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Abstract

This work targets to improve the naturalness of synthetic intonational contours in Text-to-Speech synthesis through the
provision of prominence, which is a major expression of human speech. Focusing on the tonal dimension of emphasis, we
present a robust unit-selection methodology for generating realistic F0 curves in cases where focus prominence is required.
The proposed approach is based on selecting Tone-Group units from commonly used prosodic corpora that are automat-
ically transcribed as patterns of syllables. In contrast to related approaches, patterns represent only the most perceivable
sections of the sampled curves and are encoded to serve morphologically different sequence of syllables. This results in a
minimization of the required amount of units so as to achieve sufficient coverage within the database. Nevertheless, this
optimization enables the application of high-quality F0 generation to small-footprint text-to-speech synthesis. For generic
F0 selection we query the database based on sequences of ToBI labels, though other intonational frameworks can be used
as well. To realize focus prominence on specific Tone-Groups the selection also incorporates a level indicator of emphasis.
We set up a series of listening tests by exploiting a database built from a 482-utterance corpus, which featured partially
purpose-uttered emphasis. The results showed a clear subjective preference of the proposed model against a linear regres-
sion one in 75% of the cases when used in generic synthesis. Furthermore, this model provided ambiguous percept of
emphasis in an experiment featuring major and minor degrees of prominence.
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1. Introduction

Emphasis is essentially the use of language that
humans employ in order to bring to prominence
selective parts of speech and mainly convey non-lex-
ical and pragmatic information. It primarily signals
contrast (contrastive focus), distinction between
new and given information (focus as the missing
variable in a proposition), meaning pronunciation
and mood or other emotions. Generally, it points
.
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out the most important parts in an utterance.
Humans use a collection of different prosodic
aspects to denote emphasis when they speak. The
most common are pause insertions before and after
the emphasized words, duration stretching, inten-
sity, and substantial pitch rate change. The latter
has proven to be the most significant factor for
the perception of prosody (‘t Hart et al., 1990;
d’Alessandro and Mertens, 1995; Xub and Sun,
2002).

Human speech communication is emphasized by
its nature. Most sentences have at least one focus
and this is something that is partially ignored in
most prosody modeling works, providing ‘‘neutral’’
or ‘‘generic’’ coverage in preliminary prototypes;
however this is not the case in real speech. One of
the drawbacks of Text-to-Speech (TtS) synthesis
that leads to monotonous prosodic cues is the lack
of focus prominence over the corresponding seg-
ments of speech. Therefore, emphasis modeling
and provision is a mean to increase the expressive-
ness and thus naturalness of synthetic speech.

A TtS synthesis system mainly consists of two
components (Dutoit, 1997; Sproat, 1998): the natu-
ral language processing (NLP) and the signal
processing. The first one deals with the text-to-pros-
ody part, providing the latter with sufficient seg-
mental and prosodic information to generate an
appropriate acoustic signal that ‘‘resembles human
speech well enough for the human brain to interpret
it as such’’ (Clark, 2003). The generation of the pro-
sodic structure is derived in the synthesis chain from
higher-level linguistic analysis of utterances carried
by the NLP component. To represent this specifica-
tion, several intonational frameworks have been
proposed by linguists as well as engineers, ranging
from qualitative (e.g. ToBI (Silverman et al.,
1992)) to quantitative (e.g. Tilt (Taylor, 2000; Dus-
terhoff and Black, 1997)). They model intonation in
terms of segmental anchoring and type, as for exam-
ple, which syllables deserve a pitch accent and what
value, type or shape should that accent be of. To
incorporate this intonational description in the
acoustic signal, the F0 modeling component gener-
ates a continuous pitch curve from these events
(location and type of accent). The resultant degree
of naturalness of the synthetic pitch is closely
related to the quality of the events. F0 modeling is
of great importance in any signal processing
approach, from formant synthesis (defining the F0

parameter) and diphone-based concatenative syn-
thesis (defining pitch modifications) to unit-selection
synthesis, as prosody selection is also of significant
factor in the latter (Campbell, 1994).

The rule-based F0 generation approaches have
given place to machine learning ones. The most
commonly used statistical method is the Linear
Regression (LR) (Black and Hunt, 1996). This offers
reasonable pitch generation, especially when the
input conditions match the training ones. Objective
evaluations have reported correlation between the
training and the observed data from 0.6 to 0.8 in
generic conditions (Black and Hunt, 1996; Xydas
et al., 2005). On the other hand, subjective experi-
ments usually contrast with the good statistical
results, as prosody is usually judged as adequate
but rarely natural. The modified suprasegmental
structure of utterances and the lack of prominence
seem to affect the naturalness of the delivered pros-
ody, as well as the normalization of timing during
pitch alignment. To overcome this problem, cor-
pus-based F0 models have been proposed and the
recent related research focuses on optimizing (a)
model’s design in order to achieve adequate data
coverage within reasonably sized databases (Black
and Lenzo, 2003; Schweitzer et al., 2003) and (b)
selection algorithms that not only minimize joining
costs but also reveal the semantics of prosody
(Bulyko and Ostendorf, 2001; Quazza et al., 2001;
Wightman et al., 2000).

1.1. Corpus-based F0 modeling

Following the natural effects on the segmental
quality of corpus-based speech synthesis (Hunt
and Black, 1996), corpus-based F0 modeling (Huang
et al., 1996; Malfrere et al., 1998; Meron, 2001;
Raux and Black, 2003) attempts to maintain the
suprasegmental structure intact thus achieving finest
tonal representation. The minimization of the con-
catenation cost between jointed units affects the
overall smoothness of the contour, based on the
available inventory and the selection algorithm.
However, natural curves are preserved at least over
the range of each selected unit. In each case, the
delivered speaking style originates and hardly devi-
ates from that of the original human speaker.

In (Huang et al., 1996) the intonation cues of a
group of consecutive syllables that form a clause,
constitute an F0 template. The template database
is constructed in such a way so that it includes only
one instance of each template. In (Malfrere et al.,
1998), a sequence of successive words ending in a
content word forms a pattern (intonational group).
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Selection is based on units with identical pattern to
the target one; thus only equal number of syllables
and events make a match. In (Meron, 2001), the
selection algorithm goes down to the syllable level.
A prosodic unit inventory is utilized to select units
that match a set of target events. A Viterbi-like
dynamic programming method is used to find a path
with minimum cost. Units are selected with no
restrictions, even in mid-word positions whereas
F0-smoothing is performed to deal with F0 disconti-
nuities. Also, that work targets to duration selection
as well, and thus only candidates with matching
number of syllables to the target units are consid-
ered, in order to allow the proper duration align-
ment during synthesis. A similar method was
followed in (Raux and Black, 2003) where the size
of F0 selection units was reduced to single segments
to allow more flexible modeling, whereas the evalu-
ation showed that the selection was mostly per-
formed on syllable boundaries. These approaches
have to face the major problem of coverage within
the database, as missing units might cause either
bad selection or selection from smaller units if avail-
able. However, the latter nullify the purposes of the
tonal selection, as the semantic and pragmatic infor-
mation that prosody carries is difficult to be
chunked in small pieces. This problem is even more
important in cases of small-footprint speech synthe-
sis, where the limited resources do not allow the
selection from a large inventory.

