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A B S T R A C T

Edge computing constitutes a key paradigm to address the new requirements of areas such as
smart cars, industry 4.0, and health care, where massive amounts of heterogeneous data from
continuous geographically-distributed sources have to be processed and computed near real-
time. To this end, new distributed infrastructures consisting on small computing clusters close to
data sources, also known as Cloudlets have emerged. In order to evaluate the performance of these
solutions we present Sphere, a simulation tool that enables researchers to establish various sce-
narios, including: (a) topology and orchestration model of the infrastructure; (b) incoming
workload patterns; (c) resource-managing models; and (d) scheduling policies. Moreover, Sphere
allows researchers to apply efficiency and performance policies both at infrastructure and cluster
levels. The simulator presents the following benefits: (a) Evaluation of various orchestration
models; (b) Analysis of resource-efficiency and performance strategies at Edge-infrastructure and
cluster (Cloudlet/Cloud) level; (c) Execution of diverse workload generation patterns; (d)
Evaluation of strategies for the infrastructure communication, as well as the impact on tasks
completion time (makespan); and (e) Simulation of each cluster (Cloudlet/Cloud) independently,
including resource-managing, scheduling and resource-efficiency models. Finally, we performed
a deep evaluation based on realistic Edge-Computing use cases. The results of the experiments
confirm that it is a performant and reliable tool for the analysis of orchestration, graph-resolving,
energy-efficiency, resource-managing and scheduling strategies in Edge-computing environ-
ments.

1. Introduction

The spread of new computing paradigms, such as Internet of Things and Internet of Everything, as well as the consolidation of
concepts such as Smart City [1], lead to new models of data production, processing and utilization.

The requirements of traditional offline and centralized Cloud-Computing scenarios, for instance, those imposed by Map-Reduce
environments, are different from those present in the new data-processing models mentioned above. Current trends in areas such as
industry 4.0, smart cars, health-care and security [2], usually have in common the massive amount of heterogeneous, geographically-
distributed, and inter-connected data that are produced by thousands or even millions of different sources [3], which need to be
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securely processed near real-time [4]. Centralized Cloud-Computing infrastructures can hardly meet these requirements, mainly due
to network congestion and high latency [5].

Edge-Computing consists of a set paradigms which have emerged to face the aforementioned challenges by placing computing
resources near the data sources, in order to reduce the network latency and congestion generated by the offload of tasks of end
devices. The most relevant Edge-Computing approaches include: a) Fog Computing; and (b) Cloudlet Computing. It should be borne
in mind that Cloudlet Computing does not relate the concept of Cloudlet employed in some cloud simulators, e.g., Cloudsim. The
latter refers to a task to be executed by a computing resource, whilst the former denotes each of the clusters located near the data
sources, which are present in Cloudlet-Computing environments.

The goal of Fog computing is the minimisation of the latency by offloading latency-sensitive workload in edge nodes, including
servers, routers and switches within the LAN, where the resulting data is temporarily stored as well. Once these latency-sensitive tasks
are successfully finished, compute-intensive and offline workloads, as well as permanent data storage, are to be processed by cen-
tralized Cloud-Computing infrastructures.

Cloudlet Computing provides an alternative to Fog Computing by placing small computing clusters with wide bandwidth close to
the data sources [6]. The formal definition of Cloudlet Computing is given by the National Institute of Standards and Technology
in [7]. Cloudlet-Computing systems may be divided in three layers, as shown in Fig. 1:

1. the Device Layer is composed of data sources, such as physical sensors and mobile devices.
2. the Cloudlet Layer contains the network of Cloudlets that provide Virtual Machines to users. Each Cloudlet may contain the

Virtual Device Representation (VDR), Virtual Service Representation (VSR), and local services.
3. the Internet Layer refers to the centralized Cloud-Computing infrastructure.

The aforementioned architecture differs from the simplicity of centralized Cloud-Computing architectures. Therefore, Cloud-
Computing simulators, such as CloudSim [8], CloudSched [9], GreenCloud [10], and SCORE [11] present numerous limitations to
simulate the complex, layered and inter-connected architectures of Cloudlet-Computing environments.

Edge-Computing simulators are essential tools for the development of distributed large-scale Edge-Computing solutions. When it
comes to the design and optimisation of such systems we face various problems, from choosing the proper power policies to the
configuration of the infrastructure and networking. Therefore, the proposed simulator must enable researchers to model and evaluate
Edge-Computing use cases through Cloudlet-Computing infrastructures.

In this work, we present the following contributions:

• A novel open-source Cloudlet-Computing simulation tool called Sphere based on the SCORE simulator [11], which provides a
framework for the simulation of Cloudlet Computing environments out of the box.

• An extensible toolkit to implement: (a) Edge Graph modelling and resolution models; (b) centralized, Distributed and Hybrid
Cloudlet orchestration models; (c) Geographically-distributed and heterogeneous workload generators; (d)Inter-Cloudlet energy-
efficiency models based on the shut-down of idle clusters; (e) Cluster resource-managing models; (f) Cluster energy-efficiency
policies; g() An example of usage of the simulation tool and the analysis of its performance in a typical Cloudlet-Computing

Fig. 1. Cloudlet-Computing Architecture.
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scenario; and (h) A deep analysis on the performance of the proposed simulation tool.

The rest of the paper is organized as follows: Section 2 presents a comparison of the available Edge-Computing simulation tools. In
Section 3, the architecture of Sphere is described. Experiment parametrization and results are described in Section 4. Section 5
presents an example simulation scenario and the results provided. Sphere performance is shown in Section 6. We finally summarize
the paper, state the conclusions and discuss the future work in Section 7.

2. Related work

The high complexity of Edge-Computing systems and the high costs of deployment of such infrastructures make simulation the
main approach to develop, evaluate and analyze the behaviour of several aspects of these environments, including: (a) Cloudlet
management and orchestration; (b) Workload distribution; (c) Scheduling strategies; (d) Consolidation and migration models; (e)
Networking; and (f) Efficiency policies;.

