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Abstract

This paper 1 describes the use of connectionist techniques in phonetic speech recog-
nition with strong latency constraints. The constraints are imposed by the task of
deriving the lip movements of a synthetic face in real time from the speech signal,
by feeding the phonetic string into an articulatory synthesiser. Particular attention
has been paid to analysing the interaction between the time evolution model learnt
by the multi-layer perceptrons and the transition model imposed by the Viterbi
decoder, in different latency conditions. Two experiments were conducted in which
the time dependencies in the language model (LM) were controlled by a parameter.
The results show a strong interaction between the three factors involved, namely
the neural network topology, the length of time dependencies in the LM and the
decoder latency.
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1 Introduction

This paper describes the use of a hybrid of artificial neural networks/hidden
Markov models (ANNs/HMMs) in a speech recognition system with strong
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Strong Latency Constraints”, Speech Communication Volume 48, Issue 7, July 2006,
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by Vinnova (The Swedish Agency for Innovation Systems), KTH and participating
Swedish companies and organisations.
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latency constraints. The need for such a system arises from the task of clas-
sifying speech into a sequence of phonetic/visemic units that can be fed into
a rule system to generate synchronised lip movements in a synthetic talking
face or avatar (Beskow, 2004). As the aim is to enhance telephone conversation
for hearing-impaired people (Karlsson et al., 2003), the total latency allowed
between incoming speech and facial animation is limited by the turn taking
mechanism to less than 200 ms. This includes the latency in capturing the
sound and generating and animating the facial movements. The constraints
imposed on the recogniser are thus especially demanding if compared to other
applications of speech recognition.

In such conditions, and more in general in real-time applications, conventional
decoders based on different flavors of the Viterbi algorithm (Viterbi, 1967),
can only be used in an approximate fashion. This is because the need for
incremental results requires the best-path solution to be based on partial de-
cisions, with limited look-ahead in time. The difference between the standard
Viterbi solution and the approximated solution is often called “truncation er-
ror”. Truncation error in the Viterbi algorithm has been extensively studied
for convolutional codes in the area of speech coding (Kwan and Kallel, 1998;
Weathers, 1999). There, given the relatively simple nature of the problem,
error bounds could be found analytically and confirmed empirically.

In speech recognition, a few empirical studies dealing with this problem can
be found in the area of broadcast news recognition/transcription (e.g. Imai
et al., 2000; Ljolje et al., 2000). In Ljolje et al. (2000) a system based on
incremental hypothesis correction was shown to asymptotically reach the op-
timal MAP solution. In Robinson et al. (2002) connectionist techniques are
employed in the same task. These studies are concerned with large vocabulary
word recognition, and have less stringent latency constraints.

The aim of the current study is to analyse the effect of truncation errors at
very low latencies (look-ahead < 100 ms) in different set-ups of the language
model, while keeping phonetic recognition as the main focus for the application
we have in mind. In connectionist speech recognition it is of particular interest
to study the interaction between the time evolution model learnt by the time
delayed or recurrent neural networks and the transition model imposed by the
Markov chain, with varying look-ahead lengths.

The first experiment in this study does this by gradually changing the recogni-
tion network from a free loop of phones (short time dependencies) to a loop of
words with increasing lengths. In the second experiment the language model
(LM) is composed of a scaled mixture of a free loop of phones and a forced
alignment topology where the time dependencies are as long as the utterance.
The gradual modification of the LM is achieved in this second case by changing
the mixing parameter. In addition, a confidence measure particularly suitable
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Figure 1. Dependencies in a first order HMM represented as a Bayesian network
graph

for connectionist models (Williams and Renals, 1999) is discussed. The reader
also is referred to Salvi (2003) for an evaluation of the Synface recogniser in
more realistic conditions.

The paper is organised as follows: a formal definition of the problem is given
in Section 2, Section 3 introduces the method, Section 4 the data and experi-
mental settings. Results are described in Section 5 and discussed in Section 6.
Section 7 concludes the paper.

