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This  paper  introduces  a  Markov  chain  approach  that  allows  a rigorous  analysis  of agent  based  opinion
dynamics  as well  as other  related  agent  based  models  (ABM).  By viewing  the ABM dynamics  as  a micro-
description  of  the  process,  we show  how  the corresponding  macro-description  is  obtained  by  a  projection
construction.  Then,  well  known  conditions  for lumpability  make  it possible  to  establish  the  cases  where
the  macro  model  is  still  Markov.  In this  case  we  obtain  a complete  picture  of  the  dynamics  including  the
transient  stage,  the most  interesting  phase  in  applications.  For  such  a purpose  a  crucial  role  is  played  by
the type  of  probability  distribution  used  to implement  the  stochastic  part  of  the  model  which  defines
the  updating  rule  and  governs  the  dynamics.  In addition,  we  show  how  restrictions  in  communication
leading  to the  co-existence  of different  opinions  correspond  to the  emergence  of new  absorbing  states.  We
describe  our  analysis  in  detail  with  some  specific  models  of  opinion  dynamics.  Generalizations  concerning

different  opinion  representations  as well  as  opinion  models  with  other  interaction  mechanisms  are  also
discussed.  With  their  obvious  limitations,  the  models  do  not  allow  for a direct  generalization  to  more
realistic  cases,  their  treatment  is only  the first  step  in  the  stochastic  analysis  of  the  micro–macro  link in
social  simulation.  We  find  that  our  method  may  be an  attractive  alternative  to mean-field  approaches
and  that  this  approach  provides  new  perspectives  on the  modeling  of opinion  exchange  dynamics,  and
more  generally  of other  ABM.
. Introduction

Recent improvements in multidisciplinary methods and, partic-
larly, the availability of powerful computational tools are giving
esearchers an ever-greater opportunity to investigate societies in
heir complex nature. The adoption of a complex systems approach
llows the modeling of macro-sociological or economic structures
rom a bottom-up perspective – understood as resulting from
he repeated local interaction of socio-economic agents – with-
ut disregarding the consequences of the structures themselves on
ndividual behavior, emergence of interaction patterns and social

elfare.
Agent based models (ABM) are at the leading edge of this

ndeavor. When designing an agent model, one is inevitably faced

ith the problem of finding an acceptable compromise between

ealism and simplicity. If many aspects are included into the agent
escription, the model might be plausible with regard to the
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individual behaviors, but it will be impossible to derive rigorous
analytical results. In fact, it can even be very hard to perform sys-
tematic computations to understand the model dynamics if many
parameters and rules are included. On the other hand, models that
allow for an analytical treatment often oversimplify the problem at
hand. In ABM, we  can find the whole spectrum between these two
extremes. While simplicity is often favored by physicists in order to
be able to apply their well-developed tools from statistical physics,
more realistic descriptions are often desired by researchers in the
humanities because they are interested in incorporating into the
model a reasonable part of their qualitative knowledge at the micro
and macro scales. Both views have, of course, their own merits.

Our paper is a contribution to interweaving two  lines of research
that have developed in almost separate ways: the Markov chain
approach and ABMs. The former represents the simplest form of
a stochastic process while the latter puts a strong emphasis on
heterogeneity and social interactions. The main expected output
of our Markov chain strategy applied to ABM is a better under-

standing of the relationship between microscopic and macroscopic
dynamical properties. Moreover, we aim to contribute not only to
the understanding of the asymptotic properties of ABM but also
to the transient mechanisms that rule the system on intermediate

dx.doi.org/10.1016/j.socnet.2012.06.001
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:sven.banisch@UniVerseCity.de
dx.doi.org/10.1016/j.socnet.2012.06.001
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ime scales. For practical purposes this is the most relevant infor-
ation for two reasons: first, in our case the chains are absorbing,

o the asymptotic dynamics is trivial and second, they describe the
volution of the system before external perturbations take place
nd possibly throw it into a new setting.

Agent-based opinion models, a particular case of ABM, are
mong the most simple models in the literature and are therefore

 suitable starting point for the analysis. Especially for binary opin-
on models several results have been obtained by previous authors
sing analytical tools, as shown in the review on social dynamics
y Castellano et al. (2009).  The most intensively studied model is
he voter model,  originally developed by Kimura and Weiss (1964)
s a model for spatial conflict of two species (see also Clifford
nd Sudbury, 1973; Frachebourg and Krapivsky, 1996; Slanina and
avicka, 2003; Sood and Redner, 2005; Vazquez and Eguíluz, 2008;
chweitzer and Behera, 2008). The analysis of binary opinion mod-
ls is usually based on mean-field arguments. The microscopic
gent configuration is mapped onto an aggregate order parameter,
nd the system is reformulated on the macro-scale as a differential
quation which describes the temporal evolution of that parameter.

A mean-field analysis for the voter model on the complete graph
as presented by Slanina and Lavicka (2003),  and naturally, we

ome across the same results using our method. Slanina and Lav-
cka derive expressions for the asymptotic exit probabilities and the

ean time needed to converge, but the partial differential equa-
ions that describe the full probability distribution for the time
o reach the stationary state is too difficult to be solved analyti-
ally (Slanina and Lavicka, 2003, p. 4). Analytical results based on
he same methods have been obtained for the voter model on d-
imensional lattices (Cox, 1989; Frachebourg and Krapivsky, 1996;
iggett, 1999; Krapivsky and Redner, 2003) as well as for networks
ith uncorrelated degree distributions (Sood and Redner, 2005;
azquez and Eguíluz, 2008).

One step to a more realistic agent description (though still a car-
cature) is achieved by allowing the agents to make n-ary choices.
mong the most popular models that realize this is the Axelrod
odel (Axelrod, 1997), which uses vectors as state variables and

ounded confidence (Hegselmann and Krause, 2002; Deffuant et al.,
001). In both models, the interaction probability is a function of
he agent similarity such that similar agents tend to interact and
o become more similar in the interaction. In the Axelrod model
s well as in other bounded confidence models, this leads to the
mergence of clustering as agents converge in homogeneous sub-
roups while an appropriate distance in between these subgroups
ncreases. An analytical treatment of this process is already quite
ifficult (see Castellano et al., 2000, for an approximate mean-field
nalysis). Our Markov chain approach shows how restrictions in
he agent communication lead to the emergence of new absorbing
tates in the associated Markov chain which correspond to system
tates where different opinions co-exist.

It is however clear that the opinion models we use to illustrate
ur method are only a caricature of real social processes and impor-
ant aspects of social behavior and human communication, such as,
or instance, preference falsification and indexicality (Kuran, 1997;
arfinkel, 1967) are not taken into account.

The usefulness of the Markov chain formalism in the analysis
f more sophisticated ABMs has been discussed by Izquierdo et al.
2009), who look at 10 well-known social simulation models by
epresenting them as a time-homogeneous Markov chain. Among
hese models are the Schelling segregation model (Schelling, 1971,
or which some analytical results are available, for example, in Refs.
ollicott and Weiss, 2001; Grauwin et al., 2010), the Axelrod model

considered above) and the sugarscape model from Epstein and
xtell (1996).  The main idea of Izquierdo et al. (2009) is to con-
ider all possible configurations of the system as the state space of
he Markov chain. Despite the fact that all the information of the
rks 34 (2012) 549– 561

dynamics on the ABM is encoded in a Markov chain, it is difficult to
learn directly from this fact, due to the huge dimension of the con-
figuration space and its corresponding Markov transition matrix.
The work of Izquierdo and co-workers mainly relies on numerical
computations to estimate the stochastic transition matrices of the
models.

