
Reconciling interoperability with efficient Verification
and Validation within open source simulation

environments?

Stefano Sinisi∗, Vadim Alimguzhin, Toni Mancini, Enrico Tronci

Computer Science Department, Sapienza University of Rome, Italy

Abstract

A Cyber-Physical System (CPS) comprises physical as well as software sub-
systems. Simulation-based approaches are typically used to support design
and Verification and Validation (V&V) of CPSs in several domains such as:
aerospace, defence, automotive, smart grid and healthcare.

Accordingly, many simulation-based tools are available to support CPS de-
sign. This, on one side, enables designers to choose the toolchain that best suits
their needs, on the other side poses huge interoperability challenges when one
needs to simulate CPSs whose subsystems have been designed and modelled
using different toolchains. To overcome such an interoperability problem, in
2010 the Functional Mock-up Interface (FMI) has been proposed as an open
standard to support both Model Exchange (ME) and Co-Simulation (CS) of
simulation models created with different toolchains. FMI has been adopted
by several modelling and simulation environments. Models adhering to such a
standard are called Functional Mock-up Units (FMUs). Indeed FMUs play an
essential role in defining complex CPSs through, e.g., the System Structure and
Parametrization (SSP) standard.

Simulation-based V&V of CPSs typically requires exploring different sim-
ulation scenarios (i.e., exogenous input sequences to the CPS under design).
Many such scenarios have a shared prefix. Accordingly, to avoid simulating
many times such shared prefixes, the simulator state at the end of a shared
prefix is saved and then restored and used as a start state for the simulation of
the next scenario. In this context, an important FMI feature is the capability
to save and restore the internal FMU state on demand. This is crucial to in-
crease efficiency of simulation-based V&V. Unfortunately, the implementation
of this feature is not mandatory and it is available only within some commercial
software. As a result, the interoperability enabled by the FMI standard cannot
be fully exploited for V&V when using open-source simulation environments.

?This article appears in Simulation Modelling Practice and Theory, Volume 109, May 2021,
102277. Elsevier. https://doi.org/10.1016/j.simpat.2021.102277

∗Corresponding author
Email address: sinisi@di.uniroma1.it (Stefano Sinisi)

Preprint submitted to Simulation Modelling Practice and Theory June 3, 2021

ar
X

iv
:2

10
6.

01
34

3v
1

 [
cs

.S
E

]
 1

 J
un

 2
02

1

https://doi.org/10.1016/j.simpat.2021.102277

This motivates developing such a feature for open-source CPS simulation envi-
ronments.

Accordingly, in this paper, we focus on JModelica, an open-source modelling
and simulation environment for CPSs based on an open standard modelling
language, namely Modelica. We describe how we have endowed JModelica with
our open-source implementation of the FMI 2.0 functions needed to save and
restore internal states of FMUs for ME. Furthermore, we present experimental
results evaluating, through 934 benchmark models, correctness and efficiency of
our extended JModelica. Our experimental results show that simulation-based
V&V is, on average, 22 times faster with our get/set functionality than without
it.

Keywords: Simulation, Verification and Validation, Interoperability,
FMI/FMU, Model Exchange, Cyber-Physical Systems

1. Introduction

Cyber-Physical Systems (CPSs) integrate physical (e.g., mechanical, elec-
trical, etc.) and software (e.g., Software Digital Radios, SDRs, control soft-
ware, etc.) subsystems. CPSs are widely used in several fields like aerospace,
smart grid, manufacturing, automotive, robotics, and health-care (see, e.g.,
[1, 2, 3, 4, 5, 6, 7, 8, 9]). As they couple the discrete and continuous dy-
namics of software and physical subsystems, respectively, CPSs are typically
defined by means of hybrid systems (see, e.g., [10]). Due to such a complex
nature of CPS models, simulation-based approaches are typically used to sup-
port design and Verification and Validation (V&V) activities. V&V aims at
checking whether the CPS model behaviour satisfies given specifications, e.g.,
safety properties (see, e.g., [11, 12]). In the literature, there are many examples
where V&V activity is performed by means of numerical simulations (see, e.g.,
[13, 14, 15, 16, 17, 18, 19] and [20] for a survey).

Many simulation-based software tools are available to support CPS design
such as, e.g., AUTOSAR, Automation Studio, AVL Cruise, CATIA, Control-
Build, Simulink, dSpace, EnergyPlus, IBM Rational Rhapsody, ICOS, IGNITE,
Dymola, JModelica, MapleSim, Ptolemy II and Virtual Engine. On one side,
the increasing availability of those software tools enables designers to choose the
tool chain that best suits their needs. On the other side, such an availability
poses huge interoperability (model exchange) and integration (co-simulation)
challenges between CPSs modelled using different languages and/or tools.

Furthermore, since physical and/or software subsystems are usually designed
by different companies (e.g., Original Equipment Manufacturers, OEMs), it is
also crucial to preserve Intellectual Property (IP) (see, e.g., [21, 22, 23]). As a
result, even carrying out simulations of those models may pose problems.

To overcome such interoperability problems, a standardised format, namely,
Functional Mock-up Interface (FMI), has been proposed in 2010 as an open stan-
dard. Models adhering to FMI are called Functional Mock-up Units (FMUs).

2

The current version, i.e., FMI 2.0, enables both Model Exchange (ME) and Co-
Simulation (CS). ME refers to, e.g., the usage of FMUs within different simula-
tion environments, while CS refers to, e.g., the distributed simulation of hetero-
geneous systems coupling together several FMUs. Recently, another standard
has been defined, i.e., System Structure and Parametrization (SSP), to describe
relationships among systems of interconnected FMUs and their parametrisation
in order to be used in different simulation environments [24].

Typically, simulation-based V&V of CPSs requires exploring different simu-
lation scenarios, i.e., sequences of controllable and/or uncontrollable exogenous
inputs. In this setting, to avoid simulating many times a common prefix of
different scenarios, the simulator state is saved in order to be restored later as
a start state. This improves efficiency of simulation-based V&V approaches by
simulating only once the same prefix of different simulation scenarios (see, e.g.,
[25] and citations thereof).

Not only V&V approaches benefit from such an optimization, but also,
e.g., approaches for the automated synthesis of plans/control strategies such
as [26, 27, 28, 29] where simulation-based Model Predictive Control (MPC)
methods are used and [30, 31] where a pharmacological treatment strategy is
automatically designed by means of simulations.

To this end, modern simulators (such as, e.g., Simulink [32]) offer their
own Application Programming Interface (API) allowing to save and restore the
internal simulator state on demand. As well as the other simulators, the FMI 2.0
API specifies a way of saving and restoring internal FMU states. This feature
is crucial to increase efficiency of simulation-based V&V.

Unfortunately, the implementation of such a feature is not mandatory ac-
cording to FMI 2.0 specifications. Hence, even if the FMI standard is currently
adopted by several modelling environments (see [33] for a full list) only a few
commercial software implement this feature within their generated FMUs.

Among them we note Dymola, a state-of-the-art modelling and simulation
environment [34], that is based on Modelica [35], an open-standard language for
modelling dynamical systems.

Modelica is an object-oriented, equation-based language for model-based
development. Moreover, it allows the definition of complex dynamical systems
as a network of smaller subsystems. Currently, Modelica is widely used by
many companies and it is adopted by several simulation environments: com-
mercial (e.g., SimulationX [36] and SystemModeler [37]) as well as open source
(e.g., Open Modelica [38] and JModelica [39]). However, none of the currently
available open-source Modelica environments implement the FMI 2.0 optional
feature for saving and restoring FMU states. As a result, the interoperability
enabled by the FMI standard cannot be fully exploited for V&V when using
those open-source environments.

This motivates developing such a feature for Modelica-based and open-source
CPS simulation environments.

In the literature the save-and-restore feature has been widely exploited for
formal verification both for finite state systems (see, e.g., [40, 41, 42, 43]) as well
as, in a simulation-based framework, for CPSs (see, e.g., [44, 45, 25]). We refer

3

the readers to those references and citations therein for general considerations
and more details about algorithms that exploit such a feature.

In this paper, we provide methods and tools to implement FMI 2.0 func-
tionalities that save and restore the internal FMU state for ME FMUs and we
focus on JModelica modelling and simulation environment.

Furthermore, we present experimental results to evaluate the correctness of
our proposed implementation. Finally, we also conduct an analysis of perfor-
mance focusing on V&V approaches that drive given FMUs by means of sim-
ulations. To do so, we analyse 934 FMUs generated from benchmarks models
taken from widely-used repositories and we show that, using our tool, a V&V
activity in the style of [44] is, on average, 22 times faster than without it.

We remark that such a proposed implementation closes an important gap
between commercial and open-source Modelica environments. Indeed, it enables
the application of the above-mentioned simulation-based V&V approaches to
CPSs modelled within open-source Modelica environments. Furthermore, it
also fosters the development of new approaches.

Moreover, the aim of this paper is also to encourage developers of open-
source simulation environments to implement modern functionalities of current
FMI specifications; and to push towards future FMI specifications that include
a mandatory implementation of such functionalities. For these reasons, our
proposed implementation is free and publicly available at the following repos-
itory: https://bitbucket.org/mclab/jmodelica.org, as a fork of the JModelica
2.1 open-source distribution, which is developed by Modelon1 and currently
available upon request.

The paper is organised as follows. Section 2 discusses related work. Section 3
describes our methodology to implement get/set FMU state functionality and to
evaluate correctness and performance of the proposed implementation. Section 4
presents experimental results. Finally, Section 5 draws conclusions.

