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Abstract
The node set of a two-mode network consists of two disjoint sub-

sets and all its links are linking these two subsets. The links can be
weighted. We developed a new method for identifying important sub-
networks in two-mode networks. The method combines and extends
the ideas from generalized cores in one-mode networks and from (p, q)-
cores for two-mode networks. In this paper we introduce the notion
of generalized two-mode cores and discuss some of their properties.
An efficient algorithm to determine generalized two-mode cores and
an analysis of its complexity are also presented. For illustration some
results obtained in analyses of real-life data are presented.
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1 Introduction
Network analysis is an approach to the analysis of relational data. In this
paper we deal with the analysis of two-mode networks [1, 2]. A two-mode
network is a network in which the set of nodes consists of two disjoint subsets
and its links are linking these two subsets.

The traditional approach to the analysis of two-mode networks is usually
indirect: first a two-mode network is converted into one of the two corre-
sponding one-mode projections, and afterward it is analyzed using standard
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network analysis methods [3]. Direct methods for the analysis of two-mode
networks are quite rare [4, 5, 6]. We can use bipartite statistics on degrees,
generalized blockmodeling, (p, q)-cores, two-mode hubs and authorities, 4-
ring weights, bi-communities, two-mode clustering, bipartite cores, and some
others. Many methods for identifying important subnetworks are available
for one-mode networks (measures of centrality and importance, generalized
cores, line islands, node islands, clustering, blockmodeling, etc.). We present
a new direct method which can be used for the identification of important
subnetworks in two-mode networks with respect to selected node properties.

We combine the ideas from generalized cores in one-mode networks and
from (p, q)-cores for two-mode networks into the notion of generalized two-
mode cores. We developed and implemented an algorithm for identifying
generalized two-mode cores for selected node properties and given thresholds
for both subsets of nodes. We also propose an algorithm to find the nested
generalized two-mode cores for one fixed threshold value.

In the next section we survey the works that contain the ideas we used
for the development of our method. In Section 3 we present an algorithm
for identifying the generalized two-mode cores. We list some node properties
that are used as measures of importance. We also present some properties
of generalized two-mode cores. We prove that for equivalent properties mea-
sured in ordinal scales the sets of generalized two-mode cores are the same.
The algorithm, the proof of its correctness, and a simple analysis of its com-
plexity are presented in Section 4. In Section 5 some results obtained in
analyses of real-life data are presented.

2 Related work
The notion of k-core was introduced by Seidman (1983) [7]. Let G = (V ,L)
be a graph with n = |V| nodes and m = |L| links. Let k be a fixed integer
and let deg(v) be the degree of a node v ∈ V . A subgraph Hk = (Ck,L|Ck)
induced by the subset Ck ⊆ V is called a k-core iff degHk

(v) ≥ k, for all
v ∈ Ck, and Hk is the maximal such subgraph. If we replace the degree with
some other node property, we get the notion of generalized cores as it was
introduced in [8]. The node property can be a node degree, maximum of
incident link weights, sum of incident link weights, etc. They are described
in more details in Section 3.

The other possible generalization of k-cores is their extension to two-mode
networks. The notion of (p, q)-cores was introduced in [9]. A subset C ⊆ V
determines a (p, q)-core in a two-mode networkN = ((V1,V2),L),V = V1∪V2

iff in the subnetwork K = ((C1, C2),L|C), C1 = C ∩V1, C2 = C ∩V2 induced by
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C it holds that for all v ∈ C1 : degK(v) ≥ p and for all v ∈ C2 : degK(v) ≥ q,
and C is the maximal such subset in V .

We combined the ideas from generalized cores and (p, q)-cores into the
notion of generalized two-mode cores. Generalized two-mode cores are de-
fined similarly to (p, q)-cores with one exception – instead of using the degree
of nodes, we now allow also some other properties of nodes. The properties
of nodes on subsets V1 and V2 can be different. The detailed definition is
given in Section 3.1.

Other types of two-mode subnetworks were discussed in the literature. A
bipartite core is defined as a complete two-mode subnetwork [10]. Bipartite
cores are determined by the size of each subset of vertices.

