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Preface 

A novel method for classification of speech phonemes, based on the combination of 

dynamical systems theory and filter banks, is introduced. The benefit of this approach is 

seen in its ability to model nonlinear characteristics of speech, something that traditional 

methods cannot do. The modeling tool that provides this capability is the reconstructed 

phase space. This space carries all the dynamical information present in the signal’s 

underlying system. The reconstructed phase spaces used for modeling and classification 

of the phonemes are built using frequency sub-banded signals that are generated using a 

set of band-pass filters. This approach is motivated by empirical evidence that suggests 

humans process and recognize speech in sub-bands. Modeling and classification is 

performed on the sub-banded reconstructed phase spaces using Gaussian Mixture 

Models, and the results of the classifications for each sub-band are combined to form an 

overall classification. Several methods for the combination of the sub-band classifications 

are examined, and it is found that an un-weighted linear combination produces 

classification accuracies that are significantly higher than those of a classification system 

using reconstructed phase spaces of unfiltered signals. Results also demonstrate that the 

proposed phoneme classification system is competitive with state-of-the-art approaches. 
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1. Introduction 

1.1. Automatic Speech Recognition 

1.1.1 Overview 

 Automatic speech recognition (ASR) is the process of converting human speech 

signals into text. The speech begins as an acoustic wave and is transformed into an 

electrical signal by a microphone. The electrical signal is then sampled with an analog-to-

digital converter. Signal processing methods, such as linear prediction and cepstral 

analysis, are used to extract features from the digitized signal [1]. The final step in this 

process involves pattern recognition of the parameterized signals to produce a hypothesis 

of the utterance. 

 Speech recognition has many potential applications, in a variety of settings. Some 

examples include dictation, hands-free computer control, and machine translation. Each 

of these relies on accurate translation of speech into text, which may be processed further 

to extract semantic information. 

Dictation systems convert speech into text as part of a letter, report, or some other 

document. This task is of special significance to members of the medical and legal 

professions, as they often depend on trained human transcriptionists, who must be 

familiar with the vast lexicons of the profession. 

Hands-free computer control systems allow users to execute basic operations on 

computers or embedded systems without the use of a mouse, keyboard, or keypad. 

Booking of flights using telephone airline reservation systems and buy/sell requests for 

stock trading over the phone are common tasks. Also, hands-free control is important for 

the physically disabled who cannot use traditional computer terminal interface devices. 
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Another task that requires effective speech recognition is machine translation, 

which is the task of automatically translating spoken words from one language into 

another. The significance of this application is apparent given the increasing globalization 

of the economy, though a practical machine translation system is years away from 

realization. This task depends not only on accurate speech-to-text conversion, but also 

inter-language conversion. 

 Despite the many benefits that could be gained from implementing speech 

recognition interfaces in computers and embedded systems, ASR has not yet seen 

widespread acceptance in the commercial world. The reason for this is that ASR systems 

are simply not accurate enough to be effective tools for the average user. Several factors 

make speech recognition a difficult problem. Recognition rates of continuous, natural 

speech with multiple speakers, large vocabularies, and noisy environments are low, often 

below 75% word accuracy [2], especially when the conditions present at the time of use 

do not match the conditions used to train the system, which is often the case. 

1.1.2 Traditional Systems 

Traditional ASR systems use front-end acoustic parameterization methods that are 

based on a switched-excitation linear source-filter model of human speech production [1]. 

This model, which is depicted in Figure 1-1, treats the glottis, the excitation source, as a 

pulse train for voiced speech and white noise for unvoiced speech. Voiced speech 

includes vowels and some consonants. Unvoiced speech consists primarily of fricatives 

such as 'f' and 's'. The signal produced by the glottis enters the vocal tract, which is 

modeled as a linear time-invariant (LTI) filter. The vocal tract shapes the spectrum of the 

signal, giving it a distinct sound. 
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Pulse Train 

White Noise 

LTI Filter 

S(n) 

Vocal Tract Excitation 
 

Figure 1-1. Linear model of speech production. 

 In this model of speech, the excitation is separated from the vocal tract. For 

English phonemes, the excitation is traditionally seen as not providing useful features for 

recognition. Rather, it is believed that the relevant information comes from the vocal 

tract. Cepstral coefficients, which are described in more detail in chapter 2, and 

specifically Mel-frequency cepstral coefficients (MFCCs), are a standard set of features 

that are produced by an ASR system's front-end parameterization algorithm [1]. Cepstral 

analysis is particularly attractive because it allows for separation of the excitation and 

vocal tract characteristics. These coefficients correspond directly to the general spectral 

envelope of a segment of speech. Because cepstral coefficients are computed using linear 

signal processing techniques, they are unable to capture nonlinear or higher-order 

statistics of the speech signals [3]. Nonlinear processes do not obey the principle of 

superposition, and cannot be fully represented by power spectra. Traditionally, it has 

been believed that speech waveforms contain little relevant nonlinear information. It has 

recently been shown, however, that this is not true, and that significant nonlinear 

characteristics do exist in human speech signals [4-6]. 
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1.2. Nonlinear Analysis of Speech Signals 
Recently, experimental evidence has begun to reveal significant nonlinear 

characteristics present in speech signals. This work has investigated whether speech 

signals can be modeled as nonlinear or even chaotic processes. Chaotic systems are very 

sensitive to initial conditions, and often appear to be random processes, even though they 

are deterministic. Because of the highly sensitive nature of some chaotic measures to 

noise [7], the presence of nonlinear and chaotic characteristics in speech is not easily 

confirmed. Different studies have produced varying conclusions about the question of 

chaotic components in speech, but the postulate that nonlinear components are present 

appears more solid [5]. This phenomenon is the basis of the work presented here. 

Following the discovery of the presence of nonlinear characteristics, several 

attempts have been made at incorporating nonlinear-based features into recognizers. 

Lyapunov exponents[8-10], fractal and other dimensions [11], and polynomial prediction 

coefficients [12] are among the feature types that have been examined. Though 

recognition systems based solely on nonlinear features often show substandard 

performance [13], those that use nonlinear features in combination with the traditional 

features, such as MFCCs, have shown improvements over systems based exclusively on 

spectral features [11, 13]. 

Phase space reconstruction is one of the analysis tools that has been used for 

nonlinear speech signal analysis [14]. Phase space reconstruction is based in dynamical 

systems theory, and can be used as a tool for estimating the dynamical invariants of a 

system, such as Lyapunov exponents and dimension [15]. However, in this thesis, a more 

direct approach is taken by modeling the natural measure of the structure resulting from 

phase space reconstruction. 
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1.3. Contributions of This Thesis 

1.3.1 Problem Statement 

The goal of this work is to develop an acoustical analysis method that is not 

bound by the limits of linear techniques and improves the phoneme recognition 

capabilities of ASR systems. The nonlinear analysis techniques used here are based on 

reconstructed phase spaces (RPS’s), which were originally developed in the field of 

dynamical systems. 

1.3.2 Dynamical Systems 

 Dynamical systems are often represented with a state structure. This state 

structure, or state space, determines how the state variables of the system change through 

time. Mathematically, a dynamical system is represented by a set of differential or 

difference equations, expressed in terms of a finite set of state variables. The number of 

state variables determines the dimension of the system. These systems are typically 

treated as deterministic, i.e. if the state of the system at time t0 is known, the state of the 

system at any time t1 is completely predictable.  

 Unfortunately, the entire state space of almost all real systems cannot be 

observed. Often, only one state variable is available. It would seem that accurate 

characterization of the system is impossible in this case, especially if the dimensionality 

and nonlinearity of the system are high. However, with the use of a transformation on the 

observable variable known as a time-delay embedding [16], more information about the 

system is available than one might expect. This transformation is defined as 

 2
, ( ) ( ( ), ( ( )),..., ( ( )),d

y x y x y x y xϕ ϕ ϕΦ =    
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where the vector x is the current system state, φ is the state update function, and y is the 

function that transforms a state x into an output variable. A structure that is topologically 

equivalent [16, 17], to the original system state space is created, given certain 

assumptions [16, 18]. This structure is called a reconstructed phase space (RPS). An 

example RPS of a vowel is shown in Figure 1-2. This RPS is of dimension two, with a 

time-lag of six. The embedding dimension and the time-lag of an RPS determine its 

shape, and affect its representation capability. These parameters will be discussed in 

further detail in chapter 3. 

Figure 1-2. Example of a 2-dimensional, lag 6 RPS of the phoneme 'ah'. 

