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A omparative study of soial network models: network evolution models andnodal attribute modelsRiitta Toivonen∗,a, Lauri Kovanena, Mikko Kiveläa, Jukka-Pekka Onnelab,,a, Jari Saramäkia, KimmoKaskiaaDepartment of Biomedial Engineering and Computational Siene (BECS), Helsinki University of Tehnology, P.O. Box9203, FIN-02015 HUT, FinlandbPhysis Department, Clarendon Laboratory, Oxford University, Oxford OX1 3PU, United KingdomSaïd Business Shool, Oxford University, Oxford OX1 1HP, United KingdomAbstratThis paper reviews, lassi�es and ompares reent models for soial networks that have mainly been publishedwithin the physis-oriented omplex networks literature. The models fall into two ategories: those inwhih the addition of new links is dependent on the (typially loal) network struture (network evolutionmodels, NEMs), and those in whih links are generated based only on nodal attributes (nodal attributemodels, NAMs). An exponential random graph model (ERGM) with strutural dependenies is inluded foromparison. We �t models from eah of these ategories to two empirial aquaintane networks with respetto basi network properties. We ompare higher order strutures in the resulting networks with those in thedata, with the aim of determining whih models produe the most realisti network struture with respet todegree distributions, assortativity, lustering spetra, geodesi path distributions, and ommunity struture(subgroups with dense internal onnetions). We �nd that the nodal attribute models suessfully produeassortative networks and very lear ommunity struture. However, they generate unrealisti lusteringspetra and peaked degree distributions that do not math empirial data on large soial networks. On theother hand, many of the network evolution models produe degree distributions and lustering spetra thatagree more losely with data. They also generate assortative networks and ommunity struture, althoughoften not to the same extent as in the data. The ERGM model turns out to produe the weakest ommunitystruture.Key words: Soial networks, Complex networks, Network evolution models, Nodal attribute models,Exponential random graph modelsPACS: 64.60.aq, 89.65.Ef, 89.65.-s, 89.75.-k, 02.70.-1. IntrodutionModeling soial networks serves at least two pur-poses. Firstly, it helps us understand how soialnetworks form and evolve. Seondly, in studyingnetwork-dependent soial proesses by simulation,suh as di�usion or retrieval of information, su-essful network models an be used to speify thestruture of interation. A large variety of modelshave been presented in the physis-oriented om-plex networks literature in reent years, to explore
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how loal mehanisms of network formation pro-due global network struture. In this paper wereview, lassify and ompare suh models.The models are lassi�ed into two main ate-gories: those in whih the addition of new links isdependent on the loal network struture (networkevolution models, NEMs), and those in whih theprobability of eah link existing depends only onnodal attributes (nodal attribute models, NAMs).NEMs an be further subdivided into growing mod-els, in whih nodes and links are added until thenetwork ontains the desired number N of nodes,and dynamial models, in whih the steps for addingand removing ties on a �xed set of nodes are re-Preprint submitted to Elsevier April 3, 2009
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peated until the struture of the network no longerstatistially hanges. For ompleteness, we in-lude in our omparative study two models fromthe tradition of exponential random graph models(ERGMs). One of them is based solely on nodalattributes, and the other inorporates struturaldependenies. All of these models produe undi-reted networks without multiple links or self-links,and all networks are treated as unweighted, i.e. tiestrengths are not taken into aount. We note thatsome of the models were designed with a partiu-lar property in mind, suh as a high average lus-tering oe�ient, but we will assess their abilityto reprodue several of the typial features of so-ial networks. In addition to omparing the distri-butions of degree and geodesi path lengths andlustering spetra, we assess the presene or ab-sene of ommunities, whih in the omplex net-works literature are typially de�ned as groups ofnodes that are more densely onneted to nodes inthe same ommunity than to nodes in other om-munities Fortunato and Castellano (2008).This paper is strutured as follows. In Setions1.1 to 1.3, we de�ne the ategories of network evolu-tion models and nodal attribute models, and brie�yreview exponential random graph models. Setion1.4 disusses di�erenes between the philosophiesbehind NEMs and ERGMs. We �t models fromeah of these ategories to two empirial aquain-tane networks with respet to basi network statis-tis. The �tting proedure is disussed in Se-tion 3 and Appendix A.2. In Setion 4, we omparehigher order strutures in the resulting networkswith those in the data. Setion 5 summarizes ourresults.1.1. Network evolution models (NEMs)Let us �rst present a lass of network models thatfouses on network evolution mehanisms. Thesemodels test hypotheses that spei� network evolu-tion mehanisms lead to spei� network struture.We all these network evolution models (NEMs),and de�ne them via three properties as follows:1) A single network realization G is produed by aniterative proess that always starts from an ini-tial network on�guration G(t0) spei�ed in theNEM. Dynamial models often begin with anempty network, and growing models start witha small seed network1.1The seed network does not always need to be exatly

2) The spei�ations of the NEM inlude an ex-pliitly de�ned set of stohasti rules by whihthe network struture evolves in time. Theserules onern seleting a subset of nodes andlinks at eah time step, and adding and delet-ing nodes and links within this subset. Therules typially orrespond to abstrated meh-anisms of soial tie formation suh as triadilosure (Granovetter, 1973), i.e. tie formationbased on the tendeny of two friends of an indi-vidual to beome aquainted. The rules alwaysdepend on network struture and they an some-times also inorporate nodal attributes. Therules determine the possible transitions from onenetwork G(tk−1) to the next G(tk) during theiterative proess that will produe one networkrealization G = G(tend).3) The NEM inludes a stopping riterion:a) For a growing NEM, the algorithm �nisheswhen the network has reahed a predeter-mined size. The typial assumption is thatrelevant statistial properties of the networkremain invariant one the network is largeenough.b) For a dynamial NEM, the algorithm �nisheswhen seleted network statistis no longervary2.A growing model an be motivated as a modelfor soial networks in several ontexts. For exam-ple, on soial networking sites people rarely removelinks, and new users keep joining the network. Sim-ilarly, in a o-authorship network Newman (2001)derived from publiation reords, existing links re-main while new links form. We point out that thegrowing models do not intend to simulate the evo-lution of a soial network ab initio. However, themehanisms are seleted to imitate the way peoplemight join an already established soial network.spei�ed, as long as it meets the given general riterion (suhas being small ompared to the network that will be gener-ated), as it typially has a negligible e�et on the resultingnetwork.2While the stopping riterion for a growing NEM is ex-at, requirement 3b) is a heuristi riterion that assumes thatthe algorithm will reah a stage at whih the seleted sta-tistial properties of the networks G′(t) stabilize. Althoughwe annot know with absolute ertainty whether stationarydistributions have been reahed, we an be relatively on�-dent of it if monitored properties remain onstant and theirdistributions appear stable for a large number of time steps.2



The NEMs in our omparative study inlude onlynetwork struture based evolution rules (that maydepend on topology and tie strengths), althoughnodal attribute based rules are also possible. Mod-els in whih link generation is based solely on (�xed)nodal attributes belong to the ategory of nodal at-tribute models (NAMs) disussed below.1.2. Nodal attribute models (NAMs)We adopt the term nodal attribute models(NAMs) for network models in whih the probabil-ity of edge eij between nodes i and j being presentis expliitly stated as a funtion of the attributes ofthe nodes i and j only, and the evolutionary aspetis absent. NAMs are often based on the oneptof homophily (MPherson et al., 2001), the ten-deny for like to interat with like, whih is knownto struture network ties of various types, inlud-ing friendship, work, marriage, information trans-fer, and other forms of relationship. Suh modelshave also been desribed by the term spatial mod-els (Boguña et al., 2004; Wong et al., 2006), refer-ring to that the fat that the attributes of eah nodedetermine its 'loation' in a soial or geographialspae.1.3. Exponential random graph models (ERGMs)Exponential random graph models(ERGMs) (Frank and Strauss, 1986; Frank, 1991;Wasserman and Pattison, 1996; Robins et al.,2007a; Snijders et al., 2006; Robins et al., 2007b),also alled p∗ models, are used to test to whatextent nodal attributes (exogenous fators) andloal strutural dependenies (endogenous fators)explain the observed global struture. For example,Goodreau (2007) used ERGMs to infer that muhof the global struture (measured in terms of thedistributions of degree, edgewise shared partnersand geodesi paths) observed in a friendshipnetwork ould be aptured by nodal attributes andpatterns of shared partners and k-triangles, whihare relatively loal strutures.Consider a random graph X onsisting of Nnodes, in whih a possible tie between two nodes
i and j is represented by a random variable Xij ,and denote the set of all suh graphs by X . Usingthis notation, ERGMs are de�ned by the probabil-ity distribution of suh graphs X