2 Problem definition and notation

2.1 Speech production in formulae

The process of speech production could be seen as one of encoding a sequence
of symbols XM

1 = (x1, · · · , xM) into a sequence of states SN
1 = (s1, · · · , sN)

with an associated output sequence UT
1 = (u1, · · · , uT ). In our oversimplified

description, XM
1 could represent phonetic classes, SN

1 are motivated by the
dynamics introduced by articulatory gestures that in turn generate the speech
signal UT

1 . Phonetic speech recognition is therefore the process of recovering
the original sequence XM

1 on the base of some features Y N
1 = (y1, · · · , yN)

extracted from UT
1 . When the feature extraction procedure is assumed to be

given, as in the current study, the distinction between U and Y is not essential.
Speech production is then a (stochastic) function of the kind: P : X → Y .
The natural choice for characterising this function is a Markov model Θ where
the states si are assumed to vary synchronously with the features yj, which
explains why we indicated the length of S and Y with the same symbol N .
Besides an a priori term, Θ is then fully specified by the distribution of state
transition probabilities aij = P (sj|si) and the likelihood of the data generation
given a certain state bi(Y

k
h ) = P (Y k

h |si). The usual assumption is to consider
the latter as local models, in the sense that the state si at a particular time
h influences the observation only at that time h: P (Y k

h |si) = P (yh|si), as
illustrated in Figure 1. In this case, all the information about the dynamic
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Figure 2. Dependencies introduced by time dependent MLPs.

evolution of the process under study is coded in the transition model aij.

2.2 State-to-output probability estimators

Robinson (1994) has shown how multi layer perceptrons (MLPs) can be effi-
cient estimators for the a posteriori probabilities P (xi|Y n

1 ) of a certain state
xi given an observation Y n

1 . A particularly efficient training scheme uses back
propagation through time (Werbos, 1990) with a cross entropy error measure
(Bourlard and Morgan, 1993). If the nonlinearity in the units is in the tanh
form, we can write for the state to output probabilities:

P (Y k
h |xj) =

P (xj|Y k
h )P (Y k

h )

P (xj)
≃ oj + 1

2

P (Y k
h )

P (xj)
(1)

Where xj is a phonetic class and oj the activity at the output node corre-
sponding to that class. The linear transformation in the formula ((oj + 1)/2)
is necessary to transform the tanh values, that span from -1 to 1, into proba-
bilities. In the following we will refer to output activities of the MLP as the
linearly transformed outputs that assume values in the range [0, 1]. Y k

h is the
sequence of feature vectors spanning a window of time steps that depends on
the dynamic properties of the MLP. In the case of simple feed-forward nets,
Y k
h reduces to the current frame vector yk, while for strict recurrent topologies

(RNN), h = 1 and k is the current frame. This is illustrated in Figure 2 that
shows how the dynamic properties of the neural network can introduce de-
pendencies between states and observations that span over a number of time
steps. In Ström (1992) a mixture of time delayed and recurrent connections
was proposed. In this model the input layer received contributions both from
the past and the future frames thanks to time delayed connections with possi-
bly negative delays (represented in the Figure by dashed lines). In this study,
only positively delayed connections are considered, in order to reduce the total
latency of the system.
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2.3 Interaction between HMM topology and ANN dynamic properties

Given the probabilistic model Θ, the maximum a posteriori (MAP) solution
to the speech recognition problem is the sequence XM

1 that maximises

P (XM
1 |Y N

1 ,Θ) = P (x1, · · · , xM |y1, · · · , yN ,Θ) (2)

A more pragmatic solution, provided by the Viterbi algorithm, approximates
the sum over all possible state sequences, implicit in Equation 2, with a maxi-
mum operation. Since in our modelXM

1 is fully determined by SN
1 , the recogni-

tion problem is equivalent to finding the sequence SN
1 for which P (SN

1 |Y N
1 ,Θ)

is maximum. This can be done iteratively according to the Viterbi recursion
formula:

δt(j) = max
i

[δt−1(i)aij]bj(yt)

Where bj(yt) = P (yt|xj) is the likelihood of the current observation given
the state and δt(j) is the Viterbi accumulator. In practice we substitute to
bj(yt) the estimate of P (Y k

h |xj) given by Equation 1. In the case of recurrent
MLPs, P (Y k

h |xj) equals P (Y t
1 |xj) and the information contained by δt−1(i) and

bj(Y
t
1 ) in the Viterbi recursion formula becomes widely overlapping. Figure 3

illustrates this by indicating which states and observations the two terms in
the Viterbi recursion formula depend on. Left semicircles refer to the term
δt−1(i) and right semicircles to the term bj(Y

t
1 ). Grey semicircles are included

if the MLP has negatively delayed connections.