 As stated previously, this RPS can be used to estimate the dynamical invariants 

[7] of the system. This work uses the shape or density of the RPS as a basis for modeling 

and classification of speech phonemes. Only recently has this approach been taken in the 

realm of speech recognition [19, 20].  
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This thesis extends previous work in this area by combining this RPS-based 

method with filter banks. A set of front-end band-pass filters are applied to the speech 

signals to be modeled before phase space reconstruction. The RPS’s in each of these sub-

bands are modeled and classified using statistical methods, and the classifications of each 

sub-band are fused to reach a final decision. The specifics of this process, and the 

advantages of this approach, are the subject of this thesis. 

The remainder of this thesis is as follows. Chapter 2 provides a more thorough 

background on automatic speech recognition and dynamical systems. In chapter 3, the 

methods applied here for the classification of speech sounds are presented. Chapter 4 

presents and analyzes the results of experiments used to test the proposed methods. 

Finally, chapter 5 provides a conclusion and discusses possible future work. 
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2. Background 

2.1. History of ASR 
Automatic speech recognition is a task that has been studied for many decades. In 

1952, a system was built at Bell Labs to recognize spoken digits [1]. It used the long-term 

spectral moment in two frequency bands as acoustic features, and was built using analog 

electronic components. Given the level of technology at the time, and the simplicity of 

the system, it achieved a surprisingly high accuracy rate of 98% for digits uttered by a 

single speaker separated by pauses. 

 Following this, speech recognition systems were advanced by improvements in 

acoustic parameterization and added language models [1]. Short-term spectral estimates 

became popular acoustic features, computed using filter banks at first, then using signal 

processing techniques like the Fast Fourier Transform (FFT). In the 1960’s, 

homomorphic or cepstral analysis was developed [3]. Since then, cepstral-based feature 

sets have become the standard acoustic analysis technique for speech recognition.  

 Methods for pattern recognition were also developed and adopted for speech 

recognition, namely dynamic time warping (DTW) and hidden Markov Models (HMM) 

[1]. The HMM, the current standard used for pattern recognition in automatic speech 

recognition (ASR) systems, is a statistical analysis tool that works well for continuous 

speech recognition, where the durations of each word are not known in advance, and 

word boundaries are ambiguous. 

 Only recently has ASR entered the commercial world. The first dictation system 

available to consumers was delivered in 1990 by Dragon Systems [21]. Unlike today’s 

dictation software, it could not handle continuous speech. Instead, users had to pause in 
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between each word. A few months later, IBM released a competing system, also limited 

to isolated word recognition [21]. In 1997, Dragon Systems released “Naturally 

Speaking”, the first continuous speech dictation system [22]. 

 In 1996, Charles Schwab and Nuance partnered to develop the first major 

Interactive Voice Response (IVR) system for the use of investors who wished to process 

transactions over the telephone [21]. This type of system requires a fixed dialogue, with a 

limited grammar, which is dictated by the options a user has for control of the dialogue.  

 Despite the strides made over the past decades, current ASR systems are still 

inadequate for many desired tasks. Telephone ASR systems are often limited by the 

number of responses that the application can recognize, and dictation systems require 

long training times for a single user.  

2.2. Why ASR is difficult 
 Many factors contribute in making automatic speech recognition difficult. Among 

these are large vocabularies, additive and convolutional noise, coarticulation, and varying 

speaker characteristics. Research in speech recognition has become extensive enough that 

much of the current research focuses on solving one of these problems in isolation. 

Simple tasks such as speaker-independent isolated digit recognition in low noise 

environments can be handled easily by unsophisticated ASR systems. When the task 

becomes more difficult, however, even today’s state-of-the-art systems do not perform 

well. 

 One major issue for ASR is the continuous nature of human speech. Humans do 

not pause between words when speaking. Nor do they always speak at the same rate. 

Because of this, recognition systems must be able to determine word boundaries and 

phoneme durations given nothing but the acoustic waveform of an utterance. 
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Additionally, a phenomenon known as coarticulation accounts for additional complexity. 

Coarticulation is caused by the constant motion of vocal tract articulators during speech. 

The vocal tract does not produce phonemes with a series of stationary configurations, but 

instead varies its shape smoothly through time. Because of this, the actual sound of a 

phoneme is dependent on the preceding and following phonemes.  

 Another complicating factor is that different speakers have varying voice 

characteristics. The vocal tract length, glottal structure, mouth configuration, and learned 

speaking patterns all affect the way a person’s speech sounds. Since it is desirable for 

recognition systems to be able to recognize speech from users that have not been 

previously encountered by the system, a recognition system must be able to perform 

recognition using features that are not dependent on the speaker. 

 Large vocabularies are another issue that recognition systems must handle. There 

are a set number of basic sounds, or phonemes, that are always part of any language. 

These sounds are fundamental to a language, and are relatively limited in number, around 

40 in English [23]. The words in a language are built from these phonemes, but they are 

not so limited. The English language, for example, contains more than 450,000 words 

[24]. For most applications, the vocabulary is limited to far fewer than all 450,000, but 

even 20,000 words, a reasonably modest number, can make for a challenging vocabulary. 

As the number of words increases, so do the number of words that are very nearly the 

same acoustically, resulting in an increase of the word error rate. 

 This thesis addresses the task of speaker independent continuous speech 

recognition (CSR). This task is appropriate for many applications of speech recognition, 



Chapter 2 Background 11 

since users often wish to be able to speak in a conversational manner, without strict limits 

on the vocabulary, or having to spend large amounts of time training a system. 

2.3. Traditional Approaches 

2.3.1 Speech modeling 

 Speech recognition can be decomposed into two distinct but not disjoint domains: 

acoustic modeling and language modeling. Acoustic modeling is the process of analyzing 

speech signals to generate hypotheses about the sequence of phonemes in an utterance. 

Language modeling is used to refine these hypotheses using knowledge of the spoken 

language. This thesis focuses on the acoustic portion of speech recognition. 

 Traditional acoustic feature extraction approaches are based on a linear source-

filter model of speech production, which is illustrated in Figure 1-1. In this domain, 

speech is modeled as a signal produced by a pulse-train excitation or white noise 

excitation, which are filtered by a linear time-invariant (LTI) filter. The excitation 

corresponds to the glottis. During voiced speech, a pulse-train is produced by the glottis, 

while white noise is generated during unvoiced speech. The resulting excitation signal is 

then filtered using a LTI filter, which represents the vocal tract.  

2.3.2 Cepstral Coefficients 

 Because speech is nonstationary, meaning the statistics of speech signals change 

throughout time, it is necessary to segment a speech signal into frames before features 

can be extracted. These frames are made of a length, usually around 30 milliseconds, 

such that speech can be considered approximately stationary. Before any spectral-based 

analysis is performed on these frames, they are typically windowed with a hamming or 

hanning window [3]. This windowing process smoothes out the spectrum, which would 
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have high frequency characteristics that would be artificially high, due to the framing 

process [3].  

For English speech, it is a reasonable approximation to consider the excitation as 

irrelevant to the sounds being produced. Consequently, features that describe the vocal 

tract filter are used for recognition. Cepstral analysis provides a mechanism for 

separating the excitation source from the vocal tract response in the acoustic waveform. 

 The observed speech signal s(t) can be written as the convolution of the excitation 

signal e(t) and the vocal tract impulse response, v(t) 

 ( ) ( ) ( ).s t e t v t= ∗  (2.1) 

Blind deconvolution [25] of these two signals is extremely difficult. However, cepstral 

analysis is able to take advantage of the different spectral characteristics of the excitation 

and vocal tract. In the frequency domain, equation (2.1) becomes 

 | ( ) | | ( ) || ( ) |,S E Vω ω ω=  (2.2) 

By taking the logarithm of this equation, the convolution is transformed into addition 

 log | ( ) | log | ( ) | log | ( ) |S E Vω ω ω= +  (2.3) 

To obtain the cepstrum, the Inverse Fast Fourier Transform (IFFT) is taken, transforming 

the log spectrum into the quefrency domain. 

 ( ) Re{ (log | ( ) |) (log | ( ) |)}.C m IFFT E IFFT Vω ω= +  (2.4) 

The first M points are then used as the features for acoustic modeling, as they relate more 

strongly to the vocal tract, which has more smoothly varying spectral characteristics, 

resulting in lower quefrency characteristics. The higher-indexed points correspond more 

to the excitation, as the excitation has more jagged spectral characteristics, and 

consequently higher quefrency characteristics. This phenomenon can be seen in Figure 
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2-1. The cepstral values at the beginning represent features of the vocal tract, whereas the 

humps farther to the right represent the pitch characteristics. 

m 

C(m) 

 

Figure 2-1. Example cepstrum of a voiced speech signal. 