1.2. Unit size

The definition of the appropriate intonational
unit size differs from the spectral unit-selection case,
where the preferred unit size ranges from words
(Black and Lenzo, 2000a), to syllables, diphones
(Conkie and Isard, 1994), phones (Black and Lenzo,
2000b), half-phones (Beutnagel et al., 1999) or even
smaller units (Donovan and Woodland, 1995),
though there is not a scale of which one sounds bet-
ter. In (Kishore and Black, 2003) it was shown that
syllables sound better than half-phones that in turn
sound better than diphones and phones. However,
this heavily relies on the database properties and
the coverage it offers for a specific domain. Things
slightly differ when moving from the spectral to
the tonal domain, as the main point of F0 unit-selec-
tion is to leave the original intonation ‘‘as-is’’ as
possible. Long F0 selection units should be preferred
as they preserve the suprasegmental structure result-
ing in more natural intonation in cases of matching
units. On the other hand they are hard to align with
mis-sized target units, so smaller units are usually
chosen (Meron, 2001; Raux and Black, 2003).

A different approach has been followed in (Xydas
and Kouroupetroglou, 2004) where the F0 curves
are captured not in their whole range above each
unit but only in the most prominent portions. The
copy of original pitch samples in the database was
combined with an onset/offset structuring of utter-
ances, allowing higher F0 definition in the accented
words that are close to the utterance boundaries.
The proposed pattern matching featured the align-
ment of stored pitch targets over phrases of different
length, thus there was no need for storing samples
of all possible syllable and pattern combinations
providing high compression to the database.
Though it lacked the naturalness in cases of long
sentences, where an interpolation was applied, it
proved successful for short messaging applications.

1.3. Modeling of expressive speech

Expressive speech synthesis is traditionally trea-
ted as an autonomous prosodic dimension that rep-
resents emotions like anger, joy, fear, happiness etc.
(Schroeder, 2001; Eide et al., 2003), optionally fol-
lowed by voice quality modifications (Gobl and
Chasaide, 2003). Most efforts to model expressions
propose the built of one database per expression.
Emphasis can be considered as a primitive expres-
sion. The most common rule-based approach to
emphasis realization is to insert pauses before and
after the emphasized words, extend the duration
and intensify the F0. This sounds adequate for sim-
ple cases; however, naturalness is a step beyond ade-
quateness (Black, 2003). Several works have dealt
with modeling emotions in the intonational only
dimension. The IPO model (‘t Hart et al., 1990)
has been proved to be able for identifying emotions
in that manner (Mozziconacci, 2000). In (Pitrelli
and Eide, 2003), a corpus-based approach was fol-
lowed for modeling contrastive emphasis based on
ToBI sequences. The experiments showed that this
method was not strong at producing unambiguous
percept of emphasis. One possible reason might be
the fact that ToBI marks alone do not distinguish
between emphasis or not. There are also some argu-
ments (Mozziconacci and Hermes, 1999) that no
specific intonational pattern is closely related with
any emotion.

The unit-selection approach followed in (Raux
and Black, 2003) has also been applied in emphasis
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modeling, where subjective evaluation was done by
comparing the proposed model against the standard
rule-based one of Festival (Black et al., 1998).

1.4. Our work

Some prosodic phenomena, such as emphasis,
which is examined in this work, cannot be applied
to smaller chunks than a whole intonational unit
like the breath group (Lieberman, 1967), the into-
national phrase (Pierrehumbert, 1980) and the into-
national group (Malfrere et al., 1998). Clark (2003)
has also followed a looser definition of tone group
considering it to be a ‘‘sequence of tones ending in
some kind of boundary and nothing more’’. Our
approach is closer to Ladd’s one (Ladd, 1986),
who defined a tone group as the smallest phonolog-
ical unit that contains only one nuclear accent. In
this work, we define a Tone-Group as the phono-
logical unit that contains either a single pitch
accent event or a single pitch accent followed by
phrase or boundary tone event. To balance
between keeping the database size to a minimum
and making the unit size as big as required to cap-
ture at least one intonational group, this work pro-
poses an F0 model that is based on a perceptually
acceptable partitioning of F0 contours over the
inventory’s units. This minimizes both the database
size and its creation effort and ensures sufficient
coverage, as each pattern has now a more abstract
structuring that enables it to achieve more than a
single match, even with morphologically heteroge-
neous targets and thus it differs from the related
approaches. We further apply this method to
emphasis modeling and we are experimenting with
Chief
Justice

of
the

Massaschusetts
Supr

[1] [3] [1] [1] [2]

Fig. 1. Hierarchy of phonological scales for the utterance ‘‘Chief Just
Corpus).
the expressive effects that the chosen intonational
unit size delivers.

In Section 2 we present the Tone-Group model
and its selection algorithm. Section 3 describes the
creation and the properties of an experimental data-
base built from an expressive corpus. In Section 4
we perform a set of objective evaluations to measure
model’s performance in re-synthesis conditions, fol-
lowed by a series of listening tests to compare the
proposed model against a well-established linear
regression one and to subjectively evaluate listeners’
perception on distinct levels of emphasis (Section 5).

2. The Tone-Group model

The notion of a nuclear tone associated with a
sequence of semantically consecutive words is the
basis of several intonational theories like Ladd
and Pierrehumbert’s. Phrases that are set off by
audible prosodic breaks are further broken down
to units featuring single pitch accents. Based on
that, a Tone-Group (TG) roughly extends to the
boundaries of a clitic group (Nespor and Vogel,
1986). Namely, a TG is defined here as a sequence
of consecutive words with word junctures of non-
break type in between, where no more than one
pitch accent occurs. Even though there is a certain
confusion and disagreement regarding the terminol-
ogy and definitions of the components of the pro-
sodic hierarchy we can say that the TG – defined
here as similar to the clitic group – also corresponds
to what’s been referred to in the literature as the
minor phrase (Selkirk, 1978, 1986) and the prosodic
word in its broader sense (cf. Selkirk’s definition of
a ‘‘super’’ prosodic word in (Selkirk, 1995)) (Fig. 1).
Word

eme
Court

Prosodic Word

Clitic Group/Minor Phrase

Intermediate Intonational 
Phrase/Major Phrase

Full Intonational Phrase

[1] [4] Break Indices

ice of the Massachusetts Supreme Court.’’ (Boston Radio News
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Moving to the tone domain, a TG is enriched – as
mentioned above – by one accent tone and/or one
endtone (either phrase accent or boundary tone).
Other features (for example focus prominence infor-
mation examined in this work) either weighted or
non-weighted can be added in the feature vector in
order to drive a finest selection. We will proceed to
a closer inspection of the feature set in Section 2.2.

Prosodic databases that serve specific purposes
differ from corpora, as the former are purpose-built
collections of structured tokens that derive from the
latter (Campbell, 2005). Taking into account the
availability of corpora with sufficient linguistic
labels and prosodic annotations, the proposed
Tone-Group Selection model exploits existing infor-
mation in order to build the model’s database. For
presentation and prototyping purposes we follow
the utterance structure of the Heterogeneous Rela-
tion Graphs (HRG) representation (Taylor et al.,
2001), though this is not compulsory. Accordingly,
TGs are represented by the introduced ToneGroup
relation that actually correspond to the clitic groups
(Fig. 2). The ToneStructure tree relation allows the
navigation from a TG down to the ToneItem one.
Tone-Items carry the acoustic properties of the F0

contour and are discussed in Section 2.3. Word
and Syllable relations are also linked together by
the SylStructure relation (not shown here) as hap-
ToneStructure

Fig. 2. The Tone-Group hierarch
pens in most common Festival voices. Fig. 2 shows
this hierarchy of both the candidate units and the
target ones. In case of a match, the ToneItem rela-
tion is copied from the candidate unit to the target,
following the alignment process that is described in
Section 2.6. According to the TG selection model,
F0 pitch targets, normally carried in the Target rela-
tion (not shown here), can be directly derived from
the ToneItem relation. These targets describe the
continuous pitch contour of the synthetic speech.

