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Abstract

Quantification of human group-behavior has so far defied an empirical, falsifiable approach. This is due to tremendous
difficulties in data acquisition of social systems. Massive multiplayer online games (MMOG) provide a fascinating new
way of observing hundreds of thousands of simultaneously socially interacting individuals engaged in virtual economic
activities. We have compiled a data set consisting of practically all actions of all players over a period of three years from
a MMOG played by 300,000 people. This large-scale data set of a socio-economic unit contains all social and economic
data from a single and coherent source. Players have to generate a virtual income through economic activities to ‘survive’
and are typically engaged in a multitude of social activities offered within the game. Our analysis of high-frequency log
files focuses on three types of social networks, and tests a series of social-dynamics hypotheses. In particular we study
the structure and dynamics of friend-, enemy- and communication networks. We find striking differences in topological
structure between positive (friend) and negative (enemy) tie networks. All networks confirm the recently observed
phenomenon of network densification. We propose two approximate social laws in communication networks, the first
expressing betweenness centrality as the inverse square of the overlap, the second relating communication strength to
the cube of the overlap. These empirical laws provide strong quantitative evidence for the Weak ties hypothesis of
Granovetter. Further, the analysis of triad significance profiles validates well-established assertions from social balance
theory. We find overrepresentation (underrepresentation) of complete (incomplete) triads in networks of positive ties,
and vice versa for networks of negative ties. Empirical transition probabilities between triad classes provide evidence
for triadic closure with extraordinarily high precision. For the first time we provide empirical results for large-scale
networks of negative social ties. Whenever possible we compare our findings with data from non-virtual human groups
and provide further evidence that online game communities serve as a valid model for a wide class of human societies.
With this setup we demonstrate the feasibility for establishing a ‘socio-economic laboratory’ which allows to operate at
levels of precision approaching those of the natural sciences.

All data used in this study is fully anonymized; the authors have the written consent to publish from the legal department
of the Medical University of Vienna.
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1. Introduction

Quantification of collective human behavior or social dy-
namics poses a unique, century old challenge. It is re-
markable to some extent that mankind knows more about
dynamics of subatomic particles than it knows about the
dynamics of human groups. The reason for this situation
is that the establishment of a fully experimental and fal-
sifiable social science of group dynamics is tremendously
complicated by two factors: First, unlike many problems
in the natural sciences, dynamics of societies constitute a
complex system, characterized by strong and long-range in-
teractions, which are in general not treatable by traditional
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mathematical methods and physical concepts. Second,
data is of comparably poor availability and quality (Watts,
2007; Lazer et al., 2009). Evidently it is much harder
to obtain data from social systems than from repeatable
experiments on (non-complex) physical systems. Despite
these severe problems, it is nevertheless paramount to ar-
rive at a better understanding of collective human behav-
ior. Only recently it became most evident in the context
of economics and finance, which costs are associated to
misconceptions of human collective behavior. If the dy-
namics behind collective behavior are going to remain as
poorly understood as they are today, without being able
to generate statements with predictive value, any attempts
of managing crises will turn out not a whit better than il-
lusionary.

Many complex systems cannot be understood without
their surroundings, contexts or boundaries, together with
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the interactions between these boundaries and the system
itself. This is obviously necessary for measuring large-
scale dynamics of human groups. Regarding data acqui-
sition it is therefore essential not only to record decisions
of individual humans but also the simultaneous state of
their surroundings. Further, in any data-driven science
the observed system should not be significantly perturbed
through the act of measurement. In social science exper-
iments subjects usually are fully aware of being observed
– a fact that might strongly influence their behavior. Fi-
nally, data acquisition in the social sciences becomes es-
pecially tiresome on group levels, see e.g. the tremendous
efforts which have been undertaken in a classic experiment
by Newcomb (1961), in which a group of 17 students was
congregated, observed, and questioned over several weeks.
Traditional methods of social science such as interviews
and questionnaires do not only need a lot of time and re-
sources to deliver statistically meaningful assertions, but
may introduce well-known biases (Carrington et al., 2005).
To many it might seem clear that social sciences can not
overcome these problems, and that therefore social sci-
ences would always remain on a lower quantitative and
qualitative level than the natural sciences.

Both issues, the availability of data, and the possibility
to take simultaneous measurements on subjects and their
surroundings, might appear in a radically more positive
light when looking at massive multiplayer online games
(MMOGs) (Castronova, 2005). Such computer games not
only allow to conduct complete measurements of socially
interacting humans, they also provide data at rates com-
parable to physical experiments. Remarkably, one of the
largest collective human activities on the planet is the
playing of online games. Currently more than a hundred
million people worldwide play MMOGs – the well-known
game World of Warcraft alone has more than ten mil-
lion subscribers as of today. MMOGs exhibit such an
enormous success due to offering their players possibilities
to experience alternative or second lifes, not only provid-
ing (virtual) economic opportunities, but also a huge va-
riety of possible social interactions among players. Many
MMOGs provide rich virtual environments facilitating so-
cialization and interactions on group levels (Yee, 2006b,a;
Castronova, 2005). Motivation of players to participate
in MMOGs are highly heterogeneous, ranging from estab-
lishing friendships, gain of respect and status within the
virtual society, to the fun of destroying the hard work of
other players. Besides economical and social interactions,
modern MMOGs also offer a component of exploration,
e.g. players can explore their ‘physical’ environment, such
as specific features of their universe, ‘biological’ details of
space-monsters, etc., and share their findings within ‘spe-
cialist’ communities.

From a scientific point of view online games provide a
tool for understanding collective human phenomena and
social dynamics on an entirely different scale (Bainbridge,
2007; Castronova, 2006). In these games all informa-
tion about all actions taken by all players can be easily

recorded and stored in log-files at practically no cost. This
quantity of data has been unthinkable in the traditional so-
cial sciences where sample sizes often do not exceed several
dozens of questionnaires, school classes or students in be-
havioral experiments. In MMOGs on the other hand, the
number of subjects can reach several hundred thousands,
with millions of recorded actions. These actions of individ-
ual players are known in conjunction with their surround-
ings, i.e. the circumstances under which particular actions
or decisions were taken. This offers the unique opportu-
nity to study a complex social system: conditions under
which individuals take decisions can in principle be con-
trolled, the specific outcomes of decisions can be measured.
In this respect social science is on the verge of becoming a
fully experimental science (Lazer et al., 2009) which should
increasingly become capable of making a great number of
repeatable and eventually falsifiable statements about col-
lective human behavior, both in a social and economical
context.

Another advantage over traditional ways of data acqui-
sition in the social sciences is that players of MMOGs do
not consciously notice the measurement process.1 These
‘social experiments’ practically do not perturb or influence
the sample. Moreover MMOGs not only open ways to ex-
plore sociological questions, but – if economic aspects are
part of the game (as it is in many MMOGs) – also to study
economical behavior of groups. Here again economical ac-
tions and decisions can be monitored for a huge number
of individual players within their social and economical
contexts. This means that MMOGs offer a natural en-
vironment to conduct behavioral economics experiments,
which have been of great interest in numerous small-scale
surveys, see e.g. Gächter and Fehr (1999); Henrich et al.
(2005). It becomes possible to study the socio-economic
unit of large online game societies.

In the past years we have recorded practically all ac-
tions of all players taken in the self-developed, proprietary
MMOG Pardus which is online since 2004. Pardus is an
open-ended game with a worldwide player base of more
than 300,000 people. Players reside and act within a vir-
tual, persistent futuristic universe and make up their own
goals. Most players invent and develop their virtual social
lifes without constraints by the game setup. The game’s
environmental topology is given but can be manipulated
by the players to some extent. Players self-organize within
groups and subgroups, claim territories, decide to go to
war, etc., completely on their own accounts. Players typ-
ically participate in the game for several weeks to several
years.

Players of Pardus characteristically engage in vari-
ous economic activities to increase their wealth (non-
convertible game money): There are numerous possibili-
ties for jobs, such as mining and processing basic resources

1Players are informed that data is logged for scientific purposes
and give their consent, usually prior to their participation in the
game.
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from the environment, trade, production, assembly and
consumption of commodities, etc. Economic life is em-
bedded in a production tree which provides a basic frame-
work for player-created industries. Trade occurs following
simple ‘rules’ within dynamic and demand-oriented virtual
markets constituted by groups of players. Social life within
Pardus is based on means of communication with fellow
players in various forms, such as chat, forum, private mes-
sages, which allow the establishment of e.g. friendships or
hostile relations. There are a number of ways to publicly
display one’s ‘status’ within the virtual society: Purchase
of expensive status symbols, such as space ships, earning
of medals of honor for war efforts or for defeating outlaws,
etc. These possibilities are not only well used, but con-
stitute an important psychological driving force for many
players.

Given the complete data set from the Pardus game, one
can identify four major directions of research.

1. Network analysis. It is possible to directly ac-
cess the dynamics of several types of social networks such
as dynamics of friend networks, networks of enemies, or
communication networks. Especially the latter offer a fan-
tastic way to directly relate findings in the game with real-
world communication networks, such as a data set of cell
phone calls which has been recently analyzed from a net-
work perspective (Onnela et al., 2007; Lambiotte et al.,
2008). While there exists some insight into real-world
friend networks in the literature, e.g. of the Facebook
community (Golder et al., 2007), there is practically no
knowledge of topology and dynamics of enemy networks
(Labianca and Brass, 2006). Since the time resolution of
our data is accurate to one second, it becomes possible to
study time courses of global network properties. This way
it can be understood if and how communities show aging
effects, such as densification, i.e. shrinking diameters and
growing average degrees. This phenomenon has been ob-
served in societies and online communities (Leskovec et al.,
2007, 2008), as well as in the evolution of scientific fields
and cities (Bettencourt et al., 2007, 2008). The vast ma-
jority of social network studies analyze single or at best
small numbers of network snapshots. Important excep-
tions include time resolved studies of an internet dating
community (Holme et al., 2004), the analysis of a univer-
sity email network (Kossinets and Watts, 2006), of the web
of scientific coauthorships (Ravasz, 2004; Newman, 2001,
2004), as well as several large-scale networks of various
types (Leskovec et al., 2007).