Similar methods are varieties of a community detection in two-mode net-
works: with maximization of monotone function [11], with a dual projection
[12], with properties of the eigenspectrum of the network’s matrix [13], with
label propagation and recursive division of the two types of nodes [14], with
the stochastic block modeling [15], and many others. Another very similar
method is a bipartite clustering [16, 17]. The substantial difference is that
these methods are determining a clustering of the whole set of nodes and our
method determines only an important subset.

The generalized two-mode cores depend on selected node properties that
are expressing different aspects of the network structure (for example, the
intensity of links). They are also using different criteria. Therefore our
method represents a new approach to two-mode network analysis. It does
not represent an improvement of any existing method, but a generalization
of (p, q)-cores.

3 Algorithms for generalized two-mode cores
As mentioned in Section 1 the algorithms for identifying k-cores, generalized
cores, and (p, q)-cores have already been developed [9, 8, 7]. We propose a
new algorithm, which combines and extends the ideas from generalized cores
in one-mode networks and from (p, q)-cores in two-mode networks. Besides
implementing the new algorithm, we also prove its correctness and analyze
its complexity. For testing the usefulness of the method we applied it on real
networks.

3.1 Properties of nodes

For a network N = (V ,L, w) and a weight function w : L → R+ a property
function f(v, C) ∈ R+

0 is defined for all v ∈ V and C ⊆ V . A subset C induces
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the subnetwork to which the evaluation of the property function is limited.
In an undirected network it holds: w(u, v) = w(v, u) for all pairs of nodes
u, v ∈ V .

Let us denote the neighborhood of a node v asN(v) and the neighborhood
of a node v within the subset C as N(v, C) = N(v)∩C. The neighborhood of a
node v within the subset C including v we denote asN+(v, C) = N(v, C)∪{v}.
Let us also denote a measurement on nodes (degree, centrality, etc.) as
t : V → R+

0 .
We say that the property function f(v, C) is local iff

f(v, C) = f(v,N(v, C)) for all v ∈ V and C ⊆ V .

The property function f(v, C) is monotonic iff

C1 ⊂ C2 =⇒ ∀v ∈ V : f(v, C1) ≤ f(v, C2).

Some node properties (f1 – f10) were proposed in [8]. In the Tab. 1 are
listed examples of property functions.

All the listed functions have the property f(v, ∅) = 0 for all v ∈ V .
It can easily be verified that all the listed property functions are local and

monotonic. An example of a non-monotonic function would be the average
weight

f(v, C) =
1

degC(v)

∑
u∈N(v,C)

w(v, u)

for N(v, C) 6= ∅, otherwise f(v, C) = 0. An example of a non-local function
is the number of cycles or closed walks of length k, k ≥ 4, through a node.

3.2 Generalized two-mode cores

Definition 3.1. Let N = ((V1,V2),L, (f, g), w),V = V1 ∪ V2 be a finite
two-mode network – the sets V and L are finite. Let P(V) be a power set
of the set V . Let functions f and g be defined on the network N : f, g :
V × P(V) −→ R+

0 .
A subset of nodes C ⊆ V in a two-mode network N is a generalized two-

mode core C = Core(p, q; f, g), p, q ∈ R+
0 if and only if in the subnetwork

K = ((C1, C2),L|C), C1 = C ∩ V1, C2 = C ∩ V2 induced by C it holds that for
all v ∈ C1 : f(v, C) ≥ p and for all v ∈ C2 : g(v, C) ≥ q, and C is the maximal
such subset in V .

When the functions f and g are clear from context and the parameters p
and q are fixed, we use the abbreviation Core(p, q) ≡ Core(p, q; f, g).
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Table 1: Examples of property functions.
Formula Description
f1(v, C) = degC(v) Degree of a node v within C.
f2(v, C) = indegC(v) Input degree of a node v within C.
f3(v, C) = outdegC(v) Output degree of a node v within C.
f4(v, C) = indegC(v) + outdegC(v) For a directed network f4 = f1.
f5(v, C) = wdegC(v) =