Selection of TGs is based on matching some tar-
get specification. Specifications are held as weighted
feature vectors that include acoustic, linguistic and
morphological information for all source and target
TGs.

2.1. The ‘haAb’ pattern

To identify TGs, words in prosodic phrases are
grouped and their syllables are further organized
into patterns. In contrast to other related works,
we do not model all the syllables within the range
of a TG but only some key ones that correspond
to major points, peaks or valleys on the pitch curve.
For example, the pitch accent, phrase accents and
boundary tones in ToBI. Since the construction of
the patterns is based on the location and the type
of accents and endtones, we suggest that the pro-
ToneGroup

Word

ToneItem

Syllable

y as presented in the HRG.
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sodic content of the curve is perceptually very close
to the original when described by only these sylla-
bles, as it follows the tonal structure produced by
the intonational model. Trying not to lose the F0

definition, we are introducing an encoded pattern
scheme that abstracts the morphology of patterns
in order to keep the database size relatively small
and also allow the efficient encoding of TGs in case
of small-footprint applications.

Pattern construction can vary on how much
detail we would like to represent. Our preliminary
experiments showed that using up to four (4) sylla-
bles we can achieve high F0 rendering. That was also
validated by the high correlation between the mod-
eled and the original pitch contours in the tests we
performed (Section 4). Thus, we arrived to the fol-
lowing four (4) types of syllables:

• h: (or head) the very first syllable of the TG. It is
the entry point to the TG.

• a: the first syllable of the word that carries the
accent, if any (accent).

• A: the syllable that carries the accent, if any
(accent).

• b: (or boundary) the last syllable of the TG. This is
the exit point, where the F0 curve ends. Normally,
this syllable carries the endtone as well, if any.

In cases where any of the above overlaps during
the labeling of a pattern, ‘A’ and then ‘a’ are pre-
ferred. These four syllables are called haAb syllables.

For example, the following sentence (taken from
(Clark, 2003)) defines a TG that has three significant
syllables according to our approach:
and thus its identity is: {hAb;L*;L-H%}.
The basis of our method is that if a TG with a

specific prosodic structure was spoken in one way,
another TG with a similar structure should be spo-
ken in a similar way in terms of speech synthesis,
where prosody generation can hardly be unre-
stricted. Rooted in that, we suggest that the intona-
tional pattern of the above TG can be successfully
copied to any other TG with a matching identity.

Syllables that are not modeled and reside among
the haAb ones are called null syllables. Null syllables
are not sampled during the creation of the model
and as we mentioned we suggest that there is no sig-
nificant distortion to the perception of the contour.
The consequences of this approach are discussed in
the evaluation section, along with the effects of an
inserted dynamic pitch interpolation within null syl-
lables boundaries.

2.2. Feature set

The features that characterize a class are of great
importance to either the accuracy of the classifica-
tion in case of machine learning models or to the
selection of the best matching unit in unit-selection.
The most common feature set that is used in F0 mod-
eling includes linguistic (e.g. part-of-speech, syntac-
tic chunk etc.), acoustic (e.g. ToBI accents, ToBI
prosodic phrase break etc.) and other morphological
(e.g. syllabic distance from major breaks etc.) prop-
erties. On the other hand, the prediction of the into-
national events, which precedes the F0 model in the
TtS chain, incorporates almost the same set of fea-
tures. For example, lexical stress is used to predict
pitch accent and then lexical stress and pitch accent
together are used to predict the pitch targets. This
implies a redundancy on the selected features that
sometimes biases the training procedure.

The feature set of a TG is divided in two sections.
The first one, the primary features, forms its iden-
tity. These should make an exact match in order
to allow a unit from the database to enter the can-
didate state. However, there are some exceptions
to that like for example, if no unit is found to make
a match or if the concatenation cost is above the
desired thresholds. These cases are not discussed
here, as preliminary evaluation of two 500-utterance
sized databases (Xydas et al., 2005; Zervas et al.,
2005) showed adequate coverage in all cases.

The primary features are:

• pattern: this is used to identify the syllabic mor-
phology of the TG, as described before. Its values
can be any sub string of ‘‘haAb’’.

• accent: declares the pitch accent of the TG. This
can be either a categorical value like ToBI pitch
accent classes (e.g. H*, H + L*) and rise/fall clas-
ses or continuous values like a Tilt event.

• endtone: declares the tone at the boundary of the
TG. As previously, this can be either a categori-
cal value like a ToBI boundary tone or phrase
accent (e.g. L-L%, H-) or a continuous boundary
value.
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The above set is fundamental for ‘‘neutral’’ or
‘‘generic’’ speech synthesis. As we mention in Sec-
tion 1 ‘‘Introduction’’, intonational patterns them-
selves cannot sufficiently represent expressive
speech. For the purpose of emphasis modeling, we
define one more feature to enrich the set that reflects
the corresponding effect:

• emphasis: an indication of the focus prominence
of the corresponding TG. Values can be either
continuous or categorical (e.g. strong, moderate,
none, reduced).

Features that belong to the second section, the
secondary features, are weighted. This means that
some are more important than others, and further-
more they are all less important than the primary
ones. Secondary features provide a finer selection
and can be ignored if required, as in small-footprint
cases. Examples of secondary features include:

• tg_in, tg_out: in accordance to the commonly
used syl_in/syl_out and word_in/word_out fea-
tures, denoting the number of syllables or words
since/until the previous/next major break, the
tg_in and tg_out features indicate the number
of TGs since or until the previous or the next
major break. Both are numerical values.

• p.accent: the accent class of the previous TG.
• p.endtone: the endtone class of the previous TG.
• n.accent: the accent class of the next TG.
• n.endtone: the endtone class of the next TG.
• num_of_syls: the number of TG’s syllables.
• num_of_syls_in_last_word: this refers to the word

that usually carries the accent or the endtone and
represents its number of syllables.

• num_of_words: the number of words in the TG.
Selecting and copying pitch contours between
phonetically heterogeneous TGs can however affect
the naturalness of the resulting speech. In (Aulanko,
1985; Whalen and Levitt, 1995; Monaghan, 1992;
Vainio, 2001) has been pointed out the role of seg-
mental prosody to the F0 surface, such as the funda-
mental frequency difference between open and close
vowels. In Greek, F0 differences caused by the pho-
nemic content do not follow the universal tenden-
cies (Fourakis et al., 1999). In (Arvaniti et al.,
1998) it was also shown that the alignment of the
H target in the pre-nuclear L* + H accent is also
affected by the segment type (stop, fricative, nasal)
of the phoneme that precedes the post-accentual
vowel. Such micro-prosodic variations is usually
ignored in prosody generation, as either unit-selec-
tion speech synthesis does not distinct between tonal
and spectral dimensions or other approaches cannot
handle the overhead of the database size when try-
ing to serve all the phenomena and combinations
in speech.

To accommodate micro-prosodic variations, we
allow the definition of the micro-pattern list in the
secondary feature set that includes contextual infor-
mation like the class (e.g. vowel, liquid), the identity
and the quantity of segments. However, enabling
this option causes a vast enlargement of the selec-
tion grid and this contradicts the small-footprint
specification of the TGS model. Thus, we suggest
that some additive methods can be followed in a
more efficient way to correct micro-prosodic varia-
tions at runtime like the two-stage phonetic model
that separates micro-prosodic events from prosodic
phenomena and the residual component is added
during synthesis (Monaghan, 1992), based on a z-
score procedure (Bailly and Holm, 2005).

