time shared LV algorithm. Y axis repre-
sents the average completion time and X axis the batches.

Figure 18: SLA Comparison between time shared schedul-
ing algorithm with LV and without LV. A, B repre-
sent time shared scheduling algorithm with LV and time
shared scheduling algorithm without LV, respectively.
SLA violation rate is improved after introducing LV model
into time shared scheduling algorithm.

Experiment 3
In this experiment, different VM and Cloudlet population are considered for second and third batch, though
VM’s and cloudlets from the first batch are uniform across the experiments. Deadline for each batch is
similar to the experiment 1. The outcome of the experiment has been displayed in table 11.

12.7. Improved Quality of Service & Reduction in SLA Violation
• Elasticity: It is an ability of a a Cloud data center to provision and de-provision VM as per the

dynamic behavior of the Cloud resource demand. Lotka-Volterra provides the flexibility to decide the
required number of VMs needed to be introduced into the systems based on the number of current
Cloud resource requests. VM Elasticity is discussed in detail in ”Model Implementation and Outcome:
Technical Discussion” section.

• Make span : Makespan is an another metric, used in this paper to measure the performance improve-
ment of various algorithms such as reactive scaling, proactive scaling, Cloudlet time shared algorithm,
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Figure 19: The comparisons between SJF with LV
ad without LV have been demonstrated. Each col-
umn represents one batch. Introduction of LV has
improved the avg. completion time of SJF algo-
rithm.

Figure 20: The SLA violation rate has been used as
a performance measurement metric in the above
graph. SJF with LV has shown significant im-
provement in SLA violation rate.

VM Cloudlets

SJF with LV
Avg.

Execution Time
SJF without LV

avg execution time Deadline
SJF with LV
SLA violation

SJF without LV
SLA

violation
60 80 508.73 516.4 450 0.49 0.50
5 35 952.89 973 1000 0.08 0.16
9 15 944.42 987 1000 0.10 0.18

Table 12: The table exhibits the performance of the SJF algorithm in terms of QoS metrics such as SLA violation rate, avg.
completion time.The performance of the SJF algorithm has improved significantly after the introduction of LV in the afore
mentioned algorithm.

VM Cloudlets

LJF with LV
Avg.

Execution Time
LJF without LV

avg execution time Deadline
LJF with LV
SLA violation

LJF without LV
SLA

violation
60 80 507.8 522.6 450 0.483 0.53
5 35 856.4 968.2 1000 0.146 0.162
9 15 813 957.2 1000 0.064 0.064

Table 13: The performance comparisons of LJF algorithm are displayed in the above table. It is prominent from the table that
the LJF algorithm’s performance improved due to the induction of LV.

VM Cloudlets

OLB with LV
Avg.

Execution Time
OLB without LV

avg execution time Deadline
OLB with LV
SLA violation

OLB without LV
SLA

violation
60 80 664 707 450 0.678 0.764
5 35 1112.2 1152.6 1000 0.298 0.344
9 15 1054.6 1376.2 1000 0.318 0.478

Table 14: The table comprises of three rows and each row represents one batch execution. Therefore total three executions are
showcased. It is evident from the table that the performance of OLB with LV better than OLB without LV.
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Figure 21: The comparisons of LJF with LK and without
LK have bee displayed in the above figure. Y axis repre-
sents the avg. completion time and the X axis represents
the batch number. The performance of LJF with LK is
better than LJF without LK.

Figure 22: The improvement of SLA violation rate of LJF
algorithm after the introduction of LV has been showcased
in the above figure.

Figure 23: The avg. completion time of both the al-
gorithms, OLB with LV and without LV has been
demonstrated in the above graph. The avg. com-
pletion time has been reduced in case of OLB with
LV. The X, Y axises are representing the batch
number and avg. completion time.

Figure 24: X axis signifies the batch number
whereas the Y axis signifies the SLA violation
rate. The improvement is visible in the graph due
to the introduction of LV.

etc, after the introduction of the Lotka-Volterra model into the afore mentioned algorithms. Reference
of makespan can be observed across the paper such as subsection VM Elasticity, Proactive Scaling
under ”Model Implementation and Outcome: Technical Discussion” section.

