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Abstract

Data collection designs for social network studies frequently involve asking both parties to
a potential relationship to report on the presence of absence of that relationship, resulting in
two measurements per potential tie. When inferring the underlying network, is it better to
estimate the tie as present only when both parties report it as present or do so when either
reports it? Employing several data sets in which network structure can be well-determined from
large numbers of informant reports, we examine the performance of these two simple rules. Our
analysis shows better results for mutual assent across all data sets examined. A theoretical
analysis of estimator performance shows that the best rule depends on both underlying error
rates and the sparsity of the underlying network, with sparsity driving the superiority of mutual
assent in typical social network settings.

Keywords: network inference, measurement, locally aggregated structures, informant accu-
racy, error

Network inference is the problem of inferring an unknown graph from a set of error and/or
missingness-prone observations. This problem is of fundamental importance in the study of social
networks, where relationships between individuals, organizations, or other entities must typically
be inferred from self or proxy reports, archival materials, or other imperfect source of information.
Arguably, the most basic and familiar example of the network inference problem arises when at-
tempting to integrate self-reports from subjects, each of whom is asked to identify all others with
whom he or she has a particular relationship (or, in the case of a directed relationship, all others
to/from whom he or she respectively sends and/or receives ties). Such data has been widely col-
lected (see, e.g. Drabek et al., 1981; Reitz and White, 1989; Bernard et al., 1984; Killworth and
Bernard, 1979; Pattison et al., 2000), and poses a basic challenge for the analyst: given two reports
on the state of a given relationship, what is to be done when the subjects disagree? Krackhardt
(1987) famously formalized two basic strategies for the analysis of such data (leading to respective
estimators of the underlying network): regard an edge as present if either party reports it (the
union rule); or regard an edge as present if and only if both parties report it (the intersection
rule). While one or another rule has in some cases been argued to be preferred on substantive
grounds, there has been little systematic investigation of how the rules perform on empirical data,
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and in particular on the relative performance of these rules in inferring network structure under
realistic conditions.

This paper seeks to address this gap, employing interpersonal networks whose complete struc-
tures can be well-estimated through hierarchical Bayesian models (Butts, 2003) to assess the ac-
curacy of these simpler (but more widely applicable) rules. Our findings demonstrate that the
intersection rule (“mutual assent”) generally outperforms the union rule (“unilateral nomination”)
for the networks studied here - a surprising result, given that our informants are not prone to
making one particular type of error over another. We resolve this discrepancy by showing that the
sparsity of the network is key to the performance of the two rules, with the intersection rule dom-
inating the union rule for networks in which the opportunities for false positives greatly outweigh
the opportunities for false negatives.

1 Background

Social network analysis is intrinsically and trivially dependent on the ability to accurately measure
the structure of social relationships. Despite the rise of network measurement via online social
networks, mobile devices, and other sources of observational data, collection of self-reports via so-
ciometric surveys continues to be a popular method for network measurement in a wide range of
settings. At least since the seminal studies of Bernard, Killworth, and Sailer– who provocatively (if
hyperbolically) concluded that “there is no evidence that people know who their network connec-
tions are” (Bernard et al., 1984)–error from informant observations has been known to be a major
challenge in network data collection and subsequent inference. Though subsequent studies (e.g.
Freeman et al., 1987; Romney and Faust, 1982) have tempered the extremity of this conclusion, it
is clear that error rates are substantial enough to warrant concern for social network research. With
self-report (i.e informants reporting on their own ties) remaining a popular method of network data
collection, there is an ongoing need for simple methods that can maximize the accuracy of networks
inferred from this type of information.

Although highly accurate estimates of network structure can be obtained when many measures
of each potential tie are available (e.g., from cognitive social structure data - see Butts, 2003),
simple self-report designs allow only two observations per edge variable (one for each party involved
in the potential edge). The question, then, is how best to integrate these reports to infer the
underlying network. Although many techniques are possible, we here focus on simple, easily used
methods of aggregation that (1) estimate the state of an edge variable as being consistent with
informants’ reports where they agree, and (2) resolve disagreements via a simple uniform rule.
Such strategies lead to estimators1 referred to by Krackhardt (1987) as locally aggregated structures
(LAS), the union and intersection rules (U-LAS, I-LAS) being the special cases mentioned above.
LAS estimators can be employed for both both undirected relations (when both parties report
on the presence/absence of a single undirected edge) and directed relations (when both parties
report on their incoming/outgoing ties); indeed, many networks collected in the former manner are
erroneously treated as directed, where a LAS or other estimator of an underlying directed relation
should be employed. The present work is thus applicable to any situation in which we obtain edge
observations associated with both potential endpoints.

