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Abstract
This paper focuses on optimal estimators of the magnitude spectrum for speech enhancement. We
present an analytical solution for estimating in the MMSE sense the magnitude spectrum when the
clean speech DFT coefficients are modeled by a Laplacian distribution and the noise DFT coefficients
are modeled by a Gaussian distribution. Furthermore, we derive the MMSE estimator under speech
presence uncertainty and a Laplacian statistical model. Results indicated that the Laplacian-based
MMSE estimator yielded less residual noise in the enhanced speech than the traditional Gaussian-
based MMSE estimator. Overall, the present study demonstrates that the assumed distribution of the
DFT coefficients can have a significant effect on the quality of the enhanced speech.
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I. INTRODUCTION
Single-channel speech enhancement algorithms based on minimum mean-square error
(MMSE) estimation of the short-time spectral magnitude have received a lot of attention in the
past two decades [1–3]. A key assumption made in the MMSE algorithms is that the real and
imaginary parts of the clean Discrete Fourier Transform (DFT) coefficients can be modeled
by a Gaussian distribution. This Gaussian assumption, however, holds asymptotically for long
duration analysis frames, for which the span of the correlation of the signal is much shorter
than the DFT size. While this assumption might hold for the noise DFT coefficients, it does
not hold for the speech DFT coefficients, which are typically estimated using relatively short
(20–30 ms) duration windows. For that reason, several researchers [4–9] have proposed the
use of non-Gaussian distributions for modeling the real and imaginary parts of the speech DFT
coefficients. In particular, the Gamma or the Laplacian probability distributions can be used
to model the distributions of the real and imaginary parts of the DFT coefficients. Several have
computed histograms of the real and imaginary parts of the DFT coefficients from a large
corpus of speech and confirmed that the Gamma and Laplacian distributions provide a better
fit to the experimental data than the Gaussian distribution [6][4]. This was also confirmed
quantitatively in [7] by using the Kullback divergence to measure the ability of the Gamma
probability density function (pdf) to fit the experimental data. A smaller Kullback divergence
was found for the Gamma pdf when compared to the Gaussian pdf, suggesting that the Gamma
pdf provides a better fit to the experimental data than the Gaussian pdf.

The use of Gamma or Laplacian distributions, however, complicates the derivation of the
MMSE estimate of the magnitude spectrum. This is partly because the magnitude and phases
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of the DFT coefficients are no longer independendent when the real and imaginary parts of the
DFT coefficients are modelled by a Laplacian (or Gamma) distribution. For that reason,
alternative solutions were explored in [4–8]. For instance, in [6] the authors approximated the
pdf of the magnitude of the DFT coefficients with a parametric function, and used that to derive
a MAP estimator of the magnitude spectrum. The MAP estimator was pursued over the MMSE
estimator since the resulting integrals were too difficult to evaluate in closed form. In [5], the
estimators of the real and imaginary parts of the DFT coefficients were derived separately
assuming Gamma and Laplacian distributions for the speech DFT coefficients. The two
estimators combined yielded a complex-valued estimator for the signal DFT coefficients.
Experimental results showed that those estimators provided consistently better results than the
Wiener estimator.

In [9] we derived an approximate MMSE estimator of the speech magnitude spectrum based
on a Laplacian model for the speech DFT coefficients and a Gaussian model for the noise DFT
coefficients. This estimator was derived under the assumption that the magnitude and phases
of the complex DFT coefficients were independent. Acknowledging that this assumption does
not necessarily hold, we derive in this paper the true MMSE estimator of the speech magnitude
spectrum based on Laplacian modeling. The derived estimator is implemented using numerical
integration techniques, and compared to the approximate MMSE estimator [9]. To further
improve the amplitude estimation, we also incorporate speech presence uncertainty into the
Laplacian based estimator. The performance of the proposed estimator is compared to the
conventional MMSE estimator [1] as well as the Laplacian estimator proposed in [5].