• Response time : It is a widely used QoS parameter in Cloud computing. We have shown that the
implementation of Lotka-Volterra model has improved the response time performance metric signifi-
cantly. Multiple occurrences of this particular QoS can be observed in various sections of this paper
such as ”Model Implementation and Outcome: Technical Discussion”.

• Utilization : Utilization has been used heavily in this paper. In the algorithms such as LV-Timeshared
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Figure 25: The avg. completion time reduction has
been observed after the induction of LV into RR
algorithm. Like other graphs, the X, Y axises
represent the batch number and avg. completion
time.

Figure 26: Like avg. completion time, the SLA
violation rate improvement is evident from the
figure, where the Y axis stands for SLA violation
rate and X axis represents the batch number.

VM Cloudlets

RR with LV
Avg.

Execution Time
RR without LV

avg execution time Deadline
RR with LV

SLA violation

RR without LV
SLA

violation
60 80 504 523 450 0.475 0.517
5 35 846 951 1000 0.05 0.14
9 15 818.2 936.6 1000 0.05 0.184

Table 15: RR algorithm performance has been displayed in the above table. Each row exhibits one batch execution. Total two
QoS metrics, avg. completion time, SLA violation rate are evaluated after the induction of LV in the RR algorithm.

VM Cloudlets

Min-Min with LV
Avg.

Execution Time

Min-min
without LV

avg execution time Deadline

Min-min
with LV

SLA violation

Min-min
without LV SLA

violation
60 120 357 369 450 0.2052 0.517
60 120 388.2 400.8 450 .268 .3142

Table 16: The table comprises of two rows, each row demonstrates a different situation. First row shows the instance where
the MIPs of the VMS are predetermined or predefined before the simulation. In the second row highlights the instance where
the MIPs of the VMs are not fixed. Two QoS metrics, avg. completion time, SLA violation rate are compared in the table.
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Figure 27: The graph illustrates the Min-mi algorithm
avg. completion time performance comparison after the
adoption of LV. The first column represents task comple-
tion time, where the MIPs of the VMs were not fixed or
predefined rather dynamic during simulation. The second
column demonstrate the avg. completion time where the
MIPs of VMs were predetermined.In both the instances,
LV has improved the performance of Min-min algorithm

Figure 28: Another QoS metric, SLA violation rate of
MIn-min algorithm has been displayed in the above fig-
ure, where in the first column MIPs of the VMs were not
fixed and in the second column the MIPs of the VMs were
predetermined.

algorithm, the invocation of Lotka-Volterra has occurred whenever the utilization is touching the
maximum/ minimum predefined threshold.

• Reduction in SLA violation: SLA violation is the most important performance metric of a Cloud data
center. Revenue of a Cloud service provider is tightly coupled with SLA violation rate. After the intro-
duction of LV model into various algorithms, SLA violation rate has been reduced, which has improved
the quality of service and job satisfaction. More details can be found in ”Model Implementation and
Outcome: Technical Discussion” section.

12.8. Predictive Analytics on VM population-LS fitting
Predictive analysis of the requirements of VM’s based on the demand of jobs is a handy tool to have.

However, since the ALVEC model is nonlineaar in nature, simulated data poses some challenges when fitting
algorithms are attempted. Standard algorithms didn’t work. However, the scatter plot of the simulated data
(generated due to the interaction between VM and jobs) is enlightening. The dataset consists of two groups
of points which correspond to elliptical curves. A good fit is obtained using the ellipse equation, the general
form of which is given by

(x− h)2

a2 + (y − k)2

b2 = 1 (14)

The following plot depicts the fit obtained from applying the ellipse equation to our dataset ?: The following
equations have been used to find the ellipses:

(x− 29.98445)2

202 + (y − 55.116337)2

352 = 1 (15)

(x− 118.21488)2

902 + (y − 31.59861)2

252 = 1 (16)
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Figure 29: In cloudsim jobs is cloudlets. Fitting VM and cloudlet dynamics data obtained from cloudsim simulation: We used
least squares to predict the center and major/minor axes of the fitted ellipse. The fitted equation predicts the VM population
against a given cloudlet population with reasonable degree of accuracy. This embellishes our model by providing predicting
power.

