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Abstract

From climate action to public health measures, human collective endeav-
ors are often shaped by different uncertainties. Here we introduce a novel
population-based learning model wherein a group of individuals facing a col-
lective risk dilemma acquire their strategies over time through reinforcement
learning, while handling different sources of uncertainty. In such an N-person
collective risk dilemma players make step-wise contributions to avoid a catas-
trophe that would result in a loss of wealth for all players. Success is attained
if they collectively reach a certain contribution level over time, or, when the
threshold is not reached, they were lucky enough to avoid the cataclysm. The
dilemma lies in the trade-off between the proportion of personal contributions
that players wish to give to collectively reach the goal and the remainder of
the wealth they can keep at the end of the game. We show that the strategies
learned with the model correspond to those experimentally observed, even
when there is uncertainty about either the risk of failing when the goal is
not reached, the magnitude of the threshold to attain and the time available
to reach the target. We furthermore confirm that being unsure about the
time-window favors more extreme reactions and polarization, diminishing the
number of agents that contribute fairly. The population-based on-line learn-
ing framework we propose is general enough to be applicable in a wide range
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of collective action problems and arbitrarily large sets of available policies.

Keywords:
Public goods game, Population dynamics, Individual learning, Collective
risk, Uncertainty

1. Introduction

Collective hunting, antibiotic abuse, vaccination hesitancy, climate ac-
tion or even coordinating the population in order to comply to the covid19
regulations are some of the several examples of collective endeavours that
entail a collective risk [1–13]. The collective-risk dilemma (CRD) [1] con-5

veniently abstracts and operationalizes these global problems into a game
theoretical framework. The resulting dilemma is a variant of a public goods
game, wherein players aim to avoid a loss, instead of obtaining a benefit.
The loss may only be avoided if the joint contributions of all participants
surpasses a collective target [14–16]. In this N-player game, each participant10

receives an equal endowment (E), which they may use to provide contribu-
tions to a public account (g) over a fixed number of rounds (R). The more
they contribute, the less they will keep for themselves once the game finishes.
However, if the joint contributions of all members of a group at the end of
the game do not surpass a certain threshold (T ), then they risk loosing the15

remainder of their endowment, hence the dilemma. The risk or probability of
loosing the endowment (p), models the uncertainty about the consequences
or impact of not reaching the collective goal. During the game, individuals
are able to observe the actions of the other members of the group, but, they
will only know the outcome of the game once it has ended. This creates a20

game where returns are both time-delayed and uncertain.
Several experimental studies with human participants, mostly within the

context of climate change negotiations, have developed on top of the initial
CRD setup [1] (see Section 3.1 for the full definition of this game) in order to
study the effects of inequality [2, 3], choice of representatives [17], commu-25

nication [2, 9], threshold uncertainty [9] and timing uncertainty [11]. In Fig.
1, we summarize the results of a number of behavioral experiments relevant
for the current work. It is important to note that there are some differences
in the baseline setups of some of the extensions, which make their compar-
ison difficult. These deviations from Milinski et al.[1] may have introduced30

other factors than those actually being studied, potentially also explaining
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the differences in observations (see also Appendix A). Nonetheless, there are
general patterns to derive from the experimental data.
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Figure 1: Summary of experimental results for the Collective Risk Dilemma. In the figure
we plot the group achievement (η) for different levels of risk and uncertainty. Panel a)
shows the summary of CRD experimental results for 4 different levels of impact uncer-
tainty (risk), panel b) shows the experimental results for the CRD with only threshold
uncertainty c) shows the results of CRD experiments with timing uncertainty and 90% of
risk. These experimental results show that uncertainty is a very important factor in the
CRD. High impact uncertainty (risk) increases group success, while coordination errors,
due to uncertainty about the behavior of other players can reduce it. This latter can be
overcome with communication, but other sources of uncertainty, such as threshold and
timing uncertainty, can still considerably reduce group achievement.

First, as shown in Fig. 1a, the higher the risk (i.e., the higher the likeli-
hood of losing the remainder of the endowment if the threshold is not reached)35

the higher the fraction of groups that achieve success (i.e., group achievement
η in Fig. 1a). This effect of impact uncertainty appears to remain true both
with and without communication, i.e., giving the participants the ability to
make pledges or negotiate, and can be attributed to the change in the player’s
expected payoff. Interestingly, under high risk (90%), and when there is no40

possibility to communicate, only 50% to 65% of the experimental groups are
successful [1, 11]. Errors in coordination appear to be the main cause for
these results.

Second, as can also be observed in Fig. 1a, this coordination problem is
alleviated (see 50% risk case) or even disappears fully (see 100% risk case)45

when participants can communicate, either about their own contributions [2]
or what amount the group should achieve [9].

Third, as shown in Fig. 1b, even when communication is available, group
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achievement may be significantly reduced when there is uncertainty about the
amount (threshold) that needs to be collected at the end [9], a situation we50

will refer to as threshold uncertainty. Additionally, Barrett and Dannenberg
showed analytically and experimentally that high threshold uncertainty, also
transforms this game, in which players need to coordinate to avoid a catas-
trophe, into a classic prisoners dilemma, in which players prefer to defect
[6, 18–21]. This type of uncertainty is present in many collective risk sce-55

narios, such as climate negotiations, where the exact value of reduction in
greenhouse emissions is not known [6, 9, 18, 20].

Finally, as visualized in Fig. 1c, group achievement also appears to be
influenced by (high) timing uncertainty [11], i.e., when the number of rounds
to achieve the target is uncertain. Yet the effect, is less strong than what was60

observed in the case of threshold uncertainty. However, Fernández Domingos
et al. [11] find that participants in successful groups under timing uncertainty
adopt reciprocal strategies, increasing (decreasing) their contributions if the
rest of the group does the same [22], while the population becomes more
polarized, with less participants adopting a fair behavior, i.e., contributing65

as well as gaining exactly E/2 (see Section 3.2).
There are still many questions that could be explored experimentally in

the CRD to fully understand the impact of the different parameters that
influence human decision-making (for instance, the number of actions from
which participants can choose) or in order to explore novel mechanistic ex-70

pansions (such as reward and punishment mechanisms [7, 23, 24]), and how
they change the current experimental outcomes. Yet, as behavioral exper-
iments are difficult and costly to organise, careful assessments are needed
when trying to test some hypothesis. Analytical and computational mod-
els provide useful tools to understand the behavioral dynamics underlying75

each experimental outcome, together with preliminary assessment of novel
hypotheses. As a minimal requirement, such theoretical models should be
able to reproduce the main experimental observations for the baseline CRD
as well as those that have been made for the different forms of uncertainty.
Although a few theoretical works have been produced, especially in the con-80

text of evolutionary game theory (EGT) [4, 5, 7, 10, 23, 25–30] (see also
Section 2), to our knowledge, there has been no model that captures simul-
taneously the baseline as well as all three forms of uncertainty and that is
able to map both pure and mixed strategy profiles.