In this section, we evaluate the most relevant Edge-Computing simulators for the implementation and evaluation of orchestration,
resource managing, scheduling, and energy-efficiency techniques. A summary of the performed comparison is shown in Table 1

iFogSim [12] is a Fog-computing simulator focused on the measurement of workload and scheduling performance, network
utilization and energy consumption of centralized clusters, edge devices, sensors, network links, data streams, and stream-processing
applications, supporting also data dependency between applications and edges. Such applications may be deployed only in cen-
tralized data centers or in edge clusters. Nevertheless, as an extension of CloudSim [8], the scalability of iFogSim is limited, and the
performance when large scenarios are considered is poor [13,14].

Myifogsim [15] is an extension of iFogSim that includes mobility support through migration of virtual machines between
Cloudlets. Similarly, in [16], Naas et al. propose an extension of iFogSim that implements data-placement strategies in Fog and IoT
scenarios.

IOTSim is an extension of CloudSim which includes storage and Big-Data-processing layers. In the storage layer, the network and
storage delays are simulated for IoT applications. IOTSim is limited to the simulation of MapReduce workloads.

EdgeCloudSim extends CloudSim to provide a modular architecture that supports network models for WLAN and WAN, device
mobility models, and simple workload generators. PFogSim [17] extends EdgeCloudSim to include different network, application,
and orchestration models.

FogTorchII [18] is an extension of FogTorch [19], which is a Fog-Computing simulation tool. FogTorchII utilizes Monte Carlo
simulations to implement variations in communication links used as inputs. QoS and resource-consumption results are provided as
main outputs. Nonetheless, the scalability of FogTorchII is limited.

FogNetSim++ [20] extends OMNeT++ [21] to enable users to deeply model large fog networks. FogNetSim++ allows the
inclusion of mobility models and custom scheduling policies. However, as an extension of OMNet++, it is focused on networking
parameters, such as execution delay, packet error rate, handovers, and latency. Therefore, FogNetSim++ presents limitations to
incorporate complex orchestration, resource managing, and energy-efficiency strategies. Similarly, ECSim++ [22] extends the
OMNeT++ simulator by employing the INET framework to implement Edge-Computing environments and communications, per-
formance and energy consumption models.

Table 1
Fog and Edge simulators comparison, modeled attributes, data centers are denoted as DC.

FogNetSim+ iFogSim FogTorchII EgdeCloudSim IOTSim EmuFog Fogbed

Target system:
Fog Fog Fog Edge (IoT) Edge(IoT) Fog Fog
Infrastructure:
Distributed DC Cloud DC Latency Cloud DC Cloud DC Network links Virtual nodes
Sensors Sensors Bandwidth Network links Latency fog nodes Switches
Fog nodes Actuators WLAN/LAN delay Bandwidth Routers Instance API
Broker Fog devices Bandwidth Network links
Network links Network links
Delay Delay
Handovers Network
Bandwidth Energy cons.n
Application:
Fog network data stream Fog applic.s Mobile Edge IoT Fog Fog network
Bandwidth Energy cons.
Consumption:
RAM/CPU Power RAM/storage RAM/CPU RAM/CPU/storage Workload RAM/CPU

Allocation policies Failure (mobility) Bandwidth
s Workload

Mobility:
Yes No No Yes No No No
Scalability:
Yes No No No Yes (MapReduce) No No
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RECAP [23,24] enables the modelling of complex and scenario-specific requirements to find optimal solutions for resource
management in Edge-Computing systems. This project involves several simulation tools focused on networking areas, such as: (a)
Network Function Virtualization (NFV); (b) Virtual Content Distribution Networks (vCDN); and (c) Smart cities. Notwithstanding,
some simulation tools are difficult to manage and configure, and, in general, the simulators cannot be easily extended or modified.

The analysis performed show that the current simulation tools have, in general, the following drawbacks:

1. Poor performance of CloudSim-based solutions when large-scale scenarios are considered;
2. Network-only-oriented frameworks lack of the global and complex orchestration, resource-managing and energy-efficiency

models needed to correctly evaluate green Edge-Computing environments;
3. Difficulty to modify or extend the simulators.

In this work, the Sphere simulation tool is proposed to overcome the aforementioned limitations. Sphere extends the previously
developed SCORE and GAME-SCORE simulation tools [11,13], which, in turn, follow the design and simplifications described on the
Google Omega simulator [25]. Sphere enables the simulation of large-scale Cloudlet-Computing scenarios in a performant way by
focusing in resource-managing, scheduling and energy-efficiency policies while keeping the complexity of modelling the scenarios
and network details low.

3. Sphere architecture

In this work, we followed the model proposed by Robinson in [26] in order to design the general architecture of the Sphere
simulator, following this workflow:

1. Definition and initialization of the problem;
2. Determination of the modelling and general objectives;
3. Identification of the model inputs;
4. Identification of the model outputs; and
5. Determination of the model content and level of detail.

Based on this workflow and model, we present the resulting architecture of Sphere in Fig. 2
This architecture has led our software development, which is publicly available at Github: https://github.com/DamianUS/sphere.

Sphere follows a hybrid simulation paradigm, merging the discrete event approach and multi-agent models for graph orchestrators
and schedulers. The architecture has been divided in four main modules: two for higher-level edge-related responsibilities and two for
lower-level cluster-related responsibilities. Based on these responsibilities we have identified the following tiers:

1. The Edge Simulator tier, which is the core simulation engine. It is composed by: (a) the edge simulation execution, (b) the
Cloudlet models and (c) the workload generators. The Edge simulation module is in charge of leading the simulation process. It is

Fig. 2. Sphere general Aarchitecture.
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responsible for the general set-up of each experiment and its execution as well. This module expects a set of descriptors to
configure and run the experiments, as detailed in Section 4.1. Cloudlet models are represented by a graph, which determines the
structure and connections between each cluster of the Edge infrastructure. Moreover, it includes a Graph resolver that determines
the best path in the graph at a given time. We also have included an Orchestrator, which is responsible for the coordination
between clusters in the edge infrastructure. Finally the Workload-generation module is in charge of the creation of jobs and tasks,
and may follow various models. The Cloudlet-models module, including graph design, graph resolving and orchestration models,
are explained in detail in Sections 3.1 and 3.2, respectively. Similarly, the Workload-generation module is described in depth in
Section 3.3.