Implementation in R

We have used the ellipse package in R to generate the ellipse given the parameters h, k, a, b. The plotrix
package is used to plot the ellipse and estimate the parameters with 95% confidence. The function ’ellipse’
(defines in the ellipse package) allows us to draw a two-dimensional ellipse that traces a bivariate normal
density contour for a given mean vector, covariance matrix, and probabilistic proximity of the points lying
on the ellipse trace. Using this function, we have computed the center of the ellipse with a reasonable degree
of precision. We then computed the distance of the closest point and the furthest point from the dataset and
set these values as b and a (major/minor axes of the ellipse, tweaking these values would generate a family
of concentric ellipses which would help explain the elastic behavior of the model).
where, a = Length of longitudinal axis and b = Length of transverse axis.
Finally the ellipse that fits the curve is drawn using the ’plotrix’ library. Let us consider the following example.
On giving an input x (Cloudlet.Number)=38.34 to the first ellipse equation, we obtain y = 23.317108996715966
where expected output is y = 25.13. This gives us an accuracy of about 92.98 %.
Similarly on giving an input x (Cloudlet.Number)=150.29 to the second ellipse equation, we get y =
8.240179917046074 where expected output is y = 8.34. This gives us an accuracy of about 98.8 %. These
two samples, randomly selected from the pool of simulated data, are sufficient to testify the goodness of
fit of the predictive model. We may forecast the required VM population using the fit when the cloudlet
population is known.

12.9. Interpretation of Resource-Demand elasticity:
We generated multiple traces of different ellipses centered around the same point (using the fitted equation

and manipulating the parameters). We obtained different equations and subsequently different sets of x
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(predator) and y (prey) values – this is the range of VM-jobs values that will help maintain the status quo
i.e steady state (shape of the fitted curve is an ellipse) and provide a physical interpretation of elasticity
without disturbing the equilibrium (since data was generated from the allocation algorithm specifically
written to handle elasticity in service provisioning); also, we observe evidence of concavity from the scatter
plot of the simulation, at least for a smaller range of jobs numbers. It might imply that when the jobs number
varies between 50 and 100, the VM number rises significantly in the beginning and then falls sharply. Note
that, for a set of jobs values, there is also possibility of attaining multiple elasticity that makes the choice less
precise than one would expect under automatic allocation principle. Overall, except for a few outliers values
of the elasticity thus arrived at, we do encounter concentric ellipses over a wider range of jobs numbers.
From a policy point of view, one could argue that the choice of jobs do offer a specific zone within which
the VM numbers are expected to operate, making the problem of jobs choice less vexing. This is indeed a
step forward in the analysis of this relationship, because previous attention to choice of jobs and the range
of elasticity it varies within, have not been able to generate the elliptical path as we offer here. Therefore,
if the allocation problem does not automatically guarantee presence of a steady state accompanied by small
perturbations in the neighborhood, the choice of jobs numbers as part of intervention could ensure that
under most circumstances.

More importantly, our conjectures are not bounded by a specific structure (here, elliptical) generated
from the fitted data. Let us assume that new experiments conducted by varying the parameters of the
proposed ALVEC model generate new data points , which after fitting assume the shape of another conic
section. Since our main purpose here is to provide a meaningful distribution, any other pattern, converging
to or diverging from the steady state could be equally appealing to the decision problem. In fact, a conformal
transformation converts a circle to an ellipse and inverse transform does the contrary. The transformation
in shape, if at all happens, is a further evidence of elastic behavior in regions other than the equilibrium i.e
steady state (ref Fig.4 where the equilibrium and non-equilibrium regions are clearly identified).