1Krackhardt (1987) does not explicitly treat the LAS as a family of estimators per se, but employs them in a
manner consistent with this interpretation.
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1.1 Formal Framework

To formalize the above, our network inference problem may be summarized as follows. Let G =
(V,E) represent an unknown network of interest, with fixed and known vertex set V and unknown
edge set E. Without loss of generality, we will represent G via its adjacency matrix, Θ; where G
is undirected, Θ is constrained to be symmetric. Here, we assume the vertex set to be fixed and
the edge set unknown. Informant reports are represented via an informant by sender by receiver
adjacency array, Y , such that Yijk = 1 if i reports that the edge from j to k is present (with 0
otherwise). In our setting, we assume that informants report only on their own ties, and hence only
Yiij and Yjij (and their reciprocating edge variables) are employed. The locally aggregated structure
(LAS) introduced by Krackhardt (1987) has been a popular network inference tool for aggregating
an ego’s and alter’s judgments from such data. While this has traditionally been explored through
cognitive social structures (which collect an informant’s perception of the entire social structure),
the only responses needed from an informant are the ties they report sending out and the ties they
perceive others send to them. In terms of the above, the union and intersection LAS estimators
are defined as follows:

Θ̂U
ij = 1− (1− Yiij)(1− Yjij) (1)

Θ̂I
ij = YiijYjij (2)

As noted above, Θ̂Uestimates an edge as being present when either party reports it, while Θ̂Idoes
so only when both parties agree. Both rules are simple and easily understood, but may lead to
very different estimates of network structure. If one must employ either Θ̂Uor Θ̂I , which should
one use? To determine this, we consider the accuracy of each estimator under realistic conditions.

2 LAS Accuracy: Some Basic Theory

It is not immediately clear which LAS method would provide a more accurate estimate of the
unknown graph. If informants uniformly make more false positive errors (reporting that an edge
exists when it does not) relative to their false negative rate (reporting that an edge does not exist
when it does) in their edge observations, then it would seem the LAS intersection would obtain an
estimated graph close to the unknown graph. Conversely, if informants make a greater number of
false negative errors relative to the false positive rate, then the LAS union would be expected to
provide a closer estimate to the unknown graph. This intuition follows from the response of the
respective rules to informant error rates on a per-edge basis. Define the false positive and false
negative error rates for an arbitrary informant i by

e+i = Pr(Yiij = 1|Θij = 0) = Pr(Yiji = 1|Θji = 0)

e−i = Pr(Yiij = 0|Θij = 1) = Pr(Yiji = 0|Θji = 1),

with e = (e+, e−) being the full set of error rates. Assuming that errors occur independently, it
then immediately follows that the per-edge error rates for Θ̂Iand Θ̂Uare given by

Pr(Θ̂I
ij 6= Θij |e) =

{
e+ie

+
j Θij = 0

1− (1− e−i)(1− e−j) Θij = 1

Pr(Θ̂U
ij 6= Θij |e) =

{
1− (1− e+i)(1− e+j) Θij = 0

e−ie
−
j Θij = 1

.
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Figure 1: Single edge-variable error rates for union and intersection rules, as a function of informant
error rates. The intersection rule is robust to false positive errors but vulnerable to false negative
errors, with the reverse holding for the union rule.

Where error rates are approximately equal across informants, Θ̂I false positive rates scale with the
square of the individual false positive rates, with the same holding mutatis mutandis for Θ̂Uand
false negative rates; while this can result in substantial suppression for these types of errors, errors
of the opposite type (false negatives for Θ̂I , false positives for Θ̂U ) are correspondingly magnified.
This is illustrated graphically in Figure 1, which shows the “worst case” probabilities of a correct
inference as a function of informant accuracy (with both informants assumed to have the same error
rates). In the typical setting for which e− > e+—i.e., omission of true ties, due e.g. to forgetting,
is more common than fabrication or confabulation of nonexistent ties—-this analysis suggests that
Θ̂U should be more accurate than Θ̂I (perhaps by a large margin).