2. The Edge-Performance and Efficiency tier, which manages the performance and efficiency strategies at the higher Edge level
and includes the policies for the shutting-down and powering-on of Edge clusters, as well as the definition of the graph-resolution
strategy. These modules are described in detail in Section 3.4.

3. The Cluster Simulation tier handles the actual simulation engine, as well as the execution of the incoming workloads. As the
Edge-infrastructure is composed by numerous clusters, this tier will be instantiated once per cluster, enabling each cluster to have
a particular behaviour by applying different components, such as: resource manager, scheduling policy, and efficiency and
performance policies at cluster level. Within this tier, we have identified two modules: The Cluster scheduling models module,
which may employ various task-scheduling algorithms; and the main Cluster execution engine, which simulates the cluster ex-
ecution and is responsible for the configuration of the cluster (number of machines and their characteristics, including memory
and computing capacity) and for the tracking and update of the cluster status (e.g., the energy state of the machines, such as idle,
off, on, and executing).

4. Finally, the Cluster Efficiency tier defines the scheduling strategy that makes the actual decision of task deployment. It is also
responsible for the selection of the resource-managing model for each cluster. Centralized resource-managing strategies employed
in industry commonly fall into the following models: monolithic, two-level and shared-state. More models may be implemented,
such as fully-distributed and hybrid alternatives. This tier is also responsible for the modelling of the energy-efficiency strategies
to be applied to the servers at a cluster level. This tier is described in Section 3.4.

The benefits of this architecture may be summarized as follows:

i Allows researchers to evaluate various orchestration models and their implications. These orchestration models may include
centralized models, such as monolithic, two-level, shared state, as well as fully-distributed and hybrid approaches.

ii Efficiency and performance strategies can be mixed at two levels: the edge-infrastructure level and cluster level in an independent
way.

iii Workload generation may follow the diverse patterns present in Edge-Computing scenarios.
iv The modules related to the graph modeller and resolver enable other researchers to implement various strategies to determine

best paths for a cluster to reach its neighbors.
v Each cluster acts in an independent manner, including its own cluster configuration, resource-managing, scheduling and effi-

ciency models.

3.1. Graph model

In this section we formalize the model employed by Sphere to represent the structure of the network of clusters as a weighted
directed graph. Such model enables the application of graph-based algorithms to achieve the objectives, both in terms of performance
and energy efficiency in Edge-Computing environments. Here we focus our attention on the ‘Graph modelling’ component inside the
Cloudlet models part of the Edge Simulator Tier illustrated in Fig. 2.

Formally, our simulator models the Edge-Computing network as a directed weighted graph =G V E( , ), where V is the set of nodes
which represents each cluster in the network and the data sources (sensors, user devices, etc.); and E denotes the set of edges
representing the links between the clusters. This representation is shown in Fig. 3. We assume that we have an underlying network
where all clusters are connected between them, directly or indirectly, so we are interested in a graph using just a subset of the edges:
the direct ones, the ones that connect the clusters faster.

Given a node (cluster), the graph definition is completed by stating its attributes: the load of the cluster, generated according to a
chosen probabilistic function:

• Uniformly distributed: for jobs that are arriving at uniform rate, of a uniform size and consuming the same amount of resources.
• Exponential distribution: the arrival time between jobs, the number of tasks of a job, and the duration of the tasks withing a job

are sampled from exponential distributions.
• Exponential built from a trace file: both the duration and the number of tasks of all jobs are sampled from exponential dis-

tributions built from a trace file.
• Empirical distribution: generates workloads that reproduce the behaviour found in a given trace file.

Each cluster may be in one of the following four statuses: SWITCHED ON, SWITCHED OFF, POWERING-ON and SHUTT-
ING-DOWN. Regarding the edges between two given nodes i and j, from the C available clusters, …i j C, 1, 2, , we are interested in
the bandwidth bi,j, the latency li,j and the congestion ci,j of the link between node i and j, which define the status of the network.
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Therefore, the score scorei,j indicates the availability of the network link between i and j. It is used as a metric that includes network
related features (congestion, latency, etc.) as well as some cluster metrics (like the load of the destination cluster θj) that may affect
the data transmission performance. The score of a network link between nodes i and j is computed as follows:

= + + +score n k b n k l n k c n k n k( , ) * ( , ) * ( , ) * ( , ) * ( , )i j b i j l i j c i j j, , , , (1)

where = …n N1, 2, , k is the edge from i to j for each time step = …k K1, 2, , . The weights ωb, ωl, ωc, ωθ may take values from the
interval +( , ). Such a definition allows the modelling of bidirectional cluster links, but the score in each direction may be
different due to different cluster loads.

Sphere provides the ability to dynamically re-compute the attributes of the elements in the graph while the simulation is running
and, therefore, these attributes are changing. Together with the graph model, Sphere includes a specific component that, given a
graph model representing the network, applies different graph-based algorithms to obtain useful insights from it in terms of sche-
duling and energy efficiency. Focusing on this last aspect, Sphere provides different graph-based efficiency strategies in the ‘Edge
performance and Efficiency Tier’:

• Energy Efficiency as a max-flow min-cut problem [27]: this well-known algorithm allows Sphere to obtain a list of candidate
clusters to be switched-off by computing the set of edges with minimum sum of their weights, or the maximum flow of the
network (see Fig. 4). In this case we have two options for the selection of candidates: we may consider those clusters with out-
going edges affected by the ‘cut’, or those that do not receive incoming links once the edges in the ‘cut’ are removed from the
graph. This algorithm has been proven useful to face scheduling problems [28].

• Energy Efficiency as a shortest path problem [29]: by computing the shortest path from each data source to the main cluster, we
can switch-off those clusters not present in any of those paths.

• A variation of the previous point consists in the computation of the closeness or the betweenness of each node in the graph, being
candidates to be switched-off those with a lower value of the metric.

In terms of the performance of the Edge-computing network, Sphere can take advantage of the well-known PageRank algo-
rithm [30] and its variants, by computing a personalized PageRank of nodes according to their loads and the capacities of the edges in
the network, in order to select the best nodes to send the data to (see Fig. 5). Through the ‘graph descriptor’ of Sphere, it is possible to
define node attributes intended to store the PageRank score or any other centrality measure that can be used in the ‘resolver strategy’
of the ‘Edge Performance and Efficiency Tier’.