In our opinion, a well posed mathematical basis for these models
may help the understanding of many of their observed properties.
Linking the micro-description of an ABM to a macro-description
in the form of a Markov chain provides information about the
transition from the interaction of individual actors to the complex
macroscopic behaviors observed in social systems. In particular,
well-known conditions for lumpability make it possible to decide
whether the macro model is still Markov. Conversely, this setting
can also provide a suitable framework to understand the emergence
of long-range memory effects.

In the present stage of this program, due to the obvious limita-
tions of the models we  use, the quantitative results obtained can
be no more than indications for further analysis of more sophisti-
cated models. We  believe however that the strategy and the tools
we present here may  be useful for future investigation. Moreover
we presume that certain aspects pointed by the present analysis,
as for instance the behavior in the presence of a large number of
agents and the mechanism leading to the emergence of memory
effects when passing from the micro to the macro level should also
be present in more realistic models.

However, whether there are many empirical applications of
either Markov chain approaches (MCA) or ABM, the interweav-
ing of these two  lines of research has to be carefully introduced
into the empirical setting. Because MCA  and ABM were motivated
by their own and specific sets of empirical challenges, the simple
overlapping of their individual outcomes does not lead to a suit-
able application framework. The most general subject where both
lines ground their common root is structure (or pattern) gener-
ation. While in the context of MCA, patterns emerge from time
correlations (memory effects) in the lifetime of a single entity or
system; in the context of ABM, the emerging structures are mostly
related to cross-correlations between individual entities (agents).
Several empirical uses have been illustrating the application of
either MCA  or ABM to solve problems in socio-economic environ-
ments. The field of finance is probably the one with the greatest
number of empirical applications of both MCA  and ABM (Norberg,
2006; Corcuera et al., 2005; Nielsen, 2005; LeBaron, 2000; Cont,
2005). In the former, a macro-description of memory effects usually
applies to the identification of business cycles, of periods of sta-
sis and of mutation or economic crashes (Norberg, 2006; Corcuera
et al., 2005; Nielsen, 2005). In the latter, agent-based Computa-
tional Finance is often used in financial forecasting, such as in
the identification of (macro) patterns of collective dynamics from
(micro) investor heterogeneity in many financial settings (LeBaron,
2000; Cont, 2005). On the other hand, MCA  developed a great vari-
ety of methods for testing models from quantitative empirical data.
In this sense, while beyond the scope of the present work, we may
hope it can contribute to open ABM to be tested when confronted
with real situations.

In sociology, the concepts of micro and macro have long been an
important subject of analysis. Different but related meanings have
been advocated by different authors (see Alexander et al., 1987,
and references therein), running from “micro as dealing with indi-
viduals and macro as dealing with populations” to “micro as social
processes that engender relations among individuals and macro as
the structure of different positions in a population and their con-

straints on interaction”. In any case the terms micro and macro
relate in this context the action of individuals or small groups based
on their mutual relations and the emergence of collective societal
scopes.
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as the opinion configuration or the opinion profile of the population.
Then the configuration space of the model is � = SN, the space of all
possible configurations x.
S. Banisch et al. / Social 

One of the first acknowledged synthetic formulations of
his linkage between micro and macro in sociology studies
s from Weber (1978, p. 29) from where we  quote the fol-
owing basic observation: “within the realm of social action,
ertain empirical uniformities can be observed, that is, courses
f action that are repeated by the actor or (simultaneously)
ccur among numerous actors”. We  shall see how a styl-
zed version of this belief is incorporated in our study when
assing from micro to macro dynamics. Parsons (1954) later

ntroduced the notion of internalization, posing an inter-
sting question on the retroaction of the macro on the
icro-level of the models, to which we shall come back in

ection 3. See Alexander et al. (1987) for a discussion of this
opic.

On the other hand our work is certainly related to the social
etwork literature, another old outstanding branch of sociol-
gy. Sociograms, an important tool in social studies, had already
een introduced by Jacob Levy Moreno in the 30s (Moreno,
934, 1946), inducing a graph representation of social rela-
ions, thus opening the way to social network based research.
his approach has been developed since the seminal stud-
es of Barnes (1954) and it expanded rapidly with the work
f Granovetter (1973) and many others. In our case, how-
ver, as in plenty of other models the emphasis is on the
ynamics of the processes rather than on the structure alone
Helbing, 1994; Weidlich, 2006; Schweitzer, 2003, and references
herein).

One of the key notions to understand the micro–macro link-
ge is emergence. We  follow Giesen (1987) to describe various
evels of emergence present in the sociological literature and com-

ent on the links with our work. First the so called descriptive
mergence problem: are “the macroproperties a common prop-
rty of many microunits” or are they something fundamentally
ifferent? This question is clearly addressed in our work. In fact,
tarting from a “simple aggregative procedure” (Giesen, 1987)
n the individual attributes to define the macro level, we  show
ow the nonlinearity features of dynamical process may  natu-
ally create “something else” at least in a stylized model. Next,
elated to Parson’s phenomenon of internalization practical emer-
ence stands for the possible discrepancy, “if the macrostructural
roperties of a social system no longer correspond to the inter-
alized rules and interactions of the individual actors”, which

eads to “a practical problem for the individuals acting in this
ystem”. At the end of Section 4.2 we discuss a possible quantifi-
ation, in a very rough sense, of this “falling out” (Giesen, 1987,
. 339) of the micro and macro levels. Finally, “far more contro-
ersial” (Giesen, 1987, p. 339) explanatory emergence stands for a
rocess leading to autonomous dynamics of structures (Brodbeck,
968, pp. 280–303). We  shall comment on this possibility in Sec-
ion 5, without really answering the question, but indicating how
t could be taken into account in the framework of our mod-
ls.

The paper is organized as follows: in Section 2, starting from
he idea introduced by Izquierdo et al. (2009) we rigorously
reat a class of ABM as Markov chains. Our main idea is to
ive a solid basis to the link from a micro to a macro descrip-
ion in the ABM context and fully explore the potential of this
onstruction, a task to which Sections 3 and 4 are devoted. Gen-
ralizations concerning different opinion representations as well
s opinion models with other interaction mechanisms are then
iscussed in Section 5. We  find that our method may  be an attrac-
ive alternative to mean-field approaches and this approach can

rovide new perspectives on the modeling of opinion exchange
ynamics, and more generally of other ABM. We  end up with
ome final remarks and a prospective for further work in Sec-
ion 6.
rks 34 (2012) 549– 561 551

2. Microdynamics as a Markov chain

Here we  consider the class of ABM defined by a set N of agents,
each one characterized by individual attributes that are taken in
a finite list of possibilities. The meaning or the level of abstrac-
tion of the content of such attributes is not important as long
as it can be codified in a finite, possibly very large, set of possi-
bilities. The agents should also be able to regularly update their
attributes according to the information conveyed from other agents
as well as to their actual state. The collective updating process of
the attributes of the agents at each time step consists of two  parts.
First a random choice of a subset of agents is made according to
some probability distribution ω. The number of agents chosen at
each time may  also be random. Then the attributes of the agents
are changed (updated) according to some rule, called a dynamical
rule, which depends on the subset of agents selected at this time.
We denote by S the individual state or attribute space and we call
the configuration space � the set of all possible combination of
attributes of the agents, i.e. � = SN. It is noteworthy pointing out
the meaning of the distribution ω in cases where an ABM is used
to model human (or animal, biological, etc.) behavior. It should be
thought as the idealized footprint of a collective structure, in the
sense of constraints upon agent agency as well as enablers (see, e.g.
Giddens, 1984, for a precise sense of structure as used in this con-
text). Notice that, at this level, the dynamics of the model is defined
in the configuration space, which seeks to describe the dynamics of
each agent in full detail. We  shall refer to this as micro-dynamics.