2. Related Work

The Functional Mock-up Interface (FMI) is a widely used standard for
model-based design and analysis of Cyber-Physical Systems (CPSs). In the
literature we find many examples in different fields (see, e.g., [46, 47, 48, 49]).
Both Co-Simulation (CS) and Model Exchange (ME) paradigms are crucial to
handle large-scale systems (see, e.g., [50, 51]). The former is needed to inte-
grate and analyse in a distributed fashion different subsystems having different
characteristics as, e.g., the embedded solver needed to simulate the model (see,
e.g., [52, 53] for recent surveys). The latter is used to, e.g., import and/or
export models as black-box objects among different simulation environments in
order to analyse and simulate them with different solvers. As anticipated in
Section 1, we focus on Modelica-based open-source platforms compliant with
the last version of FMI for ME, namely 2.0.

1https://www.modelon.com

4

https://bitbucket.org/mclab/jmodelica.org
https://www.modelon.com

Tool Modelica Support
Get/Set FMU

state functionality

DACOSSIM - -
FMI4J - -

QTronic FMUSDK - -
JModelica • -

OpenModelica • -
PythonFMU - -

Simulix - -
Reference FMUs - ME & CS

Our extended
JModelica

• ME

Table 1: Open source modelling and simulation environments supporting FMI 2.0.

Several commercial and open-source modelling and simulation environments
support FMI 2.0 (more than 100, see [33] for a full list).

Among commercial environments, we note Matlab/Simulink [32]: a widely-
used and well-known platform for model-based design. It also offers its own
Application Programming Interface (API) for advancing forward and backward
the simulation by rolling back simulator states (thanks to a save/restore func-
tionality). However, being a commercial software, Simulink supports only ex-
port of Functional Mock-up Units (FMUs) for CS and does not implement
get/set functionality of FMI 2.0.

The FMI standard is supported also by some major Modelica-based com-
mercial modelling and simulation environments such as:

1. Dymola 2020 [34], which, to the best of our knowledge, is the only Modelica-
based modelling and simulation platform fully implementing FMI 2.0 stan-
dard. Hence, it generates FMUs for CS and also for ME having get/set
state functionality implemented.

2. SystemModeler 12 [37], which allows users to generate their models as
FMUs for both CS and ME. However, no FMU get/set state functionality
is implemented.

3. SimulationX 4.1 [36], which also provides an implementation to get/set
state functionality. However such a functionality is enabled only within
FMUs for CS.

As motivated in Section 1, we focus on open-source modelling and simulation
environments.

In Table 1 we compared several open-source platforms which support FMI
2.0. We split these platforms in the following groups:

1. The first group consists of all modelling and simulation environments sup-
porting Modelica. Among those, we note OpenModelica [38] developed by

5

the Open Source Modelica Consortium. OpenModelica translates Mod-
elica models into C code, which, in turn, is compiled in a black-box exe-
cutable format. Only upon user request it is also possible to wrap such
a format into an FMU. Conversely, JModelica is FMI-based. Indeed, it
directly generates FMUs from the input Modelica code. Hence, FMUs are
first-class citizens. This is the main reason why we focus on JModelica.
However, we would like to clarify that, with a little effort, our proposed
methodology can be quickly adapted to OpenModelica as well.

2. The second group consists of all modelling and simulation environments
which support FMI 2.0 but are not based on Modelica. Among those,
Reference FMUs [54] implements get and set of FMU states. However,
besides the fact that it is not Modelica-based, this software is just a small
tool used for debugging FMUs.

A work close to ours is the NANDRAND simulation platform [55] which
provides and simulates ready-to-use models to measure energy performance of
physical buildings. Such models can be exported as FMUs compliant to FMI 2.0
and support get/set state functionality. It is worth noting that NANDRAND
imports external FMUs (e.g., generated by a Modelica-based environment) and
couples them to NANDRAND models in a CS setting. However, as the authors
specify, such a use-case works if and only if the imported FMUs support state
saving and restoring.

Another tool related to our work is the FMI++ library [56] which is useful
to simulate FMUs for ME. One of the features implemented by this library is a
wrapper class, called RollbackFMU. Such a class stores, at each integration step,
the current state of the input FMU in order to enable a rollback functionality.
The functions used to save and restore the state are fmi2GetContinuousState

and fmi2SetContinuousState, respectively. However, as FMI specifications
clarify, such functions are not intended to set and get the complete FMU state
but just values of continuous variables of the given FMU. As Section 3.2 de-
scribes in details, this is not enough. The state of an FMU has a complex
structure where values of continuous model variables are just a small fraction
of it.

3. Methods

In this section, first, we introduce Functional Mock-up Interface (FMI) 2.0
for Model Exchange (ME) with a particular emphasis on JModelica Functional
Mock-up Unit (FMU) implementation. Second, we describe the steps needed
to enable saving and restoring of internal FMU states. Finally, we present
our approach to evaluate the correctness of our implementation and to mea-
sure performance when adopting such implementation within simulation-based
Verification and Validation (V&V) methods.

3.1. FMI 2.0 for Model Exchange

FMI ME 2.0 [57] specifies an interface to the model of a dynamical system
defined by differential, algebraic and/or difference equations. An executable im-

6

delays

0..*

dae equation blocks

jmi 0..*

solver

block 1

jmi t

z : real [1..*]
z last : real [1..*]
. . .
ext objs : pointer [0..*]

jmi delay t

jmi block residual t

jmi block solver t

jmi kinsol solver t

jmi linear solver t

Figure 1: Conceptual Unified Modelling Language (UML) class diagram of JModelica FMU
implementation.

plementing FMI is called FMU. Any simulation environment supporting FMI
can simulate an FMU produced by any modelling environment. In particular, an
FMU is a ZIP archive consisting of the following parts. First, C code and/or bi-
naries implementing functions defined by the FMI Application Programming In-
terface (API). Second, an Extensible Markup Language (XML) document with
model metadata including, e.g., model identifier, names of variables and capabil-
ity flags. The latter allows omitting implementation of non-mandatory function-
alities. For example, the canGetAndSetFMUstate and canSerializeFMUstate

capability flags indicate whether FMU supports functionality to save/restore
and serialize/deserialize its internal state or not.

3.2. Enable saving and restoring of JModelica FMU internal state

JModelica generates an FMU starting from a model written in Modelica. To
do so, Modelica equations are translated into C code and compiled to produce
an FMU. The output FMU consists also of a library (the same for all models)
implementing the functions of the FMI standard. In JModelica, such a library
is called RuntimeLibrary, and contains also relevant data structures responsible
for the internal FMU state.

The internal FMU state is a snapshot containing all the information needed
to simulate the FMU starting from the moment when the state was retrieved.

7

Figure 1 depicts the conceptual UML class diagram of such FMU internals
focusing on the components of the internal FMU state. The main class modelling
an FMU instance is jmi t. The internal state of a JModelica FMU is composed
of the following components.

Values of model variables. jmi t contains several arrays of real values (e.g.,
z and z last) to store the information related to the actual values of model
variables.

Delay buffers. Modelica equations can contain occurrences of delay(expr,t,tmax)
(delay operator) that return expr(time-t), i.e., the value of the expres-
sion expr t time units in the past. JModelica implements such an operator
by maintaining a buffer (jmi delay t) containing past values of expres-
sion expr from current time back to time-t. the optional argument tmax
guarantees an upper bound for the buffer size when t is not constant dur-
ing simulation. The buffer size increases until the current time is greater
than t (tmax when t is variable). After that, the size remains constant.

Internal state of algebraic solvers. Algebraic equations are split into blocks
(jmi block residual t) that can be solved independently. Each such
block is equipped with an instance of a linear (jmi linear solver t) or
a non-linear (jmi kinsol solver t) solver. These solvers are stateful, so
their internal state also makes part of the FMU state.

Internal state of external objects. Modelica allows to call external (e.g.,
defined in C) functions (array ext objs of function pointers), that can
have their own state. Note that there is no way to retrieve the state of such
external objects, since they are completely opaque. For example, Modelica
Standard Library (MSL) has the CombiTimeTable block that computes
its output signal by interpolation in a table. It is implemented using C
functions that read a table from a file into an in-memory data structure
and allow to query its values. From the JModelica FMU RuntimeLibrary
perspective, such data structure is just an opaque pointer and there is no
way to access it.

Note that, since the above data structures are static, FMU states have a
constant size (in bytes).

We extend JModelica FMU RuntimeLibrary by suitably implementing the
following FMI functions:

• fmi2GetFMUstate(). This method retrieves the current state of a given
FMU as an in-memory data structure, which is opaque to the user. We
refer to this method in the text as get().

• fmi2SetFMUstate(). This method replaces the current state of an FMU
with a given FMU state previously retrieved using fmi2GetFMUstate().
We refer to this method in the text as set().

8

si−1 si si+1

s

sim(τ) sim(τ)

si ←get()

sim(τ ′ ← rand())
set(si)

Figure 2: A glimpse of our strategy to evaluate correctness.

• fmi2FreeFMUstate(). This method frees up the memory occupied by a
given FMU state retrieved using fmi2GetFMUstate().

• fmi2SerializeFMUstate(). This method serializes the FMU state re-
trieved using fmi2GetFMUstate() into a byte array that can be stored in
a file or sent over the network.