Network growth and re-linking processes can be directly
studied and compared to well-known models, such as e.g.
the preferential attachment model (Barabási and Albert,
1999) or static relinking models (Thurner et al., 2007).
Preferential attachment dynamics of real-world networks
have been verified in a few recent studies (Csárdi et al.,
2007; Leskovec et al., 2008; Jeong et al., 2003).

2. Testing traditional social-dynamics hypothe-
ses. The Pardus data allows for direct empirical testing
of long-standing hypotheses on social network dynamics,

such as the Hypothesis of triadic closure (Rapoport, 1953;
Granovetter, 1973), the Weak ties hypothesis (Granovet-
ter, 1973), or the Hypothesis of social balance (Harary,
1953; Doreian and Mrvar, 1996).

For quantification purposes we employ network mea-
sures such as betweenness centrality (Freeman, 1977) and
overlap which measures how often a given pair of nodes
has links to other common nodes (Onnela et al., 2007).
To our knowledge, no longitudinal measurements of large-
scale signed networks exist as of today. One well-known
social network study on monks in a monastery can be
found in the classic literature (Sampson, 1968), as well
as a modern long-time survey of social dynamics in class-
rooms (Jordán, 2009). These are first attempts of system-
atic social balance experiments, however being far from
conclusive due to limited data and small scales (10 to 100
nodes), and a low number of samples (about ≈ 10 ob-
servations). Further, the extent of reciprocity and Triad
significance profiles (Milo et al., 2004) together with their
dynamics can be directly accessed from the game data. For
the quantification of these concepts we use recent technol-
ogy developed in the context of motif distributions. To
understand microscopic changes in social network dynam-
ics, transition rates between dyadic and triadic structures
can be measured – yielding parameters needed e.g. for
calibrating agent-based models of social network dynam-
ics, as e.g. in Antal et al. (2006). So far these transition
rates could only be assumed by model builders and have
never been measured in actual societies.

3. Economic analysis. The fact that all players are
engaged in economic activities allows for statistically sig-
nificant measurements of wealth and income distributions
which can be compared to real economies (Yakovenko,
2009; Dragulescu and Yakovenko, 2001; Chatterjee et al.,
2007). The process of price formation – and more generally
preference relations – for all goods and services in the game
can be observed within the social and economical context
of players. All prices of all goods in the game are recorded
with a time resolution of one second and can be analyzed
with respect to ‘stylized’ facts in real prices, in a straight-
forward fashion. These ‘stylized’ facts, such as volatility
clustering, fat-tailed return distributions, squared auto-
correlation decays, etc., are known in detail for traded
goods in the real world (Cont, 2001). Further, co-evolution
dynamics, i.e. the evolution of economic properties of play-
ers (e.g. wealth) as a function of their local social net-
works, and vice versa, their social evolution as a function
of their economic network, can be extracted from the data.
The theoretical literature on co-evolving networks is rela-
tively sparse (Biely et al., 2007, 2009); to our knowledge
there exist practically no measurements on this issue so
far.

4. Group formation and dynamics – gender and
country aspects. Players have the possibility to create
and join ‘alliances’ (communities) in the game, which allow
them to streamline ideas, join forces for common projects,
or coordinate aims and believes. The dynamics, formation,
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interaction, and disappearance of these cohesive communi-
ties can be investigated readily in the data. Players choose
to have a male or female character allowing all data to be
partitioned into female and male networks. This offers the
possibility to search for behavioral differences in ‘network-
ing’ patterns between female and male players. Further,
economic productivity and communication patterns can be
analyzed gender-specifically. The same holds for country
specifics of players.

In this work – the first of a series – we focus on the first
two of the above directions: analysis of complex network
structures/dynamics and testing sociological hypotheses.
Along these lines we establish further evidence that online
game communities may serve as a model for real world
communities. It is not obvious a priori that a population
of online players is a representative sample of real-world
societies (Williams et al., 2009). However, several recent
studies are providing evidence that human behavior on
a collective level is remarkably robust, meaning that sta-
tistical differences of real-world communities and game-
societies are often marginal (Johnson et al., 2009; Jiang
et al., 2009).

The paper is organized as follows. In section 2 we
present the game, describe the sample of players and ex-
plain their modes of communication. We introduce the
three types of social networks studied. Section 3 contains
the network measures used in our analyses. Results are
presented in section 4 and are discussed in section 5. Fi-
nally we conclude in section 6.

2. The game

2.1. Overview

Pardus (http://www.pardus.at) is a browser-based
MMOG in a science-fiction setting, open to the public and
played since September 2004. A browser-based MMOG
is characterized by a substantial number of users playing
together in the same virtual environment connected by an
internet browser. For a detailed categorization of online
games see Bartle (2004); Castronova (2005).

In Pardus every player onws an account with one
character per game universe; players are forbidden to
operate multiple accounts. A character is a pilot owning
a spacecraft with a certain cargo capacity, roaming
the virtual universe trading commodities, socializing,
and much more, ‘to gain wealth and fame in space’
(http://www.pardus.at/index.php?section=about).
The main component of Pardus consists of trade simu-
lation with a society of players heavily driven by social
factors such as friendship, cooperation or competition.
There is no explicit ‘winning’ in Pardus as there is no
inherent set of goals nor allowed or forbidden ‘moves’
(with a few exceptions mainly concerning decent language
and behavior towards fellow players). Pardus is a virtual
world or synthetic world with a gameplay based on
socializing and role-playing, with interaction of player
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Figure 1: Evolution of number of active characters in the game uni-
verses. The large increase of players in Orion between days ≈ 800
and 1,000 is due to ad campaigns after October 2006. At day
1,000 (dotted line) Artemis and Pegasus were opened. Some thou-
sand players abandoned their Orion characters focusing on their new
Artemis characters. This explains the mirrored development in these
two universes after day 1,000.

characters with others and with non-player characters as
its core elements (Castronova, 2005).

There exist three separate game universes: Orion,
Artemis, and Pegasus. Presently Pardus is actively played
by ≈ 14,000 players, over 300,000 have registered so far.
Orion and Artemis each inhabit ≈ 6,500 active characters,
Pegasus with its ≈ 1,400 characters is for paying customers
only. We count existing characters who have mastered the
game’s tutorial environment as active (characters which
are inactive for 120 days get deleted automatically, see
section 2.3). Figure 1 depicts the evolution of universe
populations for the time range where data is available (see
section 2.2). The majority plays the game for free, paying
members receive Premium accounts which bestow them
with additional features not available to users with Free
account status (such as the possibility of character cre-
ation in the Pegasus game universe). Orion was opened
on September 14th 2004, Artemis and Pegasus 1,000 days
later, on June 10th 2007. Between universes it is impossible
to move, trade, or exchange game money. The universes
are independent.2

2.2. The data analyzed
Daily database backups recorded at 05:32 GMT3 are

available from 2005-09-09 to 2008-09-01. The day 2005-

2This is not entirely correct since some players have openly re-
vealed their identities, i.e. they have disclosed which characters they
are controlling in different game universes. It is not clear how many
attempts have been made to copy existing social ties between uni-
verses. Although it is discouraged, it may happen that e.g. vendettas
between players who are aware of their mutual identities in different
universes are carried out within more than one universe. We discuss
this issue in more detail in section 5.

3This time was chosen for the daily backup and maintenance
scheduler because it is the time of lowest player activity.
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09-09 is the 360th after 2004-09-14, i.e. the 360th day after
Orion was opened. Backups from the following dates are
not available due to unknown reasons: 2006-03-24 to 2006-
04-23, 2006-04-28 to 2006-04-30, 2006-10-24 to 2006-10-26,
2007-03-20, 2007-05-10, 2007-09-21, 2008-02-09, 2008-06-
09. Since we have complete data only for Artemis and
Pegasus (with the exception of three days), and because
Artemis has more active characters than Pegasus, in this
work we refer only to Artemis data. Results are remark-
ably robust between universes. For clarity only weekly
data points are shown in all time evolution plots, except
for figs. 11 and 17.

2.3. Players and census of characters

Age and nationality
In a poll taken in the Pardus forums in the beginning of

2005 the age of players was assessed. From a total of 255
votes, 5% reported their age to be less than 15 years, 18%
between 15–19, 34% between 20–24, 23% between 25–29,
and 20% are older than 29 years, fig. 2 (a). The distribu-
tion of player nationalities can be estimated by technical
means and reads approximately as follows: United States
(US) 40%, United Kingdom (GB) 14%, Canada (CA) 5%,
Austria (AT) 4%, Germany (DE) 4%, Australia (AU) 4%,
Other 29%, fig. 2 (b).

<15

15−19

20−24

25−29

>29
(a)

US

GB CA
AT

DE
AU

Other

(b)

Figure 2: Distribution of player age (a) , nationality (b).