Let � be a finite set (ex. the configuration space of an ABM) and Z
index a collection of maps {Fz, z ∈ Z}, Fz : � → � and ω a probability
distribution on Z. If Fz1 , Fz2 , . . . is a sequence of independent ran-
dom maps, each having distribution ω, and X0 ∈ � has distribution
�0, then the sequence X0, X1, . . . defined by

Xt = Fzt (Xt−1), t � 1, (1)

is a Markov chain on � with transition matrix P̂:

P̂(x, y) = Prω(z ∈ Z, Fz(x) = y), x, y ∈ � (2)

Conversely (Levin et al., 2009), any Markov chain has a random
map  representation (RMR). Therefore (1) and (2) may be taken as an
equivalent definition of a Markov chain which is particularly useful
in our case, because it shows that an ABM that can be described as
above is, from a mathematical point of view, a Markov chain and
can be treated following the approach developed in this work. This
class includes the models described by Izquierdo et al. (2009).

In order to motivate and exemplify our point of view we intro-
duce a model of opinion dynamics that is a particular case of the
class of ABM described above. We  shall come back to this model
during the paper to illustrate our results and to show how they
lead up to final conclusions in this particular case.

To define the opinion model, let us consider a population N of
N agents and denote the opinion, which is the single attribute of
agent i at time t as xi(t) ∈ S, where we assume that each agent can
choose out of ı different alternative opinions so that the agent state
space S = {0, 1, . . .,  ı − 1} has ı states. Let x(t) = {x1(t), . . .,  xN(t)}
describe the opinions of all the agents at time t. We  refer to this
In this very simple opinion model the willingness of two  agents
(i, j) to communicate depends on the similarity of their opinions.
This can be encoded in form of a confidence matrix  ̨ : S × S → {0,
1} such that ˛(s1, s2) = 1 if the opinions s1 and s2 are sympathetic
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(s1, s2) = 0 if they are not.1 In the iteration process of this model, an
gent pair (i, j) ∈ N × N is chosen at random “to meet” according to

 probability distribution ω, ex. ω is the uniform distribution, ω(i,
) = (1/N2), for all i, j. If two agents (i, j) meet and ˛(xi(t), xj(t)) = 1
hen agent i imitates agent j, that is xi(t + 1) = xj(t), which brings us
o define an updating function by u(xi, xj) = (xj, xj).

As shown in Sections 4.3 and 5, our work immediately extends
o a slightly more general class of ABM of N agents characterized
y an attribute taking a value among ı alternatives and any updat-

ng function u : S × S → S × S. The extension to an update made by
hoosing a number of agents different from 2, or even different at
ach time step is possible by defining ω,  ̨ and u accordingly.

emark 2.1. The use of a confidence matrix  ̨ is just a matter of
onvenience. It would be possible to absorb  ̨ in u by forcing u(xi,
j) = (xi, xj) if ˛(xi, xj) = 0. We  use this double encoding of the updat-
ng rule to follow the tradition in the field, assigning the updating
ule u to “the model” and the confidence matrix  ̨ to “a parameter
f the model”.

As is clear from the previous discussion, these ABM are homo-
eneous Markov chains with state space � being the configuration
pace and transition probabilities P̂(�x, �y) for �x, �y ∈  �.

We describe now the transition matrix P̂ of the Markov chain
f the opinion model according to Eq. (2).  Let us say that a pair of
onfigurations �x and �y are adjacent if all the agents have the same
ttribute values in �x and �y except possibly the agents i and j, i.e.

k = yk if k /= i and k /= j. These are denoted �xi,j∼�y. Then we define a
ransition probability matrix P̂ of a Markov chain by

f �xi,j∼�y and x /= y then P̂(�x, �y) =
∑

(xi, xj), i /= j,

(yi, yj) = u(xi, xj)

˛(xi, xj) = 1

ω(i, j) (3)

ˆ(�x, �x) = 1 − �(�x) (4)

ˆ(�x, �y) = 0 elsewhere, (5)

here

(�x) =
∑
�y∼�x

∑
i /= j,

(yi, yj) = u(xi, xj)

˛(xi, xj) = 1

ω(i, j) (6)

otice that the summation in (3) is needed because, in general, the
pdating function is not one to one in the configuration space so
everal links may  join two given adjacent configurations. We  shall
ee an example of such a situation in the opinion model.

The transition probability matrix of a Markov chain is of dimen-
ion SN × SN and it describes the evolution of any initial distribution
n the configuration (state) space. The comparison with a numeri-
al simulation starting from some particular initial configuration
ay  therefore be performed using the corresponding Dirac dis-
ribution. But, even in this case, the Markov analysis will spread
his initial concentrated distribution in the course of the updating
rocess. Clearly it is possible to use other initial distributions for

1 The reason to call  ̨ the confidence matrix comes from the fact that we can
efine this matrix by means of a confidence threshold, usually defined by means of

 threshold on a distance on the set S of the possible opinions. The confidence matrix
s  defined, for any pair (x, y) of elements of S by ˛(x, y) = 0 if the relative confidence
x,  y) is below threshold and ˛(x, y) = 1 if not. Notice that a confidence matrix is a
eneralization of the notion of confidence threshold.
rks 34 (2012) 549– 561

the Markov chain, and each distribution will correspond to a set of
numerical simulations with different initial configurations chosen
according to the distribution.

For this model, each row of the transition probability matrix
has at most N2 non-zero elements (including a loop). This is due
to the adjacency criteria, which encodes the fact that only a pair of
agents may  change their state from one step to the other. In fact, the
non-zero elements inside the row �x  are determined by the possible
choices of couples xi, xj of components (agents) of �x.  These non-
zero elements will appear in the columns corresponding to the �y
adjacent to �x for which ˛(xi, xj) = 1.

Despite the fact that all the information of the dynamics of the
ABM is encoded in such a Markov chain, it is not always easy to
learn directly from this fact, because of the over large dimension
of the configuration space and its corresponding Markov transi-
tion matrix. As an example of a question that may be answered
at this level, we  mention the characterization of absorbing config-
urations. These are the �x = (x1, . . . , xi, . . . , xN) such that, for any
(xi, xj), ˛(xi, xj) = 0 or u(xi, xj) = (xi, xj) and they are easy to identify
even in the case of bounded confidence models. It is clear that the
properties of the transient dynamics are most relevant for Markov
chains with absorbing configurations. The analytical study of these
properties is based upon the corresponding fundamental matrix
(Kemeny and Snell, 1976). But such computation needs to invert a
matrix of order |SN| that can be performed only numerically. There-
fore another strategy is lacking to go further in this direction. In
the next section we shall present one possibility to overcome this
difficulty.