• fmi2DeserializeFMUstate(). This method deserializes a given byte ar-
ray into an FMU state that can be then passed to fmi2SetFMUstate().

• fmi2SerializedFMUstateSize(). This method returns the size of a byte
array that is enough to serialize a state of the current FMU.

3.3. Correctness evaluation strategy

To validate our methods to get and set complete FMU states, we have to
check that a call to set() correctly replaces the current FMU state with an
FMU state obtained by a previous call to get(). To do so, we need to verify
that further simulations are correctly computed accordingly to the actual FMU
state.

In particular, we define the following two ways of performing a simulation
of an input FMU.

Given an FMU and a value τ ∈ R≥0, let s be the current state of the input
FMU, we denote with s′ = sim(τ) a function that simulates the input FMU
advancing its current state s for τ time units and reaching the state s′.

Given an FMU and values τ ∈ R≥0, τ ′ ∈ R≥0, let s be the current state of
the input FMU, we denote with s′ = sim?(τ, τ ′) a function that executes the
following instructions:

1. s←get();

2. sim(τ ′);

3. set(s);

4. s′ ← sim(τ).

For the sake of readability and without loss of generality, we omit the call to
fmi2FreeFMUstate() in the above instructions as its correctness does not affect
our validation process.

9

Intuitively, a call to sim?(τ, τ ′), for any τ ′ ∈ R≥0, is semantically equivalent
to a call to sim(τ), since they both advance the current FMU state for τ units
of time. This leads to the following remarks.

Remark 1. Given an FMU and a value τ ∈ R≥0 let s be the current state of
the input FMU. Then for all τ ′ ∈ R≥0, sim(τ) and sim?(τ, τ ′) reach exactly
the same state, formally sim(τ) = sim?(τ, τ ′)

Remark 2. Given an FMU and a value τ ∈ R≥0, let s be the initial state
of the input FMU, let sτ = s0, s1, s2, . . . , sn and s?τ = s∗0, s

∗
1, s
∗
2, . . . , s

∗
n be the

sequences of FMU states reachable from s by consecutive executions of sim(τ)
and sim?(τ, τ ′), respectively, for all τ ′ ∈ R≥0. If both get() and set() are
implemented correctly then, for all i ∈ {0, . . . , n}, si = s∗i .

To experimentally verify the above statement, we need to check that our
implementation works for all values of τ ′. This is of course impossible. To
overcome such an obstacle we employ a statistical approach based on hypothesis
testing where τ ′ takes values in a bounded interval B ⊂ R≥0 (see, e.g., [58, 59,
60]).

Given a value for ε ∈ (0, 1), we define a null hypothesis H0 which states that
the probability of sampling τ ′ ∈ B such that the state reached by executing
sim(τ) is different from the state reached by executing sim?(τ, τ ′) is greater
than ε. Formally H0 is defined as: H0 : Pr{τ ′ ∈ B . sim(τ) 6= sim?(τ, τ ′)} ≥ ε.

Then we apply statistical hypothesis testing [61] and try to reject H0 through
a given number of trials N .

At each trial we randomly sample a value of τ ′ ∈ B according to a uniform
distribution and we check whether the state reached by sim(τ) is different from
the state reached by sim?(τ, τ ′) or not.

If within N trials we find a value τ ′ such that sim(τ) 6= sim?(τ, τ ′), then τ ′

is a counterexample showing that our implementation is not correct. Formally,
we prove H0 when it holds.

On the other hand, rejecting H0 after N trials, even if it holds, introduces a
Type-I Error.

In particular, given a value δ ∈ (0, 1), the probability that we make an error
by rejecting H0 when it holds is bounded by δ.

This is shortly stated by saying that H0 is rejected with statistical confidence
1− δ. Finally, we conclude that the probability to sample τ ′ such that the state
reached by executing sim(τ) is different from the state reached by executing
sim?(τ, τ ′) is less than ε, formally Pr{τ ′ ∈ B . sim(τ) 6= sim?(τ, τ ′)} < ε.

By exploiting results of [58], given δ ∈ (0, 1) and ε ∈ (0, 1), the number of
trials is computed as N = dlog (δ)/ log (1− ε)e.

Algorithm 1 describes our Hypothesis Testing approach and Figure 2 sketches
our correctness evaluation strategy.

Note that at Line 6 of Algorithm 1, if, for a given τ ′, sim(τ) 6= sim?(τ, τ ′)
is true, we return such a τ ′ as a counterexample meaning that by simulating
the input FMU i times we reach a state proving that get() and set() are not
working correctly.

10

1 function evaluateCorrectness():
Input: FMU
Input: τ , simulation duration
Input: ε ∈ (0, 1)
Input: δ ∈ (0, 1)
Input: B ⊂ R≥0
Output: either (True,−,−) or a counterexample (False, τ ′, i)

2 N←
⌈

log (δ)
log (1−ε)

⌉
;

/* H0 = Pr{τ ′ ∈ B . sim(τ) 6= sim?(τ, τ ′)} ≥ ε */

3 for i ∈ [1, N] do
4 τ ′ ← rand(B);
5 si ← sim(τ); s← sim?(τ, τ ′);
6 if si 6= s then
7 return (False, τ ′, i) /* H0 is proved */

8 end

9 end
10 return (True,−,−) /* H0 is rejected */
Algorithm 1: Hypothesis testing approach to evaluate correctness of set()
and get().

The above considerations prove the following theorem.

Theorem 1. Given an FMU having get() and set() implemented, values
ε, δ ∈ (0, 1), a bounded interval B ⊂ R≥0 and a value for τ ∈ R≥0, Algorithm 1
is such that:

1. it terminates in N steps, where N =
⌈

log (δ)
log (1−ε)

⌉
;

2. when it returns True, with confidence 1−δ: Pr{τ ′ ∈ B . sim(τ) 6= sim?(τ, τ ′)} <
ε;

3. when it returns False, we have a counterexample, i.e., a value for τ ′ ∈ B,
proving that get() and set() are not correctly implemented.

In Section 4.3 we apply Algorithm 1 on different FMUs in order to validate
our implementation of get() and set().

3.4. Performance evaluation strategy

To evaluate performance of our implementation, we focus on simulation-
based V&V approaches. As anticipated in Section 1, simulation-based V&V
of Cyber-Physical Systems (CPSs) requires to explore all simulation scenarios.
A simulation scenario is a sequence of exogenous inputs to be injected to the
given CPS model, i.e., FMU under verification. In this setting, the given FMU
(representing the CPS under verification) is driven in the space of all possible
simulation scenarios by means of a visit (see, e.g., [62, 63, 64] and citations
therein). The space of all simulation scenarios is defined as a tree where each
edge is labelled with an exogenous input and each node represents the FMU

11

x(0) = 1.0

x(T) = 0.3

−1

x(T) = 2.7

1

x(2T) = 0.1

−1

x(2T) = 1.0

1

x(2T) = 1.0

−1

x(2T) = 7.3

1

Figure 3: Example of a tree of simulation scenarios. Nodes denote FMU states whereas edges
denote injected input values.

state reached by injecting the sequence of inputs associated to the path leading
to that node.

As an example we can consider an FMU defining a simple hybrid system
(see, e.g., [10]) having only one state variable. In particular, let x be a signal
(i.e., a real-valued function of time) and, given a positive real number T (time
step), let u be T -piecewise constant signal, i.e., a signal changing its value only
at time instants of the form kT (k = 0, 1, 2, 3, . . .). In the following we assume
that u takes values in the set {−1, 1} (i.e., for all t, u(t) ∈ {−1, 1}). When
writing equations, as usual, we will write x for x(t) and ẋ for ẋ(t).

Given signals x and u as above, we define the behaviour of our simple ex-
ample of hybrid system by means of the following differential equation:

ẋ =

{
−x if u is − 1

x if u is 1

Let x(0) = 1 be the initial state of this FMU and 2T the simulation horizon.
Figure 3 depicts all possible simulation scenarios starting from such an initial
state and illustrates all state traversed by the FMU when the input function
u(t) can change value (i.e., at each kT with k = 0, 1, 2). Note that, as described
above, states reached by different sequence of inputs (tree paths) are different
for us.

Typically, the goal of a simulation-based V&V activity is to search for an
input sequence driving the system to an undesirable (error) state (e.g., to verify
a safety property stating that nothing bad ever happens) or to a desirable state
(e.g., to verify a liveness property stating that something good sooner or later
will happen). Checking a liveness property typically requires looking at the
future evolution of the system. As a result, in general, liveness properties cannot
be casted as safety properties (see, e.g., [65]). However, in a bounded horizon
setting, such as the one in our simulation-based setting, liveness properties can
be casted as safety properties (see, e.g., [66, 67, 68]) stating that a given state
(desirable or undesirable) is reachable, with some suitable input, within the

12

given time horizon. Accordingly, w.l.o.g., we can cast simulation-based V&V
as the problem of finding an input sequence driving the system to a given state
within the given time horizon.

If such a state is not found, the time horizon is increased until an undesirable
or desirable state is found, or some upper bound is reached, namely, the provided
simulation horizon h (see, e.g., [69, 70]). This is equivalent to search for the
shortest sequence of exogenous inputs that leads to a given state (see, e.g.,
[71] and [42, 43, 72] in a finite state context) in the space of all simulation
scenarios of length h. The simulation horizon h is typically set to a value large
enough to guarantee that, with high confidence, the undesirable or desirable
state (if any) is reachable with an input sequence of length at most h. To
keep h small a Breadth-First Search (BFS) is used (e.g., as in bounded model
checking [73]). Furthermore, as anticipated in Section 1, such simulation-based
V&V approaches are similar to several planning and optimisation approaches
such as, e.g., [74, 75, 76, 77, 31], where simulation scenarios and exogenous
inputs correspond, respectively, to plans and actions to be taken in order to
drive the system into a goal state.