Finally, the modular architecture of the simulator enables the definition of different graph topologies through the implementation
of various graph models. In this way, we can perform experiments with the above discussed graph structure or any other possible
graph representation included as a graph ‘descriptor’ (see Fig. 2). In addition, it is possible to specify the equations that calculate the
weights of nodes and edges in terms of the aforementioned attributes, as follows:

Fig. 3. Example of a graph model: nodes representing clusters, and edges representing the connectivity between them, in terms of bandwidth,
latency, and network congestion. The score of a network link is a metric that takes into account the network features together with the load of the
destination clusters.
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= …relevance F load status( , , )i
apriori

i i (2)

= …weight W b l c load status( , , , , , )ij ij ij ij j j (3)

where F: * and W : * , are given functions of i and j∈ V and [i, j] ∈ E is the edge from node i to node j.
According to this model, various graph-based algorithms based on max-flow min-cut, shortest-path and Pagerank may be im-

plemented in the simulator.

3.2. Orchestrator model

The orchestration models of the Cloudlets (edge clusters) may follow three general paradigms: centralized, hybrid and distributed
orchestration models. When a centralized strategy is employed, all the decisions are coordinated by a central agent, including the
business-logic, state of the edge infrastructure (stored as a graph) and the graph resolver.

When a hybrid model is selected, each cluster has the responsibility of deciding where to deploy their dynamically-generated
workloads. Within this approach, Sphere can be adapted to run at least these solutions:

Fig. 4. Example of min cut (B) on a Sphere graph model (A): clusters with no incoming edges in the cut (slashed lines) can be considered as
candidates to be switched off. The grey dotted lines represent alternative paths used by data sources to communicate with the working clusters.

Fig. 5. Example of a PageRank computation in order to obtain the best clusters to send the data to.
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1. Each node keep a copy of the graph, so the orchestrator is in charge of updating their information periodically. In some cases this
solution can lead to nodes having an outdated copy of the graph state, which may result in sub-optimal decisions, or even in
deploying tasks on shut-down nodes. In this case, the node is forced to query the orchestrator for a new fresh copy of the graph
and to make a new scheduling decision.

2. There is a centralized copy of the graph maintained by the orchestrator. In this case, each node queries a centralized copy of the
graph to the orchestrator, and makes a scheduling decision based on that copy. In this case, the orchestrator has to wait for the
decision of this node before offering the graph to other nodes. Thus, the graph is locked while a node is making decisions. This
approach prevents nodes from making decisions over an outdated copy of the graph state, but may cause bottlenecks if the
frequency of decisions is very high or the connection between the nodes and the orchestrator has high latency or is congested.

Both, centralized and hybrid approaches, need a specific node, usually the cloud node, to run the orchestration logic.
The advantages of the centralized model includes the easiness of the implementation and deployment, as well as the decrease of

network traffic between clusters and the centralized agent that performs the orchestration logic. The advantages of hybrid approaches
include the possibility of each cluster running a different graph resolver strategy that could suit better to the particular cluster
requirements, as well as the minimization of bottlenecks due to the execution of the graph-resolving algorithm.

Sphere currently offers centralized orchestration, but it supports the implementation of hybrid approaches and fully distributed
approaches, which are still in development.

3.3. Workload model

In this paper, we extend the workload model presented in SCORE in order to include the workload characteristics and generation
patterns present in Internet of Things and Edge-Computing paradigms. Therefore, the atomic work unit to be executed in a particular
machine is called Task, Taskn, which compose Jobs, Jobm, which, in turn, compose Workloads Workloadp:

= …Workload Job Job Job[ , , , ]p
p p

J
p

1 2 p (4)

for =p P1, 2, ., and

= …Job Task Task Task[ , , , ]m
p p m p m

N
p m

1
,

2
, ,

p m, (5)

for = …m M1, 2, , where P, Np,m, Jp, M denotes the number of elements concatenated in each vector. Each workload belongs to one of
the following categories:

• Application type. There are two main groups of application types:
a) Batch jobs, which perform a given set of instructions and then finish. MapReduce jobs are an example of a Batch job; and
b) Service jobs, which represent long-running jobs with no determined end. Long-running services, such as databases, streaming

engines, and web servers are representative Service jobs. The duration/makespan of Service jobs are not usually affected by
bandwidth and computation limitations, since they are usually killed by edge infrastructure operators.

• Resource usage. We consider two kinds of jobs according to which resources are under pressure when they are deployed:
a) Data-intensive jobs. These jobs are composed of tasks which lightly process large amounts of data. The tasks of these jobs

require large amounts of bandwidth and data, but low computing capacity.
b) Compute-intensive jobs. These jobs are composed of tasks which perform complex computations. Therefore, the tasks require

high computing capacity, while they do not require long data transmissions.
• Deployment requirements. Two types of jobs are considered in this work depending on where jobs can be deployed:

a) Cloud-only jobs. These jobs has permanent storage or computing requirements. Only centralized Cloud-Computing infra-
structures can process such jobs.

b) Flexible jobs. These jobs may be executed by any node, since no special requirements apply to them.
. It should be borne in mind that the completion time of the tasks may be negatively affected by network/computing lim-
itations.

The total workload:

…Workload Workload Workload[ , , , ]P1 2 (6)

to be processed by the Graph =G V E( , ), is generated by a set of Workload Generators …WG g G, {1, 2 . }g . Each Workload Generator
WGg usually represents a geographic area where workload patterns and users are similar. Each Workload Generator employs a finite
number of Generation strategies …s s s, , , ,g g g

S1 2 g
such as statistical distributions, to simulate the arrival of users.

In this work, we implement two main types of workload generation strategies:

• Static strategies: These generation strategies usually employ statistical distributions, such as Exponential and Weibull dis-
tributions to generate all the Jobs to be processed during the simulation time, as well as their attributes. Therefore, static stra-
tegies have no direct impact on the runtime environment and are usually used to represent the workload generated by final users.