Pθ,X (X = x) =
exp {θt

u(x)}

c(θ,X )
, (1)

where θ is the vetor of model parameters, u(x)is a vetor of network statistis based on the net-work realization x, and the denominator c(θ,X ) isa normalization funtion that ensures that the dis-tribution sums up to one. The seleted statistis
u(x) speify a partiular ERGM model. Typially,the parameters θ of an ERGM model are deter-mined using a maximum likelihood (ML) estimate,obtained by Markov Chain Monte Carlo (MCMC)sampling (Geyer and Thompson, 1992; Snijders,2002). MCMC sampling heuristis are also usedto draw network realizations from the distribu-tion Pθ,X . Several software pakages are designedfor �tting and simulating ERGMs (inluding pnet,SIENA, and statnet, disussed by Robins et al.(2007b)).1.4. Di�erenes between NEMs and ERGMsAn important di�erene between network evolu-tion models and exponential random graph modelsis that a NEM is determined by the rules of net-work evolution, whereas ERGMs do not expliitlyaddress network evolution proesses. The partiu-lar update steps employed in the iterative MCMCproedure for drawing samples are not expliitlyspei�ed in ERGMs, whih are de�ned by the prob-ability distribution Pθ,X , although MCMC methodsan also be used to model the evolution of soialnetworks (Snijders, 1996, 2001). A lass of proba-bility models that inludes network evolution is thestohasti ator-orientedmodels for network hangeproposed by Snijders (1996), whih are ontinuous-time Markov hain models that are implementedas simulation models. Another di�erene is thatunlike ERGMs, NEMs expliitly speify an initialon�guration from whih the iteration is started,as well as a stopping riterion. However, NEMs aretypially not sensitive to the initial on�guration.One of the known problems with ERGMs isthat the distributions of their su�ient statistismay be multimodal (Snijders, 2002). This hasbeen of partiular onern with respet to ERGMsthat inlude statistis related to transitivity, whihis a highly relevant feature in modeling soialnetworks. The �rst stohasti model to expresstransitivity, the Markov graph (Frank and Strauss,1986), employed a simple triangle ount term thatis known to ause problems of model degener-ay (Jonasson, 1999), and to lead to instability insimulation of large networks with Markov ChainMonte Carlo (MCMC) methods (Snijders, 2002;Handok, 2003; Goodreau, 2007). This problem3



seems to have been largely overome with a re-ently proposed term related to triangles, the geo-metrially weighted edgewise shared partners statis-ti (GWESP) (Snijders et al., 2006; Hunter et al.,2008; Robins et al., 2007b). We inlude in our om-parison an ERGM that inludes the GWESP term.It turns out that we enounter instability even withthis model. In �tting this model to our data, in theoptimal parameter region a very small modi�ationof the model parameters produes a large di�erenein the resulting network struture. This is disussedin Setion 3 and Appendix A.2.In ontrast, transitivity is easy to inorporate inNEMs. Problems of multimodality have not beenobserved with NEMs. Although we do not alwayshave theoretial ertainty that the network evolu-tion rules ould not lead to multimodal distribu-tions of network statistis, in pratie the modelswith given parameters seem to onsistently produenetwork realizations with similar statistis.The NEMs and ERGMs lend themselves to test-ing di�erent kinds of hypotheses about networks.ERGMs an be employed to test to what ex-tent nodal attributes and loal strutural orrela-tions explain the global struture. Although bothNEMs and ERGMs an easily inorporate nodal at-tributes, they have rarely been inluded in NEMs.The NEMs proposed so far have been of a fairlygeneri nature, whereas the ERGM approah oftenaims to make inferenes based on spei� empiri-al data, often inluding nodal attributes. On theother hand, NEMs an be employed for testing hy-potheses about network evolution, whih ERGMsdo not expliitly address. For example, a NEMan be used to test whether a ombination oftie-strength-dependent triadi losure and globalonnetions an produe a learly lustered stru-ture (Kumpula et al., 2007). Although ERGMs analso be interpreted as addressing endogenous (net-work struture based) seletion proesses via stru-tural dependenies, the mehanisms by whih newties are reated based on the existing network stru-ture are made expliit only in NEMs.For the dynamial NEMs treated in this pa-per, it is easy to generate (and estimate parame-ters for) networks of 10 000 nodes or more. Thegrowing models an easily produe networks withmillions of nodes. Based on our hands-on experi-ene using state-of-the-art ERGM software (stat-net, Handok et al. (2003, 2007)), it seems thatgenerating a realization from a NEM might typ-ially have muh lower omputational ost than

drawing a sample from an ERGM with struturaldependenies. In generating network realizationsfrom an ERGM, we used as a guideline that thenumber of MCMC steps, orresponding to the num-ber of proposals for hanges in the link on�gura-tion, should be large enough suh that the preseneor absene of a link between eah dyad is likely tobe hanged several times. With this approah, thenumber of MCMC steps should be proportional tothe number of dyads, implying that the omplexityis at least on the order of O(N2). This is alreadya muh larger burden than the O(N) omplexity ofNEMs based on loal operations in the neighbor-hood of a seleted node. Our assumption of theomputational demands of ERGMs is supported bythe fat that networks that have thus far been stud-ied with ERGMs have onsisted typially of at mosta ouple of thousands of nodes (Goodreau, 2007).
GrowingDynamical

Based on

´

Exponential random
models (NAMs)
Nodal attribute

graph models (ERGM)Network evolution models (NEMs)

triadic
closure

and global
connections

(TGC)
KOSKK

MVS

DEB Vaz

TOSHK

BPDA

WPR WPR

ERGM1Figure 1: Categories of soial network models. Within theategory of NEMs, we fous on models based on triadi lo-sure and global onnetions (TCG). Model labels orrespondto models disussed in Setion 2.2. Desription of the modelsMany omplex networks models study the ques-tion of whether strutures observed in soial net-works ould be explained by the network-dependentinterations of nodes, without referene to intrin-si properties of nodes. Suh models are based onassumptions about the loal mehanisms of tie for-mation, suh as people meeting friends of friends,and thus forming onnetions with their networkneighbors (triadi losure (Granovetter, 1973)). Anadditional mehanism to produe 'global' onne-tions beyond the loal neighborhood is typially in-luded to aount for short average geodesi pathlengths (Milgram, 1967). Suh onnetions mayarise from enounters at ommon hobbies, plaesof work, et. In models that do not onsidernodal attributes, ontats between any dyads in thenetwork are onsidered equally likely. These twomehanisms, triadi losure and global onnetions4