∑
u∈N(v,C) w(v, u) Sum of weights of links within C that have

a node v for an end node.
f6(v, C) = mweightC(v) = maxu∈N(v,C) w(v, u) Maximum of weights of all links within C

that have a node v for an end node.
f7(v, C) = pdegC(v) = degC(v)

deg(v)
if deg(v) > 0 else

f7(v, C) = 0

Proportion of N(v, C) in N(v).

f8(v, C) = densityC(v) = degC(v)
maxu∈N(v) deg(u)

if
deg(v) > 0 else f8(v, C) = 0

Relative density of the neighborhood of a
node v within C.

f9(v, C) = degrangeC(v) =
maxu∈N(v,C) deg(u)−minu∈N(v,C) deg(u)

Range of degrees of neighbors of a node v
within C with respect to their degrees.

f10(v, C) = tdegrangeC(v) =
maxu∈N+(v,C) deg(u) −
minu∈N+(v,C) deg(u)

Total range of degrees of neighbors of a
node v.

f11(v, C) = pweightC(v) =
∑

u∈N(v,C) w(v,u)∑
u∈N(v) w(v,u)

if∑
u∈N(v) w(v, u) > 0 else f11(v, C) = 0

Proportion of weights of links with a node
v as an end node that have the other end
node within C.

f12(v, C) = trianglesC(v) Number of triangles through a node v with
all three nodes in C.

f13(v, C) = sum C(v, t) =
∑

u∈N(v,C) t(u).

f14(v, C) = max C(v, t) = maxu∈N(v,C) t(u).
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A set of all generalized two-mode cores for a networkN = ((V1,V2),L, (f, g), w)
is defined as

Cores(N ) = {Core(p, q; f, g); p ∈ R+
0 ∧ q ∈ R+

0 }.

In this set we can define a relation

Core(p, q; f, g) v Core(p′, q′; f, g)

as
C1(p, q; f, g) ⊆ C1(p′, q′; f, g) ∧ C2(p, q; f, g) ⊆ C2(p′, q′; f, g).

Because Cores(N ) ⊆ P(V) and (P(V),⊆) is a partially ordered set, also
(Cores(N ),⊆) and (Cores(N ),v) are partially ordered.

For the generalized two-mode cores we have:

• Core(0, 0) = V ,

• the subnetwork K = ((C1, C2),L|C), C = Core(p, q; f, g) is not neces-
sarily connected.

Lemma 3.1. LetN = ((V1,V2),L, (f, g), w) and its "mirror" Ñ = ((V2,V1),L, (g, f), w)
be two-mode networks. It holds

CoreÑ (p, q; f, g) = CoreN (q, p; g, f).

Lemma 3.2. Let F ⊆ R be a set of values of the property f (codomain of
the property function f) and ϕ : F −→ R+

0 a strictly increasing function.
Then

Core(p, q; f, g) = Core(ϕ(p), q;ϕ ◦ f, g).

Corollary 3.1. Let F ⊆ R and ϕ : F −→ R+
0 be as in Lemma 3.2. Then

Core(q, p; g, f) = Core(q, ϕ(p); g, ϕ ◦ f).

The proofs for Lemmas 3.1 and 3.2 and Corollary 3.1 are simple. Lemma
3.2 and Corollary 3.1 tell us that equivalent properties measured in ordinal
scales produce the same generalized two-mode cores.

3.3 Boundary for threshold values

Theorem 3.1. In a two-mode network N = ((V1,V2),L, (f, g), w) for f and
g monotonic functions it holds:

(p1 ≤ p2 ∧ q1 ≤ q2) =⇒ Core(p2, q2) ⊆ Core(p1, q1).
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Proof: By definition of a generalized two-mode core C = Core(p2, q2) it
holds:

∀v ∈ C1 : f(v, C) ≥ p2 and ∀v ∈ C2 : g(v, C) ≥ q2

and C is maximal such subset of nodes. Because f and g are monotonic and
we have p1 ≤ p2 and q1 ≤ q2 it also holds:

∀v ∈ C1 : f(v, C) ≥ p1 and ∀v ∈ C2 : g(v, C) ≥ q1.