 An alternate way to compute these cepstral coefficients involves grouping the 

power spectrum of the windowed frame of a signal into triangular filter channels as 

shown in Figure 2-2. In this figure, each triangle represents a channel, and the height of 

the triangle along the frequency axis represents the multiplicative factor for the spectral 

magnitude coefficient at each frequency for that channel. The sum of the energy in each 

of these channels becomes a spectral energy coefficient, and the cepstrum can be found 

using the discrete cosine transform (DCT) by 

 [ ]
0

2( ) log ( ) cos ,
N

k

kC m e k
N
π

=

 =  
 

∑  (2.5) 

where N is the number of filter channels and e(k) is the energy in the kth channel. 
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Hz 
 

Figure 2-2. Filter channels for cepstral processing. 

The Mel-scale is an empirical scale developed by Stanley Smith Stevens, John Volkman, 

and Edwin Newman. It was created using human listeners who judged the distance 

between tones, providing a perceptual measure of the difference between tones as a 

measure of frequency. A function that approximates this scale is given by 

 1127 ln(1 ),
700

fMELS = +  (2.6) 

where f is the frequency in Hz. 

2.3.3 Energy and delta coefficients 

Because the energy of a speech waveform carries significant information about 

which sounds are being produced, an energy coefficient is often included along with the 

Mel-frequency cepstral coefficients (MFCCs) [1]. Typically, this energy coefficient is the 

log energy of the frame of  speech.  

Additionally, the trajectory of the MFCC features contains much information 

about the speech. As the human articulation system changes through time, so does the 

spectral envelope of the acoustic waveforms produced. Since the articulation mechanics 

change smoothly, so does the spectrum. Hence, features that track this change, known as 
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delta coefficients, are used along with the MFCC and energy coefficients. First-order 

delta coefficients are computed over the static MFCC and energy features using the linear 

regression equation 

 1

2

1

( )
,

2

t t

t

c c
d

τ τ
τ

τ

τ

τ

Τ

+ −
=

Τ

=

−
=
∑

∑
 (2.7) 

where ct is the static cepstral (or energy) coefficient, and T is the maximum lag used. T is 

typically two or three. Often, second-order delta coefficients are used as well. These 

features are computed over the first-order delta coefficients using (2.7). As the most 

common number of cepstral coefficients used is twelve, a feature vector with MFCCs, 

log energy, first-order deltas, and second-order deltas (referred to as delta-deltas), is 

typically of size 39. 

 For a more detailed discussion of cepstral coefficients or speech recognition, [1] 

and [3] are good resources. More information about speech processing in general can be 

found in these texts. 

2.4. Reconstructed Phase Spaces 

2.4.1 RPS Theory 

 A reconstructed phase space (RPS) of a signal is an embedding that is 

topologically equivalent to the signal’s generating system [18]. It is created by 

embedding a signal against time delayed versions of itself as 
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where xn is the signal value at time-sample n, d is the dimension, and τ is the time lag. A 

single point in the RPS is given by 

 ( ) ( ){ }1 1 ( 1) .n n n n dx x x n d Nτ τ τ− − −
 = = + − x " …  (2.9) 

A two-dimensional example of an RPS of the phoneme ‘ah’ is shown in Figure 2-3. 

Figure 2-3. An example of a 2-dimensional, lag 6 RPS of the phoneme 'ah'. 

 Packard et al. [26] first proposed the concept of phase space reconstruction in 

1980. Soon after, Takens showed [16] that a delay-coordinate mapping from a generic d-

dimensional state space to a space of dimension 2d+1 preserves topology. The time-delay 

function from the original state space to the reconstructed phase space is given by 

 2
, ( ) ( ( ), ( ( )),..., ( ( )),d
y x y x y x y xϕ ϕ ϕΦ =  (2.10) 

where φ(x) is the state-update equation of the system, and y(x) is the map from the state to 

the system output. Takens proved that, given an uncorrupted signal of infinite length, this 
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transformation is injective, surjective, and twice-differentiable. These conditions are 

sufficient for topological equivalence. 

 Sauer, Yorke, and Casdagli [18] extended Takens’ theorem by showing that 

except in degenerate cases with probability zero, a time-delay embedding can be 

topologically equivalent to the original dynamical system with looser constraints. In 

Takens’ theorem, the embedding dimension must be greater than twice that of the 

original system dimension. Instead, Sauer, Yorke, and Casdagli proved that the 

embedding dimension must only be greater than twice the boxcounting dimension of the 

system. 

 These theorems provide important theoretical justification for the use of RPS’s for 

system identification and pattern classification. Because the topology of the RPS is 

identical to the topology of the underlying system phase space, we can expect the shape 

and density of the RPS attractor to provide valuable information of the system that 

generates a signal. 

2.4.2 Applications to Signal Processing 

 Because RPS’s preserve the dynamical information in a system, they have 

advantages over other methods for signal classification. Many classical methods make 

assumptions about the systems in question, and in doing so can ignore information that 

does not fit with those assumptions. While data reduction is often desirable for practical 

purposes, the reduction of data can remove important features. RPS’s do not remove any 

information from the signals; the entire signal can be reconstructed from an RPS. 

 Unlike traditional linear signal classification methods, RPS’s are able to capture 

nonlinear information that may be present in signals. Classic methods such as LPC 
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analysis and cepstral analysis work by assuming a linear model and learning parameters 

to fit the linear model [3]. These approaches work very well if the signals to be analyzed 

are generated by linear systems, but are fundamentally flawed if that is not the case. 

These methods are popular for speech signal analysis, based on the linearity assumption. 

However, recent work has shown that speech may in fact contain nonlinearities [4-6]. 

 Dynamical invariant features extracted from RPS’s have been used for 

classification of speech signals. Lyuponav exponents [8-10] and correlation dimension 

[27] have been used as features in addition to cepstral coefficients by appending them to 

the standard feature vectors. While this has been shown to increase accuracy, the 

improvements have been relatively small. 

 In addition to invariant features, RPS’s can be statistically modeled. This 

approach has been successfully applied to heart arrhythmia classification [28] as well as 

motor fault detection [29]. Instead of extracting features from the RPS’s, such as 

Lyuponav exponents and various dimensions, the full attractors are modeled. In this case, 

there is no data reduction, which is important, as the attractors may contain information 

not preserved by the dynamical invariants. To accomplish this, a statistical model is built 

over the attractor, describing the natural dimension of the RPS. 

2.4.3 Applications to ASR 

 While the traditional linear features used in speech recognition systems are unable 

to capture nonlinear signal characteristics, RPS’s can model these nonlinearities. It has 

been shown that speech signals carry nonlinear information [4-6]. Thus, cepstral 

coefficients and other linear-based features miss some of the information contained in 

speech. The potential for benefit from using this information is still under investigation. 
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 One disadvantage of using RPS’s for speech recognition is seen in the time 

complexity for classification of phonemes. Because cepstral coefficients are frame-based, 

a feature vector is computed and used for statistical analysis every 10 milliseconds, where 

RPS’s have a feature vector at every sample. Under a standard sampling rate of 16 KHz, 

there are 160 more feature vectors in the RPS method. 

 Because of this complexity, the experiments conducted for this paper involve 

isolated phoneme classification as opposed to continuous speech recognition, which is the 

norm. This is because the time complexity of the Viterbi algorithm [1], which is used for 

the recognition of speech, is far greater for the RPS approach, due to the amount of data 

[30]. For RPS based methods to become useful, this issue must be solved. Currently, the 

best solution appears to be the use of frame-based features. 

2.5. Sub-banding Speech Signals 

2.5.1 Motivation 

Harvey Fletcher, working at Bell Labs, ran experiments testing human speech 

recognition capabilities using various filters [31]. His intent was to study the capability of 

humans to understand speech filtered to have energy in different bandwidths and in 

different levels of background noise, with applications in telephone service.  

He performed his experiments by having speakers say nonsense words that 

followed a consonant-vowel-consonant (CVC) or consonant-vowel (CV) pattern. This 

removed language cues, isolating acoustic information. He measured the rate at which 

listeners were able to accurately recognize these words on speech low-pass filtered along 

range of frequencies, and high-pass filtered along the same range. Using these results he 

developed an articulation index.  
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These results indicate that ideal conditions lead to better than 98% phoneme 

recognition rate. When filters were applied, the accuracy degrades in a systematic way. 

The total recognition error over a range of frequencies is equal to the product of the errors 

over the sub-bands in that frequency range. So, if the recognition rate for the frequency 

range from 300 Hz to 1000 Hz was 75%, and from 1000 Hz to 3000 Hz was also 75%, 

the accuracy from 300 Hz to 3000 Hz would be 1 – (25% * 25%) = 93.75%. This 

behavior can be expressed as 

 total i
i

e e=∏  (2.11) 

where totale  is the error rate for the full bandwidth, and each ei is the error rate for the sub-

bands. 