In this setting, in order to decrease the number of simulations and, in turn,
the computation time of the V&V activity (or the optimisation task), it is im-
portant to avoid simulating many times prefixes common to different simulation
scenarios. To do so, it is crucial that the given FMU has the save-and-restore
state functionality implemented as FMU states can be saved in memory in order
to be restored later as initial states of the simulation.

Hence, such an exploration visit in the tree of simulation scenarios is a
demanding application to evaluate our proposed implementation. In particular,
we distinguish two kind of approaches. The former uses FMUs that are not
equipped with the save-and-restore feature of FMI 2.0. We refer to this approach
in the text as without-save-restore visit . The latter is a save-restore visit that
uses our generated FMUs implementing those FMI features to save and restore
FMU states.

It is worth noting that during a save-restore visit , since the state space to
explore can be huge, to keep in memory the whole state space can be infea-
sible. To this end, several solutions have been devised in the literature (see,
e.g., [44, 45, 25]). The general idea is to dynamically choose the best states to
store and those to forget (compatibly with memory constraints). Also, when-
ever no further inputs can be injected from the current node of the tree, the
corresponding simulator state can be removed from memory. We refer the read-
ers to those references for more details and algorithms that efficiently satisfy
memory constraints during the visit. Accordingly, here we focus on evaluating
performance of our implementation of the save-and-restore feature in terms of
simulation time.

The remainder of this section is organised as follows. First, we define the
space of simulation scenarios of a given CPS model (i.e., FMU under verifica-
tion) as a tree (Section 3.4.1). Second, we show that the time needed to explore
such a tree (for both a without-save-restore visit and a save-restore visit) strictly
depends on the time needed to drive the input FMU through each node of the

13

tree (Sections 3.4.2 and 3.4.3). Last, we quantify the speed-up of a save-restore
visit (Section 3.4.4).

3.4.1. Tree definition

In our setting, we perform a visit of a balanced finite tree of depth h > 1,
where each tree node at depth 0 < i ≤ h has a constant branching factor b > 1.
The tree root corresponds to the initial state of the given FMU, while nodes
correspond to FMU states that can be reached through simulations from the
initial state. The edges of the tree correspond to possible actions that can be
taken during the visit, i.e., different values for the FMU exogenous inputs. For
example, in the tree of Figure 3, the branching factor, b, and the maximum
depth, h, are both 2.

Furthermore, to simplify calculations, during the visit we assume that the
simulation of the input FMU is advanced by a fixed quantity of τ ∈ R>0 time
units each time a new node is being visited (in our example τ corresponds to
T , i.e., 1 second). Also, to simplify our analysis, we assume that the execution
time of a simulation depends on the current FMU state and on the simulation
duration, i.e., τ , and not on values of exogenous inputs. This might not be
strictly true for each simulation, but it is a very reasonable assumption on
average for typical CPS models.

3.4.2. Cost of a without-save-restore visit

A without-save-restore visit aims at driving FMUs without get-and-set state
capabilities. Hence, when we have to explore a node in the tree, we need to
simulate the given FMU from its initial state up to the state denoted by such a
node. This means that a node at depth i > 0 can be reached after a simulation of
iτ time units from the initial state of the given FMU. We denote such operation
with sim(iτ). For example, in Figure 3, the state x(2T) = 0.1 can be reached
by means of a sim(2τ) operation, where τ = T , and by injecting u(0) = −1 and
u(T) = −1. As already stated in Section 3.3, sim() can be defined according
to FMI 2.0 specifications.

We define our cost function as C(i) = T (sim(iτ)), which measures the ex-
ecution time, T , to reach a node at depth i > 0. Finally, we define the total
execution time of a without-save-restore visit as the sum of the costs of each
single node in the tree:

h∑
i=1

C(i) bi (1)

3.4.3. Cost of a save-restore visit

A save-restore visit aims at driving FMUs by exploiting their get and set
capabilities in order to simulate only once each prefix common to different paths
of the given tree. To do so, each time a node at depth i > 0 has to be visited,
we perform the following steps:

14

si−1si−1 ←get()

. . .

uk
set(si−1)
sim(τ)

u1

set(si−1)
sim(τ)

ub

b

Figure 4: Usage of set() and get() to explore nodes during a save-restore visit

1. set(), to restore (load) the state corresponding to the node at depth i−1
as a start state of the given FMU;

2. sim(τ), to advance the current FMU state to the state reached after a
simulation of τ time units also by injecting the value for exogenous inputs
corresponding to the traversed edge.

3. get(), to store (save), e.g., on disk, the reached FMU state for further
steps.

For the sake of readability, we omit the time needed to perform a fmi2FreeFMUstate()
because it is negligible. Figure 4 outlines the above steps.

As in the previous section, we define a cost function, i.e., C?(i), which denotes
the execution time spent to visit a node at depth i > 0 during a save-restore
visit , as follows.

C?(i) = T (
1

b
get() + set() + sim(τ)).

Note that the get() is performed at depth i−1 (see Figure 4) as the correspond-
ing retrieved FMU state will be then used as a start state for all the children
of that node. However, to simplify the formulation we count such get() time
in the child nodes. Hence, each child node (at depth i) contributes 1

bget() to
the total get() time, i.e., the total get() time is amortised by the branching
factor.

Accordingly, along the lines of Eq. (1), the total execution time needed by
a save-restore visit to explore the whole tree space is equal to the sum of the
costs of each node:

h∑
i=1

C?(i) bi (2)

3.4.4. Speed-up of a save-restore visit

We define the speed-up, S(h, b), as the ratio between the cost of a without-
save-restore visit , Eq. (1), and the cost of a save-restore visit , Eq. (2), on a

15

perfectly balanced tree having branching factor b and depth h:

S(h, b) =

∑h
i=1 C(i) bi∑h
i=1 C?(i) bi

(3)

When the above ratio is greater than 1 it means that a save-restore visit is
faster than a without-save-restore visit .

Furthermore, we note that the above formula, i.e., Eq. (3), can be simplified
under the following assumptions.

First, the time spent for simulating an FMU for iτ time units, i.e., T (sim(iτ)),
is approximately equal to i× T (sim(τ)), that is i times the average execution
time of a simulation of length τ .

Second, we can use average execution times of get() and set(), i.e., T (get())
and T (set()), respectively. As Section 3.2 describes, this is motivated by the
fact that states of a given FMU have a constant size (in bytes).

In Section 4.4, we experimentally show that such assumptions are reasonable.
We rewrite C(i) as C(i) = i×T (sim(τ)) and C?(i) as C?(i) = 1

b T (get()) +

T (set()) + T (sim(τ)).
Hence, the speed-up of Eq. (3), S(h, b), can be written as follows:

S(h, b) =
T (sim(τ))

∑h
i=1 ib

i(
1
b T (get()) + T (set()) + T (sim(τ))

)∑h
i=1 b

i
.

This leads to the following proposition.

Proposition 1. Given C(i) = i × T (sim(τ)) and C?(i) = 1
b T (get()) +

T (set()) + T (sim(τ)), the speed-up of a save-restore visit is greater than 1,
i.e., S(h, b) > 1, when the following equation is satisfied:

1
b T (get()) + T (set())

T (sim(τ))
< ψ(h, b) (4)

where ψ(h, b) is a threshold defined as:

ψ(h, b) =

∑h
i=1 ib

i∑h
i=1 b

i
− 1 =

hbh+1 − (h+ 1)bh + 1

(b− 1)(bh − 1)
− 1. (5)

Remark 3. When b is very large, formally b → ∞, and h > 1, the speed-up
threshold ψ(h, b) approaches to h− 1, formally ψ(h, b)→ h− 1. Thus, Proposi-
tion 1 can be rephrased saying that S(h, b) > 1 when the following condition is
satisfied.

R(h, τ) =
T (set())

(h− 1)T (sim(τ))
< 1. (6)

16

5 10 15 20
Branching factor

98

98.2

98.4

98.6

98.8

99

T
hr

es
ho

ld

(h
,b

)

h=100

(a)

5 10 15 20
Branching factor

0.88

0.9

0.92

0.94

0.96

0.98

1

N
or

m
al

is
ed

 th
re

sh
ol

d
(h

,b
)

h=100
h=80
h=60
h=40
h=20
h=10

(b)

Figure 5: Threshold ψ(h, b) computed for h = 100 (a) and for different values of h (b). In the
right figure (b), our threshold is also normalised by h− 1 for presentation purposes.

Intuitively, Remark 3 says that when the branching factor of a given tree
is sufficiently large and the ratio R(h, τ) is less than 1, we expect that the use
of get/set state functionality speeds up a without-save-restore visit . Note that,
since the get() is executed once for each node of the tree and the retrieved
state is then used as many times as the value of the branching factor b of that
node (i.e., for each child node), the inefficiency of a get() is amortised among
those child nodes. Hence, even if for some model the average time of a get()

is high because the operation is inefficient, the term 1
bget() of Eq. (4) becomes

negligible. In Section 4.4.1 we show that our assumptions that motivate this
remark are reasonable for a large set of benchmark models.