But p1 ≤ p2 and q1 ≤ q2 so C is not necessarily the maximal subset of nodes
that defines Core(p1, q1). Therefore:

Core(p2, q2) = C ⊆ Core(p1, q1).

For a given subset C ⊆ V let p(C) = minv∈C1 f(v, C) be the minimum
property value in the set C1 = C∩V1 and q(C) = minv∈C2 g(v, C) the minimum
property value in the set C2 = C ∩ V2. It holds C ⊆ Core(p(C), q(C)).

For a given two-mode network N = (V ,L, (f, g), w) let P = {p(C) : C ⊆
V} be the set of all possible values of p(C) and Q = {q(C) : C ⊆ V} the
set of all possible values of q(C). P and Q are finite sets. Therefore we can
enumerate their elements:

P = {p1, p2, . . . , pr}, pi < pi+1,
Q = {q1, q2, . . . , qs}, qi < qi+1.

For fixed functions f and g we are interested only in (p, q) pairs that are
determining different nonempty generalized two-mode cores.

It is clear from the condition p, q ≥ 0 that if we look at the Cartesian
coordinate system with (p, q) axes (Fig. 1), the region of all possible pairs of
thresholds p and q is limited to the first quadrant. The missing boundary of
this region is a broken line in a shape of stairs.

For p, q ∈ R+
0 let Π(p) = {C : C ⊆ V ∧ p(C) ≥ p} be the set of sets

for which the property value of the first subset is at least equal to p, and
Γ(q) = {C : C ⊆ V ∧ q(C) ≥ q} be the set of sets for which the property value
of the second subset is at least equal to q. Let G(p) = {q(C) : C ∈ Π(p)} be
the set of all possible values q(C) for which the set C belongs to the set Π(p)
and qΠ(p) = maxG(p) is the maximum such value q(C). Let H(q) = {p(C) :
C ∈ Γ(q)} be the set of all possible values p(C) for which the set C belongs
to the set Γ(q) and pΓ(q) = maxH(q) is the maximum such value p(C).

Lemma 3.3. The following properties hold for p, p′ ∈ P and q, q′ ∈ Q:
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p

q

0

(p, q)

(p', q')

Figure 1: The region of all possible threshold pairs (p, q) that determine
generalized two-mode cores.

1. In the set Γ(qΠ(p)) exists at least a set C for which it holds p(C) = p0

and q(C) = qΠ(p0). Therefore:

Γ(qΠ(p)) 6= ∅.

Similarly: Π(pΓ(q)) 6= ∅.

2. It holds C ⊆ Core(p(C), q(C)) and in all sets in Γ(qΠ(p)) the property
values for the second subset are at least equal to qΠ(p). It also holds:

C ∈ Γ(qΠ(p)) =⇒ C ⊆ Core(p, qΠ(p)).

Similarly: C ∈ Π(pΓ(q)) =⇒ C ⊆ Core(pΓ(q), q).

3. qΠ(p) is the maximum such q for which a nonempty core Core(p, q)
exists:

q > qΠ(p) =⇒ Core(p, q) = ∅.

Similarly: p > pΓ(q) =⇒ Core(p, q) = ∅.

4. qΠ is a decreasing function:

p < p′ =⇒ qΠ(p′) ≤ qΠ(p).

Similarly: q < q′ =⇒ pΓ(q′) ≤ pΓ(q).
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Proof: The proofs for all of the listed properties are simple. Let us show
just the first part of the property 4.

Π(p′) = {C : C ⊆ V ∧ p(C) ≥ p′}
⊆ {C : C ⊆ V ∧ p(C) ≥ p} = Π(p)

This implies G(p′) ⊆ G(p) and therefore qΠ(p′) ≤ qΠ(p).

From these properties it follows that for each p ∈ P there exist a maxi-
mum q ∈ Q: q = qΠ(p); and for each q ∈ Q there exists a maximum p ∈ P :
p = pΓ(q). This is a formal proof of the staircase shape of the boundary. On
this basis we can develop an algorithm for determining the boundary of the
set (P,Q) in the (p, q) coordinate system – see Algorithm 1.

Algorithm 1 The algorithm to determine the boundary of the set (P,Q) in
the (p, q) coordinate system.