One possible interpretation is that humans recognize phonemes in sub-bands 

independently, and then combine the information across sub-bands [32]. It is unknown, 

however, how this information is combined. The results suggest that if any of the sub-

bands is able to accurately recognize a phoneme, the human brain is able to identify 

which sub-band is correct. 

To understand the mechanism that causes this phenomenon, one must look at the 

cochlea. The human cochlea has a frequency response that is space-variant [1]. Inside the 

cochlea resides the basilar membrane. The basilar membrane conducts mechanical 

vibrations induced by acoustic waves to the hair cells, which rub against the basilar 

membrane, causing neurons connected to the hair cells to activate. 

The basilar membrane is thin on one end and thick on the other. In adult humans 

it is approximately 32 mm long, and is shaped like the cochlea [1]. Because of the 

variable width of the basilar membrane, its rigidity changes along its length. The local 
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rigidity determines the attenuation of the vibrations at each frequency. This way, the 

basilar membrane acts as a filter bank on incoming audio signals. 

2.5.2 Sub-banding in Traditional Systems 

ASR systems using traditional features have attempted to improve their 

robustness to narrowband noise with sub-banding. The work in this area was originally 

motivated by Fletcher’s work, but the main aims are spurred by the need for more robust 

speech recognition. Many studies have been done using cepstral coefficients derived from 

sub-banded speech in the presence of many different types of noise [33-37]. Traditional 

systems, i.e. those using MFCCs as acoustic features, can benefit from this approach in 

situations where speech is corrupted by narrowband noise. As each cepstral coefficient 

contains information from the entire spectrum, noise in one region of the spectrum will 

corrupt every feature. If the cepstral coefficients are computed in multiple bands that are 

isolated from each other, only a portion of the coefficients is distorted. Suppression of the 

significance of these corrupted features on pattern recognition can result in recognizers 

that are more robust. 

It has been shown that sub-banding speech in certain types of noise (factory, 

babble, pink, etc.) can lead to better results [35, 37]. In [34], recombination of sub-band 

recognition hypotheses was used to show significant improvement in artificial 

narrowband noise, using signal-to-noise ratio estimates for weighting of the hypotheses. 

Recombination at different levels, including state, phone, and syllable level combination, 

was examined, showing slightly better accuracy with the syllable level recombination 

than the other levels. McCourt et al. [36] examined the combination of full-band and sub-

banded features in white noise. They found that this combination could significantly 
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improve the robustness of their recognition system, even though the corrupting noise was 

not narrowband. However, the accuracy obtained in broadband noise can sometimes 

actually be degraded by sub-banding [35].  

Sub-banding with traditional linear features does not typically improve the 

recognition accuracy in clean speech significantly [35, 37]. It is generally thought that 

sub-banding is unimportant for speech to be recognized that is not corrupted by noise. 

This does not follow from Fletcher’s results, as his experiments were not used to study 

speech in noisy conditions. 

2.5.3 Embedding Filtered Signals into RPS’s 

Given the theory behind RPSs, the question of preserved topology arises when 

filtered signals are embedded into RPSs. The justification for statistical modeling of 

RPSs originates in the theorems of Takens [16] and Sauer et al [18]. With the addition of 

the filter bank front-end proposed in this paper, though, a re-examination of topology 

equivalence is warranted.  

Any linear transformation on a space preserves the topology of that space [38]. 

Previously, transforms such as principle component analysis (PCA) have been used to 

reduce the dimension of RPSs [39]. A PCA projects an RPS into a lower dimension, 

where each new dimension is an orthogonal linear combination of the original 

dimensions. This operation has shown the ability to improve phoneme classification 

accuracy in some cases.  

As a smooth, invertible transform, finite-impulse response (FIR) filters do not 

destroy the topological equivalence between an RPS and the underlying dynamical 

system [18]. This property can be exploited for RPS analysis of signals that have noise 
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components that must be removed. FIR filters could also be implemented for the front-

end filter bank in the proposed system. However, to isolate the dynamics in each band, 

small transition bands are desirable, requiring unfortunately long impulse responses. 

Instead, IIR filters, which require much lower orders to achieve sharp cutoffs, are 

used. It has been shown that convolution of chaotic signals with infinite-impulse response 

(IIR) filters can change the dynamical invariants of the systems [40-42]. Specifically, 

[41] showed that IIR filtering of the logistic map can increase the self-similarity of the 

map, and thus the fractal dimension. This is a cause for concern if the analysis method 

involves computing dynamical invariant features such as Lyapunov exponents or 

dimension. Unfortunately, this also means that the topological equivalence property has 

been lost. However, that this does not mean effective modeling and classification is 

impossible. On the contrary, it is shown in this thesis that these filtered RPSs still hold 

much information for discrimination of phonemes. 

2.6. Summary 
 In the next chapter, the methods developed in this work for speech recognition is 

presented. This system combines the concept of sub-banding, motivated by Fletcher’s 

work, and used in traditional ASR systems for robust speech recognition, with RPS’s. 

This methodology allows for analysis of nonlinear dynamics to be studied in isolated 

frequency bands. 
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3. Methods 

3.1. Overview 
Shown in Figure 3-1 is a block diagram of the proposed system used for phoneme 

classification in this paper. It consists of three stages. First, phoneme waveforms are 

filtered into a set of mutually exclusive frequency sub-bands, which creates a set of 

waveforms from the original signal. Each new signal is then embedded into a 

reconstructed phase space (RPS) with parameters that are determined using techniques 

discussed in section 3.3.1. During the training phase, these RPS’s are used to build the 

phoneme models; during testing, they are used for classification. The RPS’s from each 

sub-band are treated independently; a classification is produced from each sub-band for 

every example. Finally, these likelihoods are fused to form a final decision.  

Figure 3-1. Block diagram of the proposed phoneme classification system 

The filter characteristics, the RPS parameters, and the fusion strategy each have 

many possible forms, and the effects of the various methods are discussed in this thesis. 

Each of these system blocks is discussed in more detail in this chapter. 

3.2. Filter Bank 
The first stage of the system is a filter bank, which is intended to act similarly to 

the cochlea in the human auditory system. This front end separates the system dynamics 
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into separate frequency bands, which may be independent according to Fletcher’s studies, 

but still contain nonlinear information. Because of the nature of the modeling applied, 

which is based on topological equivalence theorems, it is desired that the transforms 

applied to the signal do not disturb this topology. This objective can be achieved with 

finite-impulse response (FIR) filters. Unfortunately, the nature of FIR filters makes their 

use in this case unworkable. The desired filter bank should have extremely small 

transition bands and low passband and stopband distortions. These conditions are desired 

because the sub-banded signals are ideally independent, i.e. there are no common 

frequency components. FIR filters, though, require lengthy impulse responses, or large 

orders, to meet these conditions. This results in large distortions in the length and 

duration of the signal. To counter this, infinite-impulse response (IIR) filters are used 

with a forward/backward filtering process to eliminate phase distortion. They do not meet 

the requirements for topological equivalence, but their characteristics, especially the 

requirement of a lower order for sharp transitions, are superior.  

 The implemented filter bank is based fundamentally on auditory models, but does 

not exhibit their specific behavior. In the auditory model view, each channel is shaped as 

a gammatone filter [1], and these filters are overlapping. However, our approach uses 

non-overlapping filters that are shaped as closely to ideal filters as possible. This isolates 

frequency components in separate sub-bands, reduces the number of bands, and 

simplifies the analysis.  

3.2.2 Filter basics 

 Chebychev type II filters [43] are chosen for analysis because of their control over 

the stopband. In order to completely isolate the nonlinear dynamics in each sub-band, 
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filters with very small ripple in the stopband are ideal. The implemented filters are of 

order 36, with stopband attenuation of 70 dB. Because of the numerical precision issues 

present when dealing with IIR filters [43], second-order structure (SOS) filters are used. 

The signals are filtered, time-reversed, filtered again, and finally time-reversed once 

more. This forward-backward filtering process eliminates any phase distortion of the 

speech signals, which is important because of the nature of the nonlinear analysis 

techniques applied here. 

 This forward-backward filtering can be applied to real-time recognition systems if 

each frame is filtered individually. Provided the computational requirements of the 

filtering process are not excessive, a small delay in the recognition process will be 

introduced, on the order of 20 to 30 milliseconds, depending on the frame-length. 

3.2.3 Filter Bank Structure 

The first major decision to be made in the design of the filter bank is how many 

filters to use. While it has been suggested that the human auditory system has between 10 

and 30 sub-bands, it may not be best to use the same number of filters in the proposed 

system. Traditional speech recognition systems using sub-banding typically use two to 

seven sub-bands [34-36]. To study the effects of the number of sub-bands used on the 

proposed system, we experiment with a variable filter bank size. Experimental results 

using sets of two, four, and eight sub-bands are presented in this thesis. 