We present here a Population-based Learning (PBL) model with the ca-85

pacity to achieve these goals, making it an useful model for further explo-
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rations of, and predictions about, potential adaptations of the CRD (see
Section 3.6 for details). This model allows agents, which are part of a larger
population, to learn the most suitable behavior to ”solve” a CRD in group,
using a simple individual learning scheme inspired by Roth-Erev [31] and90

Q-learning [32] to update their behavior. The behaviors are represented as
per-round probabilities for each action, enabling the exploration of a wide
range of mixed strategies, which differentiates them from prior modelling
work in the EGT community, where the focus is more often on pure strate-
gies.It is worth noting that the training is not meant to reproduce the learning95

process that people go through when participating in a CRD experiment.
The training phase of this PBL model is followed by an evaluation phase

that examines the performance of the learned behaviors outside of the context
in which they were trained, i.e., they play the CRDs with participants trained
in different populations. This independent evaluation process is necessary to100

ensure that the assessments about the quality and performance of the learned
behaviors, is not biased by the presence of the other group members, and thus
the mutual adaptations that are acquired in a group upon training. Just as
in experiments, agents need to respond based on their experiences without
having time to acquire the best way to coordinate their actions.105

In the following we show that this PBL model not only reproduces the
essential experimental observations, but also enables the generalization of
results to different levels of risk, uncertainty, group size and number of avail-
able actions. Moreover, we explore how these parameters affect the behaviors
learned by the population, and which strategies lead to success in function110

of the type of uncertainty the agents face.
The remainder of this article is structured as follows. In Section 2 more

details are provide about the existing simulation models, which are always
defined from an evolutionary perspective. Afterwards, in Section 3 the CRD,
the types of uncertainty, the PBL model and the main parameter settings are115

introduced. The results section (i.e., Section 4) then reveals and discusses
the main results generated by the PBL model. This includes a discussion on
how the different forms of uncertainty affect the learned behavior, how these
results match with the experimental observations made for the CRD, how
uncertainty leads to the polarisation of contributions in the population, how120

it affects the space of learned behaviors and that increasing the granularity
of choices may favour cooperation. Section 5 concludes this paper, followed
by a number of additional details provided in the appendices of the paper.
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2. Related work

The CRD has been previously studied theoretically using evolutionary125

game theory (EGT) [4, 5, 10, 25–29], wherein imitation defines how behavior
changes over time [33]. In [4] the authors find that high risk and smaller
group sizes are able to increase the chances of coordination. They also show
that a heterogeneous political networks may be beneficial for cooperation.
The dependence on risk has been also confirmed through large-scale agent-130

based simulations [10]. In [8, 27], it is shown analytically how threshold
uncertainty in a one-shot CRD affects negatively the chances of coordination,
while providing a theoretical basis for the effects of inequality in players’
endowments. In [29], Hilbe et al. show that, when strategic timing is allowed,
players tend to delay their contributions towards the end of the game. Using135

an agent-based evolutionary model based on evolutionary simulations for the
CRD, it was shown that the population is only able to coordinate for high
risks [5]. Later on, the same authors studied the effect of timing uncertainty
in a variant of the CRD modified to allow for continuous contributions, and
conclude that, under this uncertainty, the best strategy is immediate action140

[10]. However, since the experimental results on the CRD resort to discrete
contributions, it is difficult to compare empirical observations with these
works. We resort to a similar CRD mimicking the behavioral experiments
available, and, therefore, focus on discrete and bounded contributions, and
force players to perform contribution over multiple rounds to be able to145

achieve the target. Not only will this allow us to compare our results to the
current experimental observations, it will also allow for the emulation of the
effect of time-distant public goods, i.e., those for which the benefits are not
available immediately.

The effect of uncertain game lengths has also been previously studied150

in behavioral economics [34] on other games. For instance, in the iterated
Prisoner’s Dilemma it is also known as the shadow over the future [35], and
it was shown to be an environmental component that enables cooperation
to emerge. Moreover, other sources of uncertainty, such as uncertain returns
have been studied previously, revealing that this uncertainty provides an155

increase in cooperation [36–39]. Additionally, [12, 40] give a good overview
of the effects of uncertainty on climate governance and social dilemmas.

In our work, we opt for studying the dynamics of the CRD using a form
of reinforcement learning in the PBL model to update players’ behaviors, as
it allows for the exploration of mixed strategies, and is widely accepted as160
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a technique for learning behaviors observed within behavioral economic ex-
periments. Reinforcement learning has been for instance applied to different
variations of 2-player games [31, 34, 41–46] as well as bargaining games [47–
49], coordination games [50, 51] in well-mixed and structured populations,
stochastic games [52, 53] and other social dilemmas [54, 55]. It provides a165

flexible and powerful framework for studying the dynamics and effects of dif-
ferent variables in the CRD, allowing for a large behavioral (strategic) space
and mixed strategies. Differently from classical RL setups, here we employ
RL in a population of agents to update their behaviors in each step of the
process.170

3. Models and Methods

3.1. The Collective-risk Dilemma

The collective-risk dilemma (CRD) was designed to represent the problem
of environmental governance as a public goods game, wherein a group of N
players aim to avoid a future loss, instead of trying to obtain a benefit.175

During the game, players are required to make discrete contributions ai ∈ A
in every round, where A is a discrete set of possible contributions, out of
their own private endowment, E, to a public good g. The number of rounds
is defined as R and Ci is the sum of all the contributions made by player i
over all the rounds. If at the end of the game the sum of all contributions of180

the group is higher or equal than a threshold T (g ≥ T ), then all members
will keep the remainder of the endowment as a payoff. Otherwise, all players
receive a payoff of 0 with probability p, which defines the risk – or impact
uncertainty – of the game.

The payoff of a player i in a given game is either:185

πi =

E −
R∑
s=1

ai(s) = E − Ci if g ≥ T or rand > p

0 otherwise

(1)

Where rand is a uniformly distributed real random number distributed
in the interval [0, 1). With this, we can define the expected payoff of a player
i by Eq. 2, where P stands for the probability that the group achieves the
collective target (threshold) T .

Πi = (E − Ci)[P + (1− p)(1− P )] (2)
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When T is deterministic, the expected payoff of player i can be reduced190

to a function of its contribution Ci and the sum of contributions of the other
players in the group excluding i, i.e., C−i (see Eq. 3).

Πi(Ci, C−i) = (E−Ci){H(Ci+C−i−T )+(1−p)[1−H(Ci+C−i−T )]} (3)

Where H(x) in Eq. 3 is the Heaviside function for a discrete variable
x: It takes the value 1 if x ≥ 0 and 0 otherwise. This function indicates
whether a group is successful, i.e., the group jointly contributes g ≥ T ,195

where g = Ci + C−i.

3.2. Fairness in the CRD

A notion of fairness can be defined in the CRD. A fair contribution F is
the accumulated contribution of every player such that the group achieves the
threshold with an equal investment by each player. It’s value corresponds to200

dividing the required amount for success, i.e., T , equally among all members
of a group of size N , therefore F = T/N . With this definition, we are able to
analyse how the frequency of players that contribute Ci = 0, Ci < F , Ci = F
and Ci > F , varies with uncertainty and game difficulty.

3.3. Cost of the dilemma and minimum number of contributors205

We define the required effort, or cost, of the dilemma, assuming equal
contributions, as σ = F/E, i.e., the ratio between the fair contribution F , and
the endowment E. Therefore, σ = 0 if the game requires no contributions,
and σ = 1 if players must contribute all their endowment in order to reach
the target. This difficulty level is directly related to the collective target T210

that players must achieve, so that σ = T/(NE). Moreover, there is a direct
relationship between the σ and the minimum required number of contributors
M in a game. For instance, if N = 6 and σ = 0.5, then M = N/2 = 3 players
must contribute E, while if σ = 0.1, only M = 1 player needs to contribute
σNE/M = 0.6E. Therefore, in a game at least M = dσNe players in a215

group need to contribute a total of g = σNE. Thus, altering σ, changes the
number of required cooperators in a game, in a similar fashion as in [4].

3.4. Threshold uncertainty

Next to impact uncertainty, we examine in this paper the effect of un-
certainty about the collective target T , defining it as in [27]: T is drawn220
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from a discrete uniform distribution of range [T (1 − δ), T (1 + δ)], where T
is the target in the absence of threshold uncertainty. We use δ to quantify
threshold uncertainty, with δ taking any value from discrete interval [0, 1]
with increments of 0.1. Therefore, when δ = 0, there is no uncertainty, and
when δ = 1, T may take any natural value in [0, 2T ].225

Threshold uncertainty, changes the CRD into a game with incomplete
information as it affects the ability of players to correctly assess the threshold
of the game. Furthermore, it affects the probability P that the collective
target is achieved for a particular group whose total contributions sum to g.
Concretely,230

Pr(g ≥ T ) ≈
∑
T

1

2δT
H(g − T ) (4)

which will be 0 if g < T (1− δ), 1 if g ≥ T (1 + δ). When g takes values inside
the threshold interval, players cannot know for certain whether the collective
target will be achieved. The probability of achieving the collective target in
this case is given by:

P ≈ 1

2δT
[g + T (δ − 1)] (5)

This change in P affects the expected payoffs of players, and, as a conse-235

quence, their strategies.