2.3. Tone items

To capture the human F0 curve properties of a
Tone-Group, several partitioning schemes of the
curve can be followed (for example, every 10msec,
as in (Keller and Keller, 2003)) and storage of the
pitch values to apply them during synthesis. How-
ever, such an approach has the disadvantage that
during synthesis time these points will need to be
aligned over a different amount of segments (e.g.
over a TG with more syllables than the stored
one). Therefore, in order to capture all the possible
combinations of segments, one will end up with a
huge inventory. The terminus seems to be the seg-
mentation of pitch contours and their abstraction
so that combinations of small segments within an
inventory can render back complete contours.
Abstraction helps to generalize over non-significant
portions of F0 curves, like those we defined as null

syllables and thus to compress the inventory.
A flexible, in terms of segmenting F0, approach

was followed initially in CHATR (Black and Hunt,
1996) and then in Festival (Black et al., 1998). Three
Linear Regression (LR) models are constructed, one
for pitch prediction at the beginning of syllables,
one at middle of the vowel and one at the end of
syllables (we will call this ‘‘the sme strategy’’ – start,
mid, end). We keep this LR scheme as a reference
because it is being widely used by speech researchers
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and also we have experimented a lot in the past with
it using our Greek corpora (Xydas et al., 2005).
Moreover, there are legacy implementations that
we can compare with in the evaluation section.
The major drawback of this sme strategy is that a
lot of intonational events occur away from the mid-
dle section of a vowel and the three single points
cannot accurately render all accent types. For exam-
ple, in L* + H pitch accent, the H tone has a late
alignment in the accented vowel and the L* a very
early one, if not late in the previous syllable,
whereas in L + H* the peak appears after the middle
of the vowel (Arvaniti and Baltazani, 2005). This
specification of the LR approach cannot be easily
treated; if the mid-point was floating it wouldn’t
be possible to build the middle LR model, as there
wouldn’t be any positioning clue to place the target.

A more detailed perceptual encoding of pitch
targets is described in the IPO intonation model
(‘t Hart et al., 1990). The original pitch contour is
stylized from peaks to valleys and any variation that
is subjectively judged not to be relevant to percep-
tion is filtered out. This procedure results to a set
of straight lines that produce a perceptually equal
copy of the original intonation when re-synthesized.
The perceptual tests definitely set an overhead dur-
ing the creation of the stylized contours. On the
other hand, prosody does not always sound as good
as statistics show, thus perceptual tests provide more
confident results. To apply during synthesis, lan-
guage-specific grammars are developed that repre-
sent standard pitch movements (for example for
Dutch, English and German). These movements
are characterized by their timing in the syllable, their
spread over one or several syllables and their size rel-
ative to a top line. As has pointed in (Sproat, 1998),
the possibility of the grammar to generate contours
that are perceptually unacceptable is the most prob-
lematic side of the IPO approach. In contrast to IPO,
we do not perceptually stylize the F0 contour, but we
just sample it ‘‘as-is’’. Instead of a grammar we use
the selection algorithm to match contours that con-
catenate smoother. We only use perceptual criteria
to distinguish between haAb and null syllables. How-
ever, this does not require any listening tests; the
intonational analysis provides us with clues of where
the accents and the endtones lie in utterances. Fur-
thermore, we propose the modeling of specific sylla-
bles within a prosodic word in order to allow the
reduction of the inventory’s size.

To control the positioning and alignment of tar-
gets and cope with the aforementioned problems,
we introduce the Tone-Item (TI), a dynamic list of
parameters, which carry the acoustic properties of
haAb patterns in the tonal dimension. TIs encode
samples of pitch targets at any location. Though
they are linked to the haAb syllables, the scope of
their lists can be lengthened, if required, to describe
specific intonational phenomena; for example, when
the peak is positioned outside the accented ‘A’ sylla-
ble. As has pointed out in (Arvaniti et al., 1998), the
canonical alignment of bitonal pre-nuclear L* + H
accent in Greek can occur outside the accented
syllables under certain circumstances and its align-
ment and positioning depend on the number of
unaccented syllables between two accents. More
specifically, a 10 ms mean interval has been mea-
sured from the onset of the first post-accentual
vowel to the H target in case of words with lexical
stress in the antepenultimate, as well as a 5 ms mean
interval before the onset of the accented syllable
where the F0 minimum occurs (which, however,
can be set in a reliable early point inside the
accented syllable (Arvaniti and Baltazani, 2005)).
In the former case, if ‘A’ is followed by a null sylla-
ble then this peak will be missed without the TI’s list
lengthening (actually, this can occur only in words
with their lexical stress in the antepenultimate,
otherwise a ‘b’ syllable will follow the ‘A’ and will
capture the H peak).

2.3.1. TI features

Each pitch target is a node in the Tone-Item
dynamic list. The following feature set accommo-
dates each node:

• syl_idx: the syllabic index shows to which syllable
the current target belongs to since the beginning
of the linked haAb syllable. A positive value
expands the list to the right side of the linked syl-
lable whereas a negative value expands it to the
left.

• pos: this feature shows the position of the target
in the time axis. The default strategy provides a
percentage value, relative to the duration of the
voiced segments of the linked syllable indicated
by the syl_idx.

• f0: the actual F0 value for that pos in that syl_idx.

The F0 value and positioning information pro-
vide a more appropriate placement of the targets
during synthesis in contrast to the ‘‘sme’’ strategy.
The syllabic index provides the list of TI the ability
to be widened over one, two or more syllables. The
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size and the density of targets of each list are
arbitrary and depend on the curve shape and
the required definition. Fig. 3 illustrates how the
TIs encode a portion of an F0 curve as well as the
role of the syllabic index. Positioning of TIi,j is
expressed in percentage of the duration of the
voiced part of the syllable they belong to (based
on the syl_idx).

2.3.2. The F0 scanner

To capture f0 and pos values of TI lists, several
sampling strategies can be applied during the crea-
Time (
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Fig. 3. The Tone-Items of the word /a’namesa/ (in between) that featu
haAb pattern syllables, Tone-Item list, and Tone-Item. As we see, the L
the TI list has been extended to the right, introducing TI1,4 that otherw
syllabic index of ‘1’ whereas TI1,4 has a ‘2’ (not shown in the figure).
tion of the TG model-specific database. The F0

scanner is a process that samples a stylized copy
of the contour above a specific unit. This can be
done following three strategies:

1. Threshold strategy: samples are progressively
selected so that the re-rendering of the contour
should not exceed specific correlation, RMSE
or other metrics thresholds compared to the
original.

2. Fixed strategy: the contour is sampled on con-
stant defined points. For example, in 0%, 20%,
s)
35.55

s)
35.55

e s a

_ b

TI1,4 TI2,1 TI2,2

TI2

s)
35.55

 

res an L* + H tone. Tiers (from top to bottom): segment, accent,
* + H accent peaks in the first post-accentual vowel, i.e. ‘e’. Thus,
ise would not exist as it links to a null syllable. TI1,1 – TI1,3 have
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50% and 80% of the duration of voiced segments
or in more descriptive locations like the ‘‘middle
of the vowel’’.

3. 3-point strategy: three pitch targets are selected
from: (1) the beginning of the syllable, (2) the
point where the F0 peak (or valley) occurs and
(3) the end of the syllable.
110

115

120

125

130

135

140

145

150

0.
38 i m a ’r

Fig. 4. Examples of re-synthesized pitch contours of the phrase /i ma’
‘‘2 Hz’’ is a threshold strategy where targets in the re-synthesized curve s
strategy of start, mid-vowel, end of syllable that is followed in common

h a A b h

TG1

TI1,1
TI1,2

TI1,3

TI1,4

TI2,1

_

Fig. 5. Tone-Groups, haAb patterns and Tone-Items. The horizontal
positioning details of each target. In TG3 the ‘h’ and the ‘a’ syllable ove
those syllables that are not sampled.
Fig. 4 shows an example of each strategy against
the original contour.