Lifetimes of characters
Characters are automatically deleted after an inactivity

(not logging in) period of 120 days. Additionally, every
player has the option to delete her account or characters
at any time. Rarely, it happens that accounts get deleted
due to breaking of game rules, such as the operation of
multiple accounts. We call all deletions which are not due
to inactivity self-induced. Figure 3 shows the cumulative
distribution of character lifetimes (in days) of all 16,980
characters who existed for at least one day, but not on the
last one. If a character’s lifetime lies before day 120 (dot-
ted line), her deletion could have been self-induced only.
If a character’s lifetime is longer than 120 days, her dele-
tion was either self-induced or automatic due to inactivity.
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Figure 3: Cumulative distribution of character lifetimes (in days) of
all 16,980 characters who existed at least for one day but not on
the last one. The dotted line marks day 120. The inset shows the
distribution of lifetimes of < 120 days in a double-logarithmic scale.

These two regimes are evident in the figure: the regime of
only self-induced deletion follows a power-law with expo-
nent γ = −0.063. In the second regime, the distribution
is neither a power-law nor an exponential probably due to
the overlay of the two deletion schemes.

Of all characters 7.6% have a lifetime of 0 days, i.e.
they delete themselves on the first day of their existence.
At least 31.4% of all deletions are self-induced, and ≈ 13%
of all characters become inactive after their first day.

Gender of characters
When signing up for the first time, players have to

choose between a male and female character; this deci-
sion is irrevocable. Depending on gender a male or fe-
male avatar (profile-like picture) of characters is displayed
in certain places in the game. In the Artemis universe,
≈ 90% of all characters are male.

2.4. Structure of the universe

Space in Pardus is two-dimensional. Each game uni-
verse is divided into 400 sectors, fig. 4, each sector con-
sisting of 15×15 fields on average. Fields are the smallest
units of space and are displayed as 64×64-pixel images in-
game. They form a square grid on which continuous ship
movement is possible by clicking on the desired destina-
tion field within the space chart. This chart is a 7×7 fields
cut-out of the universe visible to every player with their
current position located on the central field, see fig. 5. A
sector’s boundary is impenetrable; moving between nearby
sectors is possible by tunneling through field objects called
wormholes. A collection of nearby ≈ 20 sectors is called a
cluster. The typical spatial range of activities of a charac-
ter is usually confined to one cluster for several weeks or
longer.
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Figure 4: Map of a universe. Each colored square represents a sector,
consisting of 15×15 fields on average. Colors indicate cluster mem-
bership. Nearby sectors are connected by wormholes (not shown).

2.5. Action Points – the unit of time

Every game action carried out by a player (trade, travel,
etc.) costs certain amount of so-called Action Points
(APs). These points can not exceed a maximum of 6,100
APs per character. For characters owning less APs than
their maximum, every six minutes 24 APs are automati-
cally regenerated, i.e. 5,760 APs per day. Once a player’s
character is out of APs, she has to wait for being able to
play on. As a result the typical Pardus player logs in once
a day to spend all her APs on several activities within
a few minutes (for each character/universe). This makes
APs, the game’s unit of time, the most valuable factor:
Those players who use their APs most efficiently can ex-
perience the fastest progress or earn the highest profits.
Social activities such as chatting (see section 2.7) do not
consume APs. Highly involved players usually spend a lot
more real time on the game’s features of socialization as
well as on planning and coordinating their future moves
than on actually spending their APs.

2.6. Trade and industry

The currency of game money within Pardus is the so-
called credit. This money is not convertible to real money.
Every player starts her life with 5,000 credits. Since most
assets needed for making progress – such as ships, ship
equipment, buildings – are traded in credits, it is of basic
interest to earn money during the game (the richest players
currently posess hundreds of millions of credits). There
exist a number of possibilities to do this, usually through
participation in the economy.

There exist over 30 commodity types. Some of these
grow in the environment and can be mined, such as gas
from nebulas or ore from asteroids. Most commodities

Figure 5: Space chart. A cut-out of 7×7 fields of the universe (green
lines, not shown in-game) visible to every player on his navigation
screen; the current position is in the central field (yellow box). By
clicking on another field, the ship moves to that location and all fields
are updated so the ship is again located in the center.

however are processed from less valuable (more basic) com-
modities in player-owned firms. For example, a brewery
manufactures expensive liquor out of cheap energy, water,
food, and chemical supplies. Every player has the possi-
bility to construct a small number of such buildings. Since
production chains follow a fixed production tree, coordi-
nation of several players is needed to build up a profitable
industry. Most end-products, i.e. products at the top of
the production tree (which cannot be reused as upkeep in
other buildings), are usable commodities. For example,
manufactured drugs may be consumed to gain APs, droid
modules can be installed for powerful building defenses
against hostile attacks, etc. Therefore, tangible needs gen-
erated by the society play a driving role for motivating the
development of industries.

Besides player-created firms there exist bases owned by
the game system, which trade and regularly consume most
commodity types. Prices there are exclusively determined
by local supply and demand: when commodities are avail-
able in abundance, prices are low, when only a few are
available, prices rise.

Through these mechanics players find themselves
strongly encouraged to take part in the struggles of eco-
nomic life, as known from the real world: collaboration,
competition, cartelization, fraud, etc. We will analyze the
Pardus economy in detail in a separate work.

2.7. Social interaction

There are three ways for players to communicate inside
the game, facilitating social activity. Players may use these
facilities independently from game-mechanic states (such
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as their ship’s location within the universe, their wealth,
etc.):

1. Chat: Pardus offers several built-in chat channels per
universe where players can simultaneously communi-
cate with many others. Chat entries scroll up and
disappear; thus the chat is well-suited only for tem-
porary talks.

2. Forum: In the forum, messages, called posts, can con-
sist of several lines and stay for a long time. This en-
ables more thorough discussions than in chat. Posts
are organized within threads which correspond to a
topic. There are universe-specific subforums as well
as global subforums which can be accessed from all
universes.

3. Private message: Within a universe it is possible to
send private messages (PMs) to any other player; this
action and the PM’s content is only seen by sender
and receiver – a system similar to email. When a
PM is sent the receiver gets immediately notified in
a status bar. PMs always have exactly one recipi-
ent. Presently a daily total of ≈ 10, 000 PMs are
exchanged within Pardus.

2.8. Friends and enemies

For a small amount of APs, players can mark others
as friend or enemy. This can be done for any reason.
The marked characters are added to the markers personal
friends or enemies list. Additionally, every player has a
personal friend of and enemy of list, displaying all play-
ers who have marked them as friend or enemy, respectively.
When being marked or unmarked as friend or enemy the
affected player immediately receives an informatory sys-
tem message. It is only possible to mark someone either
as friend or as enemy, but not both.

We stress that friend/enemy lists and friend of/enemy
of lists are completely private, meaning that no one except
the marking and marked players have information about
ties between them. It is not possible to see second de-
gree neighbors (e.g. friends of friends) or the number of
ties another player has.4 Note that this is in contrast to
many online social networking services such as Facebook,
where usually second degree neighbors and number of
friends are visible. Thereby Pardus’ system does not intro-
duce potentially strong biases concerning accumulation of
friends (some users may tend to accumulate friends for the
main purpose of increasing their publicly visible number
of friends (Golder et al., 2007)). Our data thus represents
a more realistic social situation, in the sense that social
ties are not immediately accessible but need to be found

4On 2008-08-24 the profile feature of the game was extended,
allowing players with Premium accounts to publicly display their
numbers of friends or enemies. Since this feature was introduced
at the very end of our last measured data (2008-09-01) and only a
negligible proportion of players are making use of it, it is irrelevant
here.

(a) Pajek

(b) Pajek

Figure 6: (a) Accumulated PM communications over all 445 days
between 78 randomly selected individuals who existed on the first
and last day. Link colors of light gray, gray, and black cor-
respond to 1–10, 11–100 and 101–1000 PMs sent, respectively.
(b) Friend (green, solid) and enemy (red, dashed) relations on
day 445 between the same individuals. See our Youtube chan-
nel http://www.youtube.com/user/complexsystemsvienna for ani-
mated time evolutions of these networks.

out by e.g. communication with or careful observation of
others.

Besides character names and online status being dis-
played on every player’s personal PM contacts page for
quick access, the friends and enemies lists serve game-
mechanic purposes: friends/enemies are automatically or
optionally included/excluded for certain actions. For ex-
ample, enemies of building owners are not able to use
the services offered in the respective places. Note that
friend and enemy markings need not necessarily denote
affective friendships or enmity, they rather indicate a cer-
tain degree of cooperative or uncooperative stance moti-
vated by affective and/or cognitive incentives. However,
we assume these two motives to coincide to a great extent,
e.g. it seems highly unlikely that someone marked as en-
emy/friend due to rational considerations at the same time
constitutes the affective opposite of friend/enemy within
the game (and vice versa). PMs as well as friend and en-
emy relations can be displayed as networks, fig. 6, see also
section 3.2.
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2.9. Universe-specific characteristics

Orion has the longest history but has some missing data
at its beginning (see section 2.2). Orion has converged
to social structures and ties which are relatively constant
over time, as seen in a number of measures (not shown).
In contrast, Artemis and Pegasus can be observed from
their start on, and measuring the evolution of social net-
works from the time of their birth is possible. Here we
do not face the problem of the ‘missing past’ (Leskovec
et al., 2007). Further, since character creation in Orion
and Artemis is free but not so in Pegasus, the former uni-
verses display considerably higher fluctuations in player
numbers and activity rates than the latter.

2.10. A note on equilibrium and ‘steady state’

The Pardus universes are virtual worlds, permanently
evolving without a scheduled end. They are far from being
in equilibrium due to constantly added new and changed
game features, fluctuations in player numbers, large-scale
collective actions of payers, etc. The distinction between
transient phase and steady state may be hard to determine
for certain network properties, due to the large amount of
strong mutual influences, naturally present in systems of
such high complexity.