Another factor in the design of the filter bank is the spacing of the filter cutoffs 

and central frequencies. Given a fixed number of filters in the bank, there are still an 

infinite number of possible filter combinations. The simplest way to space the filters is to 

place them linearly along the spectrum. However, human hearing has a logarithmic 
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nature, in the sense that resolution decreases logarithmically along the spectrum. There 

are several empirical scales that describe this functionality, including the Mel-scale, the 

bark-scale, and the equivalent rectangle bandwidth (ERB). To simplify the analysis, 

experiments are restricted to use of the Mel-scale, which is popular in the field speech 

processing. 

Shown in Figure 3-2 is an example of a phoneme that has been filtered into four 

Mel-spaced sub-bands, and embedded into a two-dimensional, lag six RPS. In Figure 

1-1-a, the RPS of the unfiltered vowel ‘ao’ is depicted. In Figure 3-2-b through Figure 

1-1-e, each sub-band RPS is shown. It can be seen that the lower frequencies have a 

smoother, and apparently more characteristic structure than the higher frequency bands. 

This is due to the smoothness inherent in low-pass filtered signals, as well as the fact that 

the characteristic information present in vowels lies predominantly in the lower 

frequencies. 
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Figure 3-2. The vowel 'ao' filtered into four sub-bands and embedded into 2-dimensional, lag 6 
RPS’s. 
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3.3. Reconstructed Phase Space 

3.3.1 RPS parameters 

Once the speech signals have been filtered, they are embedded into RPS’s. Before 

this step can be completed, though, the embedding dimension, d, and time lag, τ, must be 

determined. Takens’ theorem states that the embedding dimension must be greater than 

twice that of the original state space dimension [16]. Sauer, Yorke, and Casdagli’s work 

[18] showed that d must be only twice as large as the box-counting dimension of the 

system, which is smaller than the requirement given by Takens. There is no theory that 

gives bounds on the time lag. 

 Unfortunately, the dimension of the original state space structure is unknown, so 

some other means of determining an appropriate embedding dimension must be found. 

Accordingly, heuristics for finding the best dimension and lag have been developed. 

These methods involve first minimum of auto-mutual information and first zero of 

autocorrelation for lag identification, and global false nearest neighbors for dimension 

determination [7]. For the decision of time lag and embedding dimension in this thesis, 

the auto-mutual information and global false nearest neighbors methods are used, 

respectively. 

 The auto-mutual information of a single signal with respect to lag is given by:  

 log( ( ( ), ( )))( ) ( ( ), ( )) ,
( ( )) ( ( ))s

P s n s nI P s n s n
P s n P s n

ττ τ
τ
+

= +
+∑  (3.1) 

where ( ( ))P s n is the probability of finding the value ( )s n , and ( ( ), ( ))P s n s n τ+ is joint 

probability of measuring ( )s n and ( )s n τ+ . This gives a measure of the redundancy of 

information between a signal and lagged versions of itself. To minimize the amount of 
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redundant information, a lag is chosen with the first minimum value from this function 

for the embedding time lag, τ. 

With the lag determined, the global false nearest neighbors [7] method determines 

the embedding dimension. As the dimension of the RPS is increased, points in the RPS 

that are close together can be pulled farther apart. The close proximity of these points in 

the lower dimension is sometimes the result of projection rather than geometry. Once a 

sufficient dimension is reached, and the attractor is completely unfolded, all points that 

lie in the same neighborhood remain together as the dimension increases. At this step, 

adding more dimensions is unnecessary. Global false nearest neighbors uses this strategy 

to estimate the appropriate embedding dimension. A measure of distance between a point 

( )n dx in a phase space of dimension d and its nearest neighbor ( )NN
n dx is defined by 
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The difference between the distances of the two points in dimension d and d+1 is then 

defined as  
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This measure can be used to determine if a point and its nearest neighbor were proximal 

in dimension d because of projection rather than geometry by comparing this difference 

to a threshold. If this threshold is exceeded, these points are considered false neighbors in 

dimension d. If the number of false nearest neighbors exceeds a specified percentage, it is 

assumed that the attractor has not yet unfolded. The dimension is then increased, and the 

testing process repeated until the attractor is assumed to be fully unfolded. Using this 

method, the embedding dimension is chosen to be five. 
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3.3.2 Normalization 

 Depending on the speaker, the microphone, and the words spoken, the attractor 

for each phoneme can be transformed in the RPS in ways such as scaling and translation. 

To deal with this, a normalization procedure is implemented [19]. First, to deal with 

potential translation issues, each RPS is zero-meaned, causing the centroid of the RPS to 

reside at the origin. Secondly, each RPS is radially normalized. This is accomplished by 

computing the standard deviation of the radius of the RPS by 

 2

1

1 .
N

i
iN

σ
=

= ∑x  (3.4) 

Each point in the RPS is then divided by σ, causing every RPS to have the same radial 

standard deviation. 

3.4. Gaussian Mixture Models 
 Gaussian Mixture Models (GMMs) are a generalization of Gaussian distribution 

functions. Gaussian probability density functions (pdf) are ideal because mathematical 

analysis of Gaussian's is simple, and because of the central limit theorem, which states 

that in the limit, the sum of random variables with identical distributions of any type has 

a Gaussian distribution. A Gaussian pdf of an independent random variable x is given by: 
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where µ is the mean, and σ2 is the variance of the Gaussian. Often, distribution functions 

of many correlated random variables are needed. The multivariate Gaussian function of 

the random vector x is given by:  
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where µ is the mean vector, Σ is the covariance matrix, and n is the dimension. Instead of 

a single variance, the covariance matrix defines the variance E[xi
2] of each element of the 

random vector x and the covariances E[xixj] for each pair of elements in x. Σ is always 

symmetric and positive semi-definite. The elements of x can be treated as uncorrelated, 

and in this case Σ becomes a diagonal matrix. This allows for simplified computation and 

analysis. 

 Gaussian pdfs are limited in their ability to representative capability, however, as 

they are unimodal and are completely characterized by their first and second order 

moments. Hence, more complex probability models are often required. If a number of 

Gaussians are used, multi-modal distributions can be effectively modeled. This leads to 

the definition of a GMM, which is a sum of weighted Gaussian distributions. Provided 

the weights sum to unity, a GMM is a valid probability density function. Given an 

arbitrarily high number of mixtures, a GMM can approximate any distribution. In order 

to model a set of data with a GMM, the weights of each Gaussian distribution and their 

means and covariance matrices must be learned. This is accomplished via a well-known 

iterative process called expectation maximization (EM) [44].  

3.5. Expectation Maximization 
Given an initial hypothesis of the means and covariances of the Gaussian 

distributions that compose a GMM, EM can be used to iteratively improve the hypothesis 

[44]. The quality of a particular hypothesis is defined by the likelihood that the data used 

for training was generated by the proposed GMM. This likelihood is given as 

 
1
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Θ = Θ∑x x  (3.7) 

where Θ represents the GMM parameters, x is the observation, each mk is a Gaussian pdf, 
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and ck are the weights of the Gaussian pdfs. The maximizer of this function can be found 

by setting the partial derivatives with respect to the means and vectors to zero and 

solving. This leads to the update equations for the parameters: 
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3.6. Bayesian Classification 
Once all the models are trained, classification is performed on each individual 

sub-band. A Bayes’ classifier approach is taken, producing a log-likelihood score for 

each class on each example test phoneme. The probability of each class given the data is 

denoted ˆ ( | )ip c x . The class that maximizes this quantity is 
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c p c x
=

=  (3.10) 

 Because ˆ ( | )ip c x  is unavailable, Bayes’ theorem is used, yielding 
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As the probability of the data ˆ ( )p x  does not affect the maximization operation, it can be 

removed, giving 
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Assuming uniform distribution of the class prior probabilities, this equation becomes 
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which is known as the maximum likelihood equation. This quantity is not a true 

probability, and is called the class likelihood. It is denoted as ( )cl x . Because likelihood 

values are often very small, numerical computation issues can become problematic when 

dealing with large amounts of data, as the product of several likelihoods can quickly 

approach zero. To handle this, log-likelihoods are used in place of likelihoods. 

 For each phoneme, there are hundreds or thousands of points in the RPS. A log-

likelihood value of each point for each GMM is computed. The overall log-likelihood of 

the phoneme for each class is 
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where xi is the ith point in the RPS attractor, and N is the number of RPS points in the 

phoneme. The likelihood of each point for a GMM is 
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where ck is the weight of mixture k, x is the RPS point, uk is the mean vector of the kth 

mixture, and Σk is the covariance matrix of the kth mixture. To avoid exponentiation and 

subsequent log calculation, the likelihood values are often calculated directly in the log 

domain.  