(TCG), form the basis of all the NEMs we study inthis work.Tables 1, 2 and 3 ontain more detailed desrip-tions of the models and their parameters, with �xedparameters given in parentheses. Values of the �xedparameters were seleted aording to the originalauthors' hoies wherever possible. We label themodels using author initials.Dynamial network evolution models. We will �rstlook at three dynamial models that ombine tri-adi losure and global onnetions (TCG) forreating new links. These were proposed byDavidsen et al. (2002) (DEB), Marsili et al. (2004)(MVS), and Kumpula et al. (2007) (KOSKK). Thedi�erent ways of implementing triadi losure anddeletion of links in eah of these models are high-lighted in Fig. 2. In triadi losure mehanism T1,a node is introdued to another node by their om-mon neighbor. In mehanism T2, new ontats aremade through searh via friends: A node links to aneighbor of one of its neighbors. Dynamial modelsin whih new links are ontinuously added must alsoinlude a mehanism for removing links, to avoidending up with a fully onneted network. In nodedeletion (ND), all links of a node are deleted. Thisemulates a node 'leaving' and a newomer joiningthe network. In link deletion (LD), eah link has agiven probability of being deleted at eah time step.The DEB model is the simplest of the three,with only two parameters, network size N and theprobability p of deleting a node. The MVS andKOSKK models both use triadi losure meha-nism T2, a two-step searh in the neighborhood ofa node, but the KOSKK model takes interationstrength into aount. In KOSKK, new links arereated preferably through strong ties, and everyinteration further strengthens them. This meh-anism is able to produe lear ommunity stru-ture (Kumpula et al., 2007), on�rmed by our anal-ysis in Setion 4. The three models also di�er inwhether a new node an remain isolated for severaltime steps (as in the MVS model) or will immedi-ately link to another node (as in KOSKK), and inwhether there is a limit on the number of randomonnetions eah node an make (as in DEB). Be-ause of suh di�erenes, it is di�ult to isolate thee�ets of the hoies of T1 versus T2 and ND versusLD. Therefore, in Setion 4.5 we will ombine thefour mehanisms using the DEB model as a basis.Marsili et al. (2004) did not mention whih valuethey used in the MVS model for the probability

λ of deleting a link at eah time step. We �xed
λ = 0.001 in our simulations, giving eah tie an av-erage 'lifetime' of 1000 time steps. When generatingnetwork realizations, the dynamial models MVS,DEB, and KOSKK are iterated until monitored dis-tributions appear to beome stationary. Sometimesthe authors do not state whih partiular riterionthey used. For the MVS and DEB models, we de-termined how many iterations (the steps desribedin Table 1) it takes until average degree stabilizesand its distribution appears stationary. When gen-erating networks, we used a number of iterationsabove this limit. For the KOSKK model, we used anumber of iterations determined by the authors tobe su�ient for the distributions of degree and sev-eral other network properties to appear stationary(2.5×104×N , where N is network size, resulting in
2 × 108 and 2.8 × 107 for �tting to our data sets ofsizes 8003 and 1133 presented in Setion 3.2.
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Figure 2: The dynamial network evolution models DEB,KOSKK, and MVS, lassi�ed aording to the mehanismsfor triadi losure and link deletion employed in them.Growing network evolution models. We inlude twogrowing models, proposed by Vázquez (2003) (Váz)and Toivonen et al. (2006) (TOSHK). They are de-sribed in detail in Table 2. These are to our knowl-edge the only growing models spei�ally proposedfor soial aquaintane networks. The motivationbehind the Váz model is to produe a high level oflustering and a power law degree distribution. TheTOSHKmodel also aims at a broad degree distribu-tion and a high lustering oe�ient, but also setsout to reprodue other features observed in soialnetworks, suh as ommunity struture.In TOSHK, eah new node links to one or more'initial ontats', whih in turn introdue the new-omer to some of their neighbors. In Váz, a new-omer node �rst links to a random node i, reatingpotential edges (Vázquez's term) between itself andthe neighbors of i. These ties may be realized later,generating triangles in the network. In both mod-els, triangles are only generated between the new-5



Table 1: Category: Dynamial network evolution models (dynamial NEMs). Three models based on triadi losure and globalonnetions.Parameters Mehanisms. Number of nodes N �xed; repeat steps for I) adding ties and II) deleting tiesuntil stationary distributions are reahedDEB (Davidsen et al., 2002)2 free
N , p

I) Selet a node i randomly, anda) if i has fewer than two ties, introdue it to a random nodeb) otherwise pik two neighbors of i and introdue them if they are not already aquainted.II) Selet a random node and with prob. p remove all of its ties.MVS (Marsili et al., 2004)3 free
N , ξ, η(λ=0.001) I) Selet a node i randomly, anda) onnet i to another random node with probability η.b) selet a friend's friend of i (by uniformly random searh) with probability ξ and introdue

i to it if not already aquainted.II) Selet a random tie and delete it with probability λ.KOSKK (Kumpula et al., 2007)
3 free
N , p∆, pr(w0 = 1,
pd = 0.001,
δ = 0.5) I) Selet a node i randomly, anda) selet a friend's friend k (by weighted searh) and introdue it to i with prob. p∆ (withinitial tie strength w0) if not already aquainted. Inrease tie strengths by δ along the searhpath, as well as on the link lik if it was already present.b) additionally, with prob. pr (or with prob. 1 if i has no onnetions), onnet i to a randomnode j (with tie strength w0).II) Selet a random node and with prob. pd remove all of its ties.Nodes represent individuals and links represent ties between them. Parameters whose values were �xed aordingto the original authors' hoies are shown in parentheses.omer and the neighbors of its initial ontat, andfurther proesses of introdution are ignored. Aswith all the models, we keep to the authors' hoiespresented in the original paper. Aordingly, in theTOSHK model, we allow a newomer to link to atmost two initial ontats (see Table 2), and pikthe number of seondary ontats from the uniformdistribution U [0, k], although this learly limits theadaptability of the model.Nodal attribute models. We study two nodal at-tribute models that di�er in the dependeneof link probability on distane and in the em-ployed distane measure. These models, proposedby Boguña et al. (2004) (BPDA) and Wong et al.(2006) (WPR), are desribed in Table 3. The au-thors mention that a soial spae of any dimensionould be used, but study the ases of 1D and 2D,respetively. We keep to their hoies.ERGM with strutural dependenies. As our datadoes not ontain nodal attributes, we an only in-lude strutural terms in the exponential randomgraph model labeled ERGM1 (Table 4). The term

edge ount is an obvious hoie to inlude, in orderto math average degree. We must also inlude aterm related to triads, onsidering the prevaleneof transitivity soial networks. We employ the geo-metrially weighted edgewise shared partner statis-ti (GWESP), proposed by Snijders et al. (2006)and formulated by Hunter et al. (2008) as
v(x; τ) = eτ

n−2∑

i=1

{1 − (1 − eτ )i}EPi(x), (2)where the edgewise shared partners statisti EPi(x)indiates the number of unordered pairs {j, k} suhthat xjk = 1 and j and k have exatly i om-mon neighbors (Hunter, 2007). The simple trian-gle ount term employed in Markov random graphsis known to ause problems of multimodality, andwe are not aware of other triangle-related termsthat would have been employed in ERGMs. Be-ause we would also like to math the degree dis-tribution to the data, we inlude the geometriallyweighted degree term (GWD) (Snijders et al., 2006;6



Table 2: Category: Growing network evolution models (growing NEMs). Two models based on triadi losure and globalonnetions.Parameters Mehanism. Repeat steps for I) adding nodes and ties II) adding ties only until networkontains N nodes.TOSHK (Toivonen et al., 2006)3 free
N , p, k(simpli�ed) I) Add a new node i to the network, onneting it to one random initial ontat with proba-bility p, or two with probability 1 − p.II) For eah random initial ontat j, draw a number msec of seondary onnetions from thedistribution U [0, k] and onnet i to msec neighbors of j if available.Váz (Vázquez, 2003)2 free
N , u

I) With probability 1 − u, add a new node to the network, onneting it to a random node
i. Potential edges are reated between the newomer n and the neighbors j of i (a potentialedge means that n and j have a ommon neighbor, i, but no diret link between them).II) With probability u, onvert one of suh potential edges generated on any previous timestep to an edge. Potential edges generated by onverting an edge are ignored.Table 3: Category: Nodal attribute models (NAMs).Parameters MehanismBPDA (Boguña et al., 2004)3 free