In Figure 5a we show that, starting from small values of b, the threshold
ψ(h, b) rapidly reaches values towards the limit h − 1. This is true also for
different values of h as Figure 5b shows.

Hence, under our assumptions, given an FMU and a tree having a low
branching factor, namely 4-5, if the average execution time needed to perform
a set() operation is lower than the time to perform a simulation of a scenario
of length h − 1, then the speed-up of a save-restore visit with respect to a
without-save-restore visit is greater than 1.

In Section 4.4, we present experimental results regarding the speed up com-
putation on different FMUs by taking into account trees of different depths and
branching factors.

4. Experimental Results

In this section, we present experimental results to evaluate the correctness
and the effectiveness of our implementation against state-of-the-art case stud-
ies. After briefly describing such case studies, we evaluate correctness and we
finally show how our implementation enhances performance of simulation-based
Verification and Validation (V&V) approaches.

17

0 200 400 600 800 1000 1200
Number of model variables

0

10

20

30

40

50

60

70

80

90

100

M
od

el
s

(%
)

(a)

0 0.5 1 1.5 2 2.5
Number of model variables 104

0

10

20

30

40

50

60

70

80

90

100

M
od

el
s

(%
)

(b)

0 1000 2000 3000 4000 5000
Number of model variables

0

10

20

30

40

50

60

70

80

90

100

M
od

el
s

(%
)

(c)

Figure 6: Distribution of sizes of models within MSL (a), STS (b) and BMD (c).

4.1. Case studies

In Section 4.4 we see that, depending on the Functional Mock-up Unit
(FMU) at hand, different components of the FMU architecture are involved
during saving and restoring an FMU state.

To assess correctness and to evaluate performance on all such components
we evaluate our implementation by using FMUs generated from the following
widely established model libraries.

Modelica Standard Library (MSL): the official Modelica library collecting
models that are developed and reviewed by the Modelica Association (ver-
sion 3.2.2, https://modelica.org). It provides models and components
from different engineering domains such as mechanical, electrical, mag-
netic, fluid, thermal and control systems. The library contains both mod-
els defining standardised interfaces or building blocks and models that are
directly usable. For our purpose, we focus on the latter class of models,
which comprises 385 models having 150 model variables on average.

Scalable Test Suite (STS): a Modelica library of benchmark models useful
for assessing performance of large scale systems (version 1.11.4, see [78]).
The library contains 16 models covering electrical, mechanical, power and
thermal domains. Such models are scalable in terms of their size (i.e.,
number of variables). The STS provides also 207 ready-to-run models
validated by the authors and having an average of 2913 model variables.

BioModels Database (BMD): a well-known repository of mathematical mod-
els of biological systems taken from the scientific literature [79]. A subset
of these models, consisting of manually curated models, is widely-used as
a benchmark for Systems Biology Markup Language (SBML) simulators.
From such a subset, we used models already translated from SBML to
Modelica and validated in [80]. In total we consider 411 models having
370 model variables on average.

Figure 6 shows the distribution of model sizes in terms of the number of
model variables.

18

https://modelica.org

4.2. Experimental setting

All our experiments have been carried out on a High Performance Computing
(HPC) infrastructure (i.e., Marconi cluster at CINECA, Italy).

For each Modelica model within our datasets, i.e., MSL, STS and BMD, we
generated its FMU using our extended JModelica.

We manually excluded from our datasets those FMUs that are not compat-
ible with get/set state functionality. These are FMUs that use external objects
(as described in Section 3.2). This led us to exclude 49 (i.e., 12.73%) models
from MSL and 20 (i.e., 9.66%) models from STS. All models within BMD have
been included. Hence, in total, we excluded the 6.88% of all FMUs within our
datasets.

In order to assess correctness and evaluate performance of our implemen-
tation of get/set functionality, FMUs have been simulated using SUNDIALS

CVODE [81] solver by means of the PyFMI library [82]. For each FMU, we set the
value of τ to 1% of the FMU default simulation horizon, i.e., the value of FMU
default experiment stop time.

4.3. Correctness evaluation results

Correctness has been evaluated by means of the approach presented in Sec-
tion 3.3. In particular, for each of the 934 FMUs, we ran our Algorithm 1 to
assess that our implementation correctly restores a previously-saved FMU state.

To do so, we consider as B values from 0 to the default simulation horizon
of the given FMU and we set δ = 8% and ε = 2.5%. Thus the number of trials
has been set to N = 100.

During the sampling process, the inequality of FMU states (Line 6 of Algo-
rithm 1) has been checked through a bit-wise comparison. For all our 934 FMUs
our Algorithm 1 returned true, proving that our implementation is correct with
a degree of statistical confidence of 92%.

4.4. Performance evaluation results

In this section, we describe experimental results of our performance eval-
uation according to our strategy described in Section 3.4. In particular, in
Section 4.4.1 we evaluate performance of our implementation by a preliminary
analysis using results of Remark 3. Then, in Section 4.4.2 we compute the
speed-up of a save-restore visit with respect to a without-save-restore visit on
trees with different values of depth and branching factor.

4.4.1. Preliminary analysis

As a preliminary analysis, for each FMU, we computed the ratio R(h, τ) (see
Remark 3) to compare the execution time of a set() with the execution time
needed for simulating the given FMU.

Such an analysis has been conducted by taking into account different values
for the depth of the tree, i.e., h ∈ [1, 100].

To perform such an analysis we show that our assumptions (i.e., those de-
scribed in Section 3.4.3) are reasonable for our case-study FMUs. To do so, in

19

10-1 100 101 102

sim(h) (s)

10-2

10-1

100

101

102

h
si

m
(

)
(s

)

(a)

100 102 104

sim(h) (s)

10-2

100

102

104

h
si

m
(

)
(s

)

(b)

101 102

sim(h) (s)

101

102

h
si

m
(

)
(s

)

(c)

Figure 7: Correlation among the execution times (in seconds) of a simulation of duration
h × τ (on x axis) and h simulations of duration τ (on y axis), where h = 100. Each marker
represents an FMU within MSL (a), STS (b) and BMD (c).

20

20 40 60 80 100
Simulation Horizon (%)

10-2

100

102

T
im

e
(s

)

(a)

20 40 60 80 100
Simulation Horizon (%)

10-2

100

102

T
im

e
(s

)

(b)

20 40 60 80 100
Simulation Horizon (%)

10-2

100

102

T
im

e
(s

)

(c)

Figure 8: Execution times (in seconds) spent for performing set() during FMU simulations.
Each line represents an FMU within MSL (a), STS (b) and BMD (c).

21

Figure 7, we compared the execution time of a simulation of length i × τ with
the execution time of i simulations of length τ . As we see, these two quantities
are highly correlated. Indeed, the Pearson correlation coefficient, ρ, for MSL,
STS and BMD is 0.88, 0.79 and 0.99, respectively.

Moreover, in Figure 8, for each FMU, we show that the execution time (in
seconds) spent to perform a set() operation is almost constant during the FMU
simulation (from its start time to its simulation horizon).

There is also an atypical behaviour for two FMUs within BMD. In such
models, the delay operator is used and parameter tmax is always set to be as
large as possible (much larger than the given FMU simulation horizon). This
causes the size of the associated delay buffers to increase after each simulation
in order to store all needed delay variable values. For this reason, the size of
the internal FMU state also increases together with the execution time needed
to perform set() (and also get() as well).

Having clarified that our assumptions are reasonable, in Figure 9 we show
how R(h, τ) changes by varying the depth of the tree, for each FMU in our
datasets.

As we expected, for the majority of the analysed FMUs, the values of R(h, τ)
are either below 1 or they go below 1 for very small values of depth (namely,
< 20). This means that the cost of set() is very low with respect to simulations
in terms of computation time.

Also, there is one single FMU having R(h, τ) greater than 1 for all values
of depth. Such behaviour is explained by the fact that the larger the state of
a given FMU the slower the execution of set() in terms of computation time.
Hence, a without-save-restore visit performs better for those FMUs having a
very large state (thousands of variables, as for FMUs within STS) but very fast
in simulating. Of course, as we described in Section 3.4.3, this is strictly linked
also to the depth of the given tree which affects the length of simulations to be
performed in a without-save-restore visit .

Note that, R(h, τ) is less than 1 also for those two FMUs having a non-
constant execution time for set() (see Figure 8c).

4.4.2. Speed-up analysis

In order to perform a more in-depth analysis, we also computed our cost
functions for the without-save-restore visit , i.e., Eq. (1), and the save-restore
visit , i.e., Eq. (2), and finally our speed-up formula, i.e., S(h, b) (see Eq. (3)).

To do so, different values for the branching factor, i.e., b ∈ [2, 10], and for
the depth of the tree, i.e., h ∈ [1, 100], have been taken into account. Note that,
such chosen values are perfectly reasonable for real case studies. For example,
in [83, 31] a simulation-based approach consisting in a backtracking-based search
has been employed in a search space defined as a tree of depth equal to 55 and
constant branching factor equal to 3.

Figure 10 shows the average speed-up computed among FMUs within MSL,
STS and BMD when varying both the branching factor and the depth of the
tree.

22

2 10 20 30 40 50 60 70 80 90 100
Depth

10-4

10-2

100

102

R
(h

,
)

(a)

2 10 20 30 40 50 60 70 80 90 100
Depth

10-4

10-2

100

102

R
(h

,
)

(b)

2 10 20 30 40 50 60 70 80 90 100
Depth

10-4

10-2

100

102

R
(h

,
)

(c)

Figure 9: Computation of R(h, τ), where h ∈ [1, 100]. Dashed lines represent thresholds of
R(h, τ). Each curve represents an FMU within MSL (a), STS (b) and BMD (c).