As the two sources of information in the Viterbi recursion are strongly depen-
dent, we expect the evidence brought by their joint contribution to be lower
than the sum of each single contribution, as if they were independent.

2.4 Interaction between HMM topology and look-ahead length

When truncation is considered, the optimal solution at time step n is the state
sn extracted from the sequence Sn+D

1 = (s1, · · · , sn, · · · , sn+D) that maximises
P (Sn+D

1 |Y n+D
1 ,Θ), where D denotes the look-ahead length in time steps. The
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Figure 4. Trellis plot in with three Viterbi paths (varying look-ahead length)

difference between the two approaches is exemplified in Figure 4. The grid
displays the states as a function of time (trellis). The continuous line shows
the Viterbi solution, while the dashed and dashed-dotted lines refer to the
best path obtained using the partial information up to t = n + D and t =
n+D′, respectively. The figure also illustrates a phenomenon that is common
in practice: the influence of an observation at time t1 over the result at time
t2 decays with the distance D = |t1 − t2|. In the example the observations in
the interval [n+D+1, n+D′] influence the result at time n, as prolonging the
look-ahead from D to D′ leads to different results (open and filled squares).
With respect to the solution at time n, however, adding the observations in
[n+D′+1, N ] to the search mechanism does not change the response. As a result
the truncated solution will in general asymptotically approach the standard
Viterbi solution (filled square in this case) as D increases. The value D∗ at
which the two solutions become indistinguishable depends on the dynamic
characteristics of the problem at hand, i.e. on the time correlations in Y and
on those imposed by the transition model Θ.

3 Method

To evaluate the interaction between the language model, the properties of
the probability estimators, and truncation in the Viterbi decoder, three-factor
experiments were designed. The factors involved are: the length of time depen-
dencies in the recognition network (language model), the dynamical properties
of the probability estimators and the look-ahead length.
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Figure 5. Illustration of the “wordlen test” design: the transcription of each test
utterance is spit into words of increasing lengths, that are used in the recognition
network.

3.1 Language model

Varying the length of time dependencies in the language model (LM) was
simulated in two different ways. In both cases, a different LM is used for each
utterance, based on information contained in its transcription.

The first method consists of constructing the recognition network as the union
of two topologies with transition weights scaled by a factor α:

LM(α) = α AL ∪ (1− α) PL (3)

PL specifies a free loop of the phones included in the transcription for each
utterance, while AL is the LM obtained by connecting in a sequence the
phones specified by the transcription of each utterance. When α → 0 the
grammar has the short time dependencies of a phone loop, when α → 1 the
time dependencies are as long as the utterance, and the recogniser performs
forced alignment. The parameter α assumes seven values in the experiments:
0, 0.1, 0.3, 0.5, 0.7, 0.9, 1. This design will be referred to as the “alpha test”.

In the second method, the LM defines a loop of words, where a word is defined
by successively extracting N phones from the transcription of each utterance
(see Figure 5). For N = 1 the LM is again a loop of phones. The parameter N
assumes the values from 1 to 7. To be noted here is that, since each phone is
modelled by a three state Markov model, the lower bound to the time depen-
dencies induced by this LM ranges from 3 to 21 frames in the experiments.
This design will be referred to as the “wordlen test”.

As already noted, the phone-loop condition (α = 0 or N = 1) is obtained in
the alpha and wordlen tests by selecting for each test utterance only those
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phones contained in its transcription. This was necessary to guarantee homo-
geneity with the other conditions (α ̸= 0 or N ̸= 1), as the main objective of
the experiment is to compare the different conditions, rather than computing
an absolute performance score. When evaluating the recogniser from the per-
spective of the application, a loop of all phones should be used. This condition
is analysed in Section 5 as a reference.