N , α, b

Distribute N nodes with uniform probability in a (1-dimensional) soial spae (a segmentof length hmax). Link nodes with prob. p = 1/ (1 + (d/b)α), where d is their distane in thesoial spae. (hmax an be absorbed within b). If treated many-dimensionally, similarityalong one of the soial dimensions is su�ient for the nodes to be seen as similar.WPR (Wong et al., 2006)4 free
N , H , p, pb

Distribute N nodes aording to a homogeneous Poisson point proess in a (2-dimensional)soial spae of unit area. Create a link between eah node pair separated by distane d withprobability p+ pb if d < H , and with probability p− p∆ if d > H (where p∆(p, pb, H) is suhthat the total fration p of all possible links is generated).Hunter et al., 2008)3
u(x; τ) = eτ

n−2∑

i=1

{1 − (1 − eτ )i}Di(x), (3)where Di indiates the number of nodes withdegree i. We �x the parameter τ = 0.25 asin (Goodreau, 2007). We generate network realiza-3Goodreau (2007) observed that the modeledges+ovariates+GWESP explains muh of the observeddata (an adolesent friendship network with 1681 ators)and that no improvement is ahieved by inluding the termsgeometrially weighted degree (GWD) or geometriallyweighted dyadwise shared partners statisti (GWDSP).Based on this, it seems that the terms GWD and GWDSPmight not bring additional value to a model that alreadyinludes the GWESP term. However, the onlusions drawnby Goodreau (2007) might not be transferable to our asebeause our data is di�erent; for example, we do not havenodal attribute data.

tions using the statnet software (Handok et al.,2007). MCMC iterations are started from anErd®s-Renyi (Bernoulli) network with average de-gree mathing the target. We draw 5 realizationsfrom eah MCMC hain at intervals of 107, usinga burn-in of 5 × 107 time steps. Model parametersare optimized onsistently for all models with theproedure desribed in Setion 3 and Appendix A.2.3. Fitting the modelsIn order to ompare networks generated by dif-ferent models, it is neessary to unify some of theirproperties. To this end, we �t the models to tworeal-world data sets with respet to as many of themost relevant network features as the model pa-rameters allow. Our �tting method onsists of sim-ulating network realizations with di�erent model7



Table 4: Category: exponential random graph models (ERGM) with strutural dependenies.Parameters De�nitionERGM1 (Snijders et al., 2006)4 free
N , θL,
θGWESP ,
θGWD(τ = 0.25) The model is de�ned with three terms: edge ount L, geometrially weighted edge-wiseshared partners (GWESP) v(x; τ ) (Eq. 2), and geometrially weighted degree (GWD) u(x; τ )(Eq. 3), as the probability distribution

Pθ,X (X = x) =
exp {θLL + θGWESP v(x) + θGWDu(x)}

c(θ,X )

parameters, and �nding the parameter values thatprodue the best math to seleted statistis.3.1. Targeted features for �ttingThe most important properties that we wish toalign between the models and the data are the num-ber of nodes and links. Beause both of our datasets are onneted omponents of a larger network,we fous on the properties of the largest onnetedomponent of the generated networks. Our �rsttwo �tting targets are largest onneted omponentsize NLC and the average number of links per node,or average degree k̄, within the largest omponent.They are already su�ient for �tting the DEB andVáz models, whih have only two parameters. Anatural hoie for the next target is some measurerelated to triangles, beause they are highly preva-lent in soial networks. We will use the averagelustering oe�ient c̄ (please see Appendix A.1 forthe de�nition), whih is a well-established hara-terization of loal triangle density in the omplexnetworks literature. All of the network evolutionmodels in this study had as one of their aims ob-taining a high lustering oe�ient. These threefeatures are su�ient for �tting the rest of the mod-els exept WPR, if we �x some of the parametersaording to the original authors' hoies (pleasesee Table 1).If mathing NLC , k̄ and c̄ is not enough to �xall parameters of the model, we no longer have astraightforward hoie. We onsidered using the as-sortativity oe�ient and geodesi path lengths (seeA.1). In the WPR model, assortativity varieslosely together with the average lustering oe�-ient, so it ould not be used as a fourth target fea-ture. Instead, we used the average geodesi pathlength. We also attempted using the assortativ-ity oe�ient for �tting the KOSKK model, allow-

ing the weight inrement parameter δ to vary, butran into a di�erent problem: attempting high as-sortativity fored the weight inrement parameterto zero, thereby eliminating an important feature ofthe weighted model and weakening the ommunitystruture. Hene, we �xed δ = 0.5 in aordanewith the authors' hoie.All of these measures - degree, high lustering,assortativity, and geodesi path lengths - assess im-portant properties of soial networks, whih arelikely to a�et dynamis suh as opinion formationor spreading of information (Onnela et al., 2007a;Moreno et al., 2004; Castellano et al., 2007). Theaverage properties an typially be tuned by vary-ing parameter values, but the general shapes of thedistributions are likely to be invariable.3.2. The friendship network at www.last.fm and theemail networkWe seleted two soial network data sets withslightly di�erent average properties, in order to geta better piture of the adaptability of the models.They di�er in average degree, average lustering o-e�ient, and the assortativity oe�ient, althoughboth display assortativity and high lustering.We olleted a mutual friendship network ofusers of the web servie last.fm. At the web sitewww.last.fm, people an share their musial tastesand designate other users as their friends. We usedfor this study only the friendship information, disre-garding the musial preferenes. Beause there areseveral hundred thousand users on the site world-wide, we seleted users in one ountry, Finland,to obtain a smaller network with 8003 individuals.The ountry labels were self-reported. This dataset (heneforth alled lastfm) represents the largestonneted omponent of Finnish users at this site.Individuals in the resulting network have on the8



average k̄ = 4.2 friends, and a high lustering oef-�ient c̄ = 0.31. The network is highly assortativewith r = 0.22, indiating that friends of those userswho have many onnetions at the site are them-selves well onneted (please see Appendix A.1 forde�nitions). After designating someone as a friend,there is no ost to maintaining the tie, i.e. the linknever expires. This means that the data may over-estimate the number of ative friendships withinthe last-fm web site. However, the degree distribu-tion is not broader than that observed in a networkonstruted from mobile phone alls (Onnela et al.,2007b), in whih eah ontat has a real ost intime and money. Requiring ties to be reiproatedensures that the users have at least both aknowl-edged one another.We also use a smaller aquaintane network ol-leted by Guimerà et al. (2003), based on emailsbetween members of the University Rovira i Vir-gili (Tarragona). In the derived network, two in-dividuals are onneted if eah sent at least oneemail to the other during the study period, andbulk emails sent to more than 50 reipients areeliminated. Again, we use the largest onnetedomponent of the network. It onsists of 1133 in-dividuals, and it is a ompat network with aver-age geodesi path length l̄ = 3.6, average degree
k̄ = 9.6, fairly high average lustering oe�ient c̄
= 0.22, and fairly small assortativity r = 0.08.Both of our empirial networks are unweighted,meaning that tie strengths are not spei�ed. All ofthe models studied here apart from KOSKK areunweighted as well. Averaged basi statistis ofboth data sets are displayed in Table 6. The degreedistributions, lustering spetra and degree-degreeorrelations of the lastfm and email networks areshown in Fig. 3, and more plots of their statistisare shown in Setion 4 in onnetion with the �ttedmodels.Table 5 indiates whih features were targetedwhen optimizing the parameters of eah model, anddisplays the optimized parameters. Table 6 displaysproperties of the networks generated with these pa-rameters. Due to the stohasti nature of the mod-els, two network realizations generated with thesame parameters are not likely to have exatly thesame average properties. The plots and tables on-erning the model networks in this paper alwaysontain values averaged over 100 network realiza-tions.Fitting to a limited number of data sets doesnot allow full assessment of the adaptability of the