The paper is organized as follows. In sections II and III, we derive the Laplacian-based MMSE
estimators and in section IV we derive the MMSE estimator under signal presence uncertainty.
In Section V, we evaluate the performance of the proposed estimators, and in Section VI we
present the conclusions.

II. LAPLACIAN BASED SHORT-TIME SPECTRAL AMPLITUDE ESTIMATOR
Let y(n) = x(n) + d(n) be the sampled noisy speech signal consisting of the clean signal x(n)
and the noise signal d(n). Taking the short-time Fourier transform of y(n), we get:

Y (ωk) = X (ωk) + D(ωk) (1)

for ωk = 2πk/N where k = 0, 1, 2, …N −1, and N is the frame length. The above equation can
also be expressed in polar form as

Yke
jθy(k)

= Xke
jθx(k)

+ Dke
jθd(k)

(2)

where {Yk, Xk, Dk} denote the corresponding magnitude spectra and {θy(k), θx(k), θd(k)} denote
the corresponding phase spectra of the noisy, clean and noise signals respectively. The MMSE
estimator of the magnitude spectrum Xk is obtained as follows [1]:

X̂ k = E{Xk ∣ Y (ωk)}, k = 0, 1, 2, … N − 1

=
∫0∞∫02πXk p(Y (ωk) ∣ Xk, θk)p(Xk, θk)dθkdXk

∫0∞∫02πp(Y (ωk) ∣ Xk, θk)p(Xk, θk)dθkdXk

(3)

where E{·} denotes the expectation operator, θk ≜ θx(k) for convenience, p(Xk, θk) is the joint
pdf of the magnitude and phase spectra, λd(k) denotes the noise variance and p(Y(ωk)|Xk, θk)
is given by
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p(Y (ωk) ∣ Xk, θk) = 1
πλd(k) exp { − 1

λd(k) ∣ Y (ωk) − X (ωk)∣2 } (4)

Following the procedure in [12], it is easy to show for a Laplacian distribution that p(Xk, θk)
is given by:

p(Xk, θk) =
Xk

2 λx(k)
exp −

Xk
λx(k)

( ∣ cos θk ∣ + ∣ sin θk ∣ ) (5)

Substituting (4) and (5) from Appendix B into (3), we get:

X̂ k =
∫0∞Xk

2 exp ( − Xk
2

λd(k) )∫02π exp
2XkYk cos θk

λd(k) −
Xk
λx(k)

( ∣ cos θk ∣ + ∣ sin θk ∣ ) dθxdXk

∫0∞Xk exp ( − Xk
2

λd(k) )∫02π exp
2XkYk cos θk

λd(k) −
Xk
λx(k)

( ∣ cos θk ∣ + ∣ sin θk ∣ ) dθxdXk

(6)

After substituting (33) and (34), we can express the above equation in terms of the a priori and
posteriori SNRs as follows:

X̂ k =

∫0∞Xk
2 exp ( − γkXk

2

Yk
2 )∫02π exp

2γkXk cos θk
Yk

−
Xk γk
Yk ξk

( ∣ cos θk ∣ + ∣ sin θk ∣ ) dθxdXk

∫0∞Xk exp ( − γkXk
2

Yk
2 )∫02π exp

2γkXk cos θk
Yk

−
Xk γk
Yk ξk

( ∣ cos θk ∣ + ∣ sin θk ∣ ) dθxdXk

(7)

where ξk ≜ λx(k)/λd(k) and γk ≜ Yk
2/λd (k) denote the a priori and posteriori SNRs

respectively [1]. The above equation gives the Laplacian MMSE estimator of the spectral
magnitudes, and we will be referring to this estimator as the LapMMSE estimator. The closed
form solution of the above estimator is unknown to the authors, and therefore alternative
solutions were sought. To derive such solutions, we needed to make some assumptions about
the relationship between the magnitude and the phase pdfs, and this is examined next.