There is, however, another aspect to this problem. Consider the expected total (Hamming)
errors for Θ̂Iand Θ̂Ugiven the true graph state:

E
∑

(i,j)∈D

∣∣∣Θ̂I −Θ
∣∣∣ =

∑
(i,j)∈D

[
Θij

(
e−i + e−j − e−ie−j

)
+ (1−Θij) e

+
ie

+
j

]
(3)

E
∑

(i,j)∈D

∣∣∣Θ̂U −Θ
∣∣∣ =

∑
(i,j)∈D

[
Θije

−
ie
−
j + (1−Θij)

(
e+i + e+j − e+ie+j

)]
(4)

where D is the set of potential edges. As a simplifying assumption, let us take all informants
to have the same error rates (hence e−i = e−j = e− and e+i = e+j = e+ for all i, j). Let
M(Θ) =

∑
(i,j)∈D Θij be the number of edges in the true graph, and N(Θ) = |D| −M(Θ) the

corresponding number of nulls. In this scenario, Eq. 3 and 4 reduce to

E
∑

(i,j)∈D

∣∣∣Θ̂I −Θ
∣∣∣ = M(Θ)

(
2e− − e−2

)
+N(Θ)e+

2

E
∑

(i,j)∈D

∣∣∣Θ̂U −Θ
∣∣∣ = M(Θ)e−

2
+N(Θ)

(
2e+ − e+2

)
.

Where the numbers of edges and nulls are similar (i.e., near density 0.5), the edgewise logic invoked
above holds. But this is not always the case. To see why, let us consider the case in which the

4



expected Hamming error under the intersection rule is greater than under the union rule, i.e.E ∑
(i,j)∈D

∣∣∣Θ̂I −Θ
∣∣∣
 >

E ∑
(i,j)∈D

∣∣∣Θ̂U −Θ
∣∣∣
 .

From the above, it follows that this condition corresponds to

M(Θ)
(

2e− − e−2
)

+N(Θ)e+
2
> M(Θ)e−

2
+N(Θ)

(
2e+ − e+2

)
,

and hence

M(Θ)
[
e− − e−2

]
> N(Θ)

[
e+ − e+2

]
M(Θ)

N(Θ)
>
e+(1− e+)

e−(1− e−)
, (5)

which implies that, for sparse graphs (N(Θ) � M(Θ)) the intersection LAS may outperform
the union LAS even when e− > e+. Intuitively, this is is because the number of false positive
opportunities is much larger than the number of false negative opportunities in a sparse graph—
since the intersection LAS suppresses false positives, it eventually becomes favored at sufficiently
low densities. This is illustrated graphically in Figure 2, which shows the maximum density at
which Θ̂Ioutperforms Θ̂Uunder the simplified scenario of Eq. 5. As expected from the edgewise
analysis, the impact of relative error rates is dominant on LAS performance for moderate densities;
however, for densities below ≈ 0.1, the intersection LAS outperforms the union LAS over a very
wide range of informant error rates. Since densities this low (or lower) are extremely common in
social network studies, this suggests that the intersection LAS may outperform the union LAS in
many real-world settings.

3 An Empirical Study of LAS Accuracy

Although the above theoretical results are intuitive, they depend upon a number of simplifying
assumptions. How does LAS accuracy play out in the real world? To address this, we conduct
an empirical analysis of cognitive social structure data from several studies of two types of rela-
tions (friendship and advice-seeking ties) in organizations. We use statistical models based on the
complete data (i.e., all informant reports on all edge variables) to estimate the underlying network
structure, and then assess the relative accuracy of Θ̂Iand Θ̂Ubased on these estimates. As we
show, the empirical results from this analysis are consonant with our theoretical results regarding
the superiority of the intersection LAS in sparse graphs.