23

(a)

(b)

(c)

Figure 10: Average speed-up (heat map) computed among FMUs within MSL (a), STS (b)
and BMD (c) by varying the branching factor and the depth of the tree.

24

As we expected from our preliminary analysis (Section 4.4.1), even with a
low value for the branching factor, i.e., 5, and a low depth, i.e., 50, a save-restore
visit is, on average, 22 times faster than a without-save-restore visit , among all
our case studies. In particular, for FMUs within MSL, STS and BMD, we have
on average a speed-up of 11.75, 14.06 and 39.84, respectively.

Furthermore, by keeping constant the given tree depth and branching factor,
h = 100 and b = 10, we reach, on average, a speed-up value of 26.62, 36.11 and
86.37, among all FMUs within MSL, STS and BMD, respectively.

As we can note, FMUs within BMD (Figure 10c) achieve higher values of
speed-up than FMUs within the other datasets. It is clear (starting from depth
equal to 2) that the execution time of set() is very low with respect to simula-
tion execution time. Hence, the deeper the tree (i.e., the number of simulations)
higher the speed-up achieved.

Surprisingly, as Figure 10a shows, for some values of h the computed speed-
up is around 70. This behaviour is due to the fact that, for some FMUs within
MSL the numerical integrator reaches a computationally expensive integration
step which requires more time to be solved, e.g., a chattering effect.

Hence, having the FMU at hand equipped with get() and set() functional-
ities brings a huge benefit. Indeed, once this complex integration step is solved,
the reached FMU state can be saved and restored for further simulations.

Figure 11 clearly shows this by presenting, for each evaluated FMU, the
speed-up achieved when varying the depth of the tree, while keeping constant
the value of the branching factor (b = 10). In particular, in Figure 11a we see
that few FMUs reach peaks of speed-up above 10 000.

Furthermore, in both Figures 10 and 11, we note that the speed-up increases
almost linearly with respect to values of the depth of the tree.

5. Conclusions

We have presented an extended version of JModelica that implements Functional
Mock-up Interface (FMI) 2.0 methods to save and restore complete states of
Functional Mock-up Units (FMUs) for Model Exchange (ME). We have con-
ducted an in-depth evaluation of our implementation on FMUs generated from
widely established model libraries, namely Modelica Standard Library (MSL),
Scalable Test Suite (STS) and BioModels Database (BMD). We have shown
the correctness of our proposed implementation and assessed its performance
on a demanding application such as simulation-based Verification and Valida-
tion (V&V) approaches that drive the input FMU in the space of all simulation
scenarios. In doing so, we computed the speed-up of a visit which drives FMUs
generated by our extended JModelica implementation with respect to a visit
which drives FMUs generated by stand-alone JModelica. We have shown even
for a tree with a low branching factor, namely 5, and a low depth, namely 50,
the speed-up achieved is, on average, 11.75, 14.06 and 39.84, among all FMUs
within MSL, STS and BMD, respectively. Also, the achieved speed-up increases
much more for deeper trees. Future directions can be to apply our save-and-
restore implementation to FMUs for Co-Simulation (CS) as well as to port our

25

1 10 20 30 40 50 60 70 80 90 100
Depth

10-2

100

102

104

S
pe

ed
-u

p

(a)

1 10 20 30 40 50 60 70 80 90 100
Depth

10-2

100

102

104

S
pe

ed
-u

p

(b)

1 10 20 30 40 50 60 70 80 90 100
Depth

10-2

100

102

104

S
pe

ed
-u

p

(c)

Figure 11: Speed-up achieved for each FMU within MSL (a), STS (b) and BMD (c) when the
branching factor is equal to 10 and the depth takes values within [1, 100].

26

implementation to the OpenModelica simulation environment. Moreover, as the
3.0 version of FMI standard is planned to be released, it could be worth investi-
gating how to adapt and extend our implementation to the new set of envisioned
features (e.g., clocks and hybrid co-simulation to handle event-driven dynamics
and a new type of model exchange format, i.e., Scheduled Execution, SE).

Acknowledgements

The authors are grateful to their alumni, Agostina Calabrese, Michele Lau-
renti, and Alessandro Steri, for their contribution to develop a first prototype
during their bachelor thesis work.

This work was partially supported by the following research projects and
grants: Italian Ministry of University & Research (MIUR) grant “Dipartimenti
di Eccellenza 2018–2022” (Dept. Computer Science, Sapienza Univ. of Rome);
EC FP7 project PAEON (Model Driven Computation of Treatments for Infer-
tility Related Endocrinological Diseases, 600773); EC FP7 project SmartHG
(Energy Demand Aware Open Services for Smart Grid Intelligent Automation,
317761); Sapienza University 2018 project RG11816436BD4F21 “Computing
Complete Cohorts of Virtual Phenotypes for In Silico CLinical Trials and Model-
Based Precision Medicine”; A system for UAV detection (Aerospace and secu-
rity,POR FESR 2014-2020); INdAM “GNCS Project 2020”; CINECA Class C
ISCRA Project (HP10CPJ9LW).

References

[1] Y. Liu, Y. Peng, B. Wang, S. Yao, Z. Liu, Review on cyber-physical sys-
tems, IEEE/CAA Journal of Automatica Sinica 4 (1) (2017) 27–40.

[2] E. A. Lee, Cyber physical systems: Design challenges, in: 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), IEEE, 2008, pp. 363–369.

[3] R. Rajkumar, I. Lee, L. Sha, J. Stankovic, Cyber-physical systems: the next
computing revolution, in: Design Automation Conference, IEEE, 2010, pp.
731–736.

[4] J. Lee, B. Bagheri, H. Kao, A cyber-physical systems architecture for in-
dustry 4.0-based manufacturing systems, Manufacturing letters 3 (2015)
18–23.

[5] D. Ding, Q. Han, Z. Wang, X. Ge, A survey on model-based distributed
control and filtering for industrial cyber-physical systems, IEEE Transac-
tions on Industrial Informatics 15 (5) (2019) 2483–2499.

[6] B. Hayes, I. Melatti, T. Mancini, M. Prodanovic, E. Tronci, Residential de-
mand management using individualised demand aware price policies, IEEE
Trans. Smart Grid 8 (3). doi:10.1109/TSG.2016.2596790.

27

https://doi.org/10.1109/TSG.2016.2596790

[7] E. Tronci, T. Mancini, I. Salvo, S. Sinisi, F. Mari, I. Melatti, A. Massini,
F. Davi’, T. Dierkes, R. Ehrig, S. Röblitz, B. Leeners, T. Krüger, M. Egli,
F. Ille, Patient-specific models from inter-patient biological models and clin-
ical records, in: FMCAD 2014, IEEE, 2014. doi:10.1109/FMCAD.2014.

6987615.

[8] A. Calabrese, T. Mancini, A. Massini, S. Sinisi, E. Tronci, Generating
T1DM virtual patients for in silico clinical trials via AI-guided statistical
model checking, in: RCRA 2019, Vol. 2538 of CEUR W.P., CEUR, 2019.

[9] S. A. Haque, S. M. Aziz, M. Rahman, Review of cyber-physical system
in healthcare, international journal of distributed sensor networks 10 (4)
(2014) 217415.

[10] R. Alur, Formal verification of hybrid systems, in: EMSOFT 2011, ACM,
2011. doi:10.1145/2038642.2038685.

[11] L. Nigro, P. F. Sciammarella, Qualitative and quantitative model checking
of distributed probabilistic timed actors, Simulation Modelling Practice
and Theory 87 (2018) 343–368.

[12] G. Agha, K. Palmskog, A survey of statistical model checking, ACM Trans-
actions on Modeling and Computer Simulation (TOMACS) 28 (1) (2018)
1–39.

[13] E. Clarke, A. Donzé, A. Legay, On simulation-based probabilistic model
checking of mixed-analog circuits, Form. Meth. Sys. Des. 36 (2). doi:

10.1007/s10703-009-0076-y.

[14] J. Bogdoll, A. Hartmanns, H. Hermanns, Simulation and statistical model
checking for modestly nondeterministic models, in: MMB&DFT 2012,
LNCS, Springer, 2012. doi:10.1007/978-3-642-28540-0_20.

[15] L. Wang, Y. Zhang, C. Yin, H. Zhang, C. Wang, Hardware-in-the-loop
simulation for the design and verification of the control system of a series–
parallel hybrid electric city-bus, Simulation Modelling Practice and Theory
25 (2012) 148–162.

[16] M. Montazeri-Gh, M. Nasiri, M. Rajabi, M. Jamshidfard, Actuator-based
hardware-in-the-loop testing of a jet engine fuel control unit in flight con-
ditions, Simulation Modelling Practice and Theory 21 (1) (2012) 65–77.

[17] P. Duggirala, S. Mitra, M. Viswanathan, M. Potok, C2E2: A verification
tool for stateflow models, in: TACAS 2015, Vol. 9035 of LNCS, Springer,
2015. doi:10.1007/978-3-662-46681-0_5.

[18] P. Zuliani, A. Platzer, E. Clarke, Bayesian statistical model checking
with application to Stateflow/Simulink verification, Form. Meth. Sys. Des.
43 (2). doi:10.1007/s10703-013-0195-3.