III. Derivation of approximate Laplacian MMSE estimator
It is known that complex zero mean Gaussian random variables have magnitudes and phases
which are statistically independent [12]. Furthermore, the phases have a uniform distribution.
This is not the case, however, with the complex Laplacian distributions that are used in this
paper for modeling the speech DFT coefficients. Further analysis of the joint pdf of the
magnitudes and phases, p(Xk, θk), however, evealed that the pdfs of the magnitudes and phases
are nearly statistically independent, at least for a certain range of magnitude values. To show
that, we derive the marginal pdfs of the magnitudes and phases and examine whether p(Xk,
θk) ≈ p(Xk)p(θk). The marginal pdf of the phases is derived from (5) and is given by:
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p(θk) =
Xk

2 λx(k)∫0∞ exp −
Xk
λx(k)

∣ cos θk ∣ + ∣ sin θk ∣ dXk

= −
Xk

2 ∣ cos θk ∣ + 2 ∣ sin θk ∣ exp −
Xk
λx(k)

( cos θk + sin θk)
0

∞

−
λx(k)

2 + 4 ∣ cos θk sin θk ∣ exp −
Xk
σ ( cos θk + sin θk) 0

∞

=
λx(k)

2 + 4 ∣ cos θk sin θk ∣

(8)

The density p(Xk) of the spectral magnitudes is given by (see derivation in Appendix A):

p(Xk) =
2Xk
λx(k)

π
4 I0( − 2

λx(k)
Xk) + 2 ∑

n=1

∞ 1
n In( − 2

λx(k)
Xk) sin ( πn

4 ) u(Xk) (9)

where In(·) denotes the modified Bessel function of nth order and u(x) is the step function.
Figures 1 and 2 show plots of the joint density p(Xk, θk) as well as plots of the product of the
magnitude and phase pdfs. Figure 1 shows the joint density p(Xk, θk), Fig. 2 shows p(Xk)p
(θk) and Fig. 3 shows the absolute difference between the densities displayed in Figs. 1 and 2.
As can be seen, the difference between the two densities is large near Xk ≈ 0, but is near zero
for Xk > 2. The plot in Figure 3 demonstrates that the magnitudes and phases are nearly
independent, at least for a specific range of magnitude values (Xk > 2, θk ∈ [−π, π]). We can
therefore make the approximation that p(Xk, θk) ≈ p(Xk)p(θk).

We further analyzed the phase pdf, p(θk), to determine the shape of the distribution and examine
whether it is similar to a uniform distibution. Figure 4 shows the plots of p(θk) superimposed
to a uniform distribution. The density p(θk) is clearly not uniform, but it oscillates near the 1/
(2π) value of the uniform distribution for θk ∈ [−π, π]. Despite this difference, we approximated
p(θk) with a uniform distribution, i.e., p(θk) ≈ 1/(2π) for θk ∈ [−π, π].

After taking into consideration the above two assumptions (statistical independence between
Xk and θk, and a uniform distribution for the phases), we approximated the joint density in (3)
with p(Xk, θk ) ≈ 1

2π p(Xk ), where p(Xk) is the density of the spectral magnitudes. Finally,
after substituting (9) and (4) into (3) and using [11, Eq. 6.633.1] we get an expression for the
MMSE estimator in closed form (see derivation in Appendix B):

X̂ k =
Ak + Bk
Ck + Dk

(10a)

where

Ak =
( Yk

2

γk ) 32
2 ∑

m=0

∞ Γ(m + 3
2 )

m ! Γ(m + 1) ( γk

2ξk
2Yk

2 )m · F ( − m, − m; 1; 2ξk
2Yk

2) (10b)
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Bk = 8
π ∑

n=1

∞ 1
n sin ( πn

4 )
( 2γk
Yk

)n( γk

Yk
2 )− n+3

2

2n+1Γ(n + 1)
· ∑
m=0

∞ Γ(m + 1
2 n + 3

2 )

m ! Γ(m + 1) ( γk

2ξk
2Yk

2 )m
· F ( − m, − m; n + 1; 2ξk

2Yk
2)