3.1 Data and Methods

To estimate the true network, we utilize a variant of the Bayesian Network Accuracy Model (BNAM)
from Butts (2003) with the efficiency-enhancing graph mixture priors of Butts (2017), where we
separately estimate the error rates of each informant self versus proxy ties. The foundations of the
model are similar to that of cultural consensus theory (Romney et al., 1986), and more specifically
the generalized Condorcet model described in Batchelder and Romney (1988). As in these models,
each informant is assumed to report on the state of each variable (here, each potential i, j edge),
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Figure 2: Maximum density at which Θ̂I has lower expected Hamming error than Θ̂U , as a function
of error rate. For sufficiently sparse graphs, Θ̂Ican be superior even when false negative rates are
high. (Note this pattern reverses when e− + e+ > 1, in which case individuals are perversely
informative.)
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erring independently with rates that depend upon the informant and the true state. In the BB-
NAM case, these are parameterized as informant-specific false positive and false negative rates (as
described in section 2). Priors are placed on the error rates, and on the underlying graph structure;
the former are here taken to be iid beta distributions, and the latter a continuous mixture of U |man
graphs of varying density and reciprocity. The resulting joint posterior provides estimates of both
informant error rates and the true graph, given Y (the array of informant reports). Formally, the
model can be described as

p(γ|αγ) = Dirichlet(γ|αγ)

Pr(Θ|γ) =
∏

j,k∈D′
[ΘjkΘkjγ1 + (Θjk(1−Θkj) + (1−Θjk)Θkj) γ2 + (1−Θjk)(1−Θkj)γ3]

Pr(Y |e+, e−,Θ) =
N∏
i=1

∏
(j,k)∈D

[
Θjk

[
Yijk(1− e−ijk) + (1− Yijk)e−ijk

]
+ (1−Θjk)

[
Yijke

+
ijk + (1− Yijk)(1− e+ijk)

]]
where αγ is a 3-vector of hyperparameters, γ is a fully latent vector of prior dyad type frequencies,
D′ is the set of undirected dyads (in contrast to the set of directed dyads, D), and other terms are
as defined above. The assumption of homogenity of (respectively) self versus proxy report error
rates gives us

e+ijk =

{
e+is ifi ∈ {j, k}
e+ip otherwise

e−ijk =

{
e−is ifi ∈ {j, k}
e−ip otherwise

,

where e+is, e
−
is are respectively i’s self-report error rates, and e+ip, e

−
ip are i’s proxy report error

rates. We complete the model by placing independent Beta priors on these rates, giving

p(e+, e−|αe+ , βe+ , αe− , βe−) =
n∏
i=1

[
Beta

(
e+is|αe+s

, βe+s

)
Beta

(
e−is|αe−s

, βe−s

)
Beta

(
e+ip|αe+p

, βe+p

)
Beta

(
e−ip|αe−p

, βe−p

)]
.

Samples from the joint posterior are obtained by a Metropolis within Gibbs algorithm, following
the strategy of Butts (2017) as described below.

To compare LAS estimators, we employ data collected from eight networks in four studies: one of
an entrepreneurial firm, two of technological firms, and one of a university group, hereby referred
to respectively as “Silicon Systems,” “High Tech Managers,” “Italian University,” and “Pacific
Distributors” (Krackhardt, 1987, 1992; Casciaro, 1998; Kilduff and Krackhardt, 2008). Each of the
four studies contains CSS data on advice-seeking and friendship relations. Silicon Systems (SS) was
originally analyzed with 36 informants, but information on informants 13, 24, and 35 was missing
for both friendship and advice networks, leaving a total of 33 informants.2 Italian University (IU)

2The three non-responding informants and others’ perceptions of their ties were removed upon the release of this
dataset to the public, and thus inference cannot be done to approximate the data we would have seen. We treat them
as absent by design.
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contains 25 informants. Pacific Distributors contains 47 informants. As organizations are common
contexts for network studies, we regard these settings as broadly comparable to others commonly
used by network researchers. We model both friendship and advice-seeking as directed relations,
since both were collected using directed prompts (e.g. “to whom does X go for help and advice at
work,” “whom does Y consider a friend”).

Informant self-report and proxy report error rates for all eight networks are modeled as drawn a
priori from iid Beta distributions as described above, with α and β hyperparameters set to 1 and 11,
respectively. As noted above, we employ the U |man mixture prior for the network structure, with
a Jeffreys hyperprior on the dyad type rates; this provides a minimally informative, “flat” prior
with respect to density, reciprocity, and fine structure. The BNAM utilizes a MCMC procedure to
jointly estimate the informant error rate parameters as well as the criterion graph. We take and
discard 500 draws for our burn-in sample, and then sample additional 1000 draws from the joint
posterior distribution in each case. We verify MCMC convergence via the R̂ statistic.