As already noticed, the directed opinion model is a special case
of such a formalism. There, only one coordinate of the configura-
tion may  change at each step. The transition probability matrix P̂ is
obtained from (3)–(6) by restricting the corresponding sums to the
first index i only.

One immediate consequence of the topology of this transition
matrix is that in the opinion model the only absorbing configu-
rations are complete consensus (all the agents having the same
opinion) or mutually antagonistic (agents having opinions s and
s′ for which ˛(s, s′) = 0 for all pairs (s, s′)). Recall that, with proba-
bility one, the system falls in one of the absorbing states in finite
(although not uniform) time. Therefore we  see how in this model
the lack of confidence allows for new absorbing states, stabilizing
non-consensual opinion profiles.

3. Macrodynamics, projected systems and observables

A projection of a Markov chain with state space � is defined
by a new state space X and a (projection) map  � from � to X. The
meaning of the projection � is to lump sets of micro-configurations
in � accordingly to some macro property in such a way that, for
each X ∈ X, all the configurations of � in �−1(X) share the same
property.

In fact such projections are important when catching the
“macroscopic” properties of the corresponding ABM because they
are in complete correspondence with a classification based on an
observable property of the system. To see how this correspondence
works let us suppose that we are interested in some factual prop-
erty of our agent based system. This means that we are able to
assign to each configuration the specific value of its correspond-
ing property. Regardless of the kind of value used to specify the
property (qualitative or quantitative), the set X needed to describe
the configurations with respect to the given property is a finite set,

because the set of all configurations is also finite. Let then � : � → X
be the function that assigns to any configuration x ∈ � the corre-
sponding value of the considered property. It is natural to call such
� an observable of the system. Now, any observable of the system
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aturally defines a projection � by lumping the set of all the con-
gurations with the same � value. Conversely any (projection) map

 from � to X defines an observable � with values in the image
et X. Therefore these two ways of describing the construction of a
acrodynamics are equivalent and the choice of one or the other

oint of view is just a matter of taste.
The price to pay in passing from the micro to the macrodynamics

n this sense (Kemeny and Snell, 1976; Chazottes and Ugalde, 2003)
s that the projected system is, in general, no longer a Markov chain:
ong memory (even infinite) may  appear in the projected system.

The conditions for a projection of a Markov chain still to be a
arkov chain are known as lumpability (or strong lumpability),

nd necessary and sufficient conditions for lumpability are known
Kemeny and Snell, 1976). In general it may  happen that, for a given

arkov chain, some projections are Markov and others not. There-
ore a judicious choice of the macro properties to be studied may
elp the analysis. In order to establish the lumpability in the cases
f interest we shall use symmetries of the model. For further conve-
ience, we state a result for which the proof is easily given (Theorem
.3.2 of Kemeny and Snell, 1976):

roposition 3.1. Let (�, P̂)) be a Markov chain and (X1, . . .,  Xn)
 partition of �. Suppose that there exists a set � of bijections of �
therefore a group of symmetries) such that:

1) � preserves the partition: for any � ∈ � and any atom Xj, we have
�Xj ⊆ Xj.

2) � acts transitively on each Xj : Xj =
⋃

��x, for some (and then all)
x ∈ Xj.

3) The Markov transition probability P̂ is symmetric with respect to
�:

P̂(x, y) = P̂(�x, �y)  for any� ∈ �

hen the partition (X1, . . .,  Xn) is (strongly) lumpable.

The opinion model is a nice example where such a projection
onstruction is particularly meaningful. There, we consider the pro-
ection � that maps each �x  ∈ � into X<k0,...,kı−1> ∈ X where ks, s = 1,

 . .,  ı, is the number of agents in �x with opinion s. The projected con-
guration space is then made of the X<k0,...,kı−1> where ks � 0, s = 1,

 . .,  ı − 1 and
∑ı−1

0 ks = N.

. Opinion dynamics and projected systems

We  shall now treat in detail the opinion model as an example of
he previous ideas.

.1. The macro dynamics of binary opinion model

The case of a binary opinion model, ı = 2, is particularly simple
nd therefore well suited for an analytical starting point. In this case
ounded confidence is excluded. In binary state opinion models,
he opinion of agent i at time t is a binary variable xi(t) ∈ {0, 1}. The
pinion profile is given by the bit-string �x(t) = {x1(t), . . . , xN(t)}.
he space of all possible configurations is � = {0, 1}N.

Let us define Xk ⊂ X, k = 0, . . .,  N containing all the configura-
ions (�x) in which exactly k agents hold opinion 1 (and then N − k
old opinion 0). In this way we obtain a partition of the configura-
ion space �. Notice that X0 and XN contain only one configuration,
amely X0 = {�0} and XN = {�1}.
Using the group GN of all the permutations of N agents, it is clear
hat such a partition fulfills conditions (1) and (2) of Proposition 3.1.
o lumpability of this partition leans on condition (3) of Proposition
.1: the invariance of the Markov transition matrix P̂ under the
rks 34 (2012) 549– 561 553

permutation group of agents. Notice that no restriction on the con-
fidence matrix is needed for it only depends on the opinions and
not on the labeling of the agents. In fact, the probability distribution
ω must be invariant under the permutation group GN and therefore
uniform: ω(i, j) = (1/N2), for all pair of agents (i, j).

It is worthwhile noticing at this point that the uniform distri-
bution, corresponding to the most unstructured dynamical rule,
still entails emergent organized patterns in the system of opinions.
Because the set of opinions is dynamically organized, the homo-
geneity of the uniform distribution on the agent population has an
implicit structure when viewed through the opinion content.

Moreover, for some other distributions ω, it may  be possible
to refine the partition so as to get lumpability. For instance, if the
agents are divided in subsets in which ω is constant, then the parti-
tion defined by an equal number of opinions inside each subclass is
lumpable. In this case  ̨ will depend on the pair labeling of agents
together with their respective opinions and not only on the latter.
The block structure of  ̨ then determines the projection scheme.

For the model with complete confidence, ˛(s, s′) = 1 for any (s,
s′), and uniform distribution ω, the Markov chain for the macrody-
namics is defined by the stochastic transition matrix:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · · 0

p(1) q(1) p(1) 0 0 · · · 0

0  p(2) q(2) p(2) 0 · · · 0

.

.

.
. . .

. . .
. . .

.

.

.

0  p(k) q(k) p(k) 0

.

.

.
. . .

. . .
. . .

.

.

.

0  · · · 0 p(N − 2) q(N − 2) p(N − 2) 0

0  · · · 0 0 p(N − 1) q(N − 1) p(N − 1)

0 · · · 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

with

p(k) = k(N − k)
N2

. (8)

and

q(k) = 1 − 2p(k) = k2 + (N − k)2

N2
. (9)

Formulas (8) and (9) follow from Theorem 6.3.2 of Kemeny and
Snell (1976) and the fact that for any micro-configuration in Xk
there are k(N − k) possible meetings taking it to Xk+1 and the same
number of possible encounters taking it to Xk−1. Notice that in this
case X0 and XN are the only absorbing states of the process.