Furthermore, family of concentric ellipses satisfying the constrains of simulation parameters are generated.
This pertains to the elasticity of the ellipses (fitted curve for jobs and resource relationship) and we found
the following: For ellipse 1: (x− 29.98445)2/202 + (y − 55.116337)2/352 = 1, the largest ellipse that can be
formed has a = 29.98445 and b = 55.116337 and the smallest ellipse that can be formed has a = 0 and b = 0.
For ellipse 2: (x− 118.21488)2/902 + (y − 31.59861)2/252 = 1, the largest ellipse that can be formed has
a = 118.21488 and b = 31.59861 and the smallest ellipse that can be fitted are for a = 0 and b = 0.
Remark: The range of values for y are between 55.116337 and 0 (ellipse 1) and 31.59861 and 0 (ellipse
2); and for x, the range of values are between 29.98445 and 0 (ellipse 1), 118.21488 and 0 (ellipse 2).
Ellipse 1 describes the scenario of prey increasing-predator decreasing and ellipse 2 describes the scenario
of predator increasing-prey decreasing. It is well understood at this point that, predator signifies population
of jobs (Cloudlets in CloudSim) and prey signifies population of resources (VM’s in CloudSim). We plotted
the original ellipse, accomplishing 95% confidence in fitting the relationship between jobs and resources (ref
to Fig. 29). The family of concentric ellipses (ref to Fig. 21), generated by manipulating the major and
minor axes of the original ellipse, provide us an extended range of x, y values i.e. resource-job pairs that
accommodate the elasticity restrictions. In summary, as long as the job population (demands) is within the
range of 0− 200.55, we could predict the load/resource requirement with reasonable accuracy. The simulated
data set may be found here preyincreasing (2018) preydecreasing (2018) (Data).

As long as the fitted ellipse adheres to 95% confidence restriction, we can be certain about predicting the
resource matching jobs or demands within a range of values for number of jobs. In our case, the range of
job demands is between 0− 200.55 (non integer values will be rounded off to the nearest integer) in order to
maintain the prediction accuracy for resource requirements in a dynamic scenario. Clearly, in the absence
of any demand (x = 0), there is no resource requirement (y = 0).

The last section shall summarize the wholesome contributions and lasting impact our work could bring
about. We note that, while many published manuscripts handled different performance issues of cloud,
a comprehensive understanding, research and documentation on elasticity management is lacking or not
convincing enough. Most of the allocation and management policies, although, novel are supervised and
accrue overhead over time.
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Figure 30: This is a family of concentric ellipses describing range of values of demand and resources. These ellipses are
transformations in shape from the original Fig.29. The trace of x and y values indicate adaptive resource allocation against
changing job demands. Our predictive algorithm adapts to elasticity in demand and allocation with good precision.

13. Discussion and CONCLUSION

The Lotka-Volterra model provides us with a mathematical property known as limit cycles which is
described in contour portraits or phase portraits of the system. Limit cycle describes a qualitative limit for
the stability of a system. Parameters of a system are differed such that the system grows out of stability
and difference acquired by the parameters is measured to state the domain of stability. This has direct
application in understanding the stability of a web-server with incoming requests. Limit cycle of a system
along with the rate of incoming requests can help us understand the bounds of the system. As the proposed
model is based on the dynamic interaction between the VM and the cloudlet, our contribution addresses
elasticity for highly volatile jobs or demands. ALVEC helps gauge the optimum level of elasticity. Time
shared algorithm is another contribution. We implemented the experimental simulation in CloudSim. The
proposed Lotka-Volterra model has the existing cloudlet time sharing algorithm on CloudSim and takes
advantage of the predator-prey equation. Without externally defining any dynamic allocation scheduling
algorithm, the improved time-shared algorithm decides the VM occupancy before submitting the incoming
cloudlet request to VM. Other two contributions of this paper are Improvement on Quality of Services and
minimization of SLA (Service Level Agreement) violation. The simulation in the CloudSim reveals that the
number of future VM has not increased or decreased as per predefined static allocation rule. On the contrary,
the model decides on the number of VM’s ”on the fly”. The QoS metrics which include throughput, response
time, etc show that the proposed model is more suitable to address each Quality metric. SLA defines
the terms and conditions among two parties as a basis for measuring agreed quality of service standards
and optimization between both Cloud provider and allocated job. Our contributed work quantifies the
SLA violation parameter where non-fulfillment of services should be penalized. The proposed model shows
significant reduction in SLA violation, i.e low penalty for not honoring SLA. This indirectly increases the
profitability. This may have a disruptive impact by evolving a business model for the small and medium
scale enterprises in Cloud business. An analysis has been done from the economic point on how the entry-
barrier challenge can be addressed for the new Cloud service providers. It can be intuited from above that,
a dynamic environment like Cloud follows lower dimensional chaos (Non linear dynamics). The motive was
to bring about the cloud parameters under different situations and model them using non-linear dynamics.
The parameters were calculated at the boundary conditions using a Java based simulation platform called
CloudSim. The dynamic creation of cloudlets allowed us to vary the number of jobs and the resources of the
Cloud to create a system which was able to showcase all possible scenarios. Lotka-Volterra model is suited
as the best model to describe the Cloud parameters to reasonable accuracy. Phase portraits are used to
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determine over-utilization of resources leading the whole system into instability. A phase portrait is plotted
repeatedly by using the Cloud data. When there is a sign of instability in the system, more resources can
be added to bring the system into equilibrium state. We conclude by highlighting the strengths of our
contribution.