We employ the posterior network draws from the BNAM as our criterion, comparing the LAS
intersection and LAS union against each draw; the distribution of error rates over posterior draws
is thus a posterior estimate of the respective accuracies of Θ̂Iand Θ̂Uon each data set. The full
BNAM estimate on the complete set of informant self and proxy reports represents the best available
estimate of the total graph - and has been shown to be highly accurate in simulation studies (Butts,
2003, 2017) - providing a basis for assessing the much more information-limited LAS estimates. We
measure the error of the LAS estimates versus the estimated criterion by the Hamming distance
between the two graphs (i.e., the number of edge variables that would have to be changed to convert
one into the other). The LAS estimator with lower posterior expected Hamming error is estimated
to be more accurate for the case in question.

3.2 Results

We begin our presentation of results by considering our informants’ estimated error rates (since
these are expected to play a major role in LAS performance); LAS performance itself is then
presented in section 3.2.2.

3.2.1 Error Rates

We begin by taking posterior draws for the BNAM for each network, and examining the informant
error rates; as shown in section 1.1, these are expected to be strongly related to LAS performance.
One immediate observation is that there are substantial differences in false negative rates for proxy
vs. self-reports in all networks (Figure 3). While there is considerable individual variability, indi-
viduals are on average substantially more likely to miss ties when reporting on others than when
reporting on themselves. By turns, false positive rates are similar on average for self versus proxy
reports, although there is a small but consistent tendency towards over-reporting of self-ties in all
networks; the presence of a somewhat elongated right tail in each network also suggests that some
individuals are especially prone to over-reporting for ties involving themselves vs. third party ties.
This last result is in line with the conclusions by Kumbasar et al. (1994), who found evidence that
informants have a higher propensity to make false positive errors when describing their own ties.

Figure 3 shows the differences between self and proxy reporting, but not absolute error levels;
these are presented in Figure 4. As LAS performance depends only on self-report error rates, we
focus on those here. Overall, we see that the two error rates seem to be similar in most networks,
with false negatives being slightly more prevalent on average. In one case (Pacific Distributors
friendship) we see much higher false negative rates than false positive rates for most informants
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Figure 3: Distribution of differences between informants’ posterior mean error rates when reporting
on their own ties versus reporting on ties between third parties. More positive numbers indicate
higher error rates for self-report versus proxy reports; 0 indicates equal error rates. Means are shown
by vertical lines. Study labels refer respectively to High-tech Managers (HM), Silicon Systems (SS),
Pacific Distributors (PD), and Italian University (IU). The two relations measured were advice-
seeking (AD) and friendship (FR).

(a pattern typical of proxy report error rates), but the reverse is found in two cases (High-tech
Manager advice and Italian University friendship). It is noteworthy that these outlying cases
are associated neither with organizational context nor relation, suggesting that they stem from
idiosyncratic factors. It is useful to contrast this situation with that for proxy reports, which are
shown for the same networks in Figure 5. As one can observe in the proxy error reports, the false
negative error rates dwarf the false positive error rates in magnitude. This is consistent with the
general trend in global error rates estimated in Butts (2003). As most reports in a CSS datum will
be proxy reports, it stands to reason that the global error rates derived from Butts (2003) would
be closer to the proxy error rates that we display here.

To the extent that false positive and false negative error rates are similar for self-report, our
theoretical results suggest that the best-performing LAS will be governed by sparsity. To examine
this question, we now turn to our empirical performance comparison.

3.2.2 LAS Performance Comparison

We present the Hamming error distribution of the two aggregation methods relative to the criterion
in Figure 6,s with the mean Hamming error of the two methods being presented in Table 1. Although
we focus on the performance of the LAS methods for aggregation, for completeness, we present the
Hamming error distribution of the networks estimated from naive self-report (i.e., own report of
outgoing ties) in Figure 3.2.2. We see that the LAS intersection consistently provides a more
accurate estimate of the criterion graph relative to the LAS union. In addition, the posterior
Hamming error distributions are fairly well-localized around their means.

The definitive superiority of the LAS Intersection rule despite the relative similarity of self-report
error rates suggests an origin in sparsity (i.e., having more opportunities to commit false positive
vs. false negative errors). As Table 2 shows, our networks are indeed fairly sparse, with estimated
densities less than 0.3 in all cases. Thus, even in the Pacific Distributor friendship network, where
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Figure 4: Marginal posterior distributions of informant false positive (FP) and false negative
(FN) self-report error rates for each of the 4 organizational settings: Silicon Systems (SS), High-
tech Managers (HM), Italian University (IU), and Pacific Distributors (PD). Means indicated by
vertical lines.