3.5. Timing uncertainty

To model the effect of timing uncertainty, we represent the number of
rounds of the game as a stochastic variable drawn from a geometric distribu-
tion with success probability 1−w. As a result, w ∈ [0, 1) thus quantifies the240

level of timing uncertainty of the CRD: the higher w, the higher the variance
in the distribution of game lengths. Moreover, to guarantee that the collec-
tive goal of the game is always achievable and guarantee a fair comparison
among different levels of uncertainty, we ensure that the game will have a
minimum number of rounds R0, and that the average game length, R is al-245

ways the same. Additionally, to limit the size of the state-space, we introduce
an additional parameter Rmax, that defines the maximum number of rounds
of the game. This constraint may introduce deviations in the mean of the
distribution, so we have Rmax set to a high enough value (50 rounds), so that
this effect is minimized. Therefore, in any given game, the total number of250

rounds is drawn from:

R ∼ min(G(1− w) +R0, Rmax) (6)
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For convenience, in all our results we consider R = 10 and we will only
mention the variations over w. R0 can be calculated as R0 = (R − 1/(1 −
w)) + 1.

3.6. Definition of the population-based learning model255

We study the dynamics of the CRD in a population of Z ≥ N autonomous
agents, that adapt their behavior over K learning steps following an individ-
ual learning model explained in the next section. At each learning step k,
players are part of multiple groups (ng in total) that will play a CRD. These
groups are constructed by randomly sampling among the Z population mem-260

bers. Moreover, we always choose ng � Z, therefore each agent in a given
learning step will play on average (ngN)/Z games. In each game, the strate-
gies followed by the N agents to play the game determine the outcome of the
group. Therefore, we define the group achievement η = n/ng of the popula-
tion, where n is the number of successful groups, as the average success of the265

CRD given the population composition. Finally, Eq. 7 gives the expected
payoff of a player i in the population at a given learning step k, and can be
calculated in function of η. Replacing P by η in Eq. 2 one gets:

Πi,k(η) = (E − Ci)[η + (1− p)(1− η)] (7)

3.7. Individual learning model

Each agent in the population updates its strategy synchronously at the270

end of a learning step. The strategy of each agent, Xi(s) : S → A is a
function that maps each state to a probability distribution over the actions.
Concretely, the strategy or behavior of the agent is represented by a matrix of
dimensions |A| × |S| containing the probabilities xi(a, s) of taking an action
a ∈ A at a state s ∈ S (see Fig. 2), and where

∑
a xi(a, s) = 1. This275

representation is able to capture both mixed strategies and up to |A||S| pure
strategies, making it more general than the one used in [10], as it does not
make any assumptions abut thresholds used by participants in each round.
As the round wherein an agent finds herself corresponds to a state, the set
of states is given by S = {0, ..., R − 1}. Also, for convenience, the available280

actions are defined through the size of the set |A|, i.e., A = {0, 1, ..., |A|−1}.

10



0 1 … R-1

0.9 0.0 … 0.3

0.0 1.0 … 0.5

… … … …

0.1 0.0 … 0.0

a0

a1

…

a|A|-1

ac
tio

n

state

Figure 2: Strategy profile of an agent. This figure shows the structure of the strategy
profile of a an agent i, i.e., Xi. Each element in this matrix gives the probability of taking
a certain action a ∈ A at a given state s ∈ S : s ∈ {0, R− 1}.

Agents use a variant of the well-known Q-learning algorithm [32] to up-
date their strategy based on the outcomes of the games. The main change
consists of performing batch updates over the Q-values of all actions after
a game has finished, instead of updating them after every interaction. This285

is necessary since in the CRD players only obtain their payoff at the end of
the game. Also, we do not consider any discount factors in order not to bias
the importance of earlier or later actions in the game. There are off course
more complex variations of Q-learning that could be used, yet our goal was
to focus on a minimal one, sufficient to capture the observed behaviors. The290

algorithm defines a function Qi,k(a, s) : A × S → R that gives the expected
value/gain for an agent i to take action a ∈ A in state s ∈ S : {0, ..., R−1} in
learning step k ∈ K. Each agent estimates this function by interacting with
the environment throughout a number of steps, and performing the following
update:295

Qi,k+1(a, s) =

{
Qi,k(a, s) + α(Πi −Qi,k(a, s)) if ai(s) = a
Qi,k(a, s) otherwise

(8)

With s the current state of the game, α the learning rate, ai(s) is the
action taken in state s, and k the learning step wherein this occurs. It is
important to notice that in our environment, agents only obtain their payoff
at the end of the CRD. For this reason, during each game we store the actions
taken by the agent at each learning step (i.e, the trajectory) in a history table300

(see also Roth-Erev model [31]). These action-value pairs are then used to
update the Q-values according to Eq. 8. Finally, the strategy profile of each
agent i, Xi,k (see Fig. 2), is calculated in function of the Q-values at learning
step k, according to the Gibbs-Boltzmann probability distribution in Eq. 9.
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This process is repeated for K learning steps. The algorithm detailing the305

PBL model can be found in Algorithm 1.

xi,k(a, s) =
eQi,k(a,s)/τ∑
l e
Qi,l(a,s)/τ

(9)

Algorithm 1 Population-based learning.

1: for l← 1 : L do . Repeat for each population
2: create population of size Z.
3: Q0 ← random initialization . Initialize all agents
4: for k ← 1 : K do . K learning steps
5: n← 0 . initialize count
6: for l← 1 : ng do . ng games
7: group← sample(population,N) . sample randomly N

players
8: g,π, c← playGame(group,R) . Eq. 1
9: n← n+ 1 if g ≥ T

10: Save trajectory and payoff of each player in history table.
11: end for
12: save η ← n/ng
13: calculate Πi,k(η) . Eq. 7
14: update Qi,k . Eq. 8
15: update Xi,k . Eq. 9
16: end for
17: save population vector.
18: end for

3.8. Assessing learned behavior

After L populations have adapted independently in the learning phase
(see Algorithm 1), agents go through an evaluation phase. In this phase, Ke310

evaluation games within different groups are played. To form each group,
agents are randomly sampled from the set of all populations, i.e., groups are
heterogeneous, with agents that might come from different populations (see
Algorithm 2). At this point, agents no longer adapt, and only act based
on the strategy learned while interacting within their own population. This315

step is important as essentially, even when the agents learned to play the
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CRD successfully in their group, their acquired behavior may fail when be-
ing confronted with players that adapted in other groups. To assess thus
correctly the learned strategy profile it needs to be evaluated against ac-
quired behaviors outside of the group wherein the training occurred, just320

as other predictive machine learning methods need to be evaluated with an
independent set not used for training the predictor.

Algorithm 2 Evaluation phase.

1: populations← flatten(population1, ..., populationL) . gather agents
of all popula-
tions in a flat-
tened vector

2: for ke ← 1 : Ke do . evaluation games
3: group← sample(populations,N) . All individuals from any

population have the same
probability to be sampled

4: playGame(group,R)
5: save group success
6: end for

3.9. Clustering

To identify clusters in the behaviors learned under different uncertainty
conditions, each player’s strategy is encoded as the following vector:325

b = (ai(0), ai(1), ..., ai((N − 1)amax)) (10)

where ai(â−i) represents the average contribution made by a player i, aver-
aged over all games and states s wherein the agent i was confronted with
a particular cumulative contribution â−i made by all the other players in
that group in a previous state s − 1. Thus â−i can take any value in
{0, 1, ..., (N − 1)amax} , with amax representing the action with maximum330

value that a player can take. In other words, each agent’s behavior is repre-
sented by it’s contribution in function of the contributions of the rest of the
group in the previous round. All vectors are stacked as rows of a matrix B.