• stability implies proportional change on VM based on changes of demand in jobs controlled by LV
model. These differential equations are not affected by stochastic uncertainty. Therefore, the ballpark
estimates of VM’s based on jobs are achieved reliably and efficiently. The interpretation of stability
between VM’s and jobs is adroitly exploited in our work (Please refer to the subsection Prey-Predator
stability).

• The difference in modeling elasticity (our approach) from other approaches available in the literature
needs to be highlighted. VM’s are added in most approaches in supervised fashion whereas we allocate
VM’s governed by the underlying LV model without undermining the utilization threshold. This is an
unsupervised approach. An unsupervised approach implies accomplishing parameter tuning by LV to
control VM population (prey) corresponding to the cloudlet population (predator).

• Our Cloudlet-timeshared algorithm performs better than existing timeshared algorithm implemented
in Cloudsim.

• We exploited the predictive analytics from the simulation of our LV model to estimate approximate
VM population against the demand of jobs. Least Square fitting was applied to arrive at this estimate.
As prediction accuracy is reasonable, there is lesser scope for overloading of systems.

• Improvement in SLA violation was accomplished. Other QoS metrics are found to be better than
existing elastic work.

• The technological innovation suggested by our model should encourage further competition in a market
controlled by the big players.

• VM allocation is accomplished by the proposed model, truly dynamic in fashion circumventing over-
heads or look up tables. Appropriate improvisations were effected in the basic cloudsim setting to
accommodate dynamic behavior.

• Adaptation and implementation of herding behavior is never implemented with strong intersection
from population biology established for the first time. This is the cornerstone of our contribution.

• We have shown improved utilization compared to other models. This, coupled with SLA violation
minimization makes a strong case for resource optimality accomplished by ALVEC.
We implemented an optimization model for Cloud data centers so that no resource should be under-
provisioned / over-provisioned. The greatest strength of the proposed model is its ability to handle
jobs by dynamically deciding the scaling number and providing the input to the VM provisioning
process. Our method doesn’t pre-determine the number of VM’s to be added. Every other resource
allocation strategy uses a static allocation scheme. A pool of VM’s, determined ”on the fly” based on
the population of jobs requested is assigned, instead of one VM being commissioned (which is usually
the case). The pool of VM’s may add to the cost since increased physical infrastructure would be
needed. It would be interesting to investigate the equilibrium between incurred cost and improved
SLA compliance due to our model. It is worth investigating energy awareness of our model in future.
If resources have to be borrowed from another provider/pool, the model needs to be modified to
accommodate such an event. However, the borrowing time shall add to the overhead. As the model
decides the scaling number in a unsupervised fashion, it may suggest the number which is bigger than
the static way of determining the scaling number. Therefore it may increase the cost of VM assignment.
We haven’t considered this possibility in our approach and we shall explore this as future work.
We note that, average RAM utilization is 44.17% and average bandwidth utilization is 59.12%. It is
pertinent to observe two salient points:
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– The methods compared with ALVEC did not report utilization of physical resources.
– ALVEC did not encounter any resource failure (VMFailure in CloudSim) when simulations runs

were performed. The proposed model did not have to deal with a scenario where demands could
not have been met due to scarcity of resources, within the set bounds (resources are not unlimited,
trivially). This has been validated across multiple simulation runs and stands out as a key
performance benchmark. The claim may be validated by running the code uploaded, LV (2017).
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Gambi, A., Toffetti, G., and Pezzè, M.,2013, Assurance of self-adaptive controllers for the cloud, in Assur-
ances for Self-Adaptive Systems.