• Dynamic strategies: These generation strategies take into account the processed workload in a particular window time and the
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whole graph state in order to generate new jobs. Cloudlets (edge clusters) employ these strategies to generate aggregation
workloads, which must be stored and processed in centralized Cloud infrastructures.

The following job attributes are taken into account in this work for all kind of workloads:

• Geographical position, the “latitude” ϕ and The “longitude” λ which may fall within the Graph and workload generator borders;
• Inter-arrival time, tn, representing the time elapsed between two consecutive jobs: job number n and job number +n 1;
• Number of tasks Np,m of the job m in the workload p;
• Tasks duration …d Task Task Task([ , , , ])p m p m

N
p m

1
,

2
, ,

p m, for this job, which includes a makespan-degradation model due to poor net-
work/computing performance. We implemented new module responsible for the computation of the tasks duration considering
the graph =G V E( , ), and the cluster state (representing the state of the servers), for each cluster. Additionally, the task initial
duration …d Task Task Task([ , , , ])p m p m

N
p m

0 1
,

2
, ,

p m, has been added;
• CPU, memory, and bandwidth requirements of each task.

.
In this work, we follow the Edge Computing and Internet of Things literature trends presented in [31], where IDC estimates that

approximately 40% of the data will be analyzed on edge nodes and clusters (cloudlets). Synthetic workloads following these industry
trends are generated for each simulation run. Deeper explanations on the synthetic workload generation patterns can be found
in [32].

3.4. Energy and performance-awareness model

Sphere has been designed to be aware of energy consumption and cluster performance from its roots. The general architecture
includes two different tiers to achieve this goal: a general Edge performance and efficiency tier and a cluster tier that includes
efficiency and performance strategies at cluster level. This higher level Edge tier makes two main decisions:

(a) to shut down or to power on an Edge cluster (b) graph resolution, which determines the best Edge cluster for a job to be
deployed.

The former decisions are performed taking into account the efficiency strategies and may affect performance as well. Efficiency
strategies may be: (a) Deterministic strategies, such as Always switch off if possible; and (b) Probabilistic strategies, which employ
statistical distributions. It is important to notice that a cluster can not be shut down if some tasks are currently deployed on its
resources.

Cluster candidates to be switched off can be selected by executing one of the aforementioned graph-based algorithms listed in
Section 3.1.

The latter decisions made by the Graph resolver have an important impact on the workload that a cluster must process at a given
moment. Graph-resolving strategies may range from fully occupying clusters (so other clusters may be left idle to shut them down) to
more performant and less energy-efficient solutions, where the workloads are spread among all nodes.

The lower-level Cluster-Efficiency tier is in charge of determining whether a machine has to be shut down, left in idle state, or
powered on. These decisions are made by the efficiency strategies at cluster level. Similarly to Edge-level decisions, these choices will
affect the internal cluster performance: typically the lower the number of available resources, the worse the performance achieved.
Finally, it is important to notice that other decisions may also impact on the general efficiency and performance of a cluster, such as
those made by the resource-managing and scheduling strategies.

The computation of the energy consumed by the edge infrastructure is the result of the sum of the energy consumed by each
cluster. Similarly, the energy consumed by a cluster is computed based on the energy consumed by its servers, which, in turn, depends
on the resource energy states: ON (executing a task), IDLE (waiting for a task to be deployed), SWITCHED-OFF, POWERING-ON, and
SHUTTING-DOWN.

4. Experimentation inputs and outputs

4.1. Experiment design parameters

In Appendix A, the key parameters of the simulator used in experiments are presented.

4.2. Experimentation output results

The results provided by Sphere extend those provided by SCORE. Appendix B presents the key performance indicators for each
workload. In the same way, Appendix C presents the key performance parameters for each computing cluster.
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5. Experimentation example

5.1. Experimentation environment

In this Section, we propose an example consisting on the following four simple Internet of Things scenarios where the proposed
simulation tool can be analyzed and evaluated, and the results compared to those provided by centralized Cloud-Computing infra-
structures.

1. Cloud-only scenario. In this use case, the workload is processed by a centralized Cloud-Computing data center composed of 500
high-computing-capacity servers, as shown in Fig. 6. 4 workload generators, one for each quarter of the area, equipped with static
strategies based on Exponential distributions are employed in this scenario. This use case is modelled to show the limitations of
centralized environments.

2. Cloudlets-Low Computing power scenario. The workload is processed by 4 Cloudlets composed of 500 low-computing nodes
each, such as Single-Board-Computers (SBCs) or similar, as shown in Fig. 7. This scenario is modelled to present the limitations in
terms of computing power of isolated Cloudlets. 4 workload generators, one for each quarter of the area, equipped with static
strategies based on Exponential distributions are employed in this scenario.

3. Collaborative High-Performance Cloudlets + centralized cloud scenario. This environment is comprised of 4 Cloudlets,
which are composed of 60 Cloud servers each, and the aforementioned centralized Cloud data center. The mix of data-intensive
and computing-intensive workloads is generated following current trends in order to be distributed between Cloudlets ( ∼ 40% of
workload) and the centralized Cloud ( ∼ 60% of workload). 8 workload generators are employed in this scenario: four of them
equipped with static strategies based on Exponential distributions - one for each quarter of the area-, and four additional workload
generators - one for each Cloudlet -, which equip dynamic strategies to generate approximately 10% of the processed workload
and send it to the centralized cloud.

4. Collaborative Low-Performance Cloudlets + centralized cloud scenario. This environment replaces each High-Performance
Cloudlet composed of 60 Cloud Servers used in Scenario 3 by a Low-Performance Cloudlet composed of 500 Low-Computing-
Capacity nodes, such as those presented in Scenario 2. 8 workload generators are employed in this scenario: four of them equipped
with static strategies based on Exponential distributions - one for each quarter of the area-, and four additional workload gen-
erators, one for each Cloudlet, which equip dynamic strategies to generate approximately 10% of the processed workload and
send it to the centralized cloud. Fig. 8 presents this collaborative and low-cost scenario.