The dimensionality reduction technique t-SNE [56, 57] is used to visualize
the information in B. A t-SNE plot provides a 2-dimensional representation335

of the (multi-dimensional) behaviour in that matrix to reveal differences in
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behavior resulting from the type of uncertainty to which individuals were ex-
posed. Simultaneously, a k-means clustering [58, 59] is applied on the matrix
B to identify subgroups. While looking for the best number of subgroups k,
homogeneity within and separation between the clusters is carefully consid-340

ered. The resulting optimal clustering is visualised using different colors in
the t-SNE plot. Moreover, for each cluster we plot also ai in function of â−i
as well as the average contributions in the first and second half of the game,
always considering a maximum of 10 rounds so that all results are compa-
rable with the timing uncertainty case (see Fig. 8). This cluster analysis345

reveals how behaviors changes under different uncertainty conditions.

3.10. Simulation parameters

In all simulations, we used a population of Z = 50 agents, however we
did test other population sizes (Z = 6, 12, 24, 48, 100, 200), and verified that
the results remained valid. Also, we have always considered N = 6 except350

for Figure 4a where group size N varies between 2 and 12. Moreover, in all
results, excluding Fig. 9, A = {0, 1, 2}, so that we have the same number
of actions as used in the Milinski et al. experiment [11]). Each populations
adapted over K = 10000 learning steps. At each learning step, ng = 1000
random groups played the CRD game. The difficulty of the game is set to355

σ = 0.5, which means that agents, on average, should contribute half of
their endowment E to achieve the collective goal, unless specified otherwise.
For instance, in Fig. C.10, displayed in the Appendix, the effect of varying
σ is studied. In each game, unless otherwise indicated, the endowment is
proportional to the length of the game E = 2R, and the threshold is pro-360

portional to the group size T = σEN . Also, R = 10, which is also the exact
number of rounds that the game takes in the absence of timing uncertainty.
Finally, in all cases, the evaluation phase is performed with individuals from
10 independent populations, thus L = 10.

4. Results and Discussion365

4.1. All uncertainties need to be mitigated to ensure coordination success.

We investigate the effect of three forms of uncertainty with our PBL
model: impact uncertainty, threshold uncertainty and timing uncertainty.
Impact uncertainty, is represented as the risk (probability) p that all players
will lose the remainder of the endowment if the group does not achieve the370

collective target (see Section 3.1). In Fig. 3, the PBL model confirms the
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baseline CRD behavioral experiments (see [1]): no group achieves the target
when impact uncertainty is low, making defection (i.e., contributing zero) the
dominant behavior over all rounds. This occurs for the current settings (see
Section 3) when p < 0.5. On the contrary, when the risk is high, players are375

better off contributing (cooperating) and coordinating their contributions
to avoid the collective loss, and the PBL model generates levels of group
achievement close to 1.

defection dominant transient coordination

p < σ p > σ

Figure 3: Effect of risk on group achievement and average normalized payoff. This figure
shows the fraction of successful groups, or group achievement (η) in function of the level of
risk p. For levels of risk p < σ, players are in a defection dominant zone, and cooperation
does not emerge, since players may obtain a higher expected payoff by making less contri-
butions than necessary to reach the target. In contrast when p� σ, the population is in
a coordination zone, and agents are able to coordinate to achieve the target, thus, almost
all groups are successful. Finally, for intermediate levels of risk, the population enters a
transient region, where the minimum average payoff is achieved. This region defines the
transition from a failed outcome to a successful one. Confidence intervals are < 0.1 for
both group success and < 0.2 for avg. payoff. (L = 10, Z = 50, R = 10, σ = 0.5, α = 0.09,
τ = 0.1, nt = 1000, K = 10000, Ke = 10000)

There are multiple combinations of actions of the group members that
may lead to a successful outcome, i.e., the situation in which the collective380

target is met. Yet, these action combinations are not stable, meaning that if
a single player deviates from her actions, a change in the rest of the players’
behaviors is generated that will either lead to a failed outcome, i.e., where
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players do not meet the target, or a different successful outcome with similar
contributions. Therefore, when the risk is sufficiently high, i.e., p > 0.7 in Fig.385

3, the CRD is expected to become a coordination game wherein participants
need to arrive somehow at one of the unstable coordination equilibria [4].
Note that the situation in which all players refrain from any contribution
(full defection) is an equilibrium for all values of p, since in that case no
agent may improve his or her situation by unilaterally giving more.390

As shown in Fig. 3, these two regimes — defection dominance, and coor-
dination — emerge naturally from the PBL model. In between, a transition
region connects the defection dominant zone and the coordination zone. This
region marks a tipping point for coordination, i.e., when the number of coop-
erative players surpasses a threshold that leads the population to coordinate395

into contributions that lead to a successful outcome. The location of this
tipping point in function of impact uncertainty is important, since our model
shows that the average payoff of the population reaches its minimum before
it is crossed.

a b

Figure 4: Effect of group and population size on group achievement. Results in panel
a) suggest that group size is an important factor for coordination. Bigger groups require
higher levels of risk to successfully coordinate and achieve the collective target. These
results were obtained evaluating L = 10 populations of size Z = 50. Panel b) shows that
group achievement is only significantly reduced when Z = 6, indicating that players in
small populations adopt strong biases towards behaviors that are positive in their environ-
ment, yet do not adapt well when interacting with individuals of other populations. These
results were obtained by evaluation L = 100 independent populations with N = 6. Con-
fidence intervals are < 0.1. (R = 10, σ = 0.5, α = 0.09, τ = 0.1, ng = 1000, K = 10000,
Ke = 10000)

One can formally identify this tipping point between the defection and400
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coordination zone by considering the following simplification : First, let us
define the investment cost σ required to achieve the threshold T in terms of
the ratio between the fair contribution F and the total endowment E that
each agent receives, i.e., σ = F/E (see Section 3.2). Given this definition,
the expected payoff of players that do not contribute (i.e., they defect - D)405

while also being in a group that does not reach the target is πD = (1− p)E.
In contrast, the expected payoff of a player that contributes overall F (i.e.,
they cooperate - C) and participates in a group that achieved the target is
πC = (1 − σ)E. In order for cooperative behavior to become preferred over
defective behavior the following condition needs to be met: πC > πD =⇒410

σ < p. Fig. 3 shows these for σ = 0.5.

a b

Figure 5: Effect of threshold and timing uncertainty on group achievement. Panel a) shows
the variation of the fraction of successful groups, or group achievement (η) in function of
risk and threshold uncertainty. Higher δ values indicate a larger range of possible values
that the threshold may adopt (see Section 3.4) and, therefore, a higher level of uncertainty.
Results show that, even for a very high risk, η decreases as δ increases. We also observe
an increase in group achievement for lower risk levels. However, this increase in success
is due to a higher chance that participants may avoid the collective loss with a lower
threshold. Panel b) shows the level of group achievement in function of risk and timing
uncertainty. In this case, w indicates the level of uncertainty over the final round, and the
game has exactly R = 10 rounds when w = 0. Timing uncertainty is defined as a geometric
distribution R ∼ G(1−w) (see Section 3.5), and therefore the variance of the distribution
increases with w. Moreover, in all cases the mean of the distribution is at R = 10, and
we impose a minimum number of rounds, so that the target is always achievable (see
Section 3.5). The results show that the η in the coordination zone diminishes with timing
uncertainty. Confidence intervals are < 0.1. (L = 10, Z = 50, N = 6, R = 10, σ = 0.5,
α = 0.09, τ = 0.1, ng = 1000, K = 10000, Ke = 10000)
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The size and placement of the three regions observed in Fig. 3 is influ-
enced by the size of the group in which the agents learn as well as the number
of different participants with whom they are confronted. As shown in Fig.
4a on the one hand, smaller group sizes lead to an earlier transition between415

defection dominant and coordination zones. This outcome shows that it is
easier to attain a successful outcome for lower impact uncertainty when play-
ing the CRD in small groups. This result is in line with previous findings
from the behavioral experiment performed in [60], and also obtained with
evolutionary games [4, 7], showing that multiple agreements at a local level420

will increase the odds of collective success, in contrast to large-scale climate
summits, where all parties participate simultaneously. On the other hand, as
is visualized in Fig. 4b, if learning occurs in restricted groups where one often
encounters the same participants (Z = N) then learned behaviors are spe-
cialised to coordinate with their group members, reducing significantly the425

success of coordinating, even for high risk, when encountering other players
independently trained in one of the other L populations. This result, there-
fore, suggests that smaller populations over-fit their environment, developing
strong biases towards certain behaviors, and adapt poorly when encountering
members from a different population, producing coordination errors.430