A factor that turned out to be important in the evaluation of the different
LMs, especially in the low-latency condition, is the phone-to-phone transition
probability. In the phone-loop condition the transition probability from phone
i to phone j is 1/N (the uniform case) where N is the number of phones. In
the other conditions, the within-word phone-to-phone transition probability
should in principle be 1, as each phone can only be followed by the next in the
pronunciation model. This introduces terms that turned out to strongly affect
the search mechanism, especially for low-latency conditions. The solution was
to keep the same transition probabilities in both cases (1/N), releasing the
constraint of a stochastic grammar (outgoing transition probabilities that sum
to 1). This is a common practice in speech recognition where multiplicative and
additive terms are usually applied to a subset of the transition probabilities,
often corresponding to the language model. The aim is however different, as
we are not directly interested in tuning the performance of the decoder, but
rather in ruling out from the comparison factors that do not depend on the
dynamic properties of the LM.

3.2 Probability estimators

The second experimental factor is the ability of the state-to-output probability
models to express time variations. In this case, similarly to Salvi (2003), three
multi layer perceptrons (MLPs) were used with different complexities and dy-
namic properties. One feed-forward MLP is considered as a static model, while
two recurrent MLPs represent models capable of learning the time evolution
of the problem (details in Section 4.1).

3.3 Look-ahead length

The third experimental factor is the look-ahead length L that can be varied in
our decoder. One problem is how to decode the last L frames at the end of each
utterance. As every utterance begins and ends with silence, it was suggested
in Salvi (2003) to decode the whole test set in a continuous stream, limiting
the boundary problem only to the last file. Here, in contrast, each utterance
is analysed separately and the result for the last L frames is assumed equal
to the best path obtained when the forward phase has reached the end of the
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utterance. This is a somewhat more standard way of computing the Viterbi
solution and was necessary to enable the use of a different language model for
each utterance. Five values of the look-ahead length (in frames) were used in
the experiments: 1, 3, 5, 10, 20.

3.4 Scoring method

The scoring method chosen for this study is frame-by-frame correct classi-
fication rate simply computed as the ratio between the number of correctly
classified frames and the total number of frames. A correct classification occurs
when a frame has been assigned the same phonetic class as in the transcrip-
tion. This method was preferred to the more common minimum edit distance
at the symbolic level, because the application we have in mind requires not
only correct classification of the speech sounds, but also correct segment align-
ment. In Section 5, phone-loop results are reported in terms of frame-by-frame
correct classification rate, as well as accuracy and percent of correct symbols
(Young et al., 2002) in order to compare these scoring methods.

3.5 Confidence measure

As noted in Williams and Renals (1999) the property of multi-layer percep-
trons to estimate posterior probabilities, as opposed to likelihoods, is advanta-
geous when computing confidence measures of the acoustic models. A simple
measure of the acoustic confidence is the per-frame entropy of the k phone
class posterior probabilities. Although the entropy measure, in Williams and
Renals (1999), is averaged over a number of frames, we will consider a frame-
by-frame measure. A factor that strongly influences the entropy measure is
the choice of the target values during training of the networks. A common
practice is to use 0 + ϵ and 1 − ϵ, with small ϵ, as target values, in order to
speed up the convergence in the standard back propagation algorithm (Note
that when using tanh squashing functions, the limits are internally -1 and 1,
and the above discussion refers to the linearly transformed outputs of the net-
work, see also Equation 1). As a consequence, the networks trained this way
are more noisy in the sense that the activities of the inactive output nodes
seldom fall below 0 + ϵ. Strictly speaking, this also gives incorrect posterior
probabilities estimates.

To show the effect of the target values on the entropy measure we consider
a simplified example. We assume that the activities of the output nodes of
the network trained with target values oH (active) and oL (inactive), can only
assume those values when the network is excited by new input. In reality the
activities take any value in between and sometimes even outside the range

9
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[oH , oL]. Even if the network is trained with only one active output node per
time step, there will be, during excitation, a number NH of simultaneously
active nodes. If we call NL the number of inactive nodes (NH +NL = N is the
total number of output nodes), then, from the definition of the entropy:

H = −NHbH log bH −NLbL log bL (4)

where bH and bL are the normalised activities obtained imposing that the sum
of probabilities be 1:

bH =
oH

NHoH +NLoL
, bL =

oL
NHoH +NLoL

In the case of symmetrical values, i.e. (oL, oH) = (ϵ, 1−ϵ), Equation 4 assumes
the form:

H = log(NH(1− ϵ) +NLϵ)−
NH(1− ϵ) log(1− ϵ) +NLϵ log ϵ

NH(1− ϵ) +NLϵ

When ϵ → 0 (oH → 1 and oL → 0), the entropy H tends to log(NH), as
easily seen in the formula. In Figure 6 the entropy is plotted as a function
of the number of active nodes NH , for the cases ϵ = 0, 0.03, 0.1, and for
N = NH + NL = 50 as in our networks. The figure shows how the entropy
of the output of a network trained between 0 and 1, given our assumptions,
spans the whole range from 0 to logN , while the network trained between
ϵ and 1 − ϵ has a more limited range in the high entropy region. The range
strongly depends on ϵ. In our experiments one network was trained with [0, 1]
targets and the other two with [0.1, 0.9] targets (ϵ = 0.1).

In Section 5.4 the impact of ϵ on the entropy based confidence measure is
discussed with examples on the test data.
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4 Data

The experiments were performed on the Swedish SpeechDat corpus (Elenius,
2000), containing recordings of 5000 speakers over the telephone. The offi-
cial training and test sets defined in SpeechDat and containing respectively
4500 and 500 speakers, were used in the experiments. Mel frequency cepstrum
features were extracted at 10 ms spaced frames.

The training material for the neural networks, and the test material were re-
stricted to the phonetically rich sentences. The training material was further
divided into training and validation sets of 33062 and 500 utterances respec-
tively. The test set contains 4150 utterances with an average length of 40.9
phonemes per utterance. Figure 7 shows the distribution of the length of the
test utterances in terms of number of phonemes.

One problem with the SpeechDat database, that is important when training
the MLPs and for testing at the frame level, is the unbalanced amount of
silence frames compared to the amount of material for any phonetic class.
Part of the silence frames that were concentrated at the beginning and at the
end of each utterance, was removed.

Since the dataset lacks phonetic transcriptions, some pre-processing was nec-
essary. The time-aligned reference, used for both training and testing the MLP
models, was obtained with forced alignment employing the word level tran-
scriptions, the official SpeechDat lexicon and triphonic HMMs based on Gaus-
sian models. The HMMs were trained with the procedure defined in the RefRec
scripts (Lindberg et al., 2000). The alignment lattice allowed non speech
sounds to be inserted between words. The method proved to be reasonably
accurate for our purposes.
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Table 1
Details on the Acoustic Models and Frame-by-frame MAP results

model # params # hidd.units # hidd.layers recurrent % correct frame

GMM 379050 - - - 35.4%

ANN 186050 800 2 no 31.5%

RNN1 185650 400 1 yes 49.6%

RNN2 541250 400 1 yes 54.2%

4.1 Acoustic Models

Three multi-layer perceptrons were used in this study. The first (ANN) is a
feed-forward network with two hidden layers of 400 fully connected units each.
RNN1 and RNN2 are recurrent networks with one hidden layer of 400 units and
a varying number of time delayed connections. The choice of topology in ANN

aimed at ensuring a comparable complexity (in number of free parameters)
between ANN and RNN1.

As a reference, results obtained with a set of Gaussian mixture models (GMM),
are reported together with the multi-layer perceptrons results. The GMM re-
sults show the discriminative power of the set of Gaussian models, when the
phonetic class with the maximum a posteriori probability (MAP) is selected
for each frame. The Gaussian mixture parameters where estimated using the
HMM training with 32 Gaussian terms per state.

Details on the acoustic models are reported in Table 1. The table shows the
overall number of parameters, and, in the case of the perceptrons, the number
of hidden layers and hidden units and the dynamic characteristics. The last
column reports the correct frame classification rate when the maximum a
posteriori class was selected frame-by-frame.