3. Networks

3.1. Definitions

Graph
In mathematical terms, networks are described by

graphs (Wasserman and Faust, 1994; Dorogovtsev and
Mendes, 2003). An undirected graph G = (N ,L) is defined
as a pair of sets, the node setN containing all nodes ni and
the link set L containing unordered pairs lij := {ni, nj} de-
noting those nodes which are connected by an undirected
link (edge). A directed graph (digraph) has a link set L
which contains ordered pairs lij := (ni, nj) marking nodes
which are connected by a directed link (arc) going from
ni to nj . The expressions N , L denote cardinalities of the
respective sets. A graph is called complete if connections
between all pairs of nodes exist.

Symmetrization
The symmetrization or reflexive closure of a digraph G =

(N ,L) is constructed as follows: Start with G∗ = (N ,L∗),
where L∗ is an empty link set, and for all pairs of nodes
ni and nj add the undirected link lij to L∗ if the directed
link lij ∈ L or if lji ∈ L.

Weighted graph
In unweighted graphs all links are treated equally. A

weighted graph is a generalization in which the weight wij
of a link lij may take any non-zero real value.

Dyad
A dyad is a (sub)graph consisting of two nodes. A di-

rected dyad can be a null dyad (no links), asymmetric (one
link, going in one direction), or mutual (two links, one go-
ing in one direction and the other going in the opposite
one).

Signed graph
A signed digraph is a pair (G, σ), where G = (N ,L) is a

digraph and σ:L → {−1,+1} is a sign function assigning
each directed link a binary value, e.g. in the context of
social networks denoting positive or negative relationship
(Doreian and Mrvar, 1996). We write sij short for σ(lij),
and set sij := 0 when lij does not exist.

Every signed digraph has a valency matrix V with en-
tries vij defined as (Harary et al., 1965):

vij = o if sij = sji = 0
vij = p if sij + sji > 0
vij = n if sij + sji < 0
vij = a otherwise (1)

These entries correspond to null (o) dyads, to dyads with
only positive ties (p) , to dyads with only negative ties (n),
and to dyads with one positive and one negative tie (a for
ambivalent relationship), respectively.

Degree
In an undirected graph the degree ki of a node ni is the

number of links connecting to it. All ki nodes which are
directly linked to ni are called (nearest) neighbors of ni. A
node with degree 0 has no neighbors and is called isolated.
We denote the average degree of all nodes in a network
by k̄. In a directed graph the in-degree kin

i of a node ni
is the number of its incoming links, the out-degree kout

i

the number of its outgoing links. We denote the average
degree of all nearest neighbors of a node ni by knn

i . We
denote the average degree of all nearest neighbors of all
nodes as a function of degree k by knn(k) .

Geodesic
In an undirected graph, the geodesic or shortest path gij

of two nodes ni and nj is the smallest number of links one
needs to get from ni to nj . If a graph is disconnected, i.e.
there exist at least two non-empty sets of non-connected
nodes (called components), geodesics between all nodes of
different components are set to ∞. The average geodesic
of a random graph is ḡr ≈ lnN/ ln k̄ (Dorogovtsev and
Mendes, 2003).

Clustering coefficient
The clustering coefficient Ci of node ni in an undirected

graph is the ratio between the number yi of links between
its ki neighbors and the number of all possible links ki(ki−
1)/2 between them,

Ci :=
2yi

ki(ki − 1)
. (2)
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The network’s clustering coefficient C is the average over
all clustering coefficients, C = (1/N)

∑
i Ci. A random

graph’s clustering coefficient Cr is given by Cr = k̄/N
(Dorogovtsev and Mendes, 2003).

Efficiency
Global efficiency of an unweighted network G with N

nodes is defined as

Eglob(G) :=
2

N(N − 1)

∑
i6=j∈{1,...,N}

g−1
ij . (3)

Global efficiency Eglob can be thought of as a measure how
efficiently information is exchanged over a network, given
that all nodes are communicating with all other nodes con-
currently. Local efficiency Eloc, as a measure of a system’s
fault tolerance is defined as

Eloc(G) :=
1
N

∑
i∈{1,...,N}

Eglob(Gi), (4)

where Gi is the graph of all neighbors of node ni (not con-
taining ni). Both values Eglob and Eloc are in the interval
[0, 1]. Note that global efficiency is a reasonable approxi-
mation for the inverse geodesic in unweighted graphs; local
efficiency is a good approximation for the clustering coef-
ficient when most local networks Gi are not sparse (Latora
and Marchiori, 2001).

Reciprocity
Reciprocity measures the tendency of individuals to re-

ciprocate connections, i.e. the creation of mutual instead
of asymmetric dyads (Wasserman and Faust, 1994). Fol-
lowing Holme et al. (2004), a naive reciprocity index can
be defined by

R :=
L

L∗
− 1, (5)

where L∗ is the number of undirected links in the reflexive
closure of the digraph.5 Values of R = 0 and R = 1 stand
for no mutual dyads and mutual dyads only, respectively.
Reciprocity may also be quantified by defining the fraction

r∗ :=
L↔

L
, (6)

where L↔ ≡ 2(L−L∗) counts the number of directed links
in all mutual dyads of the digraph. Due to conceptual
problems with r∗, Garlaschelli and Loffredo (2004) we use
the following reciprocity index

ρ :=
r∗ − ā
1− ā

∈ [ρmin, 1], (7)

with ā := L
N(N−1) measuring the ratio of observed to possi-

ble directed links, and ρmin := − ā
1−ā ∈ [−1, 0] for ā ≤ 1/2

5The factor 2 of equation (1) in (Holme et al., 2004) is dropped
since we identify pairs of directed links of mutual dyads with single
undirected links in the construction of the reflexive closure.

(the expression ρmin makes sense for ā ≤ 1/2. Otherwise
it is not possible to have L↔ = 0). The index ρ allows to
distinguish between reciprocal (ρ > 0), areciprocal (ρ = 0)
and antireciprocal (ρ < 0) networks. Further, ρ enables
a clear ordering of networks independent of link density
which is not possible with r∗ (Garlaschelli and Loffredo,
2004).

Assortativity
Assortative mixing coefficients are the Pearson corre-

lation coefficients of the degrees at either ends of a link
(Newman, 2002):

r =
ktokfrom − ktokfrom√

k2
to − kto

2
√
k2

from − kfrom
2
∈ [−1, 1]. (8)

Bars denote averages, kto and kfrom index the (in-, out- or
undirected) degrees of nodes at the beginning and end of
links, respectively. Following Holme et al. (2004) we mea-
sure assortativity rundir in the reflexive closures as well
as coefficients for all four combinations of in- and out de-
grees in the directed networks: rinin, rinout, routin, routout.
A positive degree–degree correlation coefficient indicates
assortativity, i.e. the tendency of nodes with high (low)
degrees connecting to nodes with high (low) degrees, a neg-
ative correlation means disassortativity, i.e. the tendency
of nodes with high (low) degrees connecting to nodes with
low (high) degrees.

Bridge
A bridge is a link which, when removed, increases the

amount of disconnected components in the graph by one
(Wasserman and Faust, 1994). A link is a local bridge of
degree i if its removal causes its endpoints to have geodesic
i (Granovetter, 1973).

Overlap
Overlap of two neighboring nodes measures the amount

of neighbors common to both of them. We adopt the def-
inition used in Onnela et al. (2007),

Oij :=
mij

(ki − 1) + (kj − 1)−mij
∈ [0, 1], (9)

where mij is the number of neighbors common to both
nodes ni and nj . A value of Oij = 0 (1) corresponds to an
empty (identical) common neighborhood of nodes ni and
nj .

Betweenness
Link betweenness centrality, short link betweenness or

load, is defined for an undirected link lij by

bij :=
∑
ne∈V

∑
nf∈V \{ne}

θef (lij)
θef

, (10)

where θef (lij) is the number of geodesics between ne and
nf that contain lij , and θef is the total amount of geodesics
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Figure 7: The 16 isomorphism classes of triads and their ids.

between ne and nf (Onnela et al., 2007). Betweenness can
be viewed as a measure of traffic if e.g. all pairs of nodes
exchange information at the same rate (Dorogovtsev and
Mendes, 2003).

Largest connected component
In graphs with infinitely many nodes one observes the

emergence of a giant component when crossing a perco-
lation threshold (Dorogovtsev and Mendes, 2003). The
emerging giant component is the only component holding
infinitely many nodes. In finite graphs, we call the compo-
nent having the highest number of nodes largest connected
component. We denote the fraction of nodes being in the
largest connected component by Γ.

Triad
A triad is a (sub)graph consisting of three nodes. In a di-

graph there exist 16 isomorphism classes of triads (Harary
et al., 1965). We adopt the notation of Milo et al. (2002)
for the 13 connected classes and label the unconnected ones
by a, b and c, see fig. 7. Within the group of connected
triad classes, seven are complete.6

Triad significance profile
The triad significance profile (TSP) is the vec-

tor of statistical significances of each connected triad
class compared to random networks drawn from the
U(X∗+, X+∗,M

∗) distribution, i.e. of random networks

6We write connected short for weakly connected, i.e. every two
nodes are joined by a semipath (Harary et al., 1965). We write
completeness short for completeness of the reflexive closure, i.e. a
directed triad is complete if it contains no null dyads, it is incomplete
otherwise.

having identical in/out degrees and equally likely num-
bers of mutual dyads for each node (Roberts, 2000; Milo
et al., 2002). Statistical significance of a triad class i is
measured by the Z score

Zi =
(N real

i − N̄ rand
i )

std(N rand
i )

, (11)

where N real
i is the frequency of occurence of the triad class

in the considered network, and N̄ rand
i and std(N rand

i ) are
the average frequency of occurence and the standard de-
viation in an ensemble of random networks drawn from
U(X∗+, X+∗,M

∗). The TSP is the normalized vector of
all 13 Z scores,

TSPi =
Zi(∑13

i=1 Z
2
i

)1/2
(12)

Note that the TSP emphasizes the relative significances of
triad classes, constituting an appropriate comparison pa-
rameter for networks of arbitrary sizes (Milo et al., 2002).