Figure 3: Properties of the lastfm data set (•) and the emaildata (◦). a) degree distributions, with average degrees k̄

= 4.2 and 9.6, respetively. Guimerà et al. (2003) �tted tothe email data an exponential distribution p(k) = e−k/k∗with k∗ = 9.2, whih shows as a straight line in a semilog-arithmi plot. The lognormal distribution �tted the lastfmdata best of the di�erent distributions we tried (exponential,Weibull, gamma, and lognormal), although not perfetly. b)Clustering c(k) dereases with degree k (average lustering
c̄ = 0.31 and 0.22, respetively). ) Degree-degree orrela-tions between nodes and their neighbors (knn signi�es av-erage nearest neighbor degree) show that both networks areassortative (with r = 0.22 and r = 0.08, respetively).models. However, the features that we examineare similar in our two data sets as in other largesale empirial soial networks, suh as those basedon ommuniation via mobile phone (Onnela et al.,2007b; Seshadri et al., 2008) and Mirosoft Mes-senger (Leskove and Horvitz, 2008). For exam-ple, these networks have skewed degree distribu-tions that imply the presene of high degree nodes,high average lustering oe�ients c̄, dereasinglustering spetra c(k), and positive degree-degree-orrelations r. A detailed desription of the �ttingproedure is inluded in Appendix A.2.3.3. Adaptability of the modelsNot surprisingly, for almost all models, averagelargest omponent size NLC and average degrees k̄ould be �tted losely to both data sets. For themodels with only two free parameters (DEB, Váz),we had no ontrol over other network features.These two-parameter models turn out to have ex-essively high average lustering oe�ients for themoderate average degrees displayed in our two datasets. For most of the other models, lustering ouldbe tuned rather losely. The TOSHK model, withits disrete parametrization of the number of tri-angles formed, was not able to exatly math thelustering values despite having three parameters.For the model ERGM1, we allowed the averagedegree to remain slightly below the target in orderto obtain orret lustering, beause aiming at bothorret average degree and lustering led to an in-stable region of model parameters. We initially at-tempted using automated optimization algorithms9



(suh as snob�t (Huyer and Neumaier, 2008)) to �tthe ERGM1 model, but these failed due to the in-stability. Based on the intuition of the model pa-rameters obtained from the attempts at �tting, weinitially seleted values that roughly produed thedesired NLC , k̄, and c̄, and manually modi�ed themfor a better �t. Starting from parameter values thatgenerated networks in whih the lustering oe�-ient mathed the email data and the average de-gree was only slightly too small, it turned out thata very small inrease in the parameter θL (donein order to inrease average degree) aused averagedegree to jump dramatially and the lustering o-e�ient to plummet (see Fig. 13 in Appendix A.2).Hene, we settled for a lower value of k̄.Average geodesi path lengths l̄ were approxi-mately orret for all but the nodal attribute modeltreated in one dimension (BPDA), although l̄ wasused for �tting only in the WPR model. The as-sortativity oe�ient r was not used for �tting anymodel, although we attempted using it for �ttingWPR and ERGM1. The ERGM1 model was only�tted to the email data, beause generating net-works of size 8000 and �tting their parameters didnot seem feasible for the ERG model.Table 5: Targeted network features, and the �tted modelparameters leading to the values losest to the lastfm andemail data sets.DEB mathed to NLC , k̄lastfm: N = 8330, p = 0.203email: N = 1138, p = 0.064MVS mathed to NLC , k̄ , c̄lastfm: N = 9300, ξ = 0.0022, η = 0.000368email: N = 2270, ξ = 0.0062, η = 0.000071KOSKK mathed to NLC , k̄ , c̄lastfm: N = 8205, p∆ = 0.0029, pr = 0.0008email: N = 1135, p∆ = 0.0107, pr = 0.0039TOSHK mathed to N , k̄ , c̄lastfm: N = 8003, p = 0.60, k = 1email: N = 1133, p = 0.06, k = 3Váz mathed to N , k̄lastfm: N = 8003, u = 0.524email: N = 1133, u = 0.793ERGM1 mathed to NLC , k̄ , c̄lastfm: −email: N = 1160, θL = −6.962, θGW ESP = 2.4,
θGW D = 0.225BPDA mathed to NLC , k̄ , c̄lastfm: N = 8250, α = 1.915, b = 1.51 · 10

−4email: N = 1133, α = 1.565, b = 0.002032WPR mathed to NLC , k̄ , c̄ , l̄lastfm: N = 8200, H = 0.0108, p = 0.000506, pb = 0.9994email: N = 1133, H = 0.040, p = 0.008498, pb = 0.991

NLC : average largest omponent size (number of nodes), k̄: averagedegree, c̄: average lustering oe�ient, l̄: average shortest path length.
k̄, c̄, and l̄ were alulated for the largest omponent of the network.

4. Comparison of higher order statistisHaving �tted the models aording to averagevalues of partiular network harateristis, we ad-dress their degree distributions P (k), lusteringspetra c(k), and geodesi path length distributions
P (l). We also assess the ommunity struture of thenetworks using several measures. In Setion 4.5 weombine and ompare the di�erent mehanisms fortriadi losure and link deletion employed in the dy-namial NEMs. We use graphs to assess goodnessof �t as promoted by Hunter et al. (2008).4.1. Degree distributionDegree distributions are shown in Fig. 4 for theemail data and seleted models. The exat shapesof the degree distributions produed by the mod-els are not as important as their markedly di�erentprobabilities for the presene of high degree nodes(Fig. 4). The nodal attribute models, of whihthe lastfm �t of WPR is shown, produe skewedbut fast-deaying degree distributions that implythe absene of nodes with very high degree. Thesedistributions are well �t with the Poisson distribu-tion4, as shown analytially by Boguña et al. (2004)for the BPDA model. The Váz model produesa very broad degree distribution (not shown) thatwas shown by Vázquez (2003) to deay as powerlaw, P (k) ∼ k−γ , whih implies the presene of afew nodes with extremely high degree. The tails ofthe degree distributions produed by the dynami-al NEMs and the growing TOSHK model as wellas the ERGM1 model all appear to deay slowerthan the Poisson distribution, but faster than powerlaw. Of these, the models TOSHK, KOSKK, andERGM1 are displayed in Fig. 4.In our data sets, the degree distribution de-ays exponentially (email) (Guimerà et al., 2003)or slower (lastfm) (Fig. 3). In larger data sets basedon one-to-one ommuniation, even broader degreedistributions have been observed (Lambiotte et al.,2008; Onnela et al., 2007b; Seshadri et al., 2008).The NEMs give rise to degree distributions that4The homophily priniple does not always lead to a Pois-son degree distribution. The shape of the degree distribu-tion depends on how the nodal attributes are distributed.Masuda and Konno (2006) used an exponentially distributed�tness parameter as the basis for homophily, and obtaineda �at degree distribution P(k)=onst. As they observe,this is unrealisti. Combined with another mehanism,homophily an also lead to a broader degree distribution(Masuda and Konno, 2006).10