Fig. 5 demonstrates an utterance divided in three
TGs along with their corresponding TIs. On the
bottom, there are the patterns of each TG aligned
with the syllable relation: ‘‘haAb’’, ‘‘hAb’’ and
‘‘aA’’ respectively.
original

2 Hz

3-point

sme

0.
88i a

ria/ (Mary) based on the three different sampling strategies. The
hould not differ more than 2 Hz to the original. ‘‘sme’’ is the fixed
linear regression approaches in Festival.

A b a

TG2 TG3

TI2,2

TI2,3

TI3,1

TI3,2

_ A_

grid represents the syllables, whereas the dotted lines show the
rlap, so it is marked as ‘a’. The ‘_’ represent the null syllables, i.e.
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2.4. Selection algorithm

Prior to the selection, we assume that a front-end
system is able to parse utterances and provide the
target TGs along with their feature vectors. This
requires the prediction of the prosodic structure in
terms of ToBI marks or other intonational notation.
After that, a grid of candidate TG units is con-
structed. These are gathered by matching the pri-
mary feature vectors of units in the database with
the target ones. Fig. 6 presents a grid.

In order for the grid not to grow through redun-
dant TGs with similar acoustic properties that
would consequently increase the required time for
the selection, a pruning stage is applied after the
construction of the grid. The features that are used
as acoustic metrics to calculate the mean of a class
and the distance of each candidate from the mean
are:

• start_f0: The F0 value at the beginning of the TI.
• max_f0: The maximum F0 value in the TI.
• end_f0: The F0 value at the end of the TI.
• mean_f0: The mean F0 value in the TI.
• stddev_f0: The standard deviation of F0 values in

the TI.

Candidates that their corresponding values are
less than a deviation threshold are rejected, taking
into account that a similar one already exists.

2.5. The cost function

An important factor that affects the quality of the
resultant F0 contour is the function that calculates
the concatenation cost between two candidate TG
Target TGs TG1 TG2 TG3 TG4 TG5

C
a

nd
id

at
e 

T
G

s

Fig. 6. The grid of candidate (circles) Tone-Group units. Each
candidate matches the feature vector of the target unit on the top.
units and thus the total distortion of the curve
caused by discontinuities. This function determines
the path in the grid that sounds smoother having
a minimum of distortions in the contour. Since
our main objective is to preserve the original values
of the F0 targets (though we can perform F0 styliza-
tion to fix mismatches), we first use the F0 difference
measured in cents between the two adjacent Tone-
Items of the TGs to be connected. Furthermore,
the F0 slope difference is used as a binary criterion
to accept or reject a connection, as steep slopes in
connections usually result in trembling voice
(Fig. 7).

We have introduced a multi-pass search algo-
rithm in the grid of candidate units. In each pass
we increase the allowable concatenation threshold
above which a connection is rejected. Therefore, in
the first pass we look for an almost perfect curve
with no discontinuities or steep slopes, in the second
we allow small discontinuities to occur (which how-
ever can be stylized) and so on. Fig. 8 shows two TG
candidate paths of a hypothetical phrase and their
costs.

In that example, though the first path has a lower
absolute cost, the second one is preferred as it
features smaller standard deviation from an acousti-
cally acceptable (according to the chosen threshold)
mean difference. This way we achieve to select a
path that provides an acoustical smooth connection
from the one end to the other, by avoiding having
steep discontinuities (like connection cost 8 in the
above example). This multi-pass approach is time
consuming, but it performs real-time in common
embedded systems (e.g. 133 MHz ARM processor)
F0 slope diff

F0 diff

Last TI 
of TGi

First TI 
of TGi+1

Fig. 7. Slope difference between two conjunctive Tone-Group
units. As can be shown, the bigger the difference the acoustically
smoother the connection. Black circles are independent pitch
targets of the corresponding Tone-Items (TI).
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cost = 13
mean = 3.25
stdev = 3.2

cost = 15
mean = 3.75
stdev = 0.5

TGA2 TGA3 TGA4 TGA5

TGB1 TGB2 TGB3 TGB4 TGB5

Fig. 8. Example of two candidate tone group paths.
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due to the small primary feature vector. Also, higher
pruning facilitates faster passes.

A symbolic code of the function that calculates
the concatenation cost of a path is presented in
Fig. 9. In each pass, the slope and the difference
thresholds (SLOPE_THR and DIFF_THR) are
increased according to the parameters of the model.
if slope_difference(TGi, TGi-1) < SLOPE_THR
connection_cost = 1200*log2(first_tone_

 ACCEPT_PATH 
else 
 REJECT_PATH 

if (ACCEPT_PATH) AND (connection_cost < 
 path_cost = path_cost + connection_cost

else 
 REJECT_PATH 

Fig. 9. Path concatenation cost. The

h a A b

Source TG (haAb)

Searching for a source TG ...Step 1

Step 2 Source TG found . Align.

_

Fig. 10. Aligning the TIs from the TG in the database (left) to the targ
while the target TG (on the right) waits for four TIs to match to its ha
2.6. Alignment and positioning

One of the purposes of the TG patterns is to
allow phrases to exchange pitch information
between intonationally common syllables. Thus,
after the calculation of the TG path, the next step
is to align the source Tone-Items to the target
TGs. This process is described in Fig. 10. This figure
also depicts the abstracted property of a haAb

pattern that allows it to match to morphologically
different patterns.

The list of pitch targets in the source TI is copied
upon the corresponding syllable of the target. This
process actually generates the Target relation of
HRG. For each individual pitch target, alignment
is based on the positioning information carried by
the corresponding node in the TI’s dynamic list.
 
item(TGi)/last_tone_item(TGi-1)) 

DIFF_THR) 
 

second line calculates the cents.

h a A b

Target TG (haAb)

h a A b

? ? ? ?

_

_

_

_

et’s one. Step 1 concerns the selection from the grid of candidates
Ab pattern. Step 2 presents the alignment.



Table 1
Distribution of haAb patterns in the collected TGs

Class Occurrences Percentage

haAb 539 14.47
hAb 549 14.73
haA 329 8.83
Ab 796 21.36
A 159 4.27
aA 517 13.88
aAb 767 20.59
hA 70 1.88

Table 2
Distribution of accents in the collected TGs

Class Occurrences Percentage

L + H* 963 25.85
H* + L 601 16.13
H* 404 10.84
L* 266 7.14
L* + H 1081 29.01
none 411 11.03

Table 3
Distribution of endtones in the collected TGs

Class Occurrences Percentage

H- 501 13.45
L- 55 1.48
L-L% 467 12.53
H-H% 8 0.21
L-H% 7 0.19
none 2688 72.14
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Pitch is always positioned in sync to the percentage
portion of the selected candidate, defined by the rel-
ative ratio of the target syllable’s duration. The
micro-pattern list offers clues to apply additive
micro-prosodic corrections in this stage; however
small-footprint prototyping does not include this
due to the repercussions in the dataset size.

The syllables that have been characterized as
intonationally non-important (i.e. null syllables)
gain an interpolation between the regional F0 val-
ues. According to the TG definition, no F0 peak
or valley should have appeared in those portions
during the database creation, so this assumption
does not eliminate F0 perceptual description. This
however was set as an issue during the listening tests
we performed.