Fig. 6. Cloud-only environment designed to evaluate the limitations of centralized architectures when Internet of Things workloads are under
consideration. In this scenario, multiple sensors generate data-intensive and compute-intensive jobs, which are deployed to a single 500-machines
data center, which may impose poor network performance.
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Fig. 7. Cloudlets-Low Computing power environment designed to analyze the computing limitations of low-computing isolated Clouds when
compute-intensive Internet of Things workloads are under consideration. In this scenario, multiple sensors generate data-intensive and compute-
intensive workloads which are distributed among the Cloudlets uniformly according to the location. Each of the 4 cloudlets is composed of 500 low-
computing-capacity nodes, such as SBCs.

Fig. 8. Collaborative Cloud-Cloudlet environment. Data-intensive and computing-intensive workloads are generated following current trends in
order to be distributed between Cloudlets ( ∼ 40% of workload) and the centralized Cloud ( ∼ 60% of workload). First, the real-time workloads are
processed by nearby Cloudlets and then, more intensive computational jobs and the data to be permanently stored are sent to the centralized Cloud
infrastructure. In this scenario, the workloads, which are uniformly distributed based on geographical position, may suffer from the low computing
capacity of nearby Cloudlets and from poor network performance of the centralized data center.
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5.2. Experimentation example results

We simulated each simulation scenario with the following realistic parameters:

• A hybrid orchestration model and a Page-Rank-based graph resolver are employed.
• The time the scheduling algorithm needs to initially schedule a job, t ,sch

j is set to 150ms and the time required by the scheduling
algorithm to make scheduling decisions for each task, = t ,c

m
sch
cj

1 is set to 100ms. Network latency, t ,net
j is set to 10ms for Cloudlets,

while a range of values was considered for this parameter in Cloud facilities.
• Tasks number and duration were set equally for both experiment sets, while the processing power of SBCs is set to 20% of that of

Cloud servers.
• The power consumed by Cloud machines when executing tasks, P ,busy

i was set to 110W, and the power consumed in idle state, P ,idle
i

to 50 W per Cloud CPU respectively. Pbusy
i was set to 15W and Pidle

i to 8W per SBC.

More than 6500 Batch and 600 Service jobs were deployed during the seven-days operation period for each simulation experi-
ment. Both Cloud and Cloudlet clusters employed a centralized monolithic scheduler and started with 20% of resource utilization,
according to industry patterns [33].

Each simulation has been run five times during 7 days of operation time, and an ANOVA test with trust level p< .05 was
performed. The average values for all KPIs are shown in Tables 2 and 3 for data and compute-intensive environments, respectively.

These results represent a good example where the benefits and limitations of Edge Computing and Cloudlet architectures are
clear. In general, when the workload considered are composed of a vast majority of data-intensive and not-compute-intensive jobs, a
Cloudlet-only architecture may perform sufficiently well. On the other hand, centralized architectures show clear signals of network
and even scheduling congestion, which may lead to poor overall performance.

6. Sphere simulation performance

In this Section, we perform a set of simulations to show the performance and resource consumption of the developed simulation
tool.

The performance of Sphere depends mainly on the following parameters:

• Graph size, representing the number of clusters which compose the Edge-Computing infrastructure. The graph size has a direct
impact on the graph-resolver performance and memory consumption.

• Servers per cluster. The higher the number of servers in each cluster, the less performant the intra-cluster scheduler and more
memory is consumed.

• Number of jobs. Large-scale scenarios execute thousands or million of tasks per day. Each job and their tasks need to be

Table 2
Performance, energy consumption and costs results for each scenario for data-intensive workloads. tj

net represents the network delay, while tj
first and

tj
full represent the time a job spends in queue until its first task and its last task is scheduled, respectively. B means Batch jobs while S means Service

jobs.

Scenario t j
net CPU t s( )j

first t s( )j
full Makespan (s) MWh

(ms) occ. (%) B S B S B S cons.

Isolated
Cloud 50 20.80 5.70 5.56 5.70 5.56 99.21 2,003.19 9.73
Cloud 150 21.00 5.61 5.33 5.61 5.33 114.66 1,985.85 9.75
Cloud 300 21.11 6.26 5.33 6.26 5.33 142.27 1,980.65 9.76
HE-Cloudlets 10 22.46 0.91 0.77 3.21 2.46 88.24 2,058.18 4.77
SBC-Cloudlets 10 18.26 0.87 0.77 1.85 1.46 95.90 1,996.77 1.03
Collaborative
Cloud + 50 19.18 1.71 1.38 2.10 1.82 90.62 1,979.64 14.47

HE-Cloudlets 10 17.52
Cloud + 150 19.22 1.72 1.39 2.11 1.59 90.62 1,979.64 14.48

HE-Cloudlets 10 17.70
Cloud + 300 19.18 1.73 1.41 2.12 1.60 90.62 1,979.64 14.48

HE-Cloudlets 10 18.45
Cloud + 50 19.24 1.69 1.46 1.74 1.95 93.62 2,019.96 10.72

SBC-Cloudlets 10 14.11
Cloud + 150 19.19 1.70 1.47 1.75 1.72 93.62 2,019.96 10.72

SBC-Cloudlets 10 14.68
Cloud + 300 19.23 1.72 1.49 1.76 1.74 93.62 2,019.96 10.73

SBC-Cloudlets 10 15.13
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scheduled and deployed. It should be borne in mind that, in this Section, we consider each job to be composed, in average, of 165
tasks.

• Power-off policy. Every time a task is finished, a power-off decision is made on whether the machine that was executing that
particular task should be shut-down or not. Complex shut-down decisions may lead to severe performance impact.

The following parametrization is employed as representative: (a) 4, 16, and 32 clusters compose the Edge-Computing infra-
structure; (b) each cluster is composed of 100 and 500 homogeneous servers; (c) 10,000, 50,000, and 100,000 jobs, composed of
∼ 1,500,000, ∼ 7,500,000, and ∼ 15,000,000 tasks, respectively, as the incoming workload; and (d) three representative power-off
policies: never shut down any machine, always shut down all the machines if possible, and a shut-down policy based on the Gamma
distribution. Each experiment is run five times in a 2012 iMac, equipped with an 4-cores Intel Core i5 at 2,7 GHz (Turbo Boost up to
3,2 GHz), with 6 MB of level 3 cache, 16GB of RAM @ 1.600 MHz and an SSD. Only one CPU thread is made available for the
simulation process.