Table 6: Basi statistis of the lastfm and email data sets and the models �tted to eah.model / data NLC L k̄ c̄ r l̄ lmaxLast-fm-�n 8003 16824 4.20 0.31 0.22 7.4 24DEB 8009 ± 30 16858 ± 224 4.21 ± 0.05 0.38 ± 0.01 0.10 ± 0.01 7.0 ± 1.6 18.1 ± 1.4MVS 7989 ± 38 16816 ± 153 4.21 ± 0.03 0.30 ± 0.01 0.02 ± 0.01 7.8 ± 1.6 17.4 ± 1.0KOSKK 8006 ± 20 16849 ± 207 4.21 ± 0.05 0.31 ± 0.01 0.05 ± 0.01 7.2 ± 1.5 16.3 ± 0.9TOSHK 8003 16791 ± 93 4.20 ± 0.02 0.34 ± 0.01 0.14 ± 0.01 6.6 ± 1.3 13.8 ± 0.6Vàz 8003 16801 ± 171 4.20 ± 0.04 0.29 ± 0.01 0.27 ± 0.02 8.3 ± 2.6 22.6 ± 1.5BPDA 8005 ± 31 16794 ± 141 4.20 ± 0.03 0.29 ± 0.01 0.30 ± 0.02 23.9 ± 9.3 60.1 ± 8.0WPR 8004 ± 19 16972 ± 150 4.24 ± 0.03 0.29 ± 0.01 0.30 ± 0.02 8.1 ± 1.6 18.2 ± 1.1model / data NLC L k̄ c̄ r l̄ lmaxEmail 1133 5451 9.62 0.22 0.08 3.6 7DEB 1133 ± 3 5452 ± 249 9.62 ± 0.43 0.45 ± 0.01 0.06 ± 0.02 3.4 ± 0.9 7.7 ± 0.7MVS 1113 ± 1 5282 ± 77 9.48 ± 0.14 0.23 ± 0.01 0.05 ± 0.04 3.8 ± 1.1 9.6 ± 0.6KOSKK 1134 ± 2 5425 ± 193 9.57 ± 0.34 0.22 ± 0.01 0.06 ± 0.02 3.5 ± 0.9 7.5 ± 0.6TOSHK 1133 5453 ± 52 9.63 ± 0.09 0.29 ± 0.01 0.09 ± 0.02 3.4 ± 0.8 6.1 ± 0.3Vàz 1133 5453 ± 136 9.63 ± 0.24 0.42 ± 0.02 0.12 ± 0.03 4.6 ± 1.7 13.6 ± 1.4BPDA 1133 ± 1 5477 ± 172 9.67 ± 0.30 0.22 ± 0.01 0.22 ± 0.02 4.4 ± 0.8 8.4 ± 0.5WPR 1133 ± 1 5448 ± 72 9.62 ± 0.13 0.21 ± 0.01 0.20 ± 0.03 3.6 ± 0.7 6.0 ± 0.2ERGM1 1133 ± 8 4800 ± 460 8.47 ± 0.77 0.21 ± 0.01 0.04 ± 0.02 3.6 ± 0.84 7.5 ± 0.83All statistis are alulated for the largest omponent of eah network. NLC : Largest omponent size, L: numberof links, k̄: average degree, c̄: average lustering oe�ient, r: assortativity oe�ient, l̄: average geodesi pathlength, and lmax: longest geodesi path length. The values are averaged over 100 realizations of eah networkmodel. The standard error of the averages is displayed whenever there was �utuation in the values.math these empirial data on large aquaintanenetworks better than the nodal attribute models.
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c(k) ∼ 1
k
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k-lusters. We also identify ommunities us-ing the k-lique-perolation method developedby Palla et al. (2005). The method de�nes a k-luster as a subgraph within whih all nodes anbe reahed by 'rolling' a k-lique suh that all ex-ept one of its nodes are �xed (see Fig. 8b). Fig-ure 9 displays the size distributions of k-lusterswith k = 4 and k = 5 for several models �tted to theemail data. As the ERGM1 model produed veryfew liques apart from triangles, it annot generatelarge k-lusters for k > 3. The other models gen-erally produe 4-luster size distributions roughlymathing the data, but large 5-lusters are rela-tively few. The Váz model generates networks on-taining very large k-lusters with high values of k.These are likely due to an extremely dense 'ore'formed around nodes that joined the network earlyon. For example, eah of the 100 network realiza-tions ontained 10-luster of size s = 72 ± 15 (notshown). Suh dense lusters are not generally ob-served in empirial data. For example, in the lastfmand email data sets, the largest 10-lusters are ofsizes 10 and 12, respetively.
Figure 8: (a) k-liques for k = 3, 4, 5. (b) An example of a
4-luster with 6 nodes, highlighting the 4-liques from whihit is formed.Role of links with low overlap. In both of our em-pirial networks, as well as in the networks gen-erated by the studied models, a rather large fra-tion of edges does not partiipate in any triangles.In the lastfm and email data, the fration of suhedges is 31.2% and 22.4% respetively6. The DEB,TOSHK, Váz, and ERGM1 models produe slightlytoo few suh links (20 to 22% in the the lastfm �tsand 4 to 5% in the email �ts, exept 12, 6% in the6This might be due to the nature of our empirial datasets, whih are sampled from networks that are onstantlygrowing with links and nodes aumulating over time. Inthem, a relatively large fration of nodes are newomers whohave only established a few links to the system, suh thattriangles have not yet been formed around them.
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Oij (Onnela et al., 2007b), whih ould be inter-preted as a modi�ation of the edgewise sharedpartners measure (Hunter, 2007), measuring thefration instead of the number of edgewise sharedpartners for the end nodes of an edge. The mea-sure also bears resemblane to the Jaard oe�-ient (Jaard, 1901). The overlap is de�ned as
Oij =

nij

(ki−1)+(kj−1)−nij
, where nij is the numberof neighbors ommon to both nodes i and j, and kiand kj are their degrees (Fig. 10).

Figure 10: Overlap Oij of edge eij .Removing low-overlap-links will separate dense,loosely interonneted ommunities from one an-other. This turns out to disern the nodal attributemodels and the KOSKKmodel from the other mod-13



els and our empirial data. Figure 11(a) displaysthe relative sizes of the largest omponent after re-moving links that do not partiipate in trianglesfor the lastfm data and the models �tted to it. Thenodal attribute models break down to small lus-ters, whereas in the other models a large ore re-mains.As noted earlier, the NAMs ontain more zero-overlap links than the other models. Hene, it isuseful to hek whether their breakdown was dueto a larger fration of removed links. We an testthis by removing an equal fration of links fromall networks (41%, the maximum fration of linksremoved from any network when only non-triangle-links were removed) (Fig. 11b). We remove linksin inreasing order of overlap Oij . Again, a oreremains intat in most of the NEMs, whereas theNAMs and the KOSKK network break down, indi-ating in these models the absene of a ore, and therole of low overlap links as bridges between lusters.The link densities of the remaining omponents,
d = 2 l/s(s− 1), where s is the number of nodes inthe omponent and l the number of links, are more-over observed to be slightly higher in the NAMsthan in the other models, despite the fat that morelinks were removed from them (not shown). Theabove �ndings show that these networks onsist ofvery lear ommunities that are loosely interon-neted. The other NEMs and ERGM1 on the otherhand ontain a ore that does not onsist of suhloosely onneted lusters. This di�erene is de-pited shematially in Fig. 11(,d).In the email �ts, link density in the network ishigher, and for all networks slightly larger overlaplinks need to be removed in order to deomposethem to small lusters (not shown), but the generaldi�erene between the NEMs and NAMs remains.As the ERGM1 model was only �tted to the emaildata, it is not displayed in Fig. 11. Removing lowoverlap links did not redue the largest omponentof the ERGM1 networks pratially at all - even af-ter removing 50 perent of links beginning with low-est overlap, a ore ontaining on average 93.6 per-ent of the nodes remains intat - onsistently withthe �nding that the networks did not ontain manydenser substrutures suh as liques or k-lusters.4.5. Di�erenes in network struture resulting fromhoie of mehanisms for triadi losure andlink deletionHere, we will examine the di�erenes in net-work struture resulting from ombinations of the
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Figure 11: (a) Relative size RLC of the largest onnetedomponent in the models �tted to the lastfm data after re-moving links with overlap O = 0. (b) To show that thebreakdown of the nodal attribute models was not simply dueto a larger number of links removed, we now remove the samefration of the lowest overlap links from all models and data(41%, the maximum fration removed in Fig. 11(a)). Dataaveraged over 100 network realizations. ( and d) Shematidepition of the strutural di�erenes related to links withlow overlap (links whose end nodes share only a small fra-tion of their neighbors). () Low overlap links onnet small,relatively tightly bound lusters together. (d) The networkontains a ore that does not disintegrate when low overlaplinks are removed.mehanisms of link generation (T1,T2) and deletion(ND,LD) emplyed in dynamial network evolutionmodels. Taking as a starting point the simplest ofthe dynamial models (DEB), in whih a newomerwill link to exatly two uniformly randomly hosennodes, after whih it will only initiate triadi losuresteps, we study all four ombinations of the meh-anisms (Fig. 12, a). Two �ndings speak in favorof using the node deletion mehanism: The modelvariants using T1 show a learly assortative rela-tion, suitable for soial network models, whereasthe T2 networks are dissortative or very weakly as-sortative (Fig. 12, b). Node deletion also preservesmore liques in the network, a desirable feature forsoial networks (Fig. 12, ). The larger number ofliques preserved by node deletion is not explainedby the lustering oe�ients, whih turned out tobe similar in all networks. The parameters wereseleted suh that NLC and k̄ mathed the lastfmdata.The hoie of triangle generation mehanism, onthe other hand, is seen to a�et the degree distribu-tion. Networks generated with the T1 mehanism14