3.7. Fusion 
The final step of the proposed recognition system is the fusion operation. In this 

step, the class log-likelihoods for each sub-band are combined to yield a single log-

likelihood for each class. Many strategies are available for fusion, including linear 

combinations [45], nonlinear combinations [46], and hierarchical schemes [47]. There is 

a large body of research pertaining to data fusion or classification combination. Image 
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processing [45], multi-sensor systems [48], and speech recognition [33, 36, 37] are some 

example applications that have seen interest in data fusion.  

 Several approaches can be taken in regard to the treatment of uncertainty for data 

fusion. Among these frameworks are Bayesian (probabilistic), Dempster-Schafer theory 

[49], possibility theory, and fuzzy logic. Each of these approaches makes different 

commitments to the ontology of uncertainty.  In this thesis, a Bayesian approach is 

adopted. All fusion strategies presented are in the form of a linear combination of the 

sub-band log-likelihoods, given by 

 ,
1

ˆ ˆ( ) ( ),
K

j c j
j

p w p
=

= ∑X x  (3.16) 

where the ,j cw  coefficients are the weights given to each band, x is the data for one sub-

band, and X is the data for all bands. Several weighting strategies are examined. 

3.7.1 Equal weights 

The probability of a class given the set of features from all sub-bands is computed 

as 
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Because the 1 2( ... )Rp x x x term does not affect the maximization, and the class priors are 

treated as uniformly distributed, equation (3.17) becomes 

 1 2
1...

ˆ arg max ( ... | ).K i
i C

c p c
=

= x x x  (3.18) 

This quantity is difficult to analyze, so the class log-likelihoods produced by each sub-

band are assumed to be independent. Given Fletcher’s findings, this appears to be a 

reasonable approximation. Using this assumption, equation (3.18) becomes 
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1
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K
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j
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=

= ∏ x  (3.19) 

Since log-likelihoods are used, (3.19) becomes 

 
1... 1

ˆ arg max ln ( | ).
K

j i
i C j

c p c
= =

= ∑ x  (3.20) 

Thus, according to Bayes’ theorem and assuming conditional independence of the 

classifiers, the log-likelihood for each class is given by the un-weighted sum of the log-

likelihoods for each sub-band RPS classifier. 

3.7.2 Sub-band accuracy-based weights 

Though equation (3.20) gives an un-weighted sum of log-likelihoods as the 

correct likelihood for each class, intuitively this does not seem the best possible 

approach. Instead, it would seem appropriate that classifiers that carry more information, 

i.e. those that provide higher individual accuracies, would be given more weight towards 

the overall classification decision. Accordingly, a second fusion strategy is adopted, in 

which the weights in equation (3.16) are computed in proportion to the accuracy of each 

individual sub-band, computed over a development set that is discussed in section 4.1. 

The weight for sub-band j with development set accuracy ( | )jp c c=x  is given by 
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=
=

=∑

x

x
 (3.21) 

3.7.3 Sub-band accuracy by class-based weights 

As presented in [50], the sub-band RPS classifiers perform differently on various 

types of phonemes. For example, the lower frequency sub-band RPS classifiers produce 
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much higher accuracy on vowels than do the higher frequency bands, and the higher 

frequency sub-band RPS classifiers produce higher accuracy on fricatives than lower 

frequency bands. Therefore, a strategy that weights each log-likelihood based on the sub-

band and class is used. 

 Because each sub-band produces log-likelihoods with varying scales, these 

numbers must be normalized, or weighting by class would produce invalid results. 

Without normalization, each class would be scaled according to its own weight, and the 

comparison of the fused log-likelihoods would not be valid. Normalization is executed by 

exponentiating each log-likelihood, then rescaling each of these values so that they sum 

to unity. The weight for the ith class of the jth sub-band is given by 
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( | )
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=
=

=∑

x
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3.7.4 Variance of sub-band log-likelihood-based weights 

In [34], multi-classifier combination is implemented using entropy of log-

likelihoods as a basis for weighting. This scheme makes the assumption that classifiers 

that have higher entropy, or more uniformly distributed log-likelihood values, are less 

reliable than those with lower entropy. The weight given to each classifier is inversely 

proportional to its entropy. 

 A similar approach is taken here, but variance is used instead of entropy. Sub-

bands that have a higher variance of the log-likelihood values, and accordingly a larger 

spread between the highest class log-likelihoods and the lowest class log-likelihoods, are 

assumed more reliable than other bands. The sub-band weights are then distributed in 

proportion to the variance of the log-likelihood values of each band. Unlike the three 
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previous weighting strategies, the weights in this scheme are not the same for every test 

example, as they are computed during the testing phase for each phoneme. The weight of 

the jth sub-band is given by 

 

2

1

2

1 1

( | )
,

( | )

C

j i
i

j K C

k i
k i

p c
w

p c

=

= =

=
∑

∑∑

x

x
 (3.23) 

where ( | )j ip cx  is the normalized probability of the data given class i in sub-band j. 

3.7.5 Optimized Weights 

A fifth approach is examined in which each sub-band weight is learned using an 

optimization technique known as the Nelder-Mead simplex method [51]. This algorithm 

finds the weights that give the greatest classification accuracy over the development set 

that was previously mentioned and is detailed in section 4.1. 

3.7.6 Energy 

In section 3.3.2, the radial normalization procedure used to deal with possible 

scaling effects was explained. This technique removes the energy associated with the 

RPS, which can be a valuable feature for discrimination of phonemes. By fusing energy 

with the RPS sub-bands, the phoneme classification accuracy could potentially be 

significantly increased. This is performed by fusing the sub-band RPS log-likelihoods 

with log-likelihoods obtained from a classifier that uses an energy vector created using 

Mel-spaced triangular filter channel log energies, along with the log energy of the full 

signal. 

3.8. Summary 
In this chapter, the proposed methodology for classification of phonemes based on 
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sub-banded RPS’s has been introduced. Five techniques for fusion of the individual sub-

band classifications are discussed. In chapter 4, the experiments studying the proposed 

system and comparing the fusion techniques are explained, and the results are presented. 
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4. Experiments 

4.1. Data set 
The proposed system is tested using the well-known TIMIT speech corpus [52]. 

Different from many speech databases, TIMIT has expertly-labeled phonetic boundaries. 

Most speech databases include word-level transcriptions of the recorded utterances, but 

the phonetic transcriptions must be obtained by substitution using a pronunciation 

dictionary. For TIMIT, which was developed by Texas Instruments and the 

Massachusetts Institute of Technology, time-stamped phonetic boundaries were 

determined by linguists, allowing for precise extraction of the phonemes in each 

utterance. 

 TIMIT contains utterances from 630 speakers, both male and female, from eight 

dialect regions in the United States. Each person read ten predefined sentences into a 

headset microphone, used to ensure the quality of the speech signals. Two of the 

sentences spoken by each individual are common across all speakers, and are not 

typically used for most speech recognition evaluation tasks. The test and training sets 

contain 168 and 462 speakers respectively, with no speakers contributing utterances to 

both sets. Thus, the most common use of TIMIT is for speaker-independent recognition.  

 Because the experiments presented in this thesis involve isolated phoneme 

classification, all phonemes are extracted from each utterance that is used. There are 

approximately 132,000 phonemes in the training set, and just over 48,000 in the test set. 

Though the phonetic labels in TIMIT were created using a set of 64 phonemes, not all of 

these are used as classes for modeling and recognition. Instead, a folding procedure 
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outlined in [53] is used. The set of 64 phonemes is reduced to 48 classes by re-labeling 

some of the phonemes, creating equivalence classes. This folding is defined as  

Vowels   {ih ix} {ax ah} {ao aa}  iy  eh  ey  ae  aw  ay  ox  ow  uh  uw  er 

Semivowels  {el l}  r  w  y  hh 

Stops    b  d  g  p  t  k  dx 

Nasals   {n en}  m  ng 

Fricatives  {sh zh}  jh  ch  s  z  f  th  v  dh 

Additionally, though forty-eight models are learned and used for classification, errors 

between specified classes are not counted as errors. These between-class error reductions 

are indicated by the brackets in the above folding definition. 

 For the sub-band RPS approach, several types of fusion strategies are examined. 

Because some of these fusion techniques require learning parameters, and it is 

undesirable to use the test set to learn these parameters, a development set is created. To 

do this, the training set is randomly partitioned into two new sets: a new, smaller training 

set, which consists of 90% of the entire training data, and a development set, which 

contains the other 10% of the original training data. All models, both for the baselines 

and the proposed system, are trained using this 90% training partition. Any fusion 

parameters used for the sub-band RPS are learned using the development set. 