Table 4 presents the average of the performance results of the simulation tool and its memory consumption for the set of re-
presentative scenarios.

It can be noticed that the number of jobs increases proportionally the simulation time, but has a minor impact in memory
consumption. Furthermore, complex shut-down policies, such as the Gamma policy, which makes shut-down decisions based on the
Gamma distribution, have a notable impact both in terms of simulation speed and memory consumption. The number of servers per
cluster has a lesser impact than the aforementioned parameters.

In general, the memory consumption is stable, and even scenarios consisting of million of tasks (more than 15,000,000 tasks for
100,000 jobs) can be executed in a short period of time ( ∼ 3 min) due to the simplifications of the simulation model employed.

7. Conclusions and future work

In this paper, we presented a novel Edge-Computing simulator as an extension of the SCORE simulation tool: a performant
simulator focused on the evaluation of resource-managing, scheduling and energy-efficiency models in large-scale data centers. The
architecture of SCORE has been extended with the addition of the following modules: (a) The creation of graph-based Cloudlet
networks; (b) The creation of an easily extensible orchestration module, including out-of-the box orchestrators based on the im-
plemented cluster resource-managing models; (c) The creation of an easily extensible graph-resolution module, including out-of-the
box resolvers, such as the PageRank variation; (d) The extension of the workload-generation module to support dynamic strategies
and multiple parallel workload generators; (e) The extension of the workload characteristics to include geographic position, resource-
intensity and deployment requirements; and (f) The development of makespan-degradation models according to the cluster com-
puting capacity and network performance.

This simulation tool can overcome the limitations of CloudSim-based simulation tools and broaden the use cases of networking-
focused simulation tools based on OmNet++ thanks to the simple model used for networking and individual tasks.

Notwithstanding, Sphere lacks of important features which are to be developed in the future, such as:

Table 3
Performance, energy consumption and costs results for each scenario for compute-intensive workloads. tj

net represents the network delay, while tj
first

and tj
full represent the time a job spends in queue until its first task and its last task is scheduled, respectively. B means Batch jobs while S means

Service jobs. To compute acquisition costs, we took average Xeon server and Raspberry Pi 3 prices, 2500 and 35 dollars, respectively.

Scenario t j
net CPU t s( )j

first t s( )j
full Makespan (s) MWh

(ms) occ. (%) B S B S B S cons.
Isolated
Cloud 50 20.82 5.19 5.18 5.19 5.18 98.61 2,008,41 9.72
Cloud 150 20.82 5.23 5.22 5.23 5.22 98.61 2,008.41 9.72
Cloud 300 20.82 5.29 5.28 5.29 5.28 98.60 2,008.41 9.72
HE-Cloudlets 10 22.32 0.88 0.85 2.96 3.32 91.56 2,051.33 4.73
SBC-Cloudlets 10 34.37 3.02 3.23 62.05 69.94 575.97 2,066.43 1.67
Collaborative
Cloud + 50 19.21 1.75 1.42 2.09 1.64 90.62 1,979.64 14.47

HE-Cloudlets 10 17.42
Cloud + 150 19.27 1.76 1.43 2.10 1.65 90.62 1,979.64 14.48

HE-Cloudlets 10 17.65
Cloud + 300 19.28 1.78 1.44 2.11 1.67 90.62 1,979.64 14.48

HE-Cloudlets 10 18.07
Cloud + 50 19.24 1.81 1.43 6.41 6.37 241.46 2,002.00 10.84

SBC-Cloudlets 10 21.32
Cloud + 150 19.29 1.82 1.44 6.42 6.38 241.45 2,002.00 10.84

SBC-Cloudlets 10 21.34
Cloud + 300 19.34 1.84 1.46 6.44 6.39 241.46 2,002.00 10.85

SBC-Cloudlets 10 21.42
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• Addition of mobility modes.
• Ease of use and extendability of the implemented code.
• Visual interface to model the Cloudlet Graph and parameters.
• Addition of a real-time visualizer of the power and performance state of the clusters and machines.
• Incorporation of support for dynamic mobility workloads.
• More detailed network and the related performance-impact models.
• Workload migration models.

Table 4
Sphere simulation performance results in terms of simulation time and memory consumption. Graph size denotes the number of clusters composing
the Edge-Computing infrastructure. It should be borne in mind that each job is composed of 165 tasks in average.

Graph Servers per # Jobs Power-off RAM Time
Size cluster (10^3) policy (GB) (s)

4 100 10 Never off 2.61 5.29
4 100 50 Never off 2.74 18.07
4 100 100 Never off 2.92 33.37
4 500 10 Never off 2.65 6.93
4 500 50 Never off 2.78 25.93
4 500 100 Never off 2.96 43.96
4 100 10 Always off 2.62 5.16
4 100 50 Always off 2.75 24.83
4 100 100 Always off 2.93 44.33
4 500 10 Always off 2.67 11.05
4 500 50 Always off 2.79 57.73
4 500 100 Always off 2.97 90.91
4 100 10 Gamma 2.76 20.17
4 100 50 Gamma 2.85 61.54
4 100 100 Gamma 3.12 121.61
4 500 10 Gamma 2.82 20.44
4 500 50 Gamma 2.89 96.14
4 500 100 Gamma 3.17 191.13
16 100 10 Never off 2.82 6.76
16 100 50 Never off 2.96 24.80
16 100 100 Never off 3.15 32.70
16 500 10 Never off 2.86 8.45
16 500 50 Never off 3.00 27.12
16 500 100 Never off 3.20 47.42
16 100 10 Always off 2.83 7.88
16 100 50 Always off 2.97 29.62
16 100 100 Always off 3.16 45.17
16 500 10 Always off 2.88 16.26
16 500 50 Always off 3.01 57.16
16 500 100 Always off 3.21 118.47
16 100 10 Gamma 2.98 27.17
16 100 50 Gamma 3.08 66.36
16 100 100 Gamma 3.37 184.02
16 500 10 Gamma 3.05 99.13
16 500 50 Gamma 3.12 97.45
16 500 100 Gamma 3.42 198.79
32 100 10 Never off 3.08 7.38
32 100 50 Never off 3.23 29.52
32 100 100 Never off 3.45 38.97
32 500 10 Never off 3.13 10.40
32 500 50 Never off 3.28 30.45
32 500 100 Never off 3.49 46.62
32 100 10 Always off 3.09 11.17
32 100 50 Always off 3.25 24.84
32 100 100 Always off 3.46 52.46
32 500 10 Always off 3.15 24.41
32 500 50 Always off 3.29 59.25
32 500 100 Always off 3.50 176.09
32 100 10 Gamma 3.26 38.86
32 100 50 Gamma 3.36 68.41
32 100 100 Gamma 3.68 249.69
32 500 10 Gamma 3.33 24.48
32 500 50 Gamma 3.41 97.79
32 500 100 Gamma 3.74 206.71
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Appendix A. Configurable experiment parameters