As said, the risk of collective failure provides just one possible source of
uncertainty. When threshold uncertainty (i.e., when collective goals are ill
defined) and timing uncertainty (i.e., when the time-frame to coordinate ef-
forts is uncertain) are included, the PBL model reveals that both uncertainty
types significantly influence group success (see Section 3 for a discussion how435

both uncertainty types were incorporated into the PBL model). Fig. 5a
shows that increasing threshold uncertainty reduces success, a result found
also in Danneberg’s behavioral experiments [9] and two evolutionary game
theoretical models [5, 27]. Additionally, our PBL model shows an increase
of η for risks lower than 0.5, when δ (the level of threshold uncertainty) is440

high. This increase in success is due to a higher chance for participants to
avoid the collective loss with a lower threshold T (see Section 3). For timing
uncertainty, Fig. 5b shows that as in the experiments η is reduced in the
coordination zone. The experimental results obtained for low (high) timing
uncertainty by [11], and shown in Fig. 1, correspond to the setting w = 2/3445

(w = 4/5)1. These results for threshold and timing uncertainty reveal that in

1As indicated in Section 3.5, the parameter w represents the amount of timing uncer-
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order to achieve collective success, especially in the coordination zone where
cooperation is preferred, all forms of uncertainty need to be mitigated so that
coordination is more likely to be achieved.

4.2. Uncertainty increases polarization and reduces coordination450

As there are differences in group success associated with uncertainty, the
PBL model may also help us to understand subtle behavioral differences ob-
served in lab experiments. A first coarse-grained approach to unravel the
behaviors is to consider the fairness of each strategy and study how the pro-
portion of fair individuals varies in the population with risk and uncertainty455

(see Section 3.2 for the definition of fairness). The individual behaviors
learned in the PBL model either contribute exactly (C = F ), more (C > F ),
less (C < F ) in total. Since there is no incentive to contribute in the defection
dominant zone, we also consider C = 0.

In Fig. 6 we visualize the fraction of each of these behaviors as a function460

of risk and uncertainty. In Fig 6a, which corresponds to the baseline CRD
with impact uncertainty, the population is in a defection dominant zone when
p < 0.5, with most agents contributing less than fair, i.e., C < F . In the
transient zone, where 0.5 < p < 0.7, the proportion of C < F decreases
quickly with risk, while the more generous behavior (C > F ) increases, until465

their proportions intersect and C > F becomes dominant. Once it reaches
stability, the coordination zone starts. The proportional difference between
C > F and C < F defines the likelihood of the population succeeding in
reaching the threshold T . In Fig, 6a where only impact certainty is in effect,
fair players (C = F ) surpass also the fraction of C < F . However, when470

either timing (Fig. 6b) or threshold uncertainty (Fig. 6c) is present next to
impact uncertainty, the intersection point between the fractions of C < F
and C > F moves to higher levels of risk, enlarging the transient zone.
Moreover, the fraction of C = F players no longer surpasses that of the less
generous ones (C < F ). As a consequence, a behavioral polarization emerges475

in the population, favouring generous (C > F ) and non-generous (C < F )
behaviors over fair ones (C = F ), which also leads, in this case, to a reduction
in group success.

tainty, thus, higher values indicate that there is less certainty about which is going to be
the final round of the game.
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Figure 6: Effect of risk and uncertainty on the population’s behavior distribution. This
figure shows the variation of the fraction of agents in the population which make a total
contribution of C = 0, C < F , C = F or C > F , with F = T/N . If all players in a group
contribute F , the sum of their contributions is exactly the target T , therefore we consider
agents that adopt C = F to be fair. Agents that contribute C > F can be considered
altruists, while agents that contribute C = 0 or C < F are free-riders. Panel a) shows how
these behavioral profiles change in the population in the presence of different levels of risk.
When p < 0.5, the population is in a defection dominant zone, and most agents contribute
c < F . For 0.5 < p < 0.7, the population enters a transient region, and we observe
how the proportion of c < F decreases linearly with risk, while C > F increases, until
their proportions intersect. Afterwards, C > F becomes dominant, and reaches stability,
indicating the beginning of the coordination zone. The difference in proportion of C > F
and C < F defines the likelihood of the population succeeding in avoiding a disaster, since
these altruist agents compensate for the free-riders. In this coordination region, we also
observe an increase of fair players, surpassing the fraction of C < F . However, when either
timing (panel b)) or threshold uncertainty (panel c)) is also present, the intersection point
between free-riders and altruists moves to higher levels of risk, which enlarges the transient
zone. Moreover, the fraction of fair players no longer surpasses that of free-riders. This
results in a polarized population mostly composed of C > F and C < F players. This
behavioral change, may explain the reduced levels of group achievements in the presence
of uncertainty. (L = 10, Z = 50, N = 6, R = 10, σ = 0.5, α = 0.09, τ = 0.1, ng = 1000,
K = 10000, Ke = 10000)

4.3. Behaviors dealing with timing uncertainty differ from those learned for
impact and threshold uncertainty480

To better grasp the differences in learned behaviors and how they are
associated with each uncertainty type, we investigate more closely the agent
strategies that are attaining a successful outcome. As explained in more
detail in the Section 3.9, the decision-process of each agent is encoded as
a vector which contains the average contributions of an agent for each pos-485

sible cumulative contribution made by the other agents in the same group
in the previous round. Fig. 7 shows 2-dimensional representation of this n-
dimensional information using a t-SNE plot (see also Section 3.9). Each point
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in this figure represents such a vector and the square, cross or circle markers
highlight the type of uncertainty under which the agent was trained — uncer-490

tainty (the risk, r, in this case) is present in all cases; squares (crosses) agents
additionally experience threshold (timing) uncertainty. Using k-means clus-
tering [58, 59] (see Section 3.9) six homogeneous and optimally separating
groups were identified, as can be seen in Fig. 8. The results reveal that the
learned behaviors under timing uncertainty are highly different from those495

acquired under impact and threshold uncertainty (see also panel b in Figure
7): they are mostly situated left to the zero on the x-axes. Fig. 8 further
clarifies these differences: While panels a-d represent mostly unconditional
behavior with differences in the mean contribution per round or the start-
ing and ending contributions, panels e and f display a clear conditional, i.e500

reciprocal, behavior. The agents in those clusters decrease (increase) their
contributions when the rest of the group gave more (less) than a fair, round-
level donation. Moreover, in these clusters, agents tend to contribute more
in the first part of the game then in the rest. Interestingly, these results were
also observed experimentally by Fernández Domingos et al. [11], confirm-505