3.2. Network extraction
We represent all measured networks as digraphs with

nodes representing characters. Note that we do not con-
sider isolated nodes, i.e. characters having no PM com-
munication or friend/enemy relations. In the following we
use ‘link’ short for ‘directed link’.

Private messages – communication networks
The first set of networks is extracted by considering all

PM communications on a weekly timescale. Within the
timeframes [d−6, d] for all days d > 6 all PMs between all
characters (who exist over these timeframes) were used to
define the PM network at day d: a weighted link pointing
from node ni to node nj is placed if character i has sent at
least one PM to character j within a given week. Weights
correspond to the total number of PMs sent within this
week. Figure 6 (a) illustrates a subgraph of PM networks
of accumulated PM communications over all 445 days be-
tween 78 randomly selected characters.

Friends and enemies
Friend and enemy markings constitute the second and

third sets of extracted networks: A link is placed from ni to
nj if character i has marked character j as friend/enemy.
Note that friend/enemy markings exist until they are re-
moved by players (or as long as the related players exist),
while PM networks are constructed through an accumulat-
ing process. Friend and enemy networks are unweighted,
since it is not possible mark friends/enemies more than
once.

Since links of friend- and enemy networks never coin-
cide (it is not possible to mark someone as both friend and
enemy), we can consider the union of friend- and enemy
networks as signed networks. Figure 6 (b) illustrates a sub-
graph of the friend/enemy network of day 445. Note the
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intense cliquishness/reciprocity of friends and the strong
enemy in-hub. We show below that these features are typ-
ical for these networks.

4. Results

In this section we measure social networks as constituted
by different relations between players, focusing on the evo-
lution of network properties. We provide a round-up of the
most important results in section 5.

4.1. Testing preferential attachment

The model of preferential attachment (PA) asserts that
nodes which link to a network for the first time tend to
attach to nodes with high degrees, i.e. to ‘popular’ nodes
(Barabási and Albert, 1999). In the extracted directed
networks of friends (enemies) we assume this popularity
(‘disdain’) being well expressed by the in-degree. We call
characters who get connected to a network for the first
time newcomers. To test whether evolutions of present
networks display a PA bias we measure in-degrees of char-
acters who are marked by newcomers as friend (enemy).
Whenever there exists a link lij on day d + 1 which has
not existed on the previous day d we say that a (one-day)
link event has taken place between ni and nj on day d; we
call ni the source and nj the destination of this event.

In the classic model of PA it is assumed that the prob-
ability P of a newcomer connecting to an existing node ni
with in-degree kin

i is P (kin) ∝
(
kin
)α with α = 1. Figure

8 shows P (kin) versus kin for friend and enemy networks;
all link events between newcomers and their destinations
have been used from day 200 to 400. Least squares fits in
double-logarithmic scale yield an exponent of α = 0.62 for
friend markings with kin < 30, and α = 0.90 for all en-
emy markings. We observe an increased upward bending
for players having in-degrees larger than about 100, i.e.
for very popular players. These findings are fully consis-
tent with other game universes and other time ranges (not
shown).

4.2. Relations between PM partners

A connection between PM networks and friend/enemy
networks can be made visible by partitioning all pairs of
characters {ni, nj} into four classes of friend and/or en-
emy relations, corresponding to the possible valency ma-
trix entries vij of a signed digraph. These classes o, p, n, a
correspond to dyads without friend/enemy ties (o), dyads
with asymmetric or mutual friend markings (p), dyads
with asymmetric or mutual enemy markings (n), dyads
with one friend and one enemy marking (a). Figure 9 de-
picts the fraction of all PM partners as partitioned into
these classes. Relations of class a are not shown since
they almost never appear. From the fact that the major-
ity (> 95%) of PM partners consists of positively related
characters (≈ 40% on the last day) and of characters hav-
ing no friend or enemy relation (≈ 58% on the last day), we
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to nodes with in-degree kin. Data is used between days 200 and
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dependence assumption needed in the PA model. Green lines denote
least squares fits. Values for enemies are vertically displaced by a
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Figure 9: Fraction of PM partners per relation class.

expect a much stronger correlation of PM networks with
friend networks than with enemy networks.

4.3. Measurement of basic network properties
We measure the time evolution of the following basic

network properties: number of nodes N , directed links L
and average degree k̄, relative size of largect connected
component Γ, average geodesic ḡ, clustering coefficient C,
as well as the comparison values ḡ/ḡr and C/Cr. Average
degrees, geodesics and clustering coefficients are measured
on the reflexive closures of the networks. Geodesics and
clustering coefficients were calculated using the MatlabBGL
package7, which efficiently implements standard proce-
dures such as Johnson’s algorithm for finding all geodesics

7We used version 4.0.
http://www.stanford.edu/∼dgleich/programs/matlab bgl.
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in sparse graphs. The measured network properties are
displayed in figs. 10 to 12, values of days 50, 150, and
445 are shown in table 1. Cumulative distributions of in-
and out-degrees of the last day’s networks are depicted in
figures 13 (a)–(c).

We make the following observations.

Growing average degrees, shrinking geodesics
Average degrees are growing, fig. 10 (c). Merely the

enemy network reaches a steady state shortly before day
400. Geodesics decrease, fig. 10 (g).

Links versus nodes
The L versus N curves for the most part have slopes

between 1 and 2, fig. 11. Due to heavy fluctuations and
limited extension over N , fits to power-laws are not reli-
able.

Average geodesics close to random network value
For all networks the comparison parameter ḡ/ḡr lies well

within the band [0.5, 2] as reported for various scale-free
networks by Dorogovtsev and Mendes (2003), fig. 10 (h).
It fluctuates slightly above 1 for enemy and friend net-
works, growing for the former, decreasing for the latter.
In PM networks ḡ/ḡr is slightly below 1 for most time-
points.

Changing clustering coefficients
Clustering coefficients of friend networks decrease, those

of enemy networks increase, fig. 10 (d). Concerning C/Cr,
values fall in friend and PM networks but grow in enemy
networks, fig. 10 (e). C/Cr curves of PM networks fall be-
tween the curves of enemy and friend networks. Decreasing
clustering coefficients have been reported for coauthorship
networks (Ravasz, 2004), online social networks (Hu and
Wang, 2009), and appear in a model of growing social net-
works (Jin et al., 2001). Note that C/Cr has a high value
for friend networks (C/Cr > 100), as is expected for most
social networks of positive ties (Newman and Park, 2003).

Positive reciprocity
All networks are reciprocal, fig. 10 (j). At the last day

the PM network has a reciprocity of ρ ≈ 0.80, the friend
network has ρ ≈ 0.68 after having reached a maximum of
ρ ≈ 0.83 in the first days. Excluding the first few days, the
reciprocity indices of enemy networks lie around ρ ≈ 0.1.
The naive reciprocity R displays qualitatively similar be-
havior (not shown). Low reciprocities in enemy networks
may be explained by deliberate refusal of reciprocation, to
demonstrate aversion by lack of any response.

Holme et al. (2004) report a naive reciprocity value
around R = 0.4 for a message network, a value much lower
than our measured ones around R ≈ 0.7 in PM networks.
We suspect two factors responsible for this discrepancy: A
higher community coherence – i.e. more social pressure to
respond – in Pardus, and a possibly high inactivity rate

of users on the dating site. Probably for the same reason
of community coherence, reciprocities ρ ≈ 0.8 of Pardus
PM networks are well above ρ = 0.194, a value reported
for messages in email networks Garlaschelli and Loffredo
(2004).

No assortativity
For PM networks, all five considered assortative mixing

coefficients reach steady state values slightly below zero,
fig. 10 (l) (only plots of rundir are shown). PM networks are
therefore disassortative, i.e. a player who sends/receives
PMs to/from players with many PM-partners displays a
slight tendency of having few PM-partners and vice versa.
For a possible explanation see Holme et al. (2004) who at-
test this observation as being in contrast to collaboration
networks, for which positive assortativity has been mea-
sured. There it has been claimed that in friend networks
individuals are substitutable and negative mixing is op-
timal. The approximate steady state of friend networks
displays no clear tendency towards assortativity or disas-
sortativity after a transient phase of falling assortativity.
Note that by using an assortativity profile it is possible to
uncover families of networks, similar to TSPs (Milo et al.,
2004; Foster et al., 2009).

Structural change of PM networks due to times of war
On day 422 a war between a substantial number of play-

ers broke out in the game universe. A structural change
of PM networks is identifiable, most clearly in the num-
ber of links L, average degree k̄, average geodesic ḡ, local
efficiency Eloc and global efficiency Eglob, see arrows in
fig. 10.

Growing largest connected component
The fraction of nodes in the largest connected compo-

nent, Γ, is growing in friend and enemy networks over
almost all 445 days, fig. 12. On the last day we find
Γ ≈ 0.973 for friends and Γ ≈ 0.992 for enemies. The
value for PM networks fluctuates around Γ ≈ 0.985.