4.2 Implementation note

The HMM training was performed using the HTK Toolkit (Young et al., 2002).
The MLP training algorithm was implemented in the NICO Toolkit (Ström,
1996). The modified Viterbi algorithm is the decoder used in the SYNFACE
project (Salvi, 2003; Karlsson et al., 2003), and, together with the other tools
used in the experiments, was implemented by the author. The statistical anal-
ysis was performed using the R software (R Development Core Team, 2003).
All experiments were performed on a GNU-Linux platform running on stan-
dard hardware (PC).
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5 Results

Results obtained with a normal phone loop are reported in Figure 8 as a refer-
ence to the performance of the recogniser in the real task. The left plot in the
figure shows the average correct frame classification rate over the 4150 test
utterances for varying look-ahead length and for the three neural networks
(vit-ANN, vit-RNN1 and vit-RNN2). The horizontal lines in the figure indi-
cate the classification rate without Viterbi decoding, i.e. selecting the highest
activity output at each frame (frame-by-frame maximum a posteriori). The
results are very close to the ones obtained in Salvi (2003), the differences be-
ing due to the way the boundary effects are handled (see Section 3.3), and to
the fact that in Salvi (2003) a global score was computed over the whole test
material, while here we compute the correct frame classification rate of each
utterance and then average the results.

13



The middle and right plots in Figure 8 show the accuracy and percent of
correct words as defined in (Young et al., 2002). These results are reported
in order to compare the three scoring methods, and to mention that none of
them are fully satisfying given the application. Accuracy and correct words do
not take into account segment boundary alignment in time and were therefore
discarded in the following evaluation. Correct frame classification rate, in con-
trast, does not indicate how stable the result is (number of symbol insertions).

The “wordlen” and “alpha” tests results are summarised in Figure 9. In the
first case (top) the average correct frame rate is plotted as a function of the
word length in the “wordlen” test for different values of the look-ahead length
and for the three multi-layer perceptrons. In the second case (bottom) the
x-axis indicates the α parameter in the “alpha” test. Note that the range of
the y-axis in the ANN case is different from the other two.

Longer time dependencies in the language model (LM) and longer look-ahead
lengths are beneficial in most conditions, as most of the curves increase mono-
tonically and do not overlap. Exceptions to this are the conditions in which
the static model ANN is used in conjunction with either a short time LM or a
short look-ahead length. In those cases, more irregular results can be found
(see left plots in the Figure). Examples are the fluctuating results correspond-
ing to different look-ahead lengths when wordlen = 1 or α = 0 (top-left and
bottom-left plots) and the non-monotonic variation of the score with respect
to the word length and α when the look-ahead length is one frame (top-left
and bottom-left plots). The last phenomenon can be found also in the RNN1

case (top-middle plot).

In the following, these results will be analysed in details with statistical means.

5.1 Wordlen test: short to long time dependencies

Figure 10 (top) shows box plots for the phone-loop case (word length = 1)
for different look-ahead lengths. The middle line in the box displays the me-
dian, while the lower and higher lines, called lower and higher hinges, display
respectively the first and third quartiles. The lower and higher whiskers show
the full range of the data. It is not clear in the ANN case, whether the use
of longer look-ahead is beneficial to the recognition score. In RNN1 and RNN2

there is a slight improvement along increasing look-ahead lengths. Applying
an ANOVA to the data returns significant differences in all the three cases
(respectively for ANN, RNN1 and RNN2: F(4,20745) = 15.31, 21.79, 8.96; p =
1.65x10−12, <2.2x10−16, <3.1x10−7). A successive Tukey multiple comparison
test is visualised in Figure 10 (bottom). The figure indicates the 95% family-
wise intervals for all possible combination of the values of the look-ahead
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Figure 10. Box-plots (top) and 95% family-wise Tukey confidence intervals (bottom),
word length = 1

factor. The difference between condition x and y is indicated by x− y that is
the increase in correct frame rate going from look-ahead length y to x. If an
interval crosses the zero line, the differences between the two conditions are
not significant.

There are significant differences in ANN but with negative signs. In RNN1 the
difference 10− 3 and all differences between L = 1 and L ̸= 1 are significant.
Finally in RNN2 only the L = 1 condition seems to be distinguishable from the
others.