Table 5
Configurable experiment parameters.

Parameter Description Values

Graph Parameters related to the edge infrastructure that
must be fixed for all experiments

#Nodes Function to compute the relevance or centrality
of each node in terms of its load, status,
connectivity in the network, etc. [1–∞)

#Edges Function to compute the capacity or weight
of the edge in terms of the network parameters
(latency, congestion, and bandwidth),
the load, and status of the connected nodes. [0–∞)

Orchestration models Orchestration strategies (centralized, distributed) Array
Graph Parameters related to performance iterated
performance in order to create all experiment variations
Graph-resolver Time spent by the resolver in order to compute the
algorithm time best candidate for deploying a job. This simulates [0.001–∞)

the performance of the graph resolver algorithm
Resolver The resolver algorithms to be run, such as: Array
algorithms PageRank variation
Graph energy Parameters related to energy iterated

in order to create all experiment variations
Node Shut-down The shut-down algorithm to be executed Array
policies at graph level, such as max-flow min-cut
Node Power-on The power-on policies to be run at graph level Array
policies
Cluster Parameters related to each node of the graph

Each node is independently instantiated
#Machines Data-center size [1–∞)
#Cores Number of CPU cores for every machine [1–∞)
RAM Amount of RAM in GB for every machine [0.1–∞)
Heterogeneity Flag to decide whether node machines Boolean

are heterogeneous
Machine Describe the performance of every machine Array, size:
performance in the node. The lower this value, number of machines
profile the more performant the server is [0.01–∞)
Machine Describe the security of every machine Array, size:
security in the node. The higher this value, number of machines
profile the more secure the server is [34] [1–5]
Machine Energy consumption of every machine Array, size:
energy in the node. The lower this value, number of machines
profile the more energy-efficient the server is [0.01–∞)
Power-on time Time required to boot a server (seconds) [0.1–∞)
Shut-down time Time needed to hibernate a server (seconds) [0.1–∞)
Cluster Parameters related to performance iterated
Performance in order to create all experiment variations
Per-job Time spent (seconds) by the scheduler to Array
algorithm time make a job-level scheduling decision, representing [0.001–∞)

the performance of the scheduling algorithm
Per-task Time spent (in seconds) by the scheduler to Array
algorithm time make a task-level scheduling decision, representing [0.001–∞)

the performance of the scheduling algorithm
Blacklist The percentage of machines not to be used Array [0.0–∞)
Inter-arrival Inter-arrival time generated for all jobs, Array

replacing it with a fixed time instead [0.001–∞)
Cluster Parameters related to performance iterated
Energy in order to create all experiment variations
Shut-down The shut-down policies to be run, such as: Array
policies Always power off, Exponential, and Gamma
Power-on The power-on policies to be run Array

(continued on next page)
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Appendix B. Key results related to the performance of each workload

Appendix C. Key results related to the performance of each cluster

Table 5 (continued)

Parameter Description Values

Scheduling The scheduling strategies to be run Array
These strategies are used by greedy

Sorting scheduling strategies to sort the candidate Array
servers for their later selection

Specific Parameters used by specific schedulers
Schedulers Mapping that describes how many and which Map
assigned to schedulers are assigned to which workload type [Scheduler name
workloads (Batch / Service) used by non-monolithic schedulers. ->

Each row adds a new scheduler to serve a workload Workload name]
Conflict Strategy used by parallel schedulers/orchestrators resource-fit
mode to decide whether a commit results in a conflict sequence-number
Transaction Decision used by parallel schedulers/orchestrators all-or-nothing
mode to be applied when a commit creates a conflict incremental

Table 6
Key results related to the performance of each workload.

Parameter Description Values

Queue time - The time jobs wait for their first task
first task to be scheduled (seconds). [0.0–∞)
Queue time - The time jobs wait for all their
all tasks tasks to be scheduled (seconds). [0–∞)
Makespan The time jobs need to complete

their execution (seconds). [0–∞)
Number of jobs left unscheduled after

Timed-out jobs 100 unsuccessful scheduling tries for a given job [0.0–∞)
or 1000 tries for any given task in a job.

Job scheduling Number of job scheduling attempts needed [0–∞)
operations to fully schedule jobs.
Task scheduling Number of tasks scheduling attempts needed [0–∞)
operations to fully schedule jobs.

Table 7
Key results related to the performance of each cluster.

Parameter Description Values
# Jobs Number of jobs processed for each workload type [0–∞)
CPU utilization Percentage of computing resources occupied [0.0–100.0]
RAM utilization Percentage of memory resources occupied [0.0–100.0]
Scheduler utilization Percentage of time the scheduler is working [0.0–100.0]
Energy-efficiency Indicators regarding the cluster

energy and resource efficiency.
Energy consumed Total cluster energy consumption (in kWh) [0.0–∞)
Energy saved Total energy saved by applying energy-efficiency
vs. policies compared to the same scenario with no [0.0–∞)
current system energy-efficiency policies applied (in kWh).
Shut-downs Number of shut-down operations. [0–∞)
Idle resources Percentage of resources operating in an Idle state [0.0–100.0]

on average.
KWh saved This represents the energy saved against the
per shut-down number of shut-downs performed. It shows the [0.0–∞)
operation stress suffered by hardware.
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