ing again the differences in displayed behavior when timing uncertainty is
present in the CRD.
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Figure 7: Behavioral distribution of a population of agents that adapted their choices
under different types of uncertainty. This t-SNE plot (panel a) shows a 2-dimensional
representation of the populations of agents that have adapted in different uncertainty en-
vironments. In all cases the risk of the CRD was p = 0.9. Players’ behavior is encoded into
vectors that represent the average contribution an agent makes relative to the cumulative
contributions made by the other players in the previous round (see Section 3.9). Here
we only look at results from successful groups, to understand what behaviour is adopted
in these cases. Each point represents an agent, and the markers indicate the type of
uncertainty under which the agent has trained. The groups are identified with k-means
clustering (see Section 3.9). Each point in the plot is colored according to its cluster.
Panel b shows the frequency of agent types in each cluster: whereas cluster 5 and 6 are
dominated by agents trained for impact and timing uncertainty, the others are trained for
impact and/or threshold uncertainty. (L = 10, Z = 50, N = 6, R = 10, σ = 0.5, p = 0.9,
α = 0.09, τ = 0.1, ng = 1000, K = 10000, Ke = 10000)
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Figure 8: Conditional and time dependent behavior per cluster. In each panel, the figure on
the left column shows the distribution of average contributions of the agents in the cluster
in function of the contributions of the other group members in the previous learning step
(see Section 3.9). The figure on the right column shows the avg. contribution in the first
and second halves of the game, normalized by the maximum possible contribution in each
half. The clusters in panels a-c display unconditional behavior with respect to the rest of
the group, and are distinguished only by the average level of contributions and whether
they happen mostly in the first or second half of the game. Panel d shows a slightly
compensatory behavior, where agents increase their contributions when the group-mates
decrease theirs. In contrast, the behavior shown in e and f are clearly conditional, with
agents in those clusters decreasing (increasing) their contributions if the rest of the group
also decrease (increase) theirs. Moreover, in these cluster, agents tend to contribute more
in the first part of the game then in the rest. Interestingly, these clusters are composed by
agents from the populations that adapted under timing uncertainty, which suggests that
this type of uncertainty promotes such reciprocal behavior. (Z = 50, N = 6, R = 10,
σ = 0.5, α = 0.09, τ = 0.1, ng = 1000, K = 10000, Ke = 10000)
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4.4. Increasing the number of available actions facilitates cooperation in the
transient zone

Finally, we look at the effect of increasing the number of available con-510

tribution levels, or actions, (|A|) per round as a possible driver for coordina-
tion. In Fig. 9, we show how the group achievement changes depending the
number of actions that can be taken by each participant and the types of un-
certainty. Fig. 9a shows how altering the number of available actions affects
group achievement in function of risk in the absence of other sources of un-515

certainty. These results show that the number of actions do not influence the
outcome when the risk is high (the game is in the coordination zone). Thus,
for most parameters, in the absence of uncertainty, the results shown in the
previous sections are robust to changes on the number of actions available.
However, for intermediary levels of risk (p = 0.5) decreasing the contribution520

options from 3 to 2 affects negatively the fraction of successful groups. In
fact, the simulation results show that when only 2 actions are available per
round, a higher risk is required for the agents to cooperate.

Fig. 9b and Fig. 9c show the effect of increasing the number of available
actions in the presence of timing w = 2/3 and threshold δ = 0.2 uncertainty,525

respectively. In both cases, when the risk levels are intermediary (p = 0.5),
there is an increase in group achievement with a higher number of available
actions per round. This positive effect appears to be stronger in the presence
of threshold uncertainty, where it can be observed that more actions lead to
an earlier transition from the defection dominant to the coordination region.530

In the presence of also timing uncertainty (middle panel) or threshold uncer-
tainty (right panel), more actions alter the slope of the transition between
both regions, leading to more collective success (η) than when there are only
a few actions to choose from. Therefore, our results suggest that increasing
the number of available actions may facilitate consensus and coordination535

under uncertainty, being beneficial for collective action in the mid range of
risks (transient region), and it should be an important factor to take into
account when designing public policy that aims to address CRD situations
in this region. Apart from these transients, all previous results are shown to
be robust to variations on the number of actions available to players.540
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ba c

Figure 9: Group achievement as a function of risk and the number of available actions.
Here we show how the fraction of successful groups (group achievement) changes if agents
can select among more contribution levels at each round. Panel a) shows how this vari-
ation affects the outcome of the CRD for different risk levels and no threshold or timing
uncertainty. The results show that decreasing the number of available actions from 3
to 2 reduces group achievement for intermediary risk levels (p = 0.5). Panels b) and c)
show the results in the presence of timing (w = 2/3) and threshold (δ = 0.2) uncertainty,
respectively. In both cases, increasing the number of actions has a positive effect for in-
termediary levels of risk, and this positive effect appears to be stronger when threshold
uncertainty is present. In general, varying the number of actions (or options) only affects
the transient zone (p 0.5); in all cases the coordination zone (higher levels of risk) remains
unaltered. Confidence intervals are < 0.1. (L = 20, Z = 50, N = 6, R = 10, σ = 0.5,
α = 0.09, τ = 0.1, nt = 10000, K = 10000, Ke = 100000).

5. Conclusions

Many human endeavours as well as computational problems can be char-
acterised by non-linear, uncertain and delayed rewards. These constraints
conform to difficult dilemmas that require the weighing not only of personal
and public interests but also that of short and long-term rewards. Climate545

action is a prominent example of such a situation, since the consequences of
failing to prevent it might only be observed in the future, and, potentially,
by the next generations. Therefore, failing to consider future consequences,
or, in other words, if the perception of collective risk is not high enough,
might drive the participants in this global dilemma to a tragedy of commons550

[61]. Likewise, unfortunately, the COVID-19 pandemics has provided an-
other strong case that exemplifies such a social dilemma. When individuals
do not perceive risk to be high enough, they might be tempted to bypass the
confinement measures and recommendations, however by doing so, they not
only increase their chances of getting infected, but also the risk of infecting555
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others, increasing also the likelihood the local health system will collapse.
As result, this has a future effect that they might not have been perceived:
if they do get ill, they might not be treated. Thus, avoiding free-riding and
promoting cooperation is essential for group success, and this situation is
very well abstracted by the collective risk dilemma (CRD). Under this sce-560

nario, we present a PBL model that is both simple and flexible, yet powerful
enough to reproduce results in a variety of behavioral experiments. Addition-
ally, our model can be easily extended to other n-player social dilemmas. As
mentioned before, it is important to know that the PBL is not modelling the
learning process faced by humans during the reported experiments. Instead,565

the system is only used to reproduce the behavioral patterns they have at the
start of the CRD, which they have learned before arriving to the laboratory.

We find through our PBL model that while the perception of risk can
drive the emergence of cooperation, threshold and timing uncertainty have a
negative impact on group achievement, confirming the results observed ex-570

perimentally [1, 9, 11]. Moreover, Fig. 3 indicates that there is a transient
region in which the global payoff of the population is minimized (see Fig. 6).
Our PBL model indicates that both threshold and timing uncertainty widen
this region. Therefore, it is important to find strategies that may increase
group success in these conditions. In Fig. 9 we show that increasing the575

number of available actions may ease consensus, providing an escape from
failed outcomes in the transient regions, while it hardly has any effect for
very high risks. However, when looking at the coordination zone (high risk)
in all three uncertainty scenarios, we observe that both threshold and timing
uncertainty increase the polarization in the population, reducing the number580

of fair players. Also, when looking at the distribution of successful behaviors
learned in the coordination zone (high risk), we see that there is not much dif-
ference between only impact and threshold uncertainty, which highlights that
the reduction in group achievement in the presence of threshold uncertainty
is mostly due to the increase in the probability that achieving the target585

will require players to make greater effort. In contrast, under timing uncer-
tainty, players appear to develop reciprocal behaviors, i.e., when co-adapting
through the same population they learn to contribute less (more) when there
is a higher chance that the other players will contribute less (more). This
result was also observed experimentally by Fernández et al. [11].590

The sources of uncertainty that we study in this paper, can only be re-
duced, but not eliminated. Yet, when the level of risk is lower and the CRD
is in a transient zone, increasing the number of available actions can provide
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an escape from the tragedy of commons and increase cooperation. Addi-
tionally, we find that uncertainty can considerably reduce group success and595

increase polarization, but, under timing uncertainty, reciprocation promotes
cooperation and group success in the PBL. Finally, the perception of risk is
key in this dilemma, which brings perhaps even more attention to the im-
portance of awareness within the global population that is under a collective
risk scenario.600
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Appendix A. Results from behavioral experiments

In Fig. 1, we show a summary of the group achievement obtained in
different CRD experiments that are related to our paper. All of this results
have been extracted from the papers referenced in the figure. However, in
the case of threshold uncertainty [9], the authors only indicate in the ex-620

perimental groups’ collective contributions instead of how many groups were
successful. With this information they extrapolate their results showing how
many groups would have been successful had the threshold been 120, 100, 80,
60, 40 and 20. In order to calculate the expected group success from these
results, we simply multiplied the probability of each of these scenarios by the625

fraction of groups that would have achieved the target in each of them, i.e.,∑
τ∈T P (x = τ) ∗ n(τ)/ng, where T represent the range of possible threshold

values, n(τ) the number of successful groups for this collective target, and
ng the total number of groups.