Input : P = {p1, p2, . . . , pr}, pi < pi+1, Q = {q1, q2, . . . , qs}, qi < qi+1 .
Output : boundary s e t boundary ⊆ P ×Q .

Algorithm :
qmax = 0
boundary = ∅

for p ∈ reverse(P ) do
q = qΠ(p)
i f q > qmax then

qmax = q
boundary = boundary ∪ {(p, q)}

In general the Algorithm 1 is only of theoretical value because the sizes
of sets P and Q can be very large. It can be used for some special property
functions – for example f1, f2, f3 and f4, where the sets P and Q are relatively
small.

4 The algorithm
We propose an algorithm for determining a generalized two-mode core in
two-mode networks for given thresholds p and q, and property functions f
and g.
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The basic idea of the algorithm for generalized two-mode core is to repeat
removing the nodes that do not belong to it. Since the network is two-mode
the removing condition depends on to which set a node belongs.

Algorithm 2 Basic algorithm for determining a generalized two-mode core.
C = V
while ∃v ∈ C : (v ∈ C1 ∧ f(v, C) < p) ∨ (v ∈ C2 ∧ g(v, C) < q) do

C = C \ {v}

Adapting the proof of Theorem 1 from [8] to two-mode networks we can
prove the following theorem.
Theorem 4.1. The Algorithm 2 determines the generalized two-mode core
at thresholds (p, q) for every monotonic node property functions f(v, C) and
g(v, C). The result of the algorithm does not depend on the order of deletion
of nodes that do not belong to the core – satisfy the while loop condition.

Because the order of deletions has no impact on the final result we can,
in our elaboration of the algorithm, start deleting from the first set, then
switch to the second set, and back to the first set, etc., until no deletion is
possible.

We use a binary heap implementation of priority queues [18] to organize
the nodes in such a way that we can efficiently get the node with the smallest
value of the property function as the root element in a heap. The function
RemoveRoot(heap) returns the root element and removes it from the heap.
The value of the property function is calculated for each node according to
the set of links L and the weight function w as described in Section 3.1.

We need two heaps – one for each subset of nodes. An element E in a
heap is a pair E = (key, value) of an identificator of a node as E.key and a
property function value as E.value. The elements are ordered by the value
of the property function. We know that all neighbors of every node in the
first subset are in the second subset, and vice versa.

To bound the work needed for updating we shall assume in the following
that both functions f and g are local. In this case we need to update only
the heap of the neighboring subset of nodes when deleting a node.

These decisions result in Algorithm 3 for determining generalized (p, q)-
core for monotonic and local property functions f and g.

4.1 Complexity

Algorithm 3 could be based also on a simpler data structure such as queues.
We did not explore these options because they can not be efficiently extended
to Algorithm 4.
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Algorithm 3 The algorithm to determine the generalized two-mode core at
thresholds (p, q) for monotonic and local node property functions f and g.

Input : two−mode network N = ((V1,V2),L, (f, g), w) , V1 ∩ V2 = ∅ ,
t h r e sho ld s p , q .

Output : g e n e r a l i z e d two−mode core C = C1 ∪ C2 .

Procedure :
Remove(h , t , Ccurrent , Cother , heapcurrent , heapother ) :

while not Empty( heapcurrent ) :
i f Root ( heapcurrent ) . value ≥ t : return
u = RemoveRoot ( heapcurrent ) . key
Ccurrent = Ccurrent\{u}
for v in N(u, Cother) :

update ( heapother, v, h(v, C))

Algorithm :
C1 = V1 , C2 = V2

for v in V1 : va lue [ v ] = f(v,V)
for v in V2 : va lue [ v ] = g(v,V)

bu i ld ( heap1 , value , C1 ) , bu i ld ( heap2 , value , C2 )

repeat :
Remove(f , p , C1 , C2 , heap1 , heap2 )
Remove(g , q , C2 , C1 , heap2 , heap1 )

until no node was removed
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Assume that the time complexity of the calculation of a local property
function is O(deg(v)) for each node v in the network. The building of the
heap takes O(n · log n). We use binary heaps instead of faster heaps with
amortized constant update time complexity because they are easier to imple-
ment. Because

∑
v∈V deg(v) = 2m, the time complexity of the initialization

is
O(

∑
v∈V

deg(v) + n log n) = O(max(m,n log n)).