4.4. Overlap versus betweenness and communication
strength

For validating sociological hypotheses (see section 5) we
measured overlap versus PM weight and overlap versus
betweenness in the largest connected component of the
mutual part of the last PM network. We used this reduced
network because it can be directly compared to Onnela
et al. (2007). Results on full PM networks and on PM
networks accumulated over different time-spans are very
similar however (not shown). Betweenness for all links was
calculated with the algorithm provided in the MatlabBGL
package. Results are compiled in in figs. 15 and 14.
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Figure 10: Network properties: (a) number of nodes N , (b) number of (directed) links L, (c) average degree k̄, (d) clustering coefficient C, (e)
clustering coefficient C divided by clustering coefficient of corresponding random graph Cr, (f) local efficiency Eloc, (g) average geodesic ḡ, (h)
average geodesic ḡ divided by average geodesic of corresponding random graph ḡr, (i) global efficiency Eglob, (j) reciprocity ρ, (k) assortative
mixing coefficient (of clustering in undirected network) rC(k), (l) assortative mixing coefficient (in undirected network) rundir. Arrows mark
the outbreak of an in-game war at day 422.

4.5. Measurement of triad significance profiles
For drawing random networks from the

U(X∗+, X+∗,M
∗) distribution we use the same switching

algorithm and Monte Carlo method as Milo et al. (2004,
2002). We use the same program mfinder8. See Roberts
(2000); Milo et al. (2003) for details. We calculate the
TSPs for all three network types at the last day with
the following parameters: 100 random networks, each
generated by performing Q · L switches, where Q is
drawn uniformly from {100, . . . , 200}. Resulting TSPs are
displayed in fig. 16.

4.6. Time evolution of TSPs
Figure 17 shows the time evolution of TSPs in PM,

friend, and enemy networks, each day measured with the

8We used version 1.2.
http://www.weizmann.ac.il/mcb/UriAlon.

same parameters as in the previous section. For visual
clarity, all single Z score evolutions were smoothed with
a moving average filter using a time window of 7 days. Z
scores of PM networks stay constant, see fig. 17 (a). For
friend networks the order of Z scores stays relatively con-
stant except for the pairs {2, 4} and {10, 12}, which switch
order abruptly at day ≈ 290, fig. 17 (b). At this time, a
new game feature was introduced in Pardus, which al-
lowed players to join syndicates. Because of this a number
of players reconsidered their friend and enemy relations.
Besides these abrupt changes, some trends are discern-
able, such as the slow decrease of triad classes 1 and 3 or
the increase of triad classes 9 and 11. In enemy networks,
fig. 17 (c), TSPs undergo heavy fluctuations but settle
into three groups of triad classes after some hundred days:
{1, 2, 3, 5, 6} being highly overrepresented (Z score > 0.2),
{4, 8, 9, 11} being neither clearly over- nor underrepre-
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PMs Friends Enemies
day 50 day 150 day 445 day 50 day 150 day 445 day 50 day 150 day 445

N 2,466 2,461 2,879 2,712 3,709 4,313 1,253 2,161 2,906
L 10,705 9,773 16,272 15,367 21,563 31,929 4,468 11,077 21,183
k̄ 5.25 4.80 6.77 6.85 7.36 9.79 6.69 9.77 13.77

C 0.24 0.19 0.17 0.34 0.28 0.25 0.02 0.03 0.03
C/Cr 112.14 99.10 74.08 133.30 143.32 109.52 3.47 5.87 6.13
ḡ 4.45 4.71 4.11 4.78 4.45 3.97 3.99 3.64 3.38
ḡ/ḡr 0.94 0.95 0.99 1.16 1.08 1.08 1.06 1.08 1.11
Eloc 0.29 0.23 0.23 0.38 0.34 0.32 0.02 0.04 0.05
Eglob 0.23 0.22 0.25 0.19 0.22 0.25 0.25 0.28 0.32

ρ 0.79 0.79 0.80 0.79 0.73 0.68 0.12 0.09 0.11
rC(k) -0.03 -0.02 -0.01 0.19 0.08 -0.09 0.02 -0.02 -0.00
rundir -0.13 -0.17 -0.04 0.06 -0.06 -0.00 -0.19 -0.23 -0.24
Γ 0.981 0.991 0.987 0.929 0.952 0.973 0.954 0.975 0.992

Table 1: Network properties at days 50, 150, and the last day 445, for PM, friend and enemy networks.
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Figure 11: Links L versus nodes N for all timepoints. Values for
enemies and PMs are shifted vertically for clarity.

sented (Z score between −0.1 and 0.1), and {7, 10, 12, 13}
being highly underrepresented (Z score < −0.15).

4.7. Measurement of triad transitions
To obtain insight in triad dynamics, we directly count all

transformations of all triads in friend networks, enabling
us to deduce empirical transition probabilities from one
type to another. We measure 13× 16 matrices Πd of day-
d-to-day-(d+50) triad transition probabilities for each day
d ∈ {150, . . . , 200}. This matrix is constructed by using
an algorithm adapted from Batagelj and Mrvar (2001).
Its entries πdij are the empirical probabilities that triads of
class i on day d become triads of class j on day d + 50.
Note that the sum of each row of Πd equals 1. Values be-
tween differing rows are not directly comparable due to a
highly heterogeneous triad census. For example, the cen-
sus of all connected triads of day 200 reads (20503, 19872,
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Figure 12: Fraction of nodes in the largest connected component Γ.

13286, 36737, 48320, 58137, 1510, 20, 1209, 4862, 453,
4788, 7887), ordered by increasing triad id. The number
of unconnected triads, especially null triads, is much larger
namely

(
N
3

)
minus the number of connected triads; in our

case this amounts to an order of magnitude of ∼ 1010.
Similarly, we define the matrices Kd containing empirical
transition counts kdij of triads of class i becoming class j.
For both matrices only those triads are counted in which
all three of the involved characters still exist on day d+50.

We denote the matrix of element-wise time averages of
Πd and Kd over all considered days by Π and K, respec-
tively. Entries kij of matrix K are empirical average 50-
day transition counts of triads changing from class i to
class j, entries πij of matrix Π the corresponding transi-
tion probabilities. Figures 19 (a) and (b) show Π and K.
Figure 19 (c) displays the matrix of asymmetries in 50-
day transition counts K for friend networks, i.e. K−KT .
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the (d) PM, (e) friend and (f) enemy networks; nearest neighbor degree knn versus degree of the (g) PM, (h) friend, and (i) enemy networks.
All distributions were taken at the last day.

Similar matrices for enemy networks have very different
entries (not shown), matrices for PM networks were not
calculated.

5. Discussion

We proceed by discussing the results of section 4 and
bring them into perspective.

5.1. Preferential attachment only in enemy networks

The model of preferential attachment assumes that
nodes which link to a network for the first time prefer-
ably attach to nodes with high degrees (Barabási and Al-
bert, 1999). If preferential attachment holds in its classical
form, the following facts should be observed:

1. Linking probability P (k) ∝ kα, with α = 1
2. Degree distribution follows a power-law P (k) ∼ k−γ
3. Clustering coefficient C versus degree k is uniform

In our data all three points do not hold in friend net-
works, figs. 8, 13 (b) and (e). The exponents derived from
linking probability versus degree is α ≈ 0.62 and definitely
not α = 1. Note the existence of ‘super-preferentiality’ for

very popular characters – a similar effect has been mea-
sured in Leskovec et al. (2008) for LinkedIn, a social net-
working site for professional contacts. There an exponent
α = 0.6 is reported. The degree distributions in friend
networks do not follow a power-law, the clustering coeffi-
cient versus degree exhibits a clear downward trend. Note
the clearly negative value of rC(k) at the last days, fig. 10
(k). The exponent of the clustering coefficient C(k) versus
degree k is γ ≈ −0.4. About the same exponent has been
measured in a game-theoretic model on co-evolving net-
works Biely et al. (2007); an exponent of γ ≈ −0.33 was
found in another large-scale social network (Csányi and
Szendrői, 2004).

For enemy networks the situation is different, see figs. 8,
13 (c) and (f). The exponent from linking probability ver-
sus degree α ≈ 0.90 is closer to α = 1, the distribution of
in-degrees follows an approximate a power-law with expo-
nent γ ≈ 1 (in the cumulative distribution). Clustering co-
efficients and degrees are to a large extent independent; de-
viations for large degrees can be explained by two different
mechanics of marking enemies, see section 5.7. Note that –
while not clearly visible on the last day’s plot (fig. 13 (c)) –
we find the distribution of out-degrees in enemy networks
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Figure 14: Cumulative distribution of (a) betweenness and (b) weight
values in the mutual part of the largest connected component of the
PM network at the last day.

separated into two regimes following approximate power-
laws with different exponents, γ ≈ −0.6 and γ ≈ −2.5,
respectively (in the cumulative distribution). This is the
case for many days in the Artemis universe and also for
most days in the Orion universe (not shown). Actual pref-
erential attachment has been measured in relatively few
works (Jeong et al., 2003; Leskovec et al., 2008; Hu and
Wang, 2009); the evolution of preferential attachment pa-
rameters was measured in Csárdi et al. (2007).

In conclusion the model of preferential attachment can
not be applied for friend networks. The situation of the
enemy networks might be closer to a PA mechanism, but
also there the situation is more intricate.