Ali-Eldin, A., Tordsson, J., and Elmroth, E.,2012, An Adaptive Hybrid Elasticity Controller
for Cloud Infrastructures. Network Operations and Management Symposium (NOMS),IEEE, doi
10.1109/NOMS.2012.6211900

Urgaonkar, B., Shenoy,P., Chandra,A., Goyal, P., and Wood, T., 2008, Agile dynamic provisioning of multi-
tier Internet applications, ACM Transactions on Autonomous and Adaptive Systems (TAAS),3(1), 1.

Singh, S., Chana, I., 2016, Resource provisioning and scheduling in clouds: QoS perspective. J. Supercom-
put,72(3), 926-960.

Li, K., Xu, G., Zhao, G., Dong, Y., Wang,D.,2011, Cloud task scheduling based on load balancing ant colony
optimization. In: Chinagrid Conference (ChinaGrid), 2011 Sixth Annual. IEEE, pp 3âĂŞ9

Pandey, S., Wu, L., Guru, S., Buyya, R., 2010, A particle swarm optimization-based heuristic for schedul-
ing workflow applications in cloud computing environments. In: Advanced information networking and
applications (AINA), 24th IEEE international conference, Perth, Australia

Varalakshmi, P., Ramaswamy, A., Balasubramanian, A., Vijaykumar, P., 2011, An optimal workflow based
scheduling and resource allocation in cloud, Advances in computing and communications. Springer, Berlin,
Heidelberg

40



Zhang, L., Chen, Y., Sun, R., Jing, S., and Yang, B., 2008, A task scheduling algorithm based on pso for
grid computing. International Journal of Computational Intelligence Research, 4(1).

Takeuchi, Y. , Du, H. N., Hieu, T. N., Sato, K., 2006. Evolution of predator prey systems described by a
Lotka Volterra equation under random environment, Journal of Mathematical Analysis and Applications,
323, 938-957.

Tang,Y.S., Chen,S.L.,2002, The periodic predator prey lotka volterra model with impulsive effect, J. Mech.
Med. Biol. 2, 267-296.

Liu, XN., Chen, LS.,2003 Complex dynamics of Holling type II Lotka Volterra predator prey system with
impulsive perturbations on the predator, Chaos, Solitons & Fractals, 16(2), 311-320.

Serra, N.,2014, Utility Functions and Lotka-Volterra Model: A Possible Connection in Predator Prey Game,
Journal of Game Theory, 3(2), 31-34, DOI: 10.5923/j.jgt.20140302.03

Kolmogoroff, N. A.,1936, Sulla teoria di Volterra per la lotta per lâĂŹesistenza, Giornale Ist. Ital. Attuari,
7 (74-80).

Keller, A., A., 2011, Stochastic delay Lotka-Volterra system to interacting population dynamics. System,
1(1), .

Goel, S.N., Maitra, C. S., Montroll, W. E.,1971, On the Volterra and Other Nonlinear Models of Interacting
Populations, Academic Press, New York.

Chaisiri, S., Lee, S. B., and Niyato, D., 2012, Optimization of Resource Provisioning Cost in Cloud Com-
puting, IEEE Transactions on Services Computing, 5(2).