At each step of the while loop some node is removed and its neighbors
get their property function value changed. They also change their position
in the heap according to the change of their value.

The update of the property function value may require less time than its
calculation. For example the value of f1(v, C) = degC(v) is corrected only
by reducing its value by one for every removed neighbor of node v. The
update of the value of property functions f1, f2, f3, f4, f5, f7, f8, f11, and f13

takes O(1) time; but for property functions f6, f9, f10, f12, and f14 it takes
O(deg(v)) for every node v.

The heaps are implemented in such a way that the change of the position
of an element in it takes O(log n) time.

Let s = (v1, v2, . . . , vd) be the sequence of the removed nodes during the
execution of the algorithm. The removal of a node vi takes O(log n). The
update of the property function value of each of its neighbors and the change
of its position in the heap takes O(log n) or O(max(log n, deg(vi))) depending
on the property function used, and for the sequence s the update costs∑

vi∈s

deg(vi) ·O(log n) ≤ 2m ·O(log n) = O(m · log n)

for property functions f1, f2, f3, f4, f5, f7, f8, f11, and f13 or∑
vi∈s

deg(vi) ·O(max(log n, deg(vi)))

≤ O(max(log n,∆)) ·
∑
vi∈s

deg(vi)

≤ 2m ·O(max(log n,∆)) = O(m ·max(log n,∆)),

where ∆ = maxv∈V(deg(v)), for property functions f6, f9, f10, f12, and f14.
The time complexity of the initialization of the algorithm is lower than the

time complexity of the main loop in the algorithm. So the time complexity
of the whole algorithm for determining the generalized two-mode core is

O(m · log n)
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for property functions f1, f2, f3, f4, f5, f7, f8, f11, and f13 and

O(m ·max(log n,∆))

for property functions f6, f9, f10, f12, and f14.

4.2 An algorithm for one threshold value fixed

We adapted the algorithm so that one subset of nodes has a fixed threshold
value. The result of this algorithm is a vector in which every node has as its
value the maximum value of the nonfixed threshold for which it is still in the
corresponding generalized two-mode core. This helps selecting the thresholds
for which we get the most important generalized two-mode cores.

Algorithm 4 presents such an adapted version of the Algorithm 3. In this
algorithm we fix the first threshold. In the case where the second threshold
is fixed we apply the Lemma 3.1.

The algorithm is again based on the idea of deleting the nodes that do not
satisfy the threshold. In the elaboration of this algorithm we also use heaps.
The value of the property function is calculated for each node according to
the set of links L and the weight function w as described in Section 3.1. The
nodes are ordered in heaps for both subsets of nodes by the value of the
property functions.

A step of the while loop starts by deleting all nodes in the heap for the
first subset of nodes that do not satisy the fixed threshold. Removed nodes
get the value of the second threshold in the previous step of the loop, because
this is the largest value of the second threshold for which the removed node
is still in the generalized two-mode core. Property function values of some
neighboring nodes might be changed, so we set the second threshold q to the
current smallest value in the heap for the second subset of nodes after the
first part of the step. Then we remove all nodes from the second heap that
have the property function value equal to the current q. Removed nodes get
the value q in the resulting vector. At the end of the step we set the previous
value of q to its current value and its current value to the value of the root
of the second heap.

The complexity of Algorithm 4 is the same as the complexity of Algorithm
3.

5 Applications
The possibility of using different node properties for the identification of
important two-mode subnetworks allows the analysts to gain information
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Algorithm 4 The algorithm to determine the vector of generalized two-
mode core levels at fixed threshold p for monotonic and local node property
functions f and g.

Input : two−mode network N = ((V1,V2),L, (f, g), w) , V1 ∩ V2 = ∅ ,
t h r e sho ld p .

Output : v ec to r T , T [v] = max value o f the t r e sho l d q such
that v ∈ Core(p, q) .