have higher degree nodes than those using the T2mehanism (Fig. 12, d). This is beause following alink is more likely to lead to a high degree node thanpiking a node randomly. Beause in T1 both of thenodes gaining a link in the triad formation step arehosen by following a link, high degree nodes ob-tain more additional links than when the T2 meh-anism is used, in whih one of the nodes is hosenrandomly. The hoie of T1 or T2 does not seemto have an e�et on the number or size of liquesgenerated, nor on degree-degree orrelations.

Figure 12: Comparison of mehanisms employed in dynami-al network evolution models. (a) Two mehanisms of triadilosure (T1 and T2) are ombined with two ways of deletinglinks (node deletion refers to deleting all links of a node, andlink deletion refers to deleting randomly seleted links). Thesame symbols are used in panels (b)-(d). (b) Average nearestneighbor degree knn with respet to node degree k, variantsarranged as in the shemati �gure. The lastfm data is alsoshown in eah panel. () Number n(k) of liques of eahsize k. Smaller liques within larger liques are not ounted.(d) Degree distribution P (k). Averaged over 100 networkrealizations.5. Summary and disussionIn order to assess the resemblane to empirialnetworks of the many models for soial networksthat have been published in reent years in thephysis-oriented omplex networks literature, wehave �tted these models to empirial data and as-sessed their struture. We have also ompared thesemodels with an exponential random graph modelthat inorporates reently proposed spei�ations,in the �rst systemati omparison between modelsfrom these families. In addition to omparing stru-tural features of networks produed by the models,we have disussed the di�erent philosophies under-lying the model types.

The strutural features we foused on are sim-ilar in the two inluded empirial data sets asin numerous other large empirial soial net-works (Onnela et al., 2007b; Seshadri et al., 2008;Leskove and Horvitz, 2008) in that they havehighly skewed degree distributions, high averagelustering oe�ients, dereasing lustering spe-tra c(k), and positive degree-degree-orrelations r.Therefore, any widely appliable model for soialnetworks should be able to approximately repro-due the average values and distributions of theirmain harateristi features. However, as the phi-losophy behind the NEMs studied here is to explainthe emergene of ommon strutural features of so-ial networks, we shouldn't expet them to aptureperfetly all features of partiular empirial datasets. Our main motivation for �tting the models tothe seleted target features was to unify approxi-mately some of their properties, in order to omparemeaningfully their higher order properties, suh asthe degree distribution and ommunity struture.These are not likely to be drastially altered bysmall di�erenes in the average values. Hene, wedo not onsider an aurate �t in the average quan-tities of extreme importane.For almost all models, we saw that averagelargest omponent size NLC and average degrees k̄ould be �tted losely to both empirial data sets.In the ERGM1 model, we ompromized mathingaverage degree in order to obtain a reasonable lus-tering oe�ient. Adaptability was limited by thenumber of free parameters. The models DEB andVáz, whih had only one free parameter in additionto network size, turned out to have exessively highaverage lustering oe�ients even for the moder-ate average degrees displayed by our two data sets.For most of the other models, lustering ould betuned rather losely. Being able to math the tar-geted average values of these two data sets doesnot guarantee that a model is able to math thosefeatures in other empirial data, however. In thissense, the generalisability of onlusions based ononly two data sets is limited.Table 7 summarizes the strutural features innetworks resulting from the di�erent model types.Nodal attribute models (NAMs) in whih the nodesare loated with uniform probability in the under-lying soial spae and links are based solely on ho-mophily, produe a lustering spetrum c(k) strik-ingly di�erent from observed data, indiating that itis not a su�ient desription of the mehanisms atplay in the formation of soial networks. They also15



Table 7: Summary of strutural properties of networks generated with the studied models.Property lastfm and email NAMs dynamial NEMs growing NEMs ERGM1degree distribution relatively broad peaked relatively broad broad relatively broadlustering spetrum dereasing �at dereasing dereasing dereasingassortativity yes yes (high) yes (weak) yes (moderate/high) yes (weak)geodesi path lengths - in 1D, too longlongest paths reasonable reasonable reasonableliques many large liques many large liques many in KOSKK,fewest in MVS too few in TOSHK,exeedingly in Váz very few
k-lusters many large k-lustersfor k = 4 and k = 5

reasonable reasonable in DEB andKOSKK, too few in MVS in Váz, exeedingly large
k-lusters with large k

no large k-lustersonsisting of denselusters interonnetedby low-overlap links no yes yes (KOSKK),no (DEB and MVS) no noprodue peaked degree distributions without veryhigh degree nodes that do no agree with empirialdata on large sale soial networks. The homophilypriniple employed in the nodal attribute modelsis seen to be su�ient for produing strong positivedegree-degree orrelations. This is a diret result ofthe dependene of link probability on distane: be-ause high degree nodes appear in loations with adense population of nodes, their neighbors will alsotend to have high degree. The NAMs also generatenetworks ontaining a large number of liques andonsisting of dense lusters loosely onneted withlow overlap links. Their lustered struture appearsmore pronouned than in the data.We �nd that many of the studied network evolu-tion models (NEMs) produe broader degree dis-tributions and dereasing lustering spetra thatagree more losely with empirial data. Most ofthem also generate assortative networks, althoughtypially not to the same extent as in the data, andmany large liques and k-lusters. In the dynamialNEMs, node deletion is seen to produe more as-sortative networks than link deletion. With respetto thresholding by overlap, the dynamial KOSKKmodel displayed the learest lustered struture ofall the NEMs. This shows that the weights em-ployed in tie formation in the KOSKK model playan important role in the formation of ommunitystruture, as the authors observed (Kumpula et al.,2007). The other NEMs produed networks whih,in aordane with the data, ontained a large orethat did not break apart when low overlap linkswere removed.The exponential random graph model ERGM1inorporating reently proposed terms forstrutural dependenies (Snijders et al., 2006;Hunter et al., 2008; Robins et al., 2007b) was seen

to generate very few large liques. It did produeassortative networks, although with relativelylow assortativity. These terms had earlier beenemployed without di�ulty when �tting ERGMs toa large soial network (Goodreau, 2007). However,we enountered problems of multimodality withthe model.Very large soial networks of millions of individu-als, within a ountry or worldwide, an be assessedwith data provided by modern eletroni ommuni-ations, suh as mobile phone alls (Onnela et al.,2007a) or instant messaging (Leskove and Horvitz,2008). The data have revealed features of largesale networks of human interation that ould notbe diserned from a small subnetwork. These in-lude the tails of highly skewed distributions aswell as distributions of mesosale strutures, suh asthe size distribution of ommunities. Modeling thestruture observed in large networks bene�ts fromthe ability to generate networks of omparable size.NEMs and NAMs ful�ll this requirement.Using realisti models for soial networks in sim-ulation studies of soial proesses is essential inlight of the knowledge that network struture in-�uenes many proesses (Castellano et al., 2007),suh as the emergene and survival of oopera-tion (Lozano et al., 2008), spreading of informa-tion (Onnela et al., 2007a; Moreno et al., 2004) orepidemis (ná and Pastor-Satorras, 2002), and o-existene of opinions (Lambiotte et al., 2007).Many strutural harateristis of soial networkswere attained even with very simple mehanisms.However, neither the nodal attribute models basedon homophily, nor the network evolution modelsbased on triadi losure and global onnetions,were able to reprodue all important features of so-ial networks. As both mehanisms obviously are16