The probability that any opinion change happens in the system
is 2p(k) and depends on the current opinion balance. But there is
no general tendency of the system to be attracted by one of the
extremes. Due to the particular form of p(k) the prevalence of one
opinion results in a reduced probability of further opinion change,
contrary to the usual random walk with constant transition prob-
abilities.

For k ∼= (N/2) we  have p(k) ∼= (1/4). By contrast, when k is closed to
0 or N, there is a large probability for the system to stay unchanged.
Notice that for k = 1 or k = N − 1 this probability tends to 1 when
N→ ∞.  This indicates that in this model once one opinion dominates
over the other, public opinion as a whole becomes less dynamic,
which also reveals a difficulty for new opinions to spread in the
artificial society.

4.2. Transient in the macro dynamics of binary opinion model
In Markov chains with absorbing states (and therefore in ABM)
the asymptotic status is quite trivial. As a result, it is the under-
standing of the transient that becomes the interesting issue. We
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hall now analyze the transient dynamics for the macro dynamics
f the binary opinion model. In order to do so, all that is needed is to
ompute the fundamental matrix F of the Markov chain (Kemeny
nd Snell, 1976; Behrends, 2000).

This is easily done using, for instance, the tridiagonal matrix
lgorithm (also known as Thomas algorithm (Conte and Boor,
980)). We  get:

ij =

⎧⎪⎨
⎪⎩

N(N − i)
N − j

: i � j

Ni

j
: i � j

⎫⎪⎬
⎪⎭ . (10)

q. (10) provides us with the fundamental matrix of the system for
n arbitrary number of agents N, giving information about mean
uantities of the transient dynamics in this model.

The corresponding matrix G that encodes information about the
ariance (Kemeny and Snell, 1976) of the same quantities reads:

ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N(N − 1) : i = j

(2N2 − N)
(N − i)
(N − j)

− N2 (N − i)2

(N − j)2
: i > j

(2N2 − N)
i

j
− N2 i2

j2
: i < j

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (11)

An interesting quantity to characterize opinion dynamics is the
ime a process starting in Xk takes to end in one of the two  con-
ensual absorbing states. Defining 	k and 
k as the mean and the
ariance of the random variable for k = 1, . . .,  N − 1 we got from (10)
nd (Kemeny and Snell, 1976):

k = N

⎡
⎣ k−1∑

j=1

(N − k)
(N − j)

+ 1 +
N−1∑

j=k+1

k

j

⎤
⎦ (12)

nd the corresponding expression for 
 can explicitly be written
rom (11) using:

 = (2F  − 1)	 − 	sq (13)

here 	sq denotes the vector resulting from 	 by squaring each
ntry.

For a system of 1000 agents, Fig. 1 shows the mean times until
bsorption 	k from each Xk and the corresponding variances 
k.
otice the contrast among the two scales showing how the variance

s large compared with the mean.
There are interesting consequences of (12) and (13), in cases

here the number of agents (N) becomes large. First, as already
ointed out, we see that the ratio between the variance and the
ean is quite large and in fact it diverges with N. Hence, the means

re fairly unreliable estimates in this system. This is often the case
or absorbing Markov chains (Kemeny and Snell, 1976) making a
irect interpretation of numerical simulations for this type of mod-
ls tough. Even more subtle, the time scale depends significantly on
he starting configuration k. In fact 	k scales as N log N for k = 1 and

 = N − 1 but as N2 for k = (N/2). We  are therefore faced with a situa-
ion where to take the limit of asymptotic times first and then large
umber of agents or to do it in the reverse order is not equivalent.

n other words, for a finite, even large, number of agents, there is
 probability 1 of reaching one of the consensual configurations in
nite time. By contrast, in the limit of an infinite number of agents
his probability is 0 and the process will stay essentially in the con-
gurations close to parity, k = (N/2). Together with the presence of

arge fluctuations revealed in (13) (see Fig. 1) this fact is the imprint

f a (dynamical) phase transition.

Besides this analysis of the scaling law of the dynamics for large
, it is also interesting to have an insight into the distributions of
bsorbing times for a system of fixed number of agents, the second
rks 34 (2012) 549– 561

item mentioned above. As known by the Perron–Frobenius Theo-
rem (Seneta, 2006) this distribution is exponential for large t with
a rate given by the spectral gap of P (1 − �2, where �2 is the second
largest eigenvalue of the matrix P). However, the correction to this
distribution for intermediate times depends on the initial config-
uration. Indeed in our case, the distribution of the times taken by
the process to fall into one of the consensual configurations departs
from the exponential in a way that is strongly dependent upon the
initial state, as shown in Figs. 2 and 3.

The cumulative distribution function is shown in Fig. 2 for a sys-
tem of 100 agents and three starting configurations k = 1 (green),
k = 24 (blue) and k = 50 (red). The vertical dashed lines represent
the respective mean values 	 obtained using Eq. (12). For k = 50 it
becomes clear that around 60% of simulation runs are absorbed
until the expected absorption time is reached. Fig. 3 shows the
probability that the process is absorbed exactly at time tabs. The
three solid curves represent the respective probabilities for k = 1,
24, 50. The dashed curves are exponential functions that fit the dis-
tributions for large tabs showing that the distributions decay with
(1 − �2) as claimed above.

This leads to an interesting feature of the distribution of the
absorption times coming from the fact that �max tends to one when
N→ ∞.  More precisely (Seneta, 2006) (7) implies

1 > �max � 1 − p(1) � N − 1
N

.  (14)

As a consequence, we  see that the times for the system to get
absorbed in the final states diverge with N, and Q approaches a
stochastic matrix. In fact in the limit of infinite N consensus cannot
be reached. This is not the only reason why  the dynamics inside the
transient configurations is so important. In fact we might speculate
that, in a more realistic description, exogenous events may  inter-
fere with the system and reset it from time to time, and then, in
view of the previous analysis, even when the number of agents is
finite but sufficiently large, the system will similarly never fall into
a final absorbing unanimity configuration.

Notice that (10) and (11) can be used to gain new insight into
the dynamics inside the transient. Fi,k is the mean of the time the
process is in the transient configuration Xk when started in the con-
figuration Xi and Gi,k is the corresponding variance. Figs. 4 and 5
show a quite different behavior depending on the initial situation.
Starting from Xi close to X1 or XN−1 – the strongly “biased” con-
figurations – the residence mean times in Xk naturally decrease
with the distance from i but become almost independent of k and
N for k large whereas the corresponding variance diverges with
N. Instead, starting from Xi close to XN/2, the quasi-homogeneous
configurations the residence mean times and variance in Xk always
diverge.