Procedures :
RemoveFixed (f, p, q, C1, C2, heap1, heap2 ) :

while not Empty( heap1 ) :
i f Root ( heap1 ) . value ≥ p : return
u = RemoveRoot ( heap1 ) . key
T [u] = q
C1 = C1\{u}
for v in N(u, C2) :

update ( heap2, v, f(v, C1))

RemoveChanging (g, q, C2, C1 , heap2 , heap1 ) :
while not Empty( heap2 ) :

i f Root ( heap2 ) . value > q : return
u = RemoveRoot ( heap2 ) . key
T [u] = q
C2 = C2\{u}
for v in N(u, C1) :

update ( heap1, v, g(v, C2))

Algorithm :
C1 = V1, C2 = V2

for v in V1 : value [ v ] = f(v,V2), T [v] = −1
for v in V2 : value [ v ] = g(v,V1), T [v] = −1
q = −1
bu i ld ( heap1 , value , V1 ) , bu i ld ( heap2 , value , V2 )
repeat :

RemoveFixed (f, p, q, C1, C2 , heap1 , heap2 )
i f not Empty( heap2 ) :

q = Root ( heap2 ) . va lue
RemoveChanging (g, q, C2, C1 , heap2 , heap1 )

until Empty( heap1 ) ∧ Empty( heap2 )
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about different types of groups with a single method. We are continuing to
search for node properties to include them into our list and the supporting
program and apply them on real-life data.

The method of generalized two-mode cores can be applied to different
real-life data. The input network for the method does not need to be a two-
mode network. The method can also be applied to an one-mode network
considered as a two-mode network. For example, in an authors’ citation net-
work the ’row’-authors can be considered as users, and the ’column’-authors
as (knowledge) providers. The use of generalized two-mode cores on a one-
mode network allows the analyst to find a subnetwork that is characterized
by two different property functions.

5.1 Social networks

Let us take a look at an example. Web of Science is a bibliographic database.
We used the data obtained in 2008 from this database for a query "social
network*" and expanded with descriptions of most frequent references and
bibliographies of around 100 social networkers. We constructed some two-
mode networks. Two among them are also the networks works × journals
and works × authors (193376 works, 14651 journals, and 75930 authors). We
multiply the transpose of the first network with the second network to get
the network journals × authors. A journal and an author are linked if the
author published at least one work in that journal. The weight of a link is
equal to the number of such works.

The simplest generalized two-mode cores are the ones with both property
functions the same. If we select

fA(v, C) = gA(v, C) = degC(v)

we get the ordinary (p, q)-cores. In a (p, q)-core are the journals that pub-
lished works of at least p different authors in this core and the authors that
published their works in at least q different journals in this core.

We determined the generalized two-mode core for functions fA and gA
and selected threshold values p = 85 and q = 3 for which we get the smallest
two-mode core. This is one of the generalized two-mode cores on the border
of (p, q) region. It determines a subnetwork of journals in which at least
85 authors (in this subnetwork) published their works, and of authors that
published their works in at least 3 different journals (in this subnetwork).
There are 4 such journals and 128 such authors. Journals in this two-mode
core are American Sociological Review (with degree 122), American Journal
of Sociology (112), Social Forces (90), and Annual Review of Sociology (85).
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In Table 5.1 those authors are listed that are linked to all 4 journals in this
two-mode core.

Table 2: Authors in the Core(85, 3; degC(v), degC(v)) that are linked to all
journals in this two-mode core.
1 Breiger, R. 10 Kandel, D. 19 Olzak, S.
2 Burt, R. 11 Keister, L. 20 Portes, A.
3 DiMaggio, P. 12 Knoke, D. 21 Reskin, B.
4 Fischer, C. 13 Lieberson, S. 22 Ridgeway, C.
5 Friedkin, N. 14 Lin, N. 23 Sampson, R.
6 Galaskiewicz, J. 15 Marsden, P. 24 Skvoretz, J.
7 Glass, J. 16 McPherson, J. 25 Thoits, P.
8 Kalleberg, A. 17 Mizruchi, M.
9 Kalmijn, M. 18 Nee, V.