3. Database description

Prosodic corpora need to be carefully designed
and recorded in controlled conditions in order to
efficiently serve the purposes they are built for.
Linguistically motivated annotations (e.g. ToBI)
that are usually performed by hand, semi- or full-
automatic methods need to be revised by experi-
enced linguists for their accuracy and consistency.
We have used an existing corpus with naturally
emphasized speech that features sufficient prosodic
coverage. This corpus was developed within the
M-PIRO project (Calder et al., 2005) and it consists
of 482 utterances, 59% of which are accompanied by
enriched linguistic information. The domain of the
database concerns a guided tour in a virtual
museum and each utterance is part of an exhibit’s
description. Each description has one to three alter-
natives based on whether the visitor has already
visited a relative exhibit, whether the delivered
information is new or old and what is the status
of the visitor. For example, if the term ‘‘archaic per-
iod’’ is being mentioned for the first time in a
description, then it appears with strong emphasis.
If it has been mentioned before, and so it is not
‘‘new’’ information to the visitor, then emphasis is
decreased, depending on a ‘‘mentioned counter’’.

A Natural Language Generator generated the
texts. Descriptions were marked-up with linguistic
information using the SOLE scheme (Hitzeman
et al., 1999). SOLE documents were parsed by
DEMOSTHeNES TtS (Xydas and Kouroupetrog-
lou, 2001) and emphasis specification was extracted
from the provided features. Texts were further
exported in HTML format that included visual
instructions concerning the emphasis and its level
over the corresponding parts. A professional actor
read the texts following the printed guidelines,
under the orders of a linguist who also ensured
the consistency between written and spoken ver-
sions. Segmentation was performed using the
HTK tool and expert linguists added ToBI nota-
tion. The corpus was also crosschecked to verify
that the spoken emphasis levels were the expected
ones as stated in the printouts; if that was not the
case the linguists adjusted the written ones accord-
ingly (which was an easier procedure than re-record-
ing the utterances).

The Tone-Group processor created 3.726 TGs.
Four features were assigned to each TG: pattern,
accent, endtone and emphasis. Tables 1–4 present
the class distribution of each of those features.

To test our assumption that we do not lose signif-
icant length of the contour using the encoded haAb

patterns, we derived that the average length of TG is



Table 4
Distribution of emphasis’ levels in TGs

Class Occurrences Percentage

2 600 16.10
1 321 8.61
0 2805 75.28

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 3 4 5 6 7 8 9

Fig. 11. The distribution of the syllabic size of TG patterns.

Table 5
Distribution of the TGs’ number of null syllables

Num of Syls Occurrences Percentage

0 1703 45.71
1 1119 30.03
2 515 13.82
3 275 7.38
4 96 2.58
5 16 0.43
6 1 0.03
7 1 0.03
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Fig. 12. Comparison of the original pitch contour (dark line) with the sy
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relatively short (Fig. 11) compared to the corre-
sponding length of patterns as presented in (Malf-
rere et al., 1998). Also, Table 5 presents the
distribution of the number of consecutive null sylla-
bles in TGs.

4. Objective evaluation

We first present an experimental analysis of our
suggestion on the construction of the haAb and
the null syllables. To do that, we performed a re-
 (s)
5.34

A a A a A bA b A b h a A

nthetic featuring straight-line interpolation over the null syllables.
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synthesis of the original pitch curve based on the
TG model, by replacing the original contours above
the null syllables with straight lines. An example is
shown in Fig. 12.

Following a full-scale sampling of haAb syllables,
we calculated the correlation to be 0.94 and the root
mean square error (RMSE) to be 15.23 between the
original pitch and the one produced by the insertion
of the straight lines above the null syllables. These
values correspond to ‘‘what we miss’’ when we
encode pitch contours following the haAb scheme.
Table 6
Correlation and RMSE of the synthetic pitch against the natural
when (a) copying F0 above haAb syllables using different
sampling strategies and (b) introducing the ‘‘straight line’’
interpolation over the null syllables

Strategy Correlation RMSE

Full-scale (0 Hz threshold) 0.94 15.23
2 Hz threshold 0.92 16.61
3-point 0.89 24.28
Start, mid, end (sme) 0.89 24.27
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Fig. 13. Comparison of the original pitch contour (dark line) with the sy
that is based on pitch baseline and F0 levels in the adjacent haAb sylla
Table 6 shows the correlation and RMSE in several
sampling strategies.

As expected, the simplistic straight-line interpola-
tion heavily affects the performance. On the other
hand, since these parts do not represent any nuclear
accent nor significant pitch movements, we assumed
that a more linguistically aware rendering would
enhanced the performance. The approach followed
here is based on a scalable progression (rising or
falling) of the pitch in between the boundaries of
the null syllables, using data from the pitch baseline,
the adjacent haAb syllables and the word morphol-
ogy. Fig. 13 depicts the effect of this scalable pitch
interpolation that replaces the straight lines above
the null syllables with something more meaningful.
This plain approach shows great improvement in
the performance of the model (Table 7) and par-
tially supports our assumption that we have man-
aged to represent the pitch curve by modeling only
the important syllables, whereas some reasonable
pitch scales can successfully replace the rest por-
tions. However, more investigation is required to
 (s)
5.34

A a A a A bA b A b h a A

nthetic featuring scalable pitch interpolation over the null syllables
bles.



Table 7
Correlation and RMSE of the synthetic pitch against the natural
when (a) copying F0 above haAb syllables using different
sampling strategies and (b) introducing the ‘‘scalable’’ interpola-
tion over the null syllables

Strategy Correlation RMSE

Full-scale (0 Hz threshold) 0.96 9.20
2 Hz threshold 0.96 8.91
3-point 0.92 17.29
Start, mid, end (sme) 0.92 16.05
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improve the performance of the run-time
interpolation.

It is also interesting to note that following the
sme strategy (followed in Festival’s Linear Regres-
sion) for the whole range of utterances (haAb and
null syllables) we measured 0.96 (correlation) and
9.77 (RMSE) respectively. That should be the ideal
maximum performance of the Festival LR model
when using our data.

5. Listening tests

Subjective evaluation of synthetic intonation
heavily depends on the underlying segmental quality
as well. We performed two experiments in order to
take such effects into account. In the first one, we
used a natural voice carrier where we applied the
F0 modifications that the TG selection model gener-
ated. In the second one, we used the MBROLA
(Dutoit et al., 1996) diphone synthesizer and the
Greek diphone database ‘‘gr2’’ (Xydas and
Kouroupetroglou, 2001) featuring the same TG
selection F0 model.

A group of 31 listeners participated in these
experiments. Six of them were speech experts while
the rest were post-graduate students. In total, six
of them were blind and had previous experience
with the specific MBROLA voice (gr2) and TtS sys-
tems. Three of them did not know what TtS was all
about.

Sentences were passed to the TtS system along
with the required accent, endtone and level of
emphasis using an XML-based mark-up scheme.
Thus, no ToBI or other prediction related to intona-
tional events took place, as this would add more
complexity to the experiments.

We used DEMOSTHeNES TtS as a front-end
system to parse the XML annotation, carry the
remaining NLP processing and provide the prosody
and the phonetic specification to the signal-process-
ing component.
All the speech waves used for the tests can be
found in http://www.di.uoa.gr/~gxydas/en/tone_
group_selection.shtml

During the listening tests we did not exploit the
micro-pattern lists (and thus we expected to have
some implications on the produced speech). There
were two reasons behind this decision: (1) the legacy
Linear Regression model that we compared to did
not had corresponding segmental features and (2)
the implementation we did targeted a real model
in small-footprint environments (source code is
available for Flite) and such an extended feature
set would exponentially increase the required inven-
tory to perform the selection. In Section 6 we dis-
cuss the effect of micro-prosodic normalization
that resulted during the segmental heterogeneous
source to target pitch alignment.