The reason for such “strange” behavior is quite clear: as N
becomes large, almost all the realizations are trapped during very
large times close to their initial configuration, see (7),  and only very
few realizations reach the opposite configurations but staying there
for large times. That is, a complete overturn of the opinions is very
rare but, when happened, the new situation naturally becomes as
stable as the previous. Therefore we  are in a case where there is
almost no realization behaving as the mean. On  the other hand,
starting from Xi closed to XN/2, the “homogeneous” configurations,
the mean times in Xk also decrease with the distance from N/2,
but now the mean times all scale linearly with N and the variances
with N2. Surprisingly these two  behaviors, almost static on the bor-

der and very unstable “back-and-forth” on the center, compensate
perfectly to end up in the same mean residence times and vari-
ance (the diagonals of F and G) for all the initial configurations. The
same compensation appears when we compare the probabilities
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Fig. 1. Mean time 	k (l.h.s.) and variance 
k (r.h.s.) until absorption as a function of the initial configuration Xk for N = 1000.
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dynamics of the system. We  see that, if one j for which kj = 0, the
probability of transition to a state with kj = 1 is 0. In other words,
to change the number of agents sharing opinion j, at least one
agent with such an opinion is needed. Therefore, the state space is
ig. 5. The variance in the number of times a realization starting in X1, X24 and X50 i
ig.  4.

or a walk starting in Xi to return in Xi, which is independent of i
nd almost sure for large N:

lim
→∞

p(t)(Xi, Xi) = Fii − 1
Fii

= N − 1
N

. (15)

Finally the probabilities for a process starting in Xi to end up in
0 or XN can be computed using (10). The result is as expected:

lim
→∞

p(t)(Xi, X0) = N − i

N
and lim

t→∞
p(t)(Xi, XN) = i

N
.

It is reasonable to hypothesize a correlation, if not a causal link,
etween fast changes in the agent opinion induced by the social
rocess, here stylized in the dynamical rules, and the inconsistency
xperienced by agents between the micro and the macro level,
escribed in Section 1. This conflict is referred to as practical emer-
ence. It consists of a gradual separation of the individual mental
atterns from the reality. The agent is then faced with a represen-
ation that is not always perfectly in keeping with the situation
Giesen, 1987, p. 342). In the opinion model, a possible rating of
his practical emergence inconsistency is the mean time the macro
rocess takes to change of state. Indeed any change of state in this
rocess corresponds to a change for an opinion of an agent. There-
ore the faster this rate, the smaller the switching mean time, and
he more likely is the emergence of a practical disruption between
icture and reality from the agent’s point of view.

From (8) and Kemeny and Snell (1976, Theorem 3.5.6), the mean
ime �k that the process remains in state Xk once the state is entered
including the entering step) is:

k = N2

2k(N − k)
. (16)

herefore, �k is of order (N/2) for k close to (but smaller than) N and
 for k close to (N/2). Again, for N large the process will be almost
tationary in the presence of a large majority supporting one of
he opinions but extremely unstable when no opinion is clearly
redominant. In the latter case practical emergence is plausible.
e suggest correlating small values of �k with this phenomenon.
To conclude this section Fig. 6 shows different realizations of

he agent simulation along with the expected evolution in form
f a confidence interval. The measure of the realizations inside a
iven confidence interval is an increasing function of time. How-
ver, since any individual realization may  cross the border of this
nterval several times before falling in one of the final absorbing
tates a numerical evaluation of the convergence times may  be
uite delicate.

.3. The macro dynamics of a general opinion model

For an opinion model with ı different opinions, the opinion of

ny agent i at time t is a variable xi(t) ∈ {0, . . .,  ı − 1}. The opinion
rofile is given by the vector �x(t) = {x1(t), . . . , xN(t)}. The space of
ll possible configurations is then � = {0, . . .,  ı − 1}N. Following the
ame argument as for ı = 2, we define Ns(x) to be the number of
k before absorption as a function of k for N = 100. Notice the scale as compared with

agents in the configuration x with opinion s, s = {0, . . .,  ı − 1}, and
then X<k0,k1,...,kı−1> ⊂ � as

X<k0,...,ks,...,kı1
> =

{
�x ∈ � N0(�x) = k0, . . . , Ns(�x) = ks, . . . , Nı−1(�x)

= kı−1 and
ı−1∑
s=0

ks = N

}
. (17)

Each X<k0,k1,...,kı−1> contains all the configurations �x in which
exactly ks agents hold opinion s for any s. As in the binary case,
in this way  we obtain a partition of the configuration space �.

It is clear that also in this case the group of all the permutations
of N agents’ labeling fulfills conditions (1) and (2) of Proposition 3.1
and that condition (3) is verified if the probability distribution ω is
permutation invariant and therefore uniform: ω(i, j) = (1/N2), for all
pair of agents (i, j).

In this case, the macrodynamics is a Markov chain and:

P(X<k0,k1,...,kı−1>, X<k′
0

,k′
1

,...,k′
ı−1

>) = kskr

N2
(18)

if k′
s = ks ± 1 and k′

r = kr ∓ 1 whereas k′
j
= kj for all other j, and the

probability that no opinion changes reads

P(X<k0,k1,...,kı−1>, X<k0,k1,...,kı−1>) = 1
N2

ı−1∑
s=0

(ks)
2 (19)

The structure of (18) has an interesting consequence on the
Fig. 6. Different realizations of simulations with 24 out of 100 agents in initial state
‘1’  (i.e. a process starting in X24). Markov chain analysis shows that with probability
0.95 the process is in the shaded region.
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rganized as a ı-simplex with absorbing faces ordered by inclusion,
orresponding to increasing sets of opinions with no supporters.

Starting in some state with no null kj the process will finish at
ertain time in a state where, for the first time, kj = 0 for some j
notice that only one j at each time can fall to zero since the sum of
ll kj is constant). From there, the given kj will stay equal to zero for
ver, and ((18) and (19)) tell us that the transition probabilities are
ow those of a system with ı − 1 opinions. Because the condition

ı−1
s=0 ks = N is to be fulfilled by the remaining opinions, the system

ill then evolve exactly as if the N agents share ı − 1 opinions from
he very beginning. After a certain time a new opinion will lose all
ts supporters and the system is now equivalent to a full system of

 − 2 opinions, and so on. The system will cascade up to the final
bsorbing state, with only one opinion shared by all the N agents.
e recall that each of such cascade transitions is achieved in finite

random) times.
By computing the fundamental matrix of the subsystems it

ould be possible to access the mean and variance of the times
he system evolves between two successive extinctions of group
pinions. We  conjecture the same scaling laws for a system of ı
pinions as the ones already described for ı = 2.

.4. The macro dynamics, further reduction

Alternatively, we can make use of the symmetries in the struc-
ure of (18) and search for lumpable partitions to further reduce
he problem. This can be done by considering the model from the
erspective of a single “party” associated with (say) opinion 0. For
hat “party”, it may  be important to know how many agents are
upportive because they share the same opinion, and how many
re not because they support one of the remaining opinions. Thus,
e reduce the model to a quasi-binary variant with the supporter

pinion 0 on one side and all other opinions (1 ∪ · · · ∪ ı − 1) on the
ther side, grouping together all the states with k0 = r, r = 0, . . .,  N.

The corresponding partition reads:

0
r =

⋃
k1, . . . , kı−1

k0 = r

X<r,k1,...,kı−1>, r = 0, . . . , N. (20)

t is easy to verify that the chain (on the X) is indeed lumpable with
espect to Y and that

(Y0
r , Y0

r+1) = P(Y0
r , Y0

r−1) = r(N − r)
N2

. (21)

t thus turns out that the chain formed by the Y0
r , r = 0, 1, . . . , N

s exactly the same as the chain derived for the binary model.
herefore, the questions regarding the evolution of one opinion
n relation to all the others taken together are addressed by the
ransient analysis performed in Section 4.2.  That is to say, from this
oint of view, each “party” may  rely on the dynamics of a binary
odel as a coarse description of the evolution of its own status.
There is however an important subtlety when doing such an

nalysis. The asymmetry of the partition one-against-all-others will
e encoded in the initial condition. For instance, starting with an
qually distributed profile of N agents corresponds to the initial
ondition X<k,k,. . .,k> in the detailed description but to Y0

N/ı
in the

oarse case. In such a way the asymmetry in the one-against-all-
thers description is recovered.