Luck, M., McBurney, P., and Preist, C., and the AgentLink Community, Agent Technology: Enabling Next
Generation Computing, Agent Technology, a roadmap, page 94- 1: 94 c©Agentlink

Kang, M., Wang, L., and Taguchi, K., 2004, Modeling Mobile Agent Applications in UML2.0 Activity
Diagrams, In Proceedings of the Sixth International Conference on Enterprise Information Systems, Porto,
Portugal, 519-522.

http://www.investopedia.com/terms/h/hhi.asp, accessed on 22/1/2017

https://www.srgresearch.com/articles/hp-ibm-and-dell-lead-burgeoning-apac-data-center-infrastructure-
market, accessed on 20/10/2016

Simao, J.,Veiga, L.,2014,Partial Utility-driven Scheduling for Flexible SLA and Pricing Arbitration in
Clouds,IEEE Transactions on Cloud Computing.

Peter, Cowhey.,Michael, Kleeman.,2012, Unlocking the benefits of Cloud Computing for emerging economics
-A Policy Overview, UC-San Diego.

Xiangzhen. K.,Chuang., L.,Yixin., J.,Wei, Y.,Xiaowen., C.,2011, Efficient dynamic task scheduling in virtu-
alized data centers with fuzzy prediction

Arabnejad. H.,Pahl. C.,Jamshidi. P., Estrada, G.,2017, A Comparison of Reinforcement Learning Techniques
for Fuzzy Cloud Auto-Scaling

ALVEC Code (CloudSim): https://github.com/jyotirmoy208/LV, last updated on 26/09/2017.

Kashyap. D., Viradiya. J.,2014, A Survey Of Various Load Balancing Algorithms In Cloud Comput-
ing,INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH,3(11)

41

http://www.investopedia.com/terms/h/hhi.asp


Achar. R., Santhi Thilagam. S. P.,2012, Optimal Scheduling of Computational Task in Cloud using Vir-
tual Machine Tree, Third International Conference on Emerging Applications of Information Technology
(EAIT) , IEEE

Vijayalakshmi. R.,Prathibha, Soma.,2013, A Novel Approach for Task Scheduling in Cloud IEEE-31661

Kumar. P., Verma. A., (2012),Independent Task Scheduling in Cloud Computing by Improved Genetic
AlgorithmâĂİ International Journal of Advanced Research in Computer Science and Software Engineering
(IJARCSSE), ISSN: 2277 128X, 2(5)

https://github.com/jyotirmoy208/LV/blob/master/preydcreasing.xlsx accessed on 10/5/2018

https://github.com/jyotirmoy208/LV/blob/master/preydcreasing.xlsx accessed on 10/5/2018

Buyya. R., Gill. S. S., 2018, Sustainable Cloud Computing: Foundations and Future Directions, Business
Technology & Digital Transformation Strategiescutter Consortium, 21(6)

42


	1 Introduction
	2 Related Work
	3 Problem Statement:
	4 Our Contribution:
	5 Key Definitions
	6 Our Model: Theory, Relevance and Applications
	6.1 Relevance of Predator-Prey Model and Population Dynamics in Cloud Data Center
	6.2 Predator Prey Equilibrium and Regions

	7 Solution to the proposed model
	8 Numerical Solution of Lotka-Volterra
	9 Task Scheduling Algorithms
	9.1 First Come First Serve 
	9.2 Round-Robin Algorithm
	9.3 Shortest Job First
	9.4 Longest Job First
	9.5 Opportunistic Load Balancing Algorithm
	9.6 Min-min Load Balancing Algorithm

	10 Simulation in CloudSim
	10.1  Case 1: Prey Increasing-Predator Decreasing
	10.2 Case 2 :Prey-Predator stability
	10.3 Case 3: Prey decreases-Predator Increases 
	10.4 The modeling approach in CloudSim
	10.5 Resource Allocation algorithm using Predator Prey

	11 How is LV helping in achieving what was not accomplished before? The Benefit Analysis
	12 Model Implementation and Outcome: Technical Discussion
	12.1 Parameter Tuning
	12.2 Experiment
	12.3 VM Elasticity
	12.4 Proactive Scaling
	12.5 Predator-Prey cloudlets(job) Scheduling Timeshared Algorithm
	12.6 Simulation of Timeshared Algorithm
	12.7 Improved Quality of Service & Reduction in SLA Violation
	12.8 Predictive Analytics on VM population-LS fitting
	12.9 Interpretation of Resource-Demand elasticity:

	13 Discussion and CONCLUSION