5.2. Confirmation of the Weak ties hypothesis

The Weak ties hypothesis of Granovetter is an impor-
tant proposition of sociology and builds upon the assump-
tion that “the degree of overlap of two individual’s friend-
ship networks varies directly with the strength of their
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Figure 15: Overlap versus (a) betweenness and versus (b) weight
in the mutual part of the largest connected component of the PM
network at the last day. Light gray markers show individual overlap
values of the links. Note that 2,336 links (out of 6,502) have overlap
O = 0. Black markers denote logarithmically binned averages, green
lines are least squares fits.

tie to one another” (Granovetter, 1973). By Granovetter’s
paradoxical formulation of the Weak ties hypothesis (“The
Strength of Weak Ties”), weak ties (e.g. casual acquain-
tanceships) are proposed to be strong in the sense that
they link communities in an essential way – i.e. they are
local bridges of high degree – while strong ties (standing
for e.g. good friendships) correspond to replacable intra-
community connections. Under given social balance as-
sumptions, except for very unlikely conditions, “no strong
tie is a bridge”, and “all bridges are weak ties” (Granovet-
ter, 1973). As an intuitive notion of strength of an inter-
personal tie, Granovetter mentions “the amount of time,
the emotional intensity, the intimacy (mutual confiding),
and the reciprocal services which characterize the tie”.

Quantitatively the hypothesis concerning the connec-
tion between tie strength and overlap of friendship circles
should manifest itself in an increasing function of overlap,
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Figure 16: Triad significance profiles for the three network types (day
445).

O(w) , versus weight. This is clearly the case for PM net-
works, fig. 15 (b), where an approximate cube root law is
suggested,

O(w) = w0.30 ≈ 3
√
w. (13)

Note that our method does not encounter sampling issues
as in e.g. Onnela et al. (2007); in this sense our results are
free of bias.

A direct way of testing the Weak ties hypothesis is to
examine the correlation between betweenness and overlap.
By the Weak ties hypothesis, the overlapO(b) as a function
of betweenness should be decreasing. Our data strongly
confirms this prediction, fig. 15 (a) and suggests an inverse
square root law. Logarithmically binned average values lie
on a line with slope γ ≈ −0.54.

O(b) = b−0.54 ≈ 1√
b
. (14)

These results are in agreement with mobile phone call net-
work data Onnela et al. (2007), and are robust across game
universes and accumulation times. The Weak ties hypoth-
esis has also previously been tested by Friedkin (1980) on
a small-scale social network of biologists.

5.3. Confirmation of triadic closure

Triad significance profiles (implicit evidence)
Comparing TSPs of various types of networks can re-

veal “superfamilies” of evolved or designed networks which
have similar local structures in common (Milo et al., 2004).
In the following we use the TSP to confirm another impor-
tant prediction of Granovetter (1973). This conjecture fol-
lows balance considerations of Heider (1946) and reads as
follows: In a social network in which there exist weak and
strong (or no) ties between individuals, “the triad which
is most unlikely to occur, [. . . ] is that in which A and
B are strongly linked, A has a strong tie to some friend

Figure 17: Evolution of triad significance profiles for (a) PM, (b)
friend, and (c) enemy networks. A moving average filter with a time
window of 7 days was used for smoothing.

C, but the tie between C and B is absent” (Granovet-
ter, 1973). The phenomenon of triadic closure (Rapoport,
1953) states that individuals are driven to reduce this cog-
nitive dissonance, fig. 18. Because of this the triad in which
there exist strong ties between all three subjects A, B and
C should appear in a higher than expected frequency.

Following the considerations of Granovetter about tie
strength we identify the concept of weak/strong ties with
asymmetric/mutual dyads in our digraphs. Translated
into our formalism the hypothesis reads: “In friend net-
works, triad class 6 should have smallest Z score, triad
class 13 should have highest Z score”. In other words,
triad class 13 should be the network’s strongest three-node
motif, triad class 6 should be it’s strongest three-node an-
timotif (Milo et al., 2002). More generally, if we focus
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Figure 18: One transition representing triadic closure: id 6 → id 13.

on completeness, we expect underrepresentation of the in-
complete triad classes 1–6 and overrepresentation of the
complete triad classes 7–13. Note that quantitative evi-
dence for triadic closure given this way is implicit at best,
since the overrepresentation (underrepresentation) of triad
class 13 (6) does not explain how or if there is a direct
connection in the evolution of these triad classes. We give
explicit evidence for triadic closure in the next section by
measuring triad transition dynamics.

The question about the reverse situation, networks of
negative ties, has been raised in the outlook of Granovetter
(1973) but, to our knowledge, has never been measured on
large scales. Following the same social balance considera-
tions we expect reversed roles of completeness: Instead of
the absence of a completing third link, its presence should
cause cognitive dissonance (however, note that a complete
triad with only negative links may be seen as ambiguous
concerning balance (Doreian, 2004)). Thus triad classes
1–6 should be overrepresented, triad classes 7–13 under-
represented in enemy networks.

For friend and PM networks, excellent agreement is
found with Granovetter’s prediction: Triad class 6 has the
minimum, class 13 a maximal Z score, fig. 16. Our find-
ings further coincide with the TSPs of the superfamily of
social and hyperlink networks found in Milo et al. (2004)
and with TSPs of other social networks Hamasaki et al.
(2009). Concerning enemy networks, we observe confir-
mation of our reverse hypothesis to a large extent: Most
enemy Z scores have opposite signs of those in friend net-
works. Note the exceptions: triad id 4 is not clearly over-
represented, ids 9 and 11 are not clearly underrepresented.
The circular triad (id 8) should be considered an excep-
tional or ’neutral’ class, having no clear tendency in all
network types.

In the above paragraphs triad significance profiles of one
day were analyzed. By measuring evolutions of TSP, we
are able to confirm the robustness of the results. As one
can see in fig. 17 (c), TSPs may need some hundred days to
reach an approximate steady state. On the other hand it
is apparent from fig. 17 (b) that as social networks evolve,
their microscopic structures do not always stay completely
constant. Sudden jumps in the TSP trajectories signal
abrupt global systemic changes.
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Figure 19: (a) Matrix Π of empirical average 50-day transition prob-
abilities of triad classes in friend networks over the days 150 to 200.
Circles mark transitions which never occured. Black squares mark
average transition probabilities ≥ 0.02. (b) Matrix K of empirical
average 50-day transition counts of triad classes in friend networks.
Black squares mark average transition counts ≥ 50. (c) Matrix of
asymmetries between empirical average 50-day transition counts K
of triad classes in friend networks. Black and white squares mark av-
erage transition counts with asymmetries ≥ 50. Black crosses mark
entries without data. Red circles mark the asymmetry of transitions
between triad classes 6 and 13.
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Triad transition rates (explicit evidence)
We first focus on transitions between the groups of in-

complete and complete connected triads, i.e. on values in
the center right and lower center zones of K. According to
the hypothesis of triadic closure, k6,13 should contain high
values, its counterpart k13,6 lower ones. As apparent from
fig. 19 (b), this is the case: k6,13 = 305.5 > 22.6 = k13,6.
This result is directly visualized in fig. 19 (c), which depicts
the matrix K−KT . The darker a square ij, the higher the
outflow i → j compared to the inflow j → i; the lighter
a square ij, the higher the inflow j → i compared to the
outflow i→ j.

In general, we measure more incomplete → complete
transitions between connected triad classes (upper right
zone of K) than vice versa (lower center zone of K). On the
other hand, some exceptions can be identified, for example
k5,13 = 20.0 < 39.2 = k13,5. Whenever these exceptions
appear they are comparably mild; again, observations are
robust across game universes and time spans.

5.4. Network densification

In Leskovec et al. (2007) intriguing observations con-
cerning universal features of growing real-world networks
have been made. Their empirical observations apparently
challenge two conventional assumptions of popular net-
work models such as PA (Barabási and Albert, 1999),
namely constant average degrees and slowly growing net-
work diameters:

1. Shrinking diameters: As networks grow their diame-
ters decrease.

2. Densification power-laws: Over time, networks be-
come more dense. Densification – as measured as
number of edges versus number of nodes – follow a
power-law. The average degree grows.

All growing networks measured in this work confirm the
observations of growing average degrees and shrinking di-
ameters (fig. 10 (g) shows shrinking geodesics; we observe
the same evolution for diameters and effective diameters as
defined in Leskovec et al. (2007) (not shown)). Concerning
power-law densification, even though our data does not al-
low for a statistically conclusive quantitative statement, vi-
sual inspection clearly reveals that growth is super-linear,
fig. 11. Network densification has previously been studied
under the name of accelerated growth (Dorogovtsev and
Mendes, 2001, 2003). Growing average degrees were ob-
served in all three time evolution studies of growing net-
works we are aware of (Holme et al., 2004; Leskovec et al.,
2007; Ravasz, 2004).

From decreasing distances it follows naturally that
global efficiency increases, fig. 10 (i). At the same time
evolution of local efficiency follows the evolution of clus-
tering coefficients, fig. 10 (f). PM networks have approxi-
mately the same local and global efficiency (around 0.25),
in friend networks local efficiency (around 0.33) is higher
than global efficiency (around 0.22), in enemy networks

local efficiency is much lower (around 0.04) than global
efficiency (around 0.28).