Another important issue concerns the effects of bounded confi-
ence in the model, in other words if a certain number of pairs of

pinions do not communicate. From a formal point of view bounded
onfidence is encoded in the confidence matrix  ̨ just by putting
(a, b) = 0 if (a, b) is one of such non-communicating opinion pair,
enoted to as a |↔ b. The consequence of bounded confidence is the
rks 34 (2012) 549– 561 557

emergence of non-consensual absorbing states known as opinion
clusters. In the following section, we  treat in great detail the sim-
plest case where bounded confidence is possible, namely ı = 3. We
postpone the general case to the last section since it is a simple
generalization of this example.

4.5. The macro dynamics of a three opinions model and the
emergence of opinion clustering

We  are particularly interested in the ı = 3 case because it is the
simplest version in which one can meaningfully consider bounded
confidence effects. According to the general results of Section 4.3 in
case of unbounded confidence, the projection from micro to macro
dynamics is lumpable (under the homogeneous hypothesis on ω of
course). The Markov chain topology obtained by this projection is
shown in Fig. 7 along with the transition structure. The probabilities
of the transitions are given by Eqs. (18) and (19) which allows us to
compute the complete transition matrix P.

For the construction of P, the nodes in the Markov chain are
labeled in increasing order from the absorbing to the central nodes,
see Fig. 7: labels 1–3 (black) for absorbing consensus states, labels
4–24 (blue) for two-opinion states, labels 25–39 (red) for three-
opinion states with one of the opinion supporters reduced to one
element, and labels 40–45 (red) for the remainder states. It is possi-
ble to compute the fundamental matrix, at least numerically if N is
large, and this makes it possible to compute the significant statisti-
cal indicators of the model. For instance, if N = 8, the state space of
the macro dynamics has 45 states and the mean times for the tran-
sient nodes to reach an absorbing state (consensus) range between
21 and 48 time steps, see Fig. 11.  Not surprisingly the mean transi-
tion times are a function of the distance to the absorbing states as
measured on the graph of the state space (Fig. 7).

From the fundamental matrix F it is also easy to compute the
probabilities of ending up in each of the absorbing (consensus)
states starting from any transient node. For instance, for N = 8, the
absorbing probabilities for any state are shown in Fig. 8.

Let’s now turn to the question of what happens if agents with a
certain opinion do not accept to change their opinion after meeting
an agent of another given opinion. In the opinion dynamics liter-
ature, this is referred to as bounded confidence.  From the Markov
chain perspective the emergence of opinion polarization becomes
a simple consequence of the restrictions posed on the interaction
process. As certain transitions are excluded, the state space topol-
ogy of the Markov chain changes in a way that new absorbing
states become present. The respective states correspond to non-
consensus configurations, hence, they represent a population with
opinion clustering.

As an example, let us assume that agents in opinion state ‘a’
are not willing to communicate with agents in state ‘c’ and vice
versa, that is to say ˛(a, c) = ˛(c, a) = 0. The corresponding Markov
transition matrix P now reads:

P(X<k,l,m>, X<k−1,l,m+1>) = P(X<k,l,m>, X<k+1,l,m−1>) = 0. (22)

and

P(X<k,l,m>, X<k,l,m>) =
(

k2 + l2 + m2

N2

)
+ 2

(
km

N2

)
. (23)

The remaining entries are, as before, (18) and (19). The resulting
state space topology is shown in Fig. 9, where all horizontal transi-
tion paths are removed, since those paths correspond to the a ↔ c
opinion changes.
For the set of bordering nodes X<k,0,N−k> : k = 1, . . .,  N − 1 there
is no longer any transition that leads away from them, so that all
these nodes become absorbing states. The fact that these additional
absorbing states X<k,0,N−k> represent opinion configurations with
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 agents in state a and N − k agents in state c explains why the intro-
uction of interaction restrictions leads to possible final states with
pinion polarization. It is noteworthy, however, that the opinion
lustering would not be observed if only one of the two  transitions,

 → c or c → a, were excluded. In this case, there would still be a path
eading away from the bordering nodes to one of the nodes (X<0,0,N>

r X<N,0,0>) in the corner of the graph. Such a set-up corresponds to
n asymmetric model where the bordering atoms X<k,0,N−k> : k = 1,

 . .,  N − 1 become again transient, such that the process eventually
eads to the final consensus configurations as previously described.
owever the final configuration �x = {�c} would be much more likely

han �x = {�a}, as a consequence of the asymmetry of such a model
ariant.

As for the case of unbounded confidence, the fundamental
atrix can be computed here as well and allows us to calculate the

tatistical quantities of the model such as absorbing probabilities

nd times. In Fig. 10 the probabilities of a realization to end up in
ach of the absorbing final states are shown for all initial nodes.
f the process is in the first 10 nodes at t = 0, it will remain there
orever as all these nodes are absorbing in the bounded confidence
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5–45).
 model with three opinions {a, b, c}, here N = 8. (For interpretation of the references

case. Notice that nothing changes for the nodes 11–24 with respect
to the unbounded case shown in Fig. 8. For a system in these
configurations the communication constraint has no effect on the
dynamics. The six absorbing non-consensus states (numbers 4–10
with only “a” and “c” opinion supporters) are reachable only from
the inner nodes, that is only if all opinions are present initially. It
becomes clear that for some of these configurations, the probability
of converging to consensus becomes very small (e.g. nodes 25–30).

Finally, we can compare the mean time before a realization start-
ing in a transient state remains in the transient before absorption
for the bounded and the unbounded case. This statistical indicator
is represented in Fig. 11.  Notice that the times for the states 1–3
(unbounded) and 1–10 (bounded) are zero as in this case the pro-
cess is absorbed from the very beginning. Again, the non-absorbing
two-opinion states (11–24) are not affected.

As in the general case of any ı we  can search here for lumpable

partitions to further reduce the problem taking the point of view
of each “party” associated with opinions “a”, “b” or “c”. For the case
of unbounded confidence we have shown in Section 4.4 that the
dynamics from any of these points of view reduces to the ı = 2 case.
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 Notice that all three final states can be reached only from the inner nodes (numbers
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Fig. 9. Transition structure and state topology of the bounded confidence model for N = 8.
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he status of the bounded confidence model is different. From the
erspective of opinion “b” the partition in “supporters” and “oppo-
ents” is lumpable, therefore, the system evolves as a binary chain.
his is not the case from the perspectives of opinions “a” or “c”. For
nstance, from the point of view of opinion “a”, the corresponding
artition reads:

a
r =

⋃
l+m=N−r

X<r,l,m>, r = 0, 1, . . . , N. (24)

nd

(X<r,l,m>, Ya
r+1) = rl

N2
. (25)

t turns out that the chain formed by the Ya
r , r = 0, 1, . . . , N is not

 Markov chain since the r.h.s. of (25) depends on l and not only on
 (Kemeny and Snell, 1976).