Moreover, in the 2 experiments on threshold uncertainty [9], participants630

only knew that the threshold (collective target) of the experiment would be
picked randomly within a discrete range of [0, 240] with steps of 20 units.
In one case, they also knew that the stochastic distribution from which the
threshold would be picked was uniform, while in the other case they were not
informed about the distribution. To simplify our calculations, and given that635

the authors do not specify which distribution was used for each group, we
assume a uniform distribution in this case as well. Therefore, these results
should be taken only as a reference value, and the actual group achievement
might be slightly higher or lower.

The authors indicate that for the ”uniform distribution” treatment, also640

named Risk, only 2/10 groups contributed at least 120 units (half of the
threshold range), and 6/10 contributed 100 units, 9/10 at least 80, 9/10, and
10/10 at least 40. For the case in which the distribution is unknown, also
named Ambiguity, 0/10 contributed at least 120 units, 4/10 at least 100,
6/10 at least 80, 8/10 at least 60, 9/10 at least 40 and 10/10 at least 20.645

Therefore, according to our calculations, the group achievement for the Risk
treatment is 0.43 and for the Ambiguity treatment is 0.36.

Appendix B. Equilibria

The CRD is a threshold public goods game [4, 14, 16, 25, 62, 63], whose
equilibria depend on the impact of not reaching the threshold T . First, we650
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define this impact in terms of the expected payoff of a player, and therefore it
is a function of the risk p, assuming there are no other sources of uncertainty.
When p = 0, players maximise their payoffs by not contributing to the public
good, and since no player has any incentive to move away from this behavior,
this is also a Nash equilibrium. The same applies to all values of p where655

(1 − p)E > T/N . On the limit, where (1 − p)E = T/N , Ci = (1 − p)E is a
weak symmetric Nash equilibrium.

For all other cases, where (1−p)E < T/N , there are two sets of equilibria:
i) a collectively good set, that include all trajectories that lead exactly to
achieve g = T ; ii) and a degenerate or negative set, where players do not660

contribute, and therefore do not achieve the threshold. Both cases are Nash
equilibria, since players do not have any incentive to deviate unilaterally.
Furthermore, the equilibrium where all players contribute exactly F = T/N
is Pareto efficient.

It is important to notice however, that, given a single group of players,665

the equilibrium g∗ = T is not stable, since any deviation from it, will also
provoke a change in the behavior of all players. In [25], the authors show
that, in a one-shot version of the CRD with only 2 possible contributions, a
stable cooperative equilibrium appears for certain levels of difficulty of the
game.670

In Milinski’s experiments [1], the cost of cooperation, assuming equal
contributions, is half of the endowment (E/2), and the expected payoff of
defecting (contributing 0) for a risk p is ΠD = (1−p)E. Therefore, if p < 1/2,
defecting is risk dominant.

Appendix C. Reducing the cost of the collective risk promotes675

cooperation in the transient region

The PBL model shows that both timing and threshold uncertainty widen
the transient zone of the CRD, reducing cooperation and preventing play-
ers from coordinating efforts effectively. Additionally, uncertainty appears
to increase polarization in terms of overall contributions per player in the680

population, which results in payoff heterogeneity and inequality. Therefore,
public policy that aims to address CRD situations, such as climate action
or pandemics, such as the COVID19, must aim to reduce uncertainty. Yet,
often sources of scientific uncertainty are unavoidable, and other measures
must be taken to increase cooperation, but also to reduce wealth inequality685

and polarization. One effective way to tackle this problem is to act over
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the difficulty of the dilemma, by reducing the cost that fair players must
pay to avoid the collective loss. Thus, we define the cost of the dilemma
σ = T/(NE) as the fraction of the endowment that should be contributed
by all members of the group in order to reach the collective target (see Meth-690

ods). Hence, if σ = 0, no contributions are required and if σ = 1, players
must contribute all their endowment. In Fig. C.10 we show how the aver-
age payoff of the population of agents varies for different levels of difficulty
and risk over 4 uncertainty scenarios: a) only impact uncertainty (risk); b)
timing uncertainty; c) threshold uncertainty; and d) both timing and thresh-695

old uncertainty. These results suggest that varying σ may cause non trivial
effect. For instance, both in the presence of only impact uncertainty (Fig.
C.10a) and also threshold uncertainty (Fig. C.10c), for high risks, lowering σ
reduces the average wealth of the population, instead of increasing it. Con-
trarily, in in the presence of timing uncertainty (Fig. C.10b) the region of700

fair payoffs (when the population wealth is on average E/2 = 10) becomes
wider. Moreover, in all cases, it is possible to increase the global wealth of
the population in the transient region by only decreasing σ slightly. Which
suggests, that public policy should aim to keep the cost of cooperation low
in this region of risk. Finally, in each plot of Fig. C.10, we draw dashed red705

and black lines. These lines represent the threshold for cooperation, i.e., the
group achievement on all points below the red line is η > 0.1 and η > 0.5 for
all points below the black line. In the figure, the separation between these
two thresholds grow with uncertainty, which suggests the space for coordi-
nation and cooperation is reduced in the presence of timing and threshold710

uncertainty, and reinforces the conclusion that uncertainty should be reduced
in a CRD.
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a b
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Figure C.10: Effect of the cost of the dilemma and risk on population wealth for different
types of uncertainty. The plots show how the average payoff of the population depends
on the level of risk, uncertainty and the dilemma difficulty, σ. Panel a) shows the results
when only impact uncertainty (risk) is present. Panel b) shows the results in the presence
of low levels of timing uncertainty (w = 2/3). Panel c) shows the same with threshold
uncertainty (δ = 0.2). Finally Panel d) shows the effect of the combination of the three
types of uncertainty. In all panels the dashed red and black lines indicate the threshold
for cooperation. The group achievement in all the points below the red line is η > 0.1 and
η > 0.5 for all the points below the black line. The figure shows how the separation between
these two thresholds grow with uncertainty, which suggests the space for coordination and
cooperation is reduced in the presence of timing and threshold uncertainty. (L = 10,
Z = 50, N = 6, R = 10, α = 0.09, τ = 0.1, ng = 1000, K = 10000, Ke = 10000).
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Appendix D. List of parameters

Table D.1: List of model parameters and the range analysed in the manuscript.

Symbol Parameter Range analysed

Z population size {6, 12, 24, 48, 50}
N group size {2, 4, 6, 8, 12}
K number of learning step 10000

Ke number of evaluation games 10000

L number of independent populations {10, 20}
R0 minimum number of rounds {6, 7, 8, 9, 10}
R mean number of rounds 10

Rmax maximum number of rounds 50

E individual endowment 2R

T collective target or threshold σEN

p risk [0, 1], steps of 0.1

w level of timing uncertainty {0, 1/2, 2/3, 3/4, 4/5}
δ level of threshold uncertainty [0, 1], steps of 0.1

ng total number of groups in a learning step 1000

σ cost of the dilemma [0, 0.9], steps of 0.1

|A| number of actions per round {2, 3, 5, 9}

33



Table D.2: List of symbols used in the manuscript. Here we list the symbols that are used
throughout the manuscript and their meaning. The parameters already listed in Table
D.1 are excluded.