5.1. Test setups

We selected 12 generic sentences that were out of
the M-PIRO dataset and domain. The sentences
were collected from (a) a newspaper (art and news),
(b) spoken messages appearing in a mobile opera-
tor’s customer services and (c) a literary book. Con-
trastively, the utterances from which the model was
created belong to a museum domain with restricted
grammar. We chose those tests as they fit better the
‘‘mobile domain’’ we targeted from small-footprint
synthesis, though we do not define such domain
restrictions. Since we had the prosodic specifica-
tions, our objective was to test the model in real
conditions, and thus we chose sentences other than
the already seen ones by the model. To confirm the
domain differences of the test material, 79% of the
content words of the tests were measured as lexically
unknown to the M-PIRO dataset.

A professional speaker uttered these 12 sentences
with no major pitch and intensity alterations in his
voice, i.e. avoiding emphasizing or de-emphasizing
any part of the utterance. These recordings were fur-
ther segmented (automatically and hand-corrected)
down to the phoneme level. In order to avoid per-
ceptual annoyance usually caused by diphone-based
synthesis or segmental discontinuities caused by bad
selection in unit-selection synthesis and allow listen-
ers to concentrate only on the intonation aspect of
the experiments, we first chose to have perfect
segmental quality by using a natural voice carrier
for the delivery of the phonetic information, as a
good unit-selection TtS would provide. To achieve
this, the segmental information was passed to the

http://www.di.uoa.gr/~gxydas/en/tone_group_selection.shtml
http://www.di.uoa.gr/~gxydas/en/tone_group_selection.shtml
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duration model in order to allow the alignment of
the generated pitch targets with the original speech.
A PSOLA (Moulines and Charpentier, 1990) algo-
rithm was then used to modify the original speech
signal according to the targets specification. This
process is depicted in Fig. 14.

The second part of the experiments was carried
out by using the MBROLA synthesizer and the
gr2 database. In this case we tried to inspect
whether user’s perception of focus prominence
remains the same when the segments have com-
pressed and flat dynamics throughout the whole
utterance, as happening in common diphone synthe-
sis and small-footprint TtS. To aid the experimental
purposes and the concentration of the listeners, we
used the same original segmental information for
the duration model as previously. This process is
depicted in Fig. 15.

5.2. Against linear regression

The first listening test targeted the evaluation of
the capability of the TG selection (TGS) approach
to sufficiently represent the F0 surface from a per-
ML Text
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NLP

Natural
Speech

Segment
ation

Duration
Model S

Fig. 14. The copy process of the synthetic selected pitch contour over
ToBI elements along with the text.

ML Text
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NLP

Natural
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Duration 
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Selecti

Fig. 15. The traditional TtS process wit
ceptual view. This was carried out to answer,
‘‘How natural does TG selection sound?’’ as we
wanted to inspect how well the Tone-Items and
the haAb pattern approach render the F0 contour.
For that reason, we set up a comparative listening
test against a well-established Linear Regression
(LR) model as has been presented in (Black and
Hunt, 1996). According to this approach, three
LR models are built for the beginning, vowel-mid
and end of each syllable. The LR model, which we
specifically used, had been also trained using data
from the MPIRO corpus and had achieved good
correlation and subjective comments (Xydas et al.,
2005), while it has been widely used in legacy sys-
tems based on DEMOSTHeNES. Table 8 shows
the correlation and the RMSE metrics performed
by that model when predicting F0 from ToBI marks
and other commonly used linguistic features.

The subjects listened to the 12 synthesized stimuli
that resulted from both the LR and the TGS model
in random order. For each sentence they were asked
to choose the most preferred one, LR or TGS. In
both models, no emphasis information was pro-
vided in either the feature vector used for the
TG
election

Target
Specs

Pitch
Modified
Speech

PSOLA

a natural voice carrier. The mark-upped text on the left includes

on
Target
Specs

Synthetic
Speech

MBROLA

h the natural speech segmentation.



Table 8
Correlation and RMSE of the linear regression model trained by
the M-PIRO dataset (Xydas et al., 2005)

Correlation RMSE

Start 0.75 17.3
Mid 0.74 18.3
End 0.74 18.1
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regression in the first case or for the selection in the
latter. Thus, predicted values or selected units might
incorporate emphasis, but not on purpose as source
and target units were not compared based on
emphasis.

Fig. 16 shows listeners’ preferences in each stim-
ulus when using a natural voice carrier. In total, the
TGS model was preferred in 75% of the cases, while
the LR in 25%.

Fig. 17 shows the listeners’ preferences when
using the diphone-based synthetic voice. In total,
the TGS model was preferred in 74.4% of the cases
against 25.6% of the LR.

Both cases clearly show that the TGS model
sounded more natural to the users, though it models
0.00%
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Fig. 16. Listeners’ choices between LR and TGS, when using a
natural voice carrier. Vertical axis shows the stimulus index.
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Fig. 17. Listeners’ choices between LR and TGS, when using
diphone concatenation. Vertical axis shows the stimulus index.
less syllables (only 4 at maximum per TG) than the
LR model. This supports our assumption that we
can encode only the intonationally most important
syllables without losing in F0 definition. Also, Figs.
12 and 13 show that no major difference was
observed between the natural voice carrier and the
diphone synthesis cases.

5.3. Emphasis rendition

The second experiment concerned the provision
of emphasis to indicate focus in utterances. We used
the same TG selection model. The difference from
the previous setup was that we added the emphasis
feature in the queries when looking for TGs to
match with the targets. Emphasis was given in three
levels, minor, major and none. Therefore, the TGS
model performed the selection based on ToBI
sequences as well as on the emphasis level. A natural
voice carrier and the MBROLA diphone synthesizer
were used as previously.

The stimuli were synthesized by defining the
emphasis level over all the TG in the corresponding
sentences. This means that the selected pitch levels
were not in isolation but in relation to the whole
sequence of haAb patterns that constitute each
utterance. The purpose of the listening tests was to
evaluate whether the resulting prompts could deli-
ver the indented emphasis over each TG.

Each sentence featured at least one major focus
and zero or more other prominent points of any
level. At the beginning of the tests, two samples fea-
turing the two different levels were presented in order
for the listeners to get familiar with. After that, the
subjects listened to each sample twice. For each sen-
tence, they were given in advance two particular sub-
phrases, A and B. They were asked to mark the level
of emphasis they perceived at A and B as follows: 0
for null, 1 for minor and 2 for major. The null
emphasis was included in order to ensure that listen-
ers had the option to non-forcibly reject our inten-
tions if they did not perceive any emphasis at all.
Thus, they were instructed that ‘‘there might not be

any emphasis at some points, so put 0’’ though this
was never the case. This slightly differs from allowing
them to vote ‘null’ when told that the possible values
were only ‘1’ and ‘2’, which would seem to them as
having to express a negative opinion.

The two different signal processing approaches
were carried in two separate sessions, first the natu-
ral voice carrier with the modified pitch and then the
diphone concatenated one. In each case we exam-
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ined whether the subjects perceived any prominence
and how close to the intended level their perception
was. For that purposes we tested the null hypothesis
that the listeners perceived the target emphasis in
more than 1 level of difference. Thus, we calculated
the probability p that the mean absolute difference
M would be as different or more different from 1.
We also made the assumption that our data are nor-
mally distributed.