If we want to consider the number of works (the sum of weights of links)
we can use

fB(v, C) =
∑

u∈N(v,C)

w(v, u)

and gB(v, C) = degC(v) stays the same. In this generalized two-mode core
with thresholds p and q are the journals that published at least p works of
authors in the core and the authors that published their works in at least q
journals in the core.

We determined generalized two-mode cores for these two functions. We
used the algorithm for one fixed threshold. We selected p ∈ {0, 1, 2, 5, 10}
and determined the generalized two-mode cores for all five values of the fixed
parameter p and the non-fixed parameter q. Fig. 2 presents the diagram of a
relation between the value of the parameter q and the size of the generalized
two-mode core. One can notice that the size of the generalized two-mode core
is not the same for any pair of values (p, q). Because coordinates axes are in
the logarithmic scale the point for the Core(0, 0; fB, gB) is not shown. Its size
is equal to the size of the set of all nodes. In Fig. 3 the Core(10, 12; fB, gB)
is shown for the two selected property functions. This is the smallest gener-
alized two-mode core for p = 10. In the Core(10, 12; fB, gB) are included all
journals in which authors in the core published at least 10 works in total; and
all authors that each published his/her works in at least 12 different journals
in the core. The thickness of links represents the number of works an author
published in a journal – a thicker link means more works. One can notice
that the journals data were not cleaned because the identification problem
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appears in Fig. 3 – the following pairs of journal identificators represent the
same journal:

• amer sociol rev, am sociol rev: American Sociological Review,

• amer j sociol, am j sociol: American Journal of Sociology,

• adm sci q, admin sci quart: Administrative Science Quarterly.

Identificator sociol method represents one of the two journals: Sociological
Methodology and Sociological Methods & Research.These two journals are
present in Fig. 3 also with identificators sociol methodol and sociological
methods respectively.
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3 4 6 7 8 9 11 13 16 23 27 32 38 45 64 150
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23
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54
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Core(5, q)
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Figure 2: A relation between the parameter q and the size of the generalized
two-mode core for the fixed values of parameter p and the property functions
fB and gB.

We could also select more complex property functions:

fC(v, C) = max
u∈N(v,C)

deg(u)− min
u∈N(v,C)

deg(u)

and

gC(v, C) =

∑
u∈N(v,C) w(v, u)∑
u∈N(v) w(v, u)

.

In the Core(p, q; fC , gC) are the journals that published approximately (for a
small value of p) the same number of works of each author in the core that is
linked to those journals. And in this core are the authors that published at
least q% of their works in journals that are in this core. This is one possible
way to search for journals and authors that are tightly connected.
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Figure 3: A generalized two mode core for p = 10 and q = 12 and for the
property functions fB and gB.

We determined the border of (p, q) region for generalized two-mode cores
for the property functions fC and gC . The border is displayed in Fig. 4.
At each boundary corner is written a pair of sizes of both sets of nodes in
a generalized two-mode core. For example the Core(70, 0.25; fC , gC) has 26
nodes in the first set and 118 nodes in the second set.

6 Conclusion
In the paper we propose a new direct method for the analysis of two-mode
networks. We provide an algorithm for determining generalized two-mode
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Figure 4: The border of the (p, q) region for fC and gC .

cores and present some examples of its application to real-life data. For the
efficiency on large sparse networks we exploit the sparsity. The presented
approach can be straightforwardly extended to r-mode networks for r > 2.

In our future work we intend to improve the efficiency of the algorithm
and extend it for a use of the weights measured in nominal scales. We plan
to make an experimental complexity analysis on random two-mode networks.
For this task we also need to implement the generation of random two-mode
networks of different types.

We already further elaborated Algorithm 3 to produce the nested gener-
alized two-mode cores for one fixed threshold that is shown in Algorithm 4.
We would like to improve this algorithm further – to produce all (p, q) pairs
that determine different generalized two-mode cores and to identify only the
boundary (p, q) pairs as they are shown in Fig. 1. We also intend to explore
the structure of the space of all generalized two-mode cores.

An implementation of the proposed algorithms in Python is available at
http://zvonka.fmf.uni-lj.si/netbook/doku.php?id=pub:core.
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