On the other end of the word length parameter values (wordlen = 7), the
information carried by the transition model, and the Viterbi processing has
a stronger effect on the feed-forward perceptron. Figure 11 (top) shows the
corresponding box plot. The differences are significant in all cases (respectively
for ANN, RNN1 and RNN2: F(4,20745) = 281.32, 707.16, 262.17; p = <2.2x10−16).
Multiple comparison leads to significance in every difference as illustrated by
Figure 11 (bottom). Of the consecutive distances, 3−1 is always the greatest.
In ANN and RNN1, 10− 5 is greater than 5− 3.

Table 2 summarises the results for intermediate word lengths. A plus sign in
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Figure 11. Box-plots (top) and 95% family-wise Tukey confidence intervals (bottom),
word length = 7

Table 2
Wordlen test: Tukey HSD multiple comparison results
ANN

wordlen 3-1 5-1 10-1 20-1 5-3 10-3 20-3 10-5 20-5 20-10

1 n n n - n n - n - -

2 + + + + + + + + + n

3 + + + + + + + + + +

4 to 7 equal to 3

RNN1

wordlen 3-1 5-1 10-1 20-1 5-3 10-3 20-3 10-5 20-5 20-10

1 + + + + n + n n n n

2 + + + + + + + + + +

3 to 7 equal to 2

RNN2

wordlen 3-1 5-1 10-1 20-1 5-3 10-3 20-3 10-5 20-5 20-10

1 + + + + n n n n n n

2 + + + + + + + + + +

3 to 7 equal to 2

a x-y column indicates a positive significant difference between the latency
conditions y and x, a minus sign indicates a significant negative difference and,
finally, “n” no significant difference.
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Figure 12. Box-plots (top) and 95% family-wise Tukey confidence intervals (bottom),
alpha = 0.5

5.2 Alpha test: short to long time dependencies

Experiments carried out with the “alpha” test show similar results to the
“wordlen” test. In the phone loop condition (α = 0.0) the language model is
equivalent to the one in the “wordlen” test with word length 1 (see previous
section). Figure 12 shows the intermediate condition α = 0.5. In the ANN case
the 3−1, 5−1 and 10−1 differences are significant and positive, while the 20−
10 difference is significant but negative. RNN2 shows clear significant differences
when changing from 1 frame to longer look-ahead. The 5 − 3 and 10 − 3
differences are also significant but less evidently. With RNN1 all differences are
significant except 20− 10.

For α = 1, the LM specifies forced alignment. The results in Figure 13 indicate
significant increase of the correct frame classification rate with respect to the
look-ahead length, in all cases. Finally, Table 3 shows the Tukey results in all
intermediate cases. These are not as regular as the “wordlen” results, revealing
differences between the neural networks.
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Figure 13. Box-plots (top) and 95% family-wise Tukey confidence intervals (bottom),
alpha = 1.0

Table 3
Alpha test: Tukey HSD multiple comparison results
ANN

alpha 3-1 5-1 10-1 20-1 5-3 10-3 20-3 10-5 20-5 20-10

0.0 n - n - - n - + n -

0.1 n n n - n n - n - -

0.3 n n n n n n - n - -

0.5 + + + n n n n n n -

0.7 + + + + n + + + n n

0.9 + + + + n + + + + n

1.0 + + + + + + + + + +

RNN1

alpha 3-1 5-1 10-1 20-1 5-3 10-3 20-3 10-5 20-5 20-10

0.0 + + + + n + + + + n

0.1 + + + + n + + n n n

0.3 + + + + + + + + + n

0.5 + + + + + + + + + n

0.7 + + + + + + + + + n

0.9 + + + + + + + + + +

1.0 + + + + + + + + + +

RNN2

alpha 3-1 5-1 10-1 20-1 5-3 10-3 20-3 10-5 20-5 20-10

0.0 + + + + n n n n n n

0.1 + + + + n n n n n n

0.3 + + + + n n n n n n

0.5 + + + + n + + n n n

0.7 + + + + n + + n n n

0.9 + + + + + + + n + n

1.0 + + + + + + + + + +
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Figure 14. Entropy distribution for correct and incorrect classification

5.3 Summary

In both the “wordlen” and “alpha” tests, the statistic analysis shows signif-
icant differences. A successive Tukey multiple comparison test shows which
couples of values of the look-ahead parameter correspond to significant differ-
ences in the correct frame rate. The results strongly depend on the MLP for
short time dependences in the recognition network (towards the phone loop
condition). This dependency fades when the condition is shifted towards the
forced alignment case.