5.5. Inconclusive social balance dynamics
Social balance theory goes back to the cognitive balance

considerations of Heider (1946). A complete triad ninjnk
is defined to be balanced if the product of signs sijsjkski =
1, and is unbalanced otherwise. Members of a balanced
complete triad thus fulfill the following adage (Antal et al.,
2006; Heider, 1946):

– a friend of my friend is my friend
– a friend of my enemy is my enemy
– an enemy of my friend if my enemy
– an enemy of my enemy is my friend
In physics the first statement corresponds to a ferromag-

netic system, the other three to a ‘frustrated’ system. In
graph theory, the concept of social, or structural, balance
has been generalized to an arbitrary amount of subjects by
Cartwright and Harary (1956); hypotheses about the evo-
lution of social balance have been conjectured (Doreian,
2004; Doreian and Mrvar, 2009). We measure the evo-
lution of social balance by using optimizational partition
algorithms implemented in Pajek9. Here we face three
concrete problems: (i) Algorithmic complexity: Due to al-
gorithmic complexity runtime diverges for large numbers
of nodes (Pajek limits the number of nodes to 250). Thus
for measurements of balance we are forced to select groups
of characters. (ii) Group selection: Characters have differ-
ent sign-up dates. This starts to matter for any selected
group when long-time considerations are carried out. One
gets inhomogeneous groups, where some characters have
a long history of relations whereas others have not. (iii)
Growth of average degrees: The permanent growth of aver-
age degrees, fig. 10 (a), is inconsistent with the necessary
assumption of constant degrees, such as taken as basis for
the monastery study of Sampson (1968) analyzed in Dor-
eian and Mrvar (1996). This assumption is also needed
in models and analytical work (Antal et al., 2006), where
dynamics takes place only on complete graphs, i.e. graphs
displaying a dichotomy of link types (positive or negative
link) in contrast to the trichotomy (positive, negative or
no link) of the Pardus networks.

Ignoring these three issues, our attempts to measure the
evolution of social balance in several groups of characters
at various time scales and cluster sizes yield no conclusive
results. Neither an increase nor a decrease in balance could
be observed. Measuring social balance in our social system
is inherently futile, for several further reasons: changes of
links between neighbors of neighbors may take a lot more
time to notice for people than classically assumed. Also,
system complexity is so high (factions, alliances, wars,
. . . ), that simple analytical steady states (e.g. two in-
ternally positively – but among each other negatively con-
nected sets of nodes) are impossible to reach. Compared

9We use version 1.24. (Doreian and Mrvar, 1996; de Nooy et al.,
2005; Doreian and Mrvar, 2009)
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to the slow propagation of link information there seems to
be too much noise in the system – time scales are separated
to a too great extent. For a deeper discussion about these
and several other problems related to social balance the-
ory and inconsistencies in empirical findings see Hummon
and Doreian (2003); Doreian (2004).

Note that the friend relation is transitive, but not so the
enemy relation. 10 By construction, complete triads in the
reflexive closure of friend (enemy) networks are balanced
(unbalanced). In enemy networks one therefore expects
less complete triads and clustering coefficients C closer to
their random graph values – i.e. smaller C/Cr – than in
networks of friends. As apparent from fig. 10 (e), this is
fully confirmed.

5.6. Confirmation of the Dunbar number

Out-degrees of networks studied here are limited by
kout ≈ 150, fig. 13 (a), (b), and (c). This number was
conjectured by Dunbar (1993) to be a limiting number in
group sizes of humans and human-like mammals, due to
their limited cognitive capacities.

5.7. Two categories of enemies

It has been suggested that identifying negative social tie
mechanics is more important for gaining insight in social
group dynamics than identifying mechanics of positive so-
cial ties (Labianca and Brass, 2006). Our measurements
provide first steps toward this direction.

We observe that in-degrees in enemy networks grow
much bigger (kin ≈ 500) than in-degrees in friend and PM
networks (kin ≈ 150), figs. 13 (b) and (c). Also, the assor-
tativity coefficient rundir of enemy networks is clearly neg-
ative, fig. 10 (l). In the average neighbor degree knn versus
degree k one observes two classes or types, fig. 13 (i). The
first class consists of characters with low degrees (k < 50),
all having an average neighbor degree of knn ≈ 100. The
second class of characters has a degree of k > 100 and an
average neighbor degree of knn ≈ 28. Between these classes
a sharp transition occurs. This impression is robust across
time and game universes.

As mentioned in section 5.1, on many individual days
the distribution of out-degrees of enemy networks is sepa-
rated into two regimes roughly following power-laws with
markedly different exponents. We find clear qualitative
differences between in- and out-degree distributions in en-
emy networks, in contrast to the other network types. Fur-
ther, reciprocity is very low in enemy networks, as opposed
to high reciprocity in the other network types, fig. 10 (j).
These measurements suggest two distinct mechanics of en-
emy marking dynamics at work:

1. Private enemies: A player who directly experiences
a negative (asocial) action by another player, such as
an attack of her building or a verbal insult, is likely to

10A binary relation R is transitive if xRy and yRz implies xRz.

immediately react by marking the offender as enemy.
If the two involved players keep this a private affair,
only a local, dyadic vendetta without envolvement of
more players may ensue.

2. Public enemies: Some players have a destructive per-
sonality or, more commonly, want to try out a de-
structive personality (Castronova, 2005). For this
purpose they may (role)play evil characters, such as
‘pirates’. These players tend to take enjoyment in de-
stroying other players’ work or see it as their ‘task’.
Anonymity of the internet facilitates this behavior to
some degree since possible social repercussions in real-
world reputation are absent. For this reason these
few individuals tend to cause a lot of offenses to a big
number of players. If such a subject is identified by
the community (players are very busy in using the fo-
rums to keep others up-to-date of the latest offenses),
she may receive pre-emptive enemy markings, either
by friends of offended friends or by otherwise non-
involved players who happen to read the forums. This
destructive behavior and the indirect marking mech-
anism leads to the emergence of ‘public enemies’, i.e.
a few characters with a very high in-degree of enemy
markings. The strength of positive social ties is likely
to be boosted by people who share the same com-
mon enemies: “A world that includes self-proclaimed
and loudly advertised Evil people running about rep-
resents a great boon to those who are hungry to fight
for the Good. Without Evil people, who could be
Good?” (Castronova, 2005).

It is an open question to which extent negative social be-
havior in real society deviates from the behavior of humans
in our game society. Due to lack of other high-frequency
analyses on large-scale negative tie networks, it remains to
be established whether the above findings can be referred
to as ‘universal’.

5.8. Differences in network types

Different network types have different properties (New-
man and Park, 2003; Milo et al., 2004), and show a differ-
ent evolution of these properties. The clear asymmetries of
evolutions of reciprocity, clustering per degree, and assor-
tativity between friend and enemy networks are obvious,
fig. 10 (j), (k), and (l). These asymmetries originate from
differences in the corresponding formation processes. In-
tuitively, someone either is your enemy or not – which is
apparent to determine and declare –, but friendship comes
in several shades of gray more likely being dependent on
long-time social dynamics. This intuition is confirmed by
Labianca and Brass (2006): “The evolution of negative
relationships may be very different from positive relation-
ships. Friendship development is viewed as a gradual pro-
cess. According to social penetration theory [. . . ], friend-
ship development proceeds from superficial interaction in
narrow areas of exchange to increasingly deeper interac-
tion in broader areas. [. . . ] Qualitative work indicates
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that negative relationship development is a much faster
process that tends to lead to the other person being in-
cluded in coarse-grained categories such as “rival” or “en-
emy”. Thus, the formation of negative relationships is not
the mere opposite of the way that positive relationships
form.”

Further, we observe that reciprocities as well as assor-
tative mixing coefficients need much more time to reach
steady state in friend networks than in other networks. It
seems to be clear why equilibria of the properties of PM
networks are reached fast: Writing or responding to a PM
is an administrative, immediately executable action to a
large extent independent of social ties. On the other hand,
choosing your friends or the reciprocation of friendships
is a much more delicate operation, necessitating in-depth
considerations about e.g. social balance.

Another issue is the possible ‘import’ of social ties. In
a recent study of online social networks, the effect of a
transition from assortative social networks to disassorta-
tive or non-assortative networks has been observed (Hu
and Wang, 2009). While there it could not be checked
if networks are at their initial stage or not, here we are
able to do so (for the Artemis and Pegasus universes).
Our following hypothesis coincides with the reasoning of
Hu and Wang (2009): At the initial stage of social online
networks, some people may ‘import’ their social relations
from existing previous ones. This is possible since many
players who previously played in Orion created characters
in Artemis and Pegasus when these new universes opened.
At later times (in our case 100 or more days), evolving
new relations of online interaction take overhand and de-
crease assortativity, down to disassortativity. The same
effect may lead to the observed changes in clustering coef-
ficients, reciprocity, and other network properties.

6. Conclusion

We explore novel possibilities of a quantification of hu-
man group-behavior on a fully empirical and falsifiable ba-
sis. We study network structure and its evolution of sev-
eral social networks extracted from a massive multiplayer
online game dataset. Practically all actions of all 300,000
players over a period of three years are available within
one unique and coherent source. Players live a second
economic life and are typically engaged in a multitude of
social activities within the game. With this data we can
show for the first time marked differences in the dynam-
ics of friend and enemy dynamics. A detailed analysis of
high-frequency log files focuses on three types of social net-
works and allows to subject a series of long-standing social-
dynamics hypotheses to empirical tests with extraordinary
precision. Along these lines we propose two social laws in
communication networks, the first expressing betweenness
centrality as the inverse square of the overlap, the sec-
ond relating communication strength to the cube of the
overlap. These laws not only provide strong quantitative
evidence for the validity of the Weak ties hypothesis of

Granovetter, they are also fully falsifiable. Our study of
triad significance profiles confirms several well-established
assertions from social balance theory. We find overrepre-
sentation (underrepresentation) of complete (incomplete)
triads in networks of positive ties, and vice versa for net-
works of negative ties. We measure empirical transition
probabilities between triad classes and find evidence for
triadic closure, again with unprecedented precision. We
compare our findings with data from non-virtual human
groups and conclude that online game communities should
be able to serve as a model for a wide class of human soci-
eties. We demonstrate the realistic chance of establishing
socio-economic laboratories which allow to measure dy-
namics of our kind at levels of precision so far only known
from the natural sciences.
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