Symbol Explanation

A discrete set of possible actions/contributions per round

S set of states

ai(s) action of player i at round/state s

â−i group contribution excluding player i in the previous round

ai(â−i) average contribution of player i when confronted with â−i

Ci sum of all contributions made by player i over all the rounds

F fair contribution

πi payoff of player i

Πi expected payoff of player i

n number of successful groups in a learning step

η group achievement/fraction of successful groups

Xi strategy profile

xi,k(a, s) probability that i takes action a at state s in learning step k

Qi,k(a, s) Q value of action a at state s for player i in learning step k

b encoding of a player’s strategy for the clustering analysis
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F. C. Santos, T. Lenaerts, Timing uncertainty in collective risk dilemmas
encourages group reciprocation and polarization, iScience 23 (12) (2020)
101752. doi:10.1016/j.isci.2020.101752.755

35

https://doi.org/10.1007/s10584-011-0319-y
https://doi.org/10.1073/pnas.1015648108
https://doi.org/10.1371/journal.pcbi.1002652
https://doi.org/10.1016/j.jeem.2012.12.004
https://doi.org/10.1016/j.jeem.2012.12.004
https://doi.org/10.1016/j.jeem.2012.12.004
https://doi.org/10.1073/pnas.1323479111
https://doi.org/10.1007/s10640-014-9796-6
https://doi.org/10.1038/s41467-018-04968-1
https://doi.org/10.1038/s41467-018-04968-1
https://doi.org/10.1038/s41467-018-04968-1
https://doi.org/10.1016/j.isci.2020.101752


[12] A. E. Camacho, Adapting governance to climate change: managing un-
certainty through a learning infrastructure, Emory LJ 59 (2009) 1.

[13] W. Barfuss, J. F. Donges, V. V. Vasconcelos, J. Kurths, S. A. Levin,
Caring for the future can turn tragedy into comedy for long-term collec-
tive action under risk of collapse, Proceedings of the National Academy760

of Sciences USA 117 (23) (2020) 12915–12922.

[14] T. Offerman, A. Schram, J. Sonnemans, Quantal response models in
step-level public good games, European Journal of Political Economy
14 (1) (1998) 89–100. doi:10.1016/S0176-2680(97)00044-X.

[15] C. B. Cadsby, E. Maynes, Voluntary provision of threshold public goods765

with continuous contributions: Experimental evidence, Journal of Pub-
lic Economics 71 (1) (1999) 53–73. doi:10.1016/S0047-2727(98)

00049-8.

[16] J. M. Pacheco, F. C. Santos, M. O. Souza, B. Skyrms, Evolutionary
dynamics of collective action in N-person stag hunt dilemmas., Proc.770

Royal Society B: Biological Sciences 276 (1655) (2009) 315–21. doi:

10.1098/rspb.2008.1126.

[17] M. Milinski, C. Hilbe, D. Semmann, R. Sommerfeld, J. Marotzke, Hu-
mans choose representatives who enforce cooperation in social dilemmas
through extortion, Nature communications 7 (2016) 10915.775

[18] S. Barrett, A. Dannenberg, Climate Negotiations under Scientific Un-
certainty, Proc. Natl. Acad. Sci. USA 109 (43) (2012) 17372–17376.
doi:10.1073/pnas.1208417109.

[19] S. Barrett, A. Dannenberg, Sensitivity of collective action to uncertainty
about climate tipping points, Nature Climate Change 4 (1) (2014) 36–780

39. doi:10.1038/nclimate2059.

[20] S. Barrett, Collective Action to Avoid Catastrophe: When Countries
Succeed, When They Fail, and Why, Global Policy 7 (May) (2016) 45–
55. doi:10.1111/1758-5899.12324.

[21] S. Barrett, Coordination vs. voluntarism and enforcement in sustaining785

international environmental cooperation, Proceedings of the National

36

https://doi.org/10.1016/S0176-2680(97)00044-X
https://doi.org/10.1016/S0047-2727(98)00049-8
https://doi.org/10.1016/S0047-2727(98)00049-8
https://doi.org/10.1016/S0047-2727(98)00049-8
https://doi.org/10.1098/rspb.2008.1126
https://doi.org/10.1098/rspb.2008.1126
https://doi.org/10.1098/rspb.2008.1126
https://doi.org/10.1073/pnas.1208417109
https://doi.org/10.1038/nclimate2059
https://doi.org/10.1111/1758-5899.12324


Academy of Sciences 113 (51) (2016) 201604989. doi:10.1073/pnas.

1604989113.

[22] S. Van Segbroeck, J. M. Pacheco, T. Lenaerts, F. C. Santos, Emergence
of fairness in repeated group interactions, Phys. Rev. Lett. 108 (15)790

(2012) 158104.

[23] A. R. Góis, F. P. Santos, J. M. Pacheco, F. C. Santos, Reward and
punishment in climate change dilemmas, Sci. Rep. 9 (1) (2019) 1–9.

[24] M. C. Couto, J. M. Pacheco, F. C. Santos, Governance of risky pub-
lic goods under graduated punishment, Journal of Theoretical Biology795

(2020) 110423.

[25] F. C. Santos, V. V. Vasconcelos, M. D. Santos, P. N. B. Neves, J. M.
Pacheco, Evolutionary Dynamics of Climate Change Under Collective-
Risk Dilemmas, Mathematical Models and Methods in Applied Sciences
22 (supp01) (2012) 1140004. doi:10.1142/S0218202511400045.800

[26] J. M. Pacheco, V. V. Vasconcelos, F. C. Santos, Climate change gover-
nance, cooperation and self-organization, Physics of Life Reviews 11 (4)
(2014) 573–586. doi:10.1016/j.plrev.2014.02.003.

[27] V. V. Vasconcelos, F. C. Santos, J. M. Pacheco, Cooperation dynam-
ics of polycentric climate governance, Mathematical Models & Meth-805

ods in Applied Sciences 25 (13) (2015) 2503–2517. doi:10.1142/

S0218202515400163.

[28] M. Abou, A. Traulsen, Under high stakes and uncertainty the rich should
lend the poor a helping hand, Journal of Theoretical Biology 341 (2014)
123–130. doi:10.1016/j.jtbi.2013.10.004.810

[29] C. Hilbe, M. Abou Chakra, P. M. Altrock, A. Traulsen, The Evolution of
Strategic Timing in Collective-Risk Dilemmas, PLoS ONE 8 (6) (2013)
1–7. doi:10.1371/journal.pone.0066490.

[30] K. Hagel, M. A. Chakra, B. Bauer, A. Traulsen, Which risk scenarios
can drive the emrgence of costly cooperation?, Nature Scientific Reports815

(2016). doi:10.1038/srep19269.

37

https://doi.org/10.1073/pnas.1604989113
https://doi.org/10.1073/pnas.1604989113
https://doi.org/10.1073/pnas.1604989113
https://doi.org/10.1142/S0218202511400045
https://doi.org/10.1016/j.plrev.2014.02.003
https://doi.org/10.1142/S0218202515400163
https://doi.org/10.1142/S0218202515400163
https://doi.org/10.1142/S0218202515400163
https://doi.org/10.1016/j.jtbi.2013.10.004
https://doi.org/10.1371/journal.pone.0066490
https://doi.org/10.1038/srep19269


[31] A. E. Roth, I. Erev, Learning in extensive-form games: Experimental
data and simple dynamic models in the intermediate term, Games and
economic behavior 8 (1) (1995) 164–212.

[32] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction,820

MIT press, 2018.
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