Figure 5: Marginal posterior distributions of informant false positive (FP) and false negative
(FN) proxy error rates for each of the 4 organizational settings: Silicon Systems (SS), High-tech
Managers (HM), Italian University (IU), and Pacific Distributors (PD). Means indicated by vertical
lines.
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Figure 6: Posterior Hamming error distribution for the LAS Intersection and LAS Union methods
relative to the criterion graph estimate (from the BNAM) for the various datasets, separated by
environment and type of relation measured. The four environments were High-tech Managers (HM),
Silicon Systems (SS), Pacific Distributors (PD), and Italian University (IU). The two relations
measured were advice-seeking (AD) and friendship (FR).

Dataset Union Intersection Self-Report

HM-AD 166 75 124
HM-FR 106 35 72
SS-AD 204 93 141
SS-FR 173 87 121
PD-AD 693 392 583
PD-FR 271 167 232
IU-AD 91 27 58
IU-FR 155 46 101

Table 1: Hamming error of the LAS Union or LAS Intersection aggregation relative to the criterion
graph (estimated as the BNAM central graph) for the various datasets, separated by environment
and type of relation measured. The four environments were High-tech Managers (HM), Silicon
Systems (SS), Pacific Distributors (PD), and Italian University (IU). Lower values indicate better
performance. The two relations measured were advice-seeking (AD) and friendship (FR).
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Dataset Density FP/FN Opportunities

HM-AD 0.286 2.50
HM-FR 0.119 7.40
SS-AD 0.123 7.13
SS-FR 0.121 7.26
IU-AD 0.096 9.42
IU-FR 0.157 5.37
PD-AD 0.257 2.89
PD-FR 0.112 7.93

Table 2: Posterior mean density estimates of the criterion network via the BNAM, separated by
environment and type of relation measured. The four environments were High-tech Managers (HM),
Silicon Systems (SS), Pacific Distributors (PD), and Italian University (IU). The two relations
measured were advice-seeking (AD) and friendship (FR). All networks are sparse, providing from
2.5 to almost 9.5 times as many opportunities for false positive errors than false negative errors
(third column).

the average false negative rate was more than twice as large as the average false positive rate, we
see that there were nearly nine times as many opportunities for these false positives to occur as
there were for false negatives. One hence obtains superior performance from suppressing the error
that informants have more chances to make, as seen in Figure 6. Although extremely high ratios
of false negative to false positive rates would lead to the opposite result, Table 2 shows that these
rate differences would need to be very large to overcome the opportunity effect.

4 Discussion and Conclusion

With this study we sought to determine which LAS method would reproduce an unknown criterion
graph more accurately. Across all eight of the networks examined here, we found that the LAS
Intersection outperformed the LAS Union. A cursory examination of the density of the graphs
indicate that they are all relatively sparse. As the sparsity of the analyzed graphs serves to create
more opportunities for false positives, this creates conditions that are more favorable for the LAS
Intersection. Although this would be outweighed by a sufficiently high false negative rate (relative
to the false positive rate), this disparity must become quite large to overcome the levels of sparsity
observed in typical settings. Importantly, we do not find evidence of this disparity in self-report
errors, implying that the LAS Union is unlikely to be superior except in networks for which the
density approaches or exceeds 50%. Our findings are in line with Equation 5, which gives an
approximate criterion for the conditions under which one or the other rule is expected to dominate.

It should be noted that the results given here focus exclusively on Hamming error—i.e., the
number of edge variables incorrectly inferred—and may not apply to all analyses. In particular,
network measures that are differentially sensitive to false positive vs. false negative errors may
have different optimal procedures. When in doubt, a simulation study should be performed prior
to analysis.

Although one LAS may be better than another in a given setting, this does not imply that the
LAS is per se the best tool to use: indeed, as shown in Figure 6, even the Intersection LAS shows
high levels of Hamming error in all cases examined here. Where possible, we recommend obtaining
as many measures of each edge variable as possible (either via complete CSS Krackhardt (1987) or
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arc sampling designs Butts (2003)) and subjecting them to model-based inference. In many cases,
however, analysts must make due with only self-report data. In these settings, the Intersection
LAS will often outperform the Union LAS, and we recommend the former over the latter so long
as the networks in question are suitably sparse.
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