present in the evolution soial networks, a ombi-nation of the model types ould yield more realistinetwork models.AknowledgementsWe aknowledge the Aademy of Finland, theFinnish Center of Exellene Program 2006-2011,Projet No. 213470. R.T. is supported by the Com-MIT graduate shool.A. AppendixA.1. Basi network measuresThe network representation of soial ontats onsistsof nodes representing the individuals, and links repre-senting the ties between them. An overline is used todenote averaging over all nodes (or links) within thenetwork, or aross several networks. We denote by Nthe number of nodes in a network, i.e. network size. Aomponent of a network is a onneted subset of nodes.In this paper, we study the largest omponent LC ofeah network. We denote its size by NLC . The numberof network neighbors of a node is alled its degree k. Anisolated node has degree zero.A measure of loal triangle density, the lusteringoe�ient, desribes the extent to whih the neighborsof node i are aquainted with one another: if none onthem know eah other, ci is zero, while if all of themare aquainted, ci = 1. For a node i with degree kiand belonging to Ti triangles, the lustering oe�ientis de�ned as
ci =

Ti

ki(ki − 1)/2
, (4)where the denominator ki(ki − 1)/2 expresses the max-imum possible number of triangles i ould belong togiven its degree. The lustering oe�ient is not de-�ned for nodes with degree k < 2. The average lus-tering oe�ient, averaged over all nodes with k ≥ 2in the network, is denoted c̄. c(k) denotes the averagelustering oe�ient of nodes with degree k. The urve

c(k) is alled the lustering spetrum.In large empirial soial networks, typially high de-gree nodes tend to be linked to other high-degree nodes,and low-degree nodes tend to be linked among them-selves. One way of quantifying this e�et is using lin-ear orrelation, or the Pearson orrelation oe�ient,between the degrees ki and kj of pairs of onnetednodes. This is also alled the assortativity oe�ient
r (Newman, 2002):
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where E is the total number of links in the network.Assortativity an also be quanti�ed using the measureaverage nearest neighbor degree knn(k), found by takingall nodes with degree k, and averaging the degrees oftheir neighbors. If the urve knn(k) plotted against khas a positive trend, nodes with high degree typiallyalso have high-degree neighbors, and hene the networkis assortative.The geodesi path length lij between nodes i and
j in a network means the minimum number of linksthat need to be traversed in order to get from i to j.The average length l̄ of geodesi paths between nodesdesribes the ompatness of the network.A.2. Determining optimal network parametersOur �tting method onsists of simulating network re-alizations with di�erent values of the model parameters,and �nding the values (points in the parameter spae)that produe the best math to the following features ofthe empirial data sets: average degree k̄, average lus-tering oe�ient c̄, and average geodesi path lengths l̄(in this order of importane, depending on the numberof model parameters). This approah deviates from thetradition of maximum likelihood estimation for �ttingprobabilisti models.We attempt to minimize the relative error in eahhosen feature. For example, for average degree k̄ in amodel with given parameter values p, being �tted to adata set with average degree k
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. (5)The errors for eah feature are ombined in the errorfuntion f(p), whose norm |f(p)| is minimized. Forexample, if �tting to NLC , k̄ and c̄, the error funtionand its norm take the shape
f(p) = [wNLC ǫNLC wk̄ǫk̄ wc̄ǫc̄] , (6)and its norm
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c̄ǫ2c̄ . (7)The error funtion should have equally many om-ponents as there are network parameters. We hoseweights that re�eted the order of importane givento the targeted features, putting the most emphasison mathing the number of nodes and links, less onlustering, and least on average geodesi path lengths.It turned out that for nearly all of the models (DEB,MVS, KOSKK, Vaz, BPDA, email �t of WPR) theresult was insensitive to weights, beause the modelswere able to math the target values losely (up to thenumber of model parameters). In optimizing the mod-els DEB and KOSKK, we used a linear approximation17



for the omponents of the error funtion, iteratively re-�ning the approximation lose to the optimum. ForMVS, we used the the well established Nelder-Meadmethod (Nelder and Mead, 1965), whih involves al-ulating values of the error funtion at the orners ofa simplex (a triangle in 2-dimensional spae, a tetrahe-dron in 3D). The optimal value of the error funtion isiteratively approahed by rolling one orner of the sim-plex over the others suh that the objet moves towardsthe region where the funtion gets optimal values. Thediameter of the simplex is adjusted during iteration toinrease auray.Optimization algorithms were not needed for the Vázand BPDA models and the email �t of WPR. For theVáz model, a very good approximation for the optimalvalue of u an be obtained analytially. This estimateould be re�ned manually. For the BPDA model, theanalytial estimates for k̄ and c̄ derived by the authorsould be used as a starting point in optimization. Were�ned the initial estimates by �rst adjusting α to �ndthe orret value for the lustering oe�ient, and thenhanging b until the orret mean degree was found.For small enough adjustments, the latter orretionsdid not a�et the value of c̄. The adjustments weredone by trial and error, but it was not di�ult to getan aurate �t for mean degree and lustering in thismanner. For the email �t of WPR, it turned out that
NLC ≈ N , and hene the number of free parameterswas redued. p was set to obtain desired average de-gree, and the two remaining parameters were optimizedby generating networks with a grid of their values.Exat �ts ould not be obtained for TOSHK,ERGM1, and the lastfm �t of WPR. For WPR, weused weights [wNLC , wk, wc, wl] = [4 4 2 1] and gridoptimization similarly as in the email ase, although itwas ostly in four dimensions. Obtaining values in agrid enabled us to visulize the dependene of the tar-geted features on the model parameters. It turned outthat assortativity and lustering varied losely together,rendering assortativity useless as a �tting target if lus-tering was used; hene we used average geodesi pathlengths, whih enabled an optimum to be determined.As the TOSHK model has only one ontinuous param-eter p, it su�es to optimize p for all values of the dis-rete parameter k below some kmax, making sure that
kmax is large enough. The parameter p was optimizedto reah the desired mean degree for eah k, and thepair (k, popt(k)) that provided the best math to thedesired c̄ was seleted as the optimum. Optimizationwas arried out with the Matlab optimization toolboxfuntion fminbnd.m, whih is based on golden setionsearh and paraboli interpolation.For the remaining ase in whih no exat math wasfound (ERGM1), we attempted using the linear approx-imation method and Nelder-Mead algorithm desribedabove, as well as other, potentially more robust meth-

ods (Elster and Neumaier, 1995; Huyer and Neumaier,2008), but these failed likely due to multimodality ofthe probability distribution. Figure 13 illustrates theinstability we enountered when attempting to �t theERGM1 model to the email data. The panels displayaverage degree k̄ (a) and average lustering oe�ient
c̄ (b) in networks generated with various values of θL,with the other parameters kept onstant at the valueslisted in Table 5. For eah value of θL, 60 network re-alizations are shown (drawn from MCMC hains withburn-in 5 × 107 steps, and 5 realizations taken fromeah hain at intervals of 107). Beause θL ontrols thenumber of random links, an inrease in θL generally in-reases average degree and dereases average lustering.However, at roughly θL = −6.961 we observe a suddentransition into a muh denser, less lustered network.
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