4.2. Baselines 

4.2.1 MFCC 

The standard feature type used in state-of-the-art automatic speech recognition 

(ASR) systems is the Mel-frequency cepstral coefficient (MFCC). To establish a baseline 

with which to compare the proposed system, isolated phoneme classification experiments 

are performed for two typical feature sets. These include a set of 12 MFCCs, appended 
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with log energy, totaling 13 features, as well as a 39 feature baseline of 12 MFCCs, log 

energy, and first and second order deltas calculated on those 13 base features. Deltas are 

a linear regression that measures the general trajectory of the base features.  

 Gaussian Mixture Models (GMMs) are learned over these feature sets using the 

binary-split expectation maximization (EM) algorithm detailed in section 3.5. The models 

are trained to have 16 mixtures. A maximum likelihood classifier is used for testing. The 

results are given in Table 1. 

12 MFCC, log energy 52.33% 

12 MFCC, log energy, delta, delta-delta 56.94% 

Table 1. Phoneme classification accuracies for MFCC baselines. 

4.2.2 Fullband RPS 

The sub-band reconstructed phase space (RPS) approach is also compared to the 

unfiltered RPS method to examine the effects of sub-banding RPS’s. The parameters for 

embedding dimension and lag are found using the heuristics introduced in section 3-3. 

These parameters are d = 10 (five base dimensions plus five delta dimensions), and 

6τ = . Again, GMMs are used to model the RPS features, and are learned using binary-

split EM. The number of mixtures used, which was determined empirically in [30], is 

128. The classification accuracy for an RPS of dimension 10, with delta dimensions is 

38.81%. 

4.3. Sub-band RPS 
The sub-band RPS system introduced in chapter 3 is tested on the same data and 

with the same methodology outlined in the previous baseline experiments section. In 

order to study the behavior of the system with respect to the number of sub-bands, three 
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sets of experiments are run, each using a different filter bank size. Sub-banding and 

fusion experiments are performed using two, four, and eight sub-bands. As stated 

previously in chapter 3, the filters are non-overlapping and equally spaced along the Mel-

space.  

4.3.1 Individual Band Results 

The classification results for the individual RPS sub-bands are given in Table 2, 

Table 3, and Table 4. It can be seen from these numbers that classification of phonemes 

in filtered RPS’s is possible; the sub-bands still carry discriminatory information. 

Band < 1800 Hz > 1800 Hz 

Dev set  36.26% 23.49% 

Test set  34.57% 23.25% 

Table 2. Phoneme classification accuracies for sub-banded RPS in two bands. 

Band < 640 Hz 640 – 1800 Hz 1800 – 3965 Hz > 3965 Hz 

Dev set  26.31% 25.36% 20.57% 14.89% 

Test set  25.22% 24.47% 20.75% 14.77% 

Table 3. Phoneme classification accuracies for sub-banded RPS in four bands. 

Band (Hz) <285 285-640 640-1130 1130-1800 1800-2715 2715-3965 3965-5670 >5670 

Dev set  17.76% 20.42% 16.93% 19.11% 15.64% 14.47% 15.08% 14.15% 

Test set  17.22% 19.92% 16.74% 18.43% 16.11% 14.30% 14.34% 14.58% 

Table 4. Phoneme classification accuracies for sub-banded RPS in eight bands. 

As was discussed in chapter 2, IIR filters do not preserve the topology of spaces 

as do FIR filters. However, because of the need for extensively long windows in FIR 
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filters to meet the small transition band requirements desired, IIR filters are instead 

chosen for analysis in this work. Hence, though IIR filters are the clear choice practically, 

the theoretical justification of reconstructed phase spaces becomes questionable. It is 

important, then, to verify that the classification of sub-banded phoneme RPS’s is feasible.  

 These results show that the proposition that sub-banded RPS’s can effectively 

model and classify phonemes is valid. This verification is an important first step in the 

evaluation of the proposed recognition system. It is interesting to note that the accuracies 

do not decrease at the same rate as the bandwidths in each band, especially in the lower 

frequencies. 

4.3.2 Fusion Experiments 

As discussed in section 3.7, the individual sub-band class log-likelihoods are 

fused to obtain an overall classification for each phoneme. The fusion strategies 

presented here are all forms of linear combination. The overall class log-likelihoods are a 

weighted sum of each sub-band class likelihood. This is defined by 

 , ,
1

ˆ arg max ( ),
K

j c j c
c j

w ll xω
=

= ∑  (4.1) 

where llc,m(x) is the log-likelihood of class c given the data x in sub-band m, and w 

coefficients are the weights. Several weighting schemes are examined here.  

 An additional fused feature is based on energy. Energy can be an important 

feature for phoneme discrimination. Because of the radial normalization performed on the 

RPS’s, though, it is removed. Therefore, adding likelihoods based on energy, or log 

energy, can potentially improve the sub-band RPS classifications. In order to accomplish 

this, an energy feature set is fused in the same manner as the sub-band features. Energy 
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feature class likelihoods are weighted and summed along with the sub-band class 

likelihoods to give an overall classification. The energy feature vector is created using 

Mel-spaced triangular filter channel log energies, along with the log energy of the full 

signal. The number of channels matches the number of bands for each fusion experiment, 

so for the two, four, and eight sub-band fusion experiments, the energy feature vectors 

are of length three, five, and nine, respectively. 

4.3.2.1 Equal Weights 

The simplest weighting scheme assigns equal importance to each sub-band class 

likelihood. All w coefficients are assigned a value of 1 for all classes and bands. As 

shown in section 3.7, this method is optimal if the sub-bands are truly independent. The 

phoneme accuracies for this strategy are shown in Table 5.  

# Sub-bands 2 4 8 

Accuracy w/o energy 42.91% 44.21% 43.99% 

Accuracy w/ energy 50.14% 51.96% 54.84% 

Table 5. Phoneme classification of sub-band RPS with equal-weight based fusion. 

From these results, it is clear that the sub-banded RPS approach improves the 

accuracy over an unfiltered RPS approach for classification of phonemes. The best 

accuracy with no energy is seen in the four-band case, where an absolute improvement of 

5.4% is seen over the full-band approach. The eight-band case produces an accuracy that 

is lower than the two-band classifier when energy is not used, but the superior 

classification of the eight-channel energy features causes the eight-band classifier to 

outperform all other classifiers for the RPS-plus-energy case. This accuracy of 54.86% is 

greater than the accuracy produced by the MFCC feature set without delta coefficients. 
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This is significant because the proposed sub-band RPS classifier does not make use of 

comparable long-term deltas.  

4.3.2.2 Accuracy-based weights by sub-band 

As stated in section 3.7.2, weighting the log-likelihoods in each sub-band by the 

development set accuracy for that band seems intuitively more appropriate than 

weighting each band equally. The results for this fusion method are shown in Table 6.  

# Sub-bands 2 4 8 

Accuracy w/o energy 42.27% 43.62% 43.53% 

Accuracy w/ energy 49.63% 50.11% 52.81% 

Table 6. Phoneme classification of sub-band RPS with sub-band-accuracy-weight based fusion. 

Comparing these results to those shown in Table 5, which represent the equal-

weight fusion results, it is observed that the sub-band-accuracy-based weighting scheme 

is inferior to the equal-weight scheme. This is a bit surprising, as the individual sub-band 

accuracies are not equal. One might expect the lower frequency bands, which produce 

higher individual accuracies, to contribute more reliable information, and therefore 

deserve a larger weight.  

4.3.2.3 Accuracy-based weights by sub-band and class 

Based on the results of [50], a fusion weighting strategy based not only on the 

particular sub-band but the class seems suitable. However, the classification accuracies, 

shown in Table 7, are lower than both the equal-weight and sub-band based weight 

schemes.  
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# Sub-bands 2 4 8 

Accuracy w/o energy 40.53% 37.17% 29.47% 

Accuracy w/ energy 43.98% 46.65% 51.96% 

Table 7. Phoneme classification of sub-band RPS with sub-band-by-class-weight based fusion 

As can be seen by comparing Table 7 with Table 5 and Table 6, this method is 

consistently inferior to the strategies that use weights that are consistent across class. This 

is somewhat surprising, given the results in [50], which demonstrate that each sub-band 

has different strengths and weaknesses based on phonetic class. In contrast to the 

expectations produced from the results in this paper, weight determination using the 

likelihood of a sub-band classifier correctly classifying a particular phoneme class 

degrades the classification accuracy in comparison to a naïve weighting scheme. 