Table 9 presents listeners’ mean perceived
emphasis (MPE) level, the mean absolute difference
between the target emphasis and MPE, its standard
deviation and the probability p mentioned above for
each one of the utterances. Looking at the probabil-
ities we can reject the null hypothesis in the majority
of the cases (p < 0.05), though there are some (7 out
Table 9
Mean opinion score and stdev of the perceived level of emphasis
for each stimulus (natural voice carrier)

Utterance Point Target
emphasis

MPE M r(M) p

1 A 2 1.74 0.26 0.44 <0.05
B 2 1.84 0.16 0.37 <0.05

2 A 2 1.80 0.19 0.40 <0.05
B 1 0.67 0.35 0.49 0.09

3 A 1 0.83 0.29 0.46 0.06
B 2 1.77 0.23 0.43 <0.05

4 A 2 1.70 0.32 0.54 0.10
B 1 0.27 0.74 0.44 0.28

5 A 2 1.73 0.26 0.51 0.07
B 2 1.73 0.26 0.44 <0.05

6 A 2 1.77 0.23 0.43 <0.05
B 1 0.80 0.26 0.44 <0.05

7 A 1 1.17 0.23 0.43 <0.05
B 2 1.80 0.19 0.40 <0.05

8 A 2 1.80 0.19 0.40 <0.05
B 1 0.77 0.26 0.44 <0.05

9 A 2 1.90 0.10 0.30 <0.01
B 1 0.87 0.19 0.40 <0.05

10 A 2 1.87 0.13 0.34 <0.01
B 2 1.73 0.26 0.44 <0.05

11 A 2 1.70 0.29 0.46 <0.05
B 1 0.53 0.45 0.51 0.14

12 A 1 0.67 0.32 0.48 0.08
B 2 1.73 0.26 0.44 <0.05
of 24) exceptions as shown in the table. The reasons
behind these exceptions might be (a) bad selection
either because of the algorithm or because of the
heterogeneity between the database and the testing
domain, (b) the relative emphasis between points
A and B that listeners perceived, (c) the semantics
of the texts that might have imposed different points
of emphasis and (d) the omission of the micro-pat-

tern list from the selection feature set. The mean dif-
ference between the target emphasis and listeners’
perception is 0.27.

Table 10 presents the same metrics when using
the MBROLA voice. The mean difference between
the target emphasis and listeners’ perception is
now 0.23. Also, the non-significant results now have
been reduced to 5 (out of 24). It can be derived that
Table 10
Mean opinion score and stdev of the perceived level of emphasis
for each stimulus (diphone voice – mbrola, gr2)

Utterance Point Target
emphasis

MPE M r(M) p

1 A 2 1.81 0.19 0.40 <0.05
B 2 1.90 0.10 0.30 <0.01

2 A 2 1.90 0.10 0.30 <0.01
B 1 0.80 0.23 0.43 <0.05

3 A 1 0.93 0.19 0.40 <0.05
B 2 1.77 0.23 0.43 <0.05

4 A 2 1.73 0.29 0.46 <0.05
B 1 0.60 0.42 0.50 0.12

5 A 2 1.80 0.19 0.40 <0.05
B 2 1.53 0.45 0.51 0.14

6 A 2 1.87 0.13 0.34 <0.01
B 1 0.87 0.19 0.40 <0.05

7 A 1 1.30 0.29 0.46 0.06
B 2 1.83 0.16 0.37 <0.05

8 A 2 1.77 0.23 0.43 <0.05
B 1 0.50 0.52 0.51 0.17

9 A 2 1.97 0.03 0.18 <0.01
B 1 0.87 0.13 0.34 <0.05

10 A 2 1.93 0.06 0.25 <0.01
B 2 1.77 0.23 0.43 <0.05

11 A 2 1.77 0.23 0.43 <0.05
B 1 0.73 0.26 0.44 <0.05

12 A 1 0.77 0.23 0.43 <0.05
B 2 1.67 0.32 0.48 0.08
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listeners perceive 15% clearer the focus information
in diphone synthesis (not diphone-selection), where
the intensity is constant throughout the whole stim-
uli and the signal sounds like having flat dynamics.

6. Discussion

The alignment process we suggest in this paper
takes into account the small-footprint specifications.
A main concern is whether and how successfully can
we stretch some source pitch points to the corre-
sponding target syllables with mismatching dura-
tions and heterogeneous phonemic content. To
inspect on the consequences of omitting the micro-

pattern list (to minimize the inventory), we analyzed
further the dataset of M-PIRO. Our goal was to
measure differences in F0 peaks when a particular
accent of a specific phoneme is copied to the same
accent over a different phoneme. For each haAb pat-
tern of the collected TGs, we calculated the F0 peak
(or valley, depending on the type of accent) on the
accented vowel. We further classified mean F0 peaks
based on the accent and the phoneme (Fig. 18).

Furthermore, Table 11 presents the standard devi-
ation of the mean F0 peak of each phoneme per pitch
accent. From there, we can argue that by not
accounting for micro-prosody we miss in average
8 Hz of the peak of each pitch accent. However, these
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Fig. 18. Mean F0 peak of the inventory’s haAb patterns for each
pitch accent.

Table 11
F0 average peak and stdev across all the vowels in the inventory

Accent Peak average (Hz) Peak stdev (Hz)

L* + H 155 6.8
H* 170 7.3
H* + L 150 10.5
L + H* 169 7.7
L* 125 7.9
findings should be compared with the actor’s mean
F0 (= 152 Hz) and stdev (= 32 Hz) (Xydas et al.,
2005), which attest a big variability in his voice.

7. Conclusions

Corpus-based F0 modeling faces the problem of
coverage in the database in order to provide the best
of its intentions. This problem is even broader in
cases of small-footprint conditions where the inven-
tory is significantly reduced. In order to allow the
provision of emphasis in speech synthesis that essen-
tially increases the naturalness of speech, we pro-
posed the Target-Group Selection F0 model that
encodes the intonational templates based on the
intonational important syllables of each TG. The
subjective experimentation that followed showed
that this model is preferred against the well-estab-
lished linear regression one. Furthermore, listeners
were able to perceive emphasis where intended,
however, the levels they distinguish differ, as empha-
sis perception is a subjective factor and people rec-
ognize it differently. The proposed approach
achieved to deliver the two distinct levels and also
to distinguish them from null cases.

The TG model achieves high coverage due to the
encoding of the proposed haAb patterns. Only 8
pattern classes are provided (Table 1) that upon
the application of a typical 482-sized utterance cor-
pus gave a minimum of 70 instances in the lowest-
frequent appearing class. The current prototype
has no provision in cases of missing units yet,
though no such case appeared when tested against
a second unseen set of 500 utterances. On the other
hand, as haAb patterns themselves offer 100% cover-
age, missing units can be handled by backing off to
the closest ToBI label until a match is achieved.

In this work we inspected on a natural sounding
F0 model that can be fitted in embedded systems.
The basis of the methodology described proved suc-
cessful through prototyping and experimentation,
and can form a framework for a combined pitch/
duration/intensity selection based model.

Finally, an open-source prototype of the Tone-
Group Selection model for the small-footprint Flite
speech synthesizer (Black and Lenzo, 2001) is avail-
able from the project’s web page1 where the reader
can also find the samples of the listening tests.
1 http://www.di.uoa.gr/~gxydas/en/tone_group_selection.
shtml.

http://www.di.uoa.gr/~gxydas/en/tone_group_selection.shtml
http://www.di.uoa.gr/~gxydas/en/tone_group_selection.shtml
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