28

https://doi.org/10.1109/FMCAD.2014.6987615
https://doi.org/10.1109/FMCAD.2014.6987615
https://doi.org/10.1145/2038642.2038685
https://doi.org/10.1007/s10703-009-0076-y
https://doi.org/10.1007/s10703-009-0076-y
https://doi.org/10.1007/978-3-642-28540-0_20
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/s10703-013-0195-3

[19] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, A. Gupta, Prob-
abilistic temporal logic falsification of cyber-physical systems, ACM TECS
12 (2s). doi:10.1145/2465787.2465797.

[20] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, K. Butts, Simulation-based
approaches for verification of embedded control systems: An overview of
traditional and advanced modeling, testing, and verification techniques,
IEEE Control Systems Magazine 36 (6) (2016) 45–64.

[21] E. Durling, E. Palmkvist, M. Henningsson, Fmi and ip protection of models:
a survey of use cases and support in the standard, in: Proceedings of the
12th International Modelica Conference, Prague, Czech Republic, May 15-
17, 2017, no. 132, Linköping University Electronic Press, 2017, pp. 329–335.

[22] T. Wekerle, A. Pfouga, J. Stjepandic, P. Mai, Intellectual property pro-
tection in smart systems engineering on exchange of simulation models,
Advances in transdisciplinary engineering 7 (2018) 198–207.

[23] S. Mart́ınez, S. Gerard, J. Cabot, On the need for intellectual property pro-
tection in model-driven co-engineering processes, in: Enterprise, Business-
Process and Information Systems Modeling, Springer, 2019, pp. 169–177.

[24] Modelica Association Project, SSP Standard, https://ssp-standard.org.

[25] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, Anytime system level
verification via parallel random exhaustive hardware in the loop simulation,
Microprocessors and Microsystems 41. doi:10.1016/j.micpro.2015.10.
010.

[26] K. Margellos, J. Lygeros, A simulation based mpc technique for feedback
linearizable systems with input constraints, in: 49th IEEE Conference on
Decision and Control (CDC), IEEE, 2010, pp. 7539–7544.

[27] F. Ascione, N. Bianco, C. De Stasio, G. M. Mauro, G. P. Vanoli, Simulation-
based model predictive control by the multi-objective optimization of build-
ing energy performance and thermal comfort, Energy and Buildings 111
(2016) 131–144.

[28] M. Aftab, C. Chen, C. Chau, T. Rahwan, Automatic hvac control with real-
time occupancy recognition and simulation-guided model predictive control
in low-cost embedded system, Energy and Buildings 154 (2017) 141–156.

[29] L. S. Dias, R. C. Pattison, C. Tsay, M. Baldea, M. G. Ierapetritou, A
simulation-based optimization framework for integrating scheduling and
model predictive control, and its application to air separation units, Com-
puters & Chemical Engineering 113 (2018) 139–151.

[30] S. Schaller, J. Lippert, L. Schaupp, T. R. Pieber, A. Schuppert, T. Eissing,
Robust pbpk/pd-based model predictive control of blood glucose, IEEE
Transactions on Biomedical Engineering 63 (7) (2016) 1492–1504. doi:

10.1109/TBME.2015.2497273.

29

https://doi.org/10.1145/2465787.2465797
https://doi.org/10.1016/j.micpro.2015.10.010
https://doi.org/10.1016/j.micpro.2015.10.010
https://doi.org/10.1109/TBME.2015.2497273
https://doi.org/10.1109/TBME.2015.2497273

[31] S. Sinisi, V. Alimguzhin, T. Mancini, E. Tronci, F. Mari, B. Leeners, Opti-
mal personalised treatment computation through in silico clinical trials on
patient digital twins, Fundamenta Informaticae 174 (3-4) (2020) 283–310.

[32] Mathworks, Simulink, https://mathworks.com.

[33] T. Blockwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist,
M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, et al., Functional
mockup interface 2.0: The standard for tool independent exchange of sim-
ulation models, in: Proceedings of the 9th International Modelica Confer-
ence, 2012.
URL https://fmi-standard.org

[34] Dassault Systemes, DYMOLA Systems Engineering. Multi-
Engineering Modeling and Simulation based on Modelica and FMI,
https://dymola.com.

[35] P. Fritzson, Introduction to modeling and simulation of technical and phys-
ical systems with Modelica, John Wiley & Sons, 2011.

[36] ESI Group, Simulation Software SimulationX,
https://www.simulationx.com.

[37] Wolfram Research, Inc., SystemModeler.
URL http://www.wolfram.com/system-modeler

[38] Open Source Modelica Consortium (OSMC), OpenModelica,
https://openmodelica.org.

[39] Modelon, JModelica, https://jmodelica.org.

[40] G. J. Holzmann, The model checker spin, IEEE Transactions on software
engineering 23 (5) (1997) 279–295.

[41] G. Holzmann, Parallelizing the SPIN model checker, in: SPIN 2012, Vol.
7385 of LNCS, Springer, 2012. doi:10.1007/978-3-642-31759-0_12.

[42] D. L. Dill, A. J. Drexler, A. J. Hu, C. H. Yang, Protocol verification as a
hardware design aid., in: ICCD, Vol. 92, Citeseer, 1992, pp. 522–525.

[43] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, M. Venturini Zilli, Ex-
ploiting transition locality in automatic verification of finite state concur-
rent systems, STTT 6 (4). doi:10.1007/s10009-004-0149-6.

[44] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, E. Tronci,
System level formal verification via model checking driven simulation,
in: CAV 2013, Vol. 8044 of LNCS, Springer, 2013. doi:10.1007/

978-3-642-39799-8_21.

[45] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, SyLVaaS: System
level formal verification as a service, in: PDP 2015, IEEE, 2015.

30

https://fmi-standard.org
https://fmi-standard.org
https://fmi-standard.org
https://fmi-standard.org
http://www.wolfram.com/system-modeler
http://www.wolfram.com/system-modeler
https://doi.org/10.1007/978-3-642-31759-0_12
https://doi.org/10.1007/s10009-004-0149-6
https://doi.org/10.1007/978-3-642-39799-8_21
https://doi.org/10.1007/978-3-642-39799-8_21

[46] P. Jensen, K. Larsen, A. Legay, U. Nyman, Integrating tools: Co-simulation
in uppaal using fmi-fmu, in: 2017 22nd International Conference on Engi-
neering of Complex Computer Systems (ICECCS), IEEE, 2017, pp. 11–19.

[47] M. Čech, J. Königsmarková, J. Reitinger, P. Balda, Novel tools for model-
based control system design based on fmi/fmu standard with application
in energetics, in: 2017 21st International Conference on Process Control
(PC), IEEE, 2017, pp. 416–421.

[48] F. Cremona, M. Lohstroh, D. Broman, M. Di Natale, E. Lee, S. Tripakis,
Step revision in hybrid co-simulation with fmi, in: 2016 ACM/IEEE In-
ternational Conference on Formal Methods and Models for System Design
(MEMOCODE), IEEE, 2016, pp. 173–183.

[49] C. Gomes, B. Meyers, J. Denil, C. Thule, K. Lausdahl, H. Vangheluwe,
P. De Meulenaere, Semantic adaptation for fmi co-simulation with hierar-
chical simulators, Simulation 95 (3) (2019) 241–269.

[50] C. Thule, K. Lausdahl, C. Gomes, G. Meisl, P. G. Larsen, Maestro: The
into-cps co-simulation framework, Simulation Modelling Practice and The-
ory 92 (2019) 45–61.

[51] A. Falcone, A. Garro, Distributed co-simulation of complex engineered sys-
tems by combining the high level architecture and functional mock-up in-
terface, Simulation Modelling Practice and Theory 97 (2019) 101967.

[52] C. Gomes, C. Thule, D. Broman, P. G. Larsen, H. Vangheluwe, Co-
simulation: A survey, ACM Comput. Surv. 51 (3) (2018) 49:1–49:33.
doi:10.1145/3179993.

[53] G. Schweiger, C. Gomes, G. Engel, I. Hafner, J. Schoeggl, A. Posch,
T. Nouidui, An empirical survey on co-simulation: Promising standards,
challenges and research needs, Simulation Modelling Practice and Theory.

[54] Modelica Association Project, Reference FMUs,
https://github.com/modelica/Reference-FMUs.

[55] A. Nicolai, A. Paepcke, Co-simulation between detailed building energy
performance simulation and modelica hvac component models, in: Pro-
ceedings of the 12th International Modelica Conference, no. 132, Linköping
University Electronic Press, 2017, pp. 63–72.

[56] E. Widl, W. Müller, A. Elsheikh, M. Hörtenhuber, P. Palensky, The
fmi++ library: A high-level utility package for fmi for model exchange,
in: Workshop on modeling and simulation of cyber-physical energy sys-
tems (MSCPES), IEEE, 2013, pp. 1–6.

[57] T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist,
M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, et al., Functional

31

https://doi.org/10.1145/3179993

mockup interface 2.0: The standard for tool independent exchange of sim-
ulation models, in: Proceedings of the 9th International Modelica Confer-
ence, Linköping University Electronic Press, 2012, pp. 173–184.

[58] R. Grosu, S. Smolka, Monte Carlo model checking, in: TACAS 2005, Vol.
3440 of LNCS, Springer, 2005. doi:10.1007/978-3-540-31980-1_18.