4.3.2.4 Variance-based weights by sub-band 

As discussed in section 3.7.4, a weighting scheme based on the variance of each 

sub-band RPS classifiers log-likelihood values is implemented. Classifiers with greater 

variances are expected to be more reliable, as they have a greater spread between the 

highest and lowest class log-likelihoods. As seen in Table 8, this strategy performs worse 

than all other strategies for the set of two sub-bands, and only outperforms the class-

weighted scheme on the set of four and eight sub-bands when energy is not used. 

# Sub-bands 2 4 8 

Accuracy w/o energy 38.90% 38.54% 37.67% 

Accuracy w/ energy 43.74% 44.33% 48.79% 

Table 8. Phoneme classification of sub-band RPS with variance weight based fusion 
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The particular distribution of class log-likelihoods for each sub-band RPS classifier does 

not seem to provide especially useful information for fusion weighting, at least not with 

the strategy implemented here. However, one might expect that if the task was to classify 

phonemes corrupted by noise, this fusion strategy might be more successful. In [54], the 

recognition likelihood entropy was exploited for computation of a reliability measure in 

noisy speech, and this measure improved the robustness of the recognition system. It is 

possible that a similar approach using a reliability measure based on variance or entropy 

would provide better results for the experiments examined in this thesis if the task was 

robust phoneme classification. 

4.3.2.5 Optimized sub-band weights 

Parameter optimization is a common task in machine learning and pattern 

recognition. Artificial neural networks, support vector machines, and decision trees all 

learn a set of parameters over training data that will minimize the classification error. 

Here, the development set previously described is used to learn the w coefficients that 

maximize the classification accuracy. These weights are then used for classification over 

the test set. The results are given in Table 9.  

# Sub-bands 2 4 8 

Accuracy w/o energy 43.05% 44.51% 44.28% 

Accuracy w/ energy 50.65% 52.18% 54.95% 

Table 9. Phoneme classification of sub-band RPS with optimized weight based fusion. 

Comparison of these results to those of the equal-weighting scheme, shown in 

Table 5, reveals that the optimized weight classification accuracies are greater for each 

experiment. This is not surprising, as weights learned to give optimal classification 
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accuracy could only be inferior to any other set of weights if the optimal weights for 

classification on the development set and test set are significantly different. The 

difference in classification accuracies between the optimized weights and the equal 

weights is not large, however, demonstrating the efficacy of the equal-weighting scheme. 

4.3.2.6 Fusion with MFCC features 

As discussed in section 3.7.6, MFCC features are used to produce classifications 

that are fused with the sub-band RPS classifiers. Because the equal-weighting scheme 

produces the highest accuracies for the sub-band RPS fusion, that strategy is used for 

these experiments. The fusion results for the classifier using twelve MFCCs, log energy, 

deltas, and delta-deltas, and the sub-band RPS classifiers are presented in Table 10. 

# Sub-bands 2 4 8 

Equal Weights 58.85% 59.19% 58.99% 

Optimized Weights 58.95% 59.22% 59.32% 

Table 10. Phoneme classification accuracies for fusion of sub-band RPS and MFCC classifiers. 

The classification accuracies of the fusion of sub-band RPS and MFCC classifiers 

outperform the MFCC-only classifier for every configuration. The best fusion accuracy is 

seen with the eight sub-band RPS plus MFCC fusion using optimized weights. This 

accuracy produces a 2.38% absolute improvement. This suggests the presence of 

significant discriminatory information contained in the sub-band RPS representation that 

is not found in the MFCC representation. 

4.4. Summary of Results 
Examination of the experimental results, which are summarized in Table 11, 

shows that the optimized-weight strategy outperforms all other strategies for every set of 
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sub-bands. It is interesting to note, however, that the accuracies produced by this method 

are not significantly higher than the equal-weighting scheme. This is not necessarily the 

expected result, because the sub-band classifiers do not perform equally, especially in the 

case of only two sub-bands. Also the equal-weighting scheme does not make use of the 

information about the relative strengths and weaknesses of each sub-band classifier. 

However, as was derived in section 3.7.1, the equal-weighting scheme is optimal 

assuming independence among the bands. The best sub-band RPS fusion accuracy is seen 

for the eight sub-band RPS plus energy classifier. This accuracy is 54.95%, an absolute 

improvement of 16.14% over the full-band RPS classifier. It also outperforms the MFCC 

feature set that does not contain delta coefficients.  

Fullband RPS baseline = 38.81% 2 bands 4 bands 8 bands 

Optimized weights 50.65% 52.18% 54.95% 

Equal weights 50.14% 51.96% 54.84% 

Sub-band accuracy-based weights 49.63% 50.11% 52.81% 

Sub-band & class accuracy-based weights 43.98% 46.65% 51.96% 

Variance-based weights 43.74% 44.33% 48.79% 

Table 11. Summary of fusion results with energy. 

 Fusion of the sub-band RPS classifiers with MFCC features improves the 

classification accuracy over the MFCC-only baseline. The best fusion accuracy is 59.32% 

for the eight sub-band RPS plus MFCC classifier, an absolute improvement of 2.38%. 

This result demonstrates that RPS’s can potentially be used to improve speech 

recognition systems. 
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5. Conclusion 

5.1. Comparison of Sub-banded RPS with MFCCs 
The best accuracy reached by the proposed system is realized by the set of eight 

sub-bands with energy. Though it does not match the greatest cepstral baseline, that of 

the twelve Mel-frequency cepstral coefficients (MFCCs), log energy, deltas, and delta-

deltas, it does outperform the set of MFCCs that includes energy but not delta 

coefficients. This is significant because the nature of the proposed system does not allow 

for inclusion of comparable delta coefficients. If similar features could be built for the 

system developed in this work, it may be able to outperform the top MFCC baseline. 

5.2. Combination with MFCCs 
As can be seen in Table 10, the fusion of the MFCC classifier and the sub-band 

reconstructed phase space (RPS) classifiers improved the accuracy over the MFCC-only 

baseline. This appears to suggest that there is information present in the sub-band RPS’s 

that is not captured by the MFCCs. It seems likely, however, that there is some overlap in 

the information captured by the two methods. It would then be desirable to eliminate this 

overlap, and develop a feature set based on the sub-band RPS approach that models only 

the nonlinear or higher-order statistical information. These features could then be 

combined with the MFCC features in a more efficient way. 

5.3. Future Directions 
The performance of the proposed methodology for the classification of isolated 

phonemes suggests that this approach may be valuable for use in practical automatic 

speech recognition systems. Before that can be accomplished, this methodology must be 

applied to continuous speech recognition. The time complexity of the current approach, 



 Conclusion 52 

however, does not allow for real-time recognition of continuous speech. Since each point 

in the RPS is treated as a frame, with likelihoods calculated for each model every 6.25 us 

for a sampling rate of 16,000 Hz, there are many more frames in this approach than in the 

standard spectral feature-based methodology. This leads to a recognition time complexity 

that is on the order of 100 times greater than automatic speech recognition systems based 

on spectral features [30]. 

 One way to reduce the computational time is to develop a set of features based on 

the sub-banded RPS’s. The computational complexity of cepstral features is O(n log n), 

where n is the frame length. If an RPS-based feature extraction technique with a similar 

complexity could be developed, the recognition time of the RPS approach would be 

reduced, making the approach practical. Additionally, using features computed from the 

sub-band RPS’s would allow for delta and delta-delta features, important pieces of 

information, to be incorporated. 

 Sub-banding has been used in spectral-based for recognition of noisy speech. 

Though all experiments presented in this thesis are performed on clean speech, it would 

be interesting to apply the methodology presented here to speech corrupted by various 

types of noise. The use of sub-banded RPS’s may benefit ASR systems that must be 

robust to noise.  

5.4. Conclusion 
This thesis has introduced a full phoneme classification system using sub-banded 

reconstructed phase spaces for classification of phonemes. Experiments studying the 

effects of filter bank size and fusion methods have been presented and discussed. The 

RPS modeling approach used has important theoretical advantages over spectral-based 

approaches in that nonlinear or higher-order statistical characteristics present in speech 
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signals can be captured. The filter bank front-end introduced clearly improves the 

classification ability over the standard full-band RPS approach. 

The sub-band RPS approach is competitive with the standard Mel-frequency 

cepstral coefficient features for classification of isolated phonemes. Though the approach 

proposed in this paper produces classification accuracies inferior to that of the full MFCC 

feature set with log energy and regression coefficients, it does outperform the MFCC 

feature set that includes log energy but no delta coefficients. Combination of the sub-

band RPS features and MFCCs shows a 2.38% absolute improvement over the MFCC-

only features with equal-weighted log-likelihood fusion. 

The results presented show that further research into sub-banded RPS’s as an 

alternative for front-end parameterization in speech recognition systems is warranted. 

This approach has the potential to benefit real ASR systems, including those that must 

perform recognition on noisy speech.  
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