We  see that the introduction of bounded confidence in this
odel leads to memory effects due to the fact that an agent switch-

ng from opinion “a” to opinion “c” necessarily goes through a visit
o opinion “b” for at least one time step, therefore, the probability
f this transfer will depend on the number of supporters of opinion
b” at that time.

. Simple generalizations

We  first mention an easy generalization of the existence of
bsorbing states for the case of bounded confidence in a model
ith any number ı of different opinions. In order to get non-

onsensual absorbing states it is necessary and sufficient that a
ubset of opinions is mutually incommunicable. In this case all the
tates belonging to the simplex generated by the mutually incom-
unicable opinions become absorbing. It is worthwhile noticing

hat absorbing states may  appear in different clusters of simplexes
rovided that the corresponding opinions are related by chains of
ommunicating links. An example of this type appears for ı = 3 if
a |↔ b) and (a |↔ c) but (b ↔ c) where the absorbing states are either
he simplex with only a and b or with only a and c opinions.

Another interesting issue concerns agent models with vecto-
ial (or equivalently matrix or table) individual state (attribute)
pace. Suppose that at each time step each i is characterized by

 list of n attributes, where the first attribute may  take n1 possible
alues, · · ·,  and the nth attribute nn possible values. The corre-
ponding ABM can then be easily built as in Section 4.3 by taking

 = n1 × n2 × · · · × nn. And, as long as one is interested in following
he macrodynamics of the agents who all have ı attributes that
re identical, the reduction proposed in Section 4.4 also applies.
herefore, absorbing non-consensual states will appear in exactly
he same way as described above as a consequence of bounded
onfidence.

For this vectorial opinion model there is, however, an unex-
ected subtlety when we are interested in the macrodynamics of
he agents ranked by only one of their attributes, for instance, if
he agents are separated in n1 different groups according to the
umber of agents sharing their first attribute. Then the partition

s no longer lumpable, and therefore the evolution of the corre-
pondent random variables (for instance, the number of elements
f each group) is not a Markov chain. Again, in this case, new mem-
ry effects may  appear from this choice of aggregation to build the
acrodynamics. The proof can be done as in (24) and (25).
We shall finish this section by noticing a trick that makes it pos-

ible to extend the previous analysis to systems where the agents
re defined on a lattice or, more generally, on a graph. They may

oexist in some nodes of the graph or, sometimes they may  even
ove on it. Then, in some cases, it is possible to reduce the model

o the framework of our work by defining the agents as the nodes
n the graph and including the presence or lack of an actor in the
rks 34 (2012) 549– 561

prescription of the attributes defining the elements of S as well as
the topology of the graph accordingly in ˛.

6. Final remarks and prospective

An important mark of ABMs is their ability to include arbitrary
levels of heterogeneity and stochasticity (or uncertainty) into the
description of a system of interacting agents. While computer sim-
ulations are often suited for making important dynamical trends
of these models visible, a rigorous characterization of the different
dynamical phases is difficult.

In this work we  analyze the dynamics of an ABM from a
Markovian perspective and derive explicit statements about the
possibility of linking a microscopic agent model to the dynamical
processes of macroscopic observables that are useful for a precise
understanding of the model dynamics. In this way the dynamics
of collective variables may  be studied, and a description of macro
dynamics as emergent properties of micro dynamics, in particularly
during transient times, is possible. In our context, the random map
representation (RMR) of a Markov process helps to understand the
role devoted to the collection of (deterministic) dynamical rules
used in the model from one side and of the probability distribu-
tion ω governing the sequential choice of the dynamical rule used
to update the system at each time step from the other side. The
importance of this probability distribution, often neglected, is to
encode the design of the social structure of the exchange actions at
the time of the analysis. Not only, then, are features of this prob-
ability distribution concerned with the social context the model
aims to describe, but also they are crucial in predicting the proper-
ties of the macro-dynamics. If we decide to remain at a Markovian
level, then the partition, or equivalently the collective variables, to
be used to build the model may  be compatible with the symmetry
of the probability distribution ω. In a sense the partition of the con-
figuration space defining the macro-level of the description has to
be refined in order to account for an increased level of heterogene-
ity or a falloff in the symmetry of the probability distribution. It is,
however, clear that, in the absence of any symmetry, there is no
other choice for this partition than to stay at the micro-level and in
this sense, no Markovian description of a macro-level, is possible
in this case.

The model used to carry out this plan is very simple and a
direct generalization of the results obtained in Section 4 to com-
pletely general kinds of ABMs or real social processes is for the
moment out of scope. On the other hand, the proposed method is
not restricted to this simple class of opinion models because, as long
as the agent model can be formulated as a random choice among
a set of deterministic rules, the RMR  can be used to compute the
transition probabilities of the micro-chains even if the interaction
rules become more complicated.

At this point two possible approaches could be explored in the
future: first to identify in specific models other natural symme-
tries inducing a Markovian description of their macro counterpart
and to study the evolution of the corresponding collective behav-
ior; and second, to tackle the problem of describing the dynamics
of the macro variables in cases where they are not Markovian. For
this purpose, the cases where ω is not homogeneous (or symmet-
ric) but has special structural properties seem to be a crucial issue
for further research. This point must have an important impact in
the understanding of descriptive emergence since it is a (the, in
ABM context) source of long memory effects in the dynamics of the
formation of collective social patterns.
Another important prospect concerns the measure of practical
emergence or discrepancy, the gap between the macro-structural
properties of a social system and internalized rules or intentions of
the individual actors. The measure of this gap should lead to more
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laborate gauges whose dynamics themselves call for new specific
nvestigation.

As pointed out in Section 1, under certain circumstances the
acro process may  undergo dynamical changes in its own struc-

ural rules. This fact is referred to as explanatory emergence. It can
e understood either as a consequence of some external (to the
odel) inputs or on the basis of deep accelerations of the micro-

ynamics that in turn bring about the processes of change at the
acro level. In both cases this question opens up to new theoretical

s well as very interesting practical developments.
In an ABM as presented in Section 2, the macro-structural pat-

erns of social relations are encoded in the probability distribution
, or its generalization when the model allows a simultaneous
pdating depending on more than two agents. Therefore a dynam-

cs of this structure may  be incorporated in the model as a dynamics
f the probability distribution, allowing it to be time dependent: ωt.
his can be done at different levels. The simplest one occurs when
he structural dynamics is assumed to be autonomous, in the form
f a master-slave system where the dynamics of the probability dis-
ribution is defined independently of the evolution of the process.
t is natural to suppose that this dynamics is slow with respect to

 fast dynamics of the agent changes. A more sophisticated mod-
ling consists of coupling the individual agent dynamics with the
ynamics of the distribution. This corresponds to assuming a feed-
ack of the agent dynamics on the evolution of the structural rules
xing the macro dynamics. In both cases a rigorous treatment of
he problem is sufficiently compelling to deserve further research.

The formalization of the relations between the micro and the
acro levels in the description of the dynamics of agent based
odels as well as their mathematical characterization is a step

oward a mathematical theory of emergence in complex adaptive
ystems. In this work we showed how a Markov chain approach,
n particular the use of the notion of lumpability, provides useful
nstruments for the analysis of the link from a microscopic ABM to

acroscopic observables. Further research is needed to deepen our
nderstanding of this link in a more general setting.
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