5.4 Confidence measure

Figure 14 shows the distribution of the entropy for correct (continuous line)
and incorrect (dashed line) classification, and for the networks ANN (left), RNN1
(centre), and RNN2 (right). The vertical dashed-dotted lines indicate the max-
imum entropy (logN). In the rightmost plot, the shaded area corresponds to
the range chosen in the other two plots, and is used to facilitate the comparison
between the two conditions. For the networks trained with [0.1, 0.9] targets
(ANN and RNN1) the entropy is concentrated in the high range, as explained
in Section 3.5. For RNN2 the entropy range is larger (the network was trained
with [0, 1] targets).

The prediction capabilities of the entropy as confidence measure are however
very similar for the recurrent networks. If we consider a Maximum Likelihood
decision, based on the conditional entropy distributions, that leads to the
minimum total error in case of equal a priori probabilities, we obtain the
results shown in Table 4. Note that the distributions shown in Figure 14 and
the results in Table 4 are obtained on two independent data sets created by
splitting the test data into two subsets of equal size.
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Table 4
Prediction capabilities of the entropy as confidence measure (ML decision)

net corr. accept corr. reject false accept false reject tot. error

ANN 21.5% 37.2% 10.2% 31.1% 41.3%

RNN1 32.1% 34.2% 17.7% 16.0% 33.8%

RNN2 32.4% 33.9% 21.8% 11.9% 33.7%

6 Discussion

The three factors considered in the experiments seem to strongly interact in the
decoding process. When the language model (LM) is similar to a phone loop,
most of the information on the time evolution is provided by the multi-layer
perceptron. In this case differences emerge on the latency behaviour of different
neural network topologies. The static network (ANN) produces irregular results
when the look-ahead length L is varied. The dynamic models (RNN1 and RNN2)
show a slight improvement with increasing L, that fades for higher values of
L. The look-ahead length for which no further improvement is achieved seems
to be lower for RNN2 than for RNN1.

When the LM contains longer time dependencies, all acoustic models benefit
(to different extents) of longer look-ahead lengths. This can be explained by
noting that

• the Viterbi decoding makes use of time dependent information regardless of
its source (transition model or dynamic neural network),

• the information provided by the transition model and the dynamic neural
network might overlap/conflict,

• the look-ahead length needed to take full advantage of the Viterbi decoding
is closely related to the length of the time correlations contained in the
hybrid model (transition model or dynamic neural network).

Given these remarks, the results obtained here can be interpreted in the fol-
lowing way. The static model ANN, providing no time dependent information,
takes advantage of the Viterbi decoding only for long time transition models
and long look-ahead. The more complex recurrent perceptron (RNN2) provides
information that partly overlaps with the transition model, causing only lim-
ited improvements when the look-ahead is increased (especially in the “alpha”
test). The simpler recurrent perceptron (RNN1) provides more limited time de-
pendent information and takes more advantage of the Viterbi decoding.

However, more specific tests should be designed to support this interpreta-
tion, using, for example, techniques from non-linear dynamics to analyse the
dynamical behaviour of the recurrent networks in details. Factors such as the
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target values during training should also be excluded from the tests. The scor-
ing method used rises also questions on the kind of errors the system is affected
by in different conditions. It would be important, for example, to investigate
to which extent the errors are due to misclassification of isolated frames or
longer sequences, or to misalignment of the segment boundaries.

7 Conclusions

The interaction of transition model, dynamic probability estimators and look-
ahead length in the decoding phase of a speech recognition system has been
analysed in this paper. The results show how the dynamic information pro-
vided by the recurrent multi-layer perceptrons does not always interact in a
constructive way with the transition model in Viterbi decoding. With static
MLPs, the use of longer look-ahead lengths is not beneficial when the time
dependencies in the language model are limited as in the phone loop condition.
With recurrent MLPs, the benefit depends on the complexity of the network.

The frame-by-frame entropy proved to be a reasonably accurate confidence
measure. This measure is not strongly affected by the use of target values in
training other than [0,1].
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