[59] T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J. Gruber, B. Hayes,
L. Elmegaard, Parallel statistical model checking for safety verification
in smart grids, in: SmartGridComm 2018, IEEE, 2018. doi:10.1109/

SmartGridComm.2018.8587416.

[60] T. Mancini, E. Tronci, I. Salvo, F. Mari, A. Massini, I. Melatti, Com-
puting biological model parameters by parallel statistical model checking,
in: IWBBIO 2015, Vol. 9044 of LNCS, Springer, 2015. doi:10.1007/

978-3-319-16480-9_52.

[61] A. Mood, F. Graybill, D. Boes, Introduction to the Theory of Statistics
(3rd Edition), McGraw-Hill, 1974.

[62] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, System level formal
verification via distributed multi-core hardware in the loop simulation, in:
PDP 2014, IEEE, 2014. doi:10.1109/PDP.2014.32.

[63] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, Anytime system
level verification via random exhaustive hardware in the loop simulation,
in: DSD 2014, IEEE, 2014.

[64] T. Mancini, F. Mari, A. Massini, I. Melatti, E. Tronci, SyLVaaS: System
level formal verification as a service, Fundam. Inform. 1–2. doi:10.3233/
FI-2016-1444.

[65] O. Maler, D. Nickovic, A. Pnueli, Real time temporal logic: Past, present,
future, in: International Conference on Formal Modeling and Analysis of
Timed Systems, Springer, 2005, pp. 2–16.

[66] A. Biere, C. Artho, V. Schuppan, Liveness checking as safety checking,
Electronic Notes in Theoretical Computer Science 66 (2) (2002) 160–177.

[67] V. Schuppan, A. Biere, Liveness checking as safety checking for infinite
state spaces, Electronic Notes in Theoretical Computer Science 149 (1)
(2006) 79–96.

[68] O. Kupferman, N. Piterman, M. Y. Vardi, From liveness to promptness,
Formal Methods in System Design 34 (2) (2009) 83–103.

[69] C. Fan, S. Mitra, Bounded verification with on-the-fly discrepancy compu-
tation, in: International Symposium on Automated Technology for Verifi-
cation and Analysis, Springer, 2015, pp. 446–463.

32

https://doi.org/10.1007/978-3-540-31980-1_18
https://doi.org/10.1109/SmartGridComm.2018.8587416
https://doi.org/10.1109/SmartGridComm.2018.8587416
https://doi.org/10.1007/978-3-319-16480-9_52
https://doi.org/10.1007/978-3-319-16480-9_52
https://doi.org/10.1109/PDP.2014.32
https://doi.org/10.3233/FI-2016-1444
https://doi.org/10.3233/FI-2016-1444

[70] H. Ren, R. Kumar, Simulation-based verification of bounded-horizon safety
for hybrid systems using dynamic number of simulations: extended version.

[71] K.-h. Chang, V. Bertacco, I. L. Markov, Simulation-based bug trace min-
imization with bmc-based refinement, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 26 (1) (2006) 152–165.

[72] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri, Nusmv: A new symbolic
model verifier, in: International conference on computer aided verification,
Springer, 1999, pp. 495–499.

[73] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, Bounded model
checking.

[74] N. Lipovetzky, M. Ramirez, H. Geffner, Classical planning with simulators:
Results on the atari video games., in: IJCAI 2015, Vol. 15, 2015.

[75] M. Vallati, D. Magazzeni, B. De Schutter, L. Chrpa, T. McCluskey, Effi-
cient macroscopic urban traffic models for reducing congestion: A PDDL+
planning approach, in: AAAI 2016, AAAI, 2016.

[76] M. Ramirez, M. Papasimeon, L. Benke, N. Lipovetzky, T. Miller, A. Pearce,
Real–time UAV maneuvering via automated planning in simulations, in:
IJCAI 2017, 2017.

[77] G. Francès, M. Ramı́rez Jávega, N. Lipovetzky, H. Geffner, Purely declar-
ative action descriptions are overrated: Classical planning with simulators,
in: IJCAI 2017. Twenty-Sixth International Joint Conference on Artificial
Intelligence; 2017 Aug 19-25; Melbourne, Australia.[California]: IJCAI;
2017. p. 4294-301., International Joint Conferences on Artificial Intelligence
Organization (IJCAI), 2017.

[78] F. Casella, Simulation of large-scale models in modelica: State of the art
and future perspectives, in: Proceedings of the 11th International Modelica
Conference, 2015, pp. 459–468.

[79] N. Le Novère, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli,
H. Dharuri, L. Li, H. Sauro, M. Schilstra, B. Shapiro, J. Snoep, M. Hucka,
BioModels Database: A free, centralized database of curated, published,
quantitative kinetic models of biochemical and cellular systems, Nucleic
Acids Res. 34 (suppl 1). doi:10.1093/nar/gkj092.

[80] F. Maggioli, T. Mancini, E. Tronci, SBML2Modelica: Integrating bio-
chemical models within open-standard simulation ecosystems, Bioinformat-
icsdoi:10.1093/bioinformatics/btz860.

[81] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, C. S. Woodward, Sundials: Suite of nonlinear and differen-
tial/algebraic equation solvers, ACM Transactions on Mathematical Soft-
ware (TOMS) 31 (3) (2005) 363–396.

33

https://doi.org/10.1093/nar/gkj092
https://doi.org/10.1093/bioinformatics/btz860

[82] C. Andersson, J. Åkesson, C. Führer, Pyfmi: A python package for sim-
ulation of coupled dynamic models with the functional mock-up interface,
Centre for Mathematical Sciences, Lund University Lund, 2016.

[83] T. Mancini, F. Mari, A. Massini, I. Melatti, I. Salvo, S. Sinisi, E. Tronci,
R. Ehrig, S. Röblitz, B. Leeners, Computing personalised treatments
through in silico clinical trials. A case study on downregulation in assisted
reproduction, in: RCRA 2018, Vol. 2271 of CEUR W.P., CEUR, 2018.

34

Appendix A. Proof of Results

Proposition 1. Given C(i) = i × T (sim(τ)) and C?(i) = 1
b T (get()) +

T (set()) + T (sim(τ)), the speed-up of a save-restore visit is greater than 1,
i.e., S(h, b) > 1, when the following equation is satisfied:

1
b T (get()) + T (set())

T (sim(τ))
< ψ(h, b) (4)

where ψ(h, b) is a threshold defined as:

ψ(h, b) =

∑h
i=1 ib

i∑h
i=1 b

i
− 1 =

hbh+1 − (h+ 1)bh + 1

(b− 1)(bh − 1)
− 1. (5)

Proof.

S(h, b) =
T (sim(τ))

∑h
i=1 ib

i(
1
b T (get()) + T (set()) + T (sim(τ))

)∑h
i=1 b

i
.

Requiring that S(h, b) > 1, we have the following threshold:

1
b T (get()) + T (set())

T (sim(τ))
<

∑h
i=1 ib

i∑h
i=1 b

i
− 1

Given the fact that:
∑h
i=1 ib

i = b
d

db

(
h∑
i=1

bi

)
we solve summations in the

following way:

h∑
i=1

ibi = b
d

db

h∑
i=1

bi = b
d

db

[
b(bh − 1)

b− 1

]
=
b(hbh+1 − (h+ 1)bh + 1)

(b− 1)2

This leads to Eq. (4):

1
b T (get()) + T (set())

T (sim(τ))
<
hbh+1 − (h+ 1)bh + 1

(b− 1)(bh − 1)
− 1

Remark 3. When b is very large, formally b → ∞, and h > 1, the speed-up
threshold ψ(h, b) approaches to h− 1, formally ψ(h, b)→ h− 1. Thus, Proposi-
tion 1 can be rephrased saying that S(h, b) > 1 when the following condition is
satisfied.

R(h, τ) =
T (set())

(h− 1)T (sim(τ))
< 1. (6)

35

Proof. We note that, when b→∞ the left hand side of Eq. (4) converges to:

limb→∞

1
b T (get()) + T (set())

T (sim(τ))
=
T (set())

T (sim(τ))

while, the right hand side of Eq. (4) converges to:

limb→∞
hbh+1 − (h+ 1)bh + 1

(b− 1)(bh − 1)
− 1 = h− 1

Thus, when h > 1, our threshold is simplified in the following way:

T (set())

(h− 1)T (sim(τ))
< 1

Appendix B. Software

Our extended JModelica 2.1 is publicly available at https://bitbucket.org/
mclab/jmodelica.org

Software tools used for evaluating correctness and performance of our im-
plementation are available at https://bitbucket.org/mclab/getsetfmustateeval

36

https://bitbucket.org/mclab/jmodelica.org
https://bitbucket.org/mclab/jmodelica.org
https://bitbucket.org/mclab/getsetfmustateeval

	1 Introduction
	2 Related Work
	3 Methods
	3.1 FMI 2.0 for Model Exchange
	3.2 Enable saving and restoring of JModelica FMU internal state
	3.3 Correctness evaluation strategy
	3.4 Performance evaluation strategy
	3.4.1 Tree definition
	3.4.2 Cost of a without-save-restore visit
	3.4.3 Cost of a save-restore visit
	3.4.4 Speed-up of a save-restore visit

	4 Experimental Results
	4.1 Case studies
	4.2 Experimental setting
	4.3 Correctness evaluation results
	4.4 Performance evaluation results
	4.4.1 Preliminary analysis
	4.4.2 Speed-up analysis

	5 Conclusions
	Appendix A Proof of Results
	Appendix B Software