(10c)

Ck =
Yk

2

2γk
∑

m=0

∞ 1
m! ( γk

2ξk
2Yk

2 )m · F ( − m, − m; 1; 2ξk
2Yk

2) (10d)

Dk = 8
π ∑

n=1

∞ 1
n sin ( πn

4 )
( 2γk
Yk

)n( γk

Yk
2 )− n

2 −1

2n+1Γ(n + 1)
· ∑
m=0

∞ Γ(m + 1
2 n + 1)

m ! Γ(m + 1) ( γk

2ξk
2Yk

2 )m
· F ( − m, − m; n + 1; 2ξk

2Yk
2)

(10e)

where ζk and γk are the a priori and posteriori signal-to-noise (SNR) ratios respectively, γ(·)
is the gamma function and F(a, b, c; x) is the Gaussian hypergeometric function [11, Eq. 9.100].
Equation (10a) gives the approximate Laplacian MMSE estimator of the spectral magnitudes,
and we will be referring to this estimator as the ApLapMMSE estimator.

IV. Derivation of amplitude estimator under speech presence uncertainty
In this section, we derive the MMSE magnitude estimator under the assumed Laplacian model
and uncertainty of speech presence. This is motivated by the fact that speech might not be
present at all times and at all frequencies. We could therefore consider a two-state model for
speech events that assumes that either speech is present at a particular frequency bin (hypothesis
H1) or that is not (hypothesis H0). Intuitively, this amounts to multiplying the estimator by a
term that provides an estimate of the probability that speech is present at a particular frequency
bin. Following [1][10], this new estimator is given by:

X̂ k = E(Xk ∣ Y (ωk), H1
k)P(H1

k ∣ Y (ωk)) (11)

where H1
k  denotes the hypothesis that speech is present in frequency bin k, and

P(H1
k ∣ Y (ωk )) denotes the conditional probability that speech is present in frequency bin k

given the noisy speech (complex) spectrum Y(ωk). The conditional probability
P(H1

k ∣ Y (ωk )) can be computed using Bayes’ rule [1][10]:

P(H1
k ∣ Y (ωk)) =

Λ(Y (ωk), qk)

1 + Λ(Y (ωk), qk) (12)

where Λ(Y(ωk), qk) is the generalized likelihood ratio defined by:

Λ(Y (ωk), qk) =
1 − qk

qk

p(Y (ωk) ∣ H1
k)

p(Y (ωk) ∣ H0
k)

(13)

where qk = P(H0
k ) denotes the a priori probability of speech absence for frequency bin k.
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Under hypothesis H0, Y(ωk) = D(ωk), and given that the noise is complex Gaussian with zero
mean and variance λd(k), it follows that p(Y (ωk ) ∣ H0

k ) will also have a Gaussian distribution
with the same variance, i.e.,

p(Y (ωk) ∣ H0
k) = 1

πλd(k) exp ( − Yk
2

λd(k) ) (14)

Under hypothesis H1, Y(ωk) = X(ωk) + D(ωk), and p(Y (ωk ) ∣ H1
k ) will have the form:

pY (ωk)(y) = p(zr, zi) = pZr(k)(zr)pZi(k)(zi) (15)

where Zr(k) = Re{Y(ωk)}, Zi(k) = Im{Y(ωk)}, and pZr(k)(zr) and pZi(k)(zi) are given by (see
Appendix C):

pZr(k)(zr) =

γk exp ( 1
2ξk

)

2 2ξkYk
exp ( − γkzr

Yk ξk
) + exp ( γkzr

ξkYk
) +

exp ( − γkzr
ξkYk

)erf( γkzr
ξkYk

− 1
ξk

) − exp ( γkzr
ξkYk

)erf( γkzr
ξkYk

+ 1
ξk

)
(16)

where erf(·) is the error function. A similar form of the above (16) can be also found in [17].
After substituting (12), (14), and (15) into (11) we get the final estimator that incorporates
speech-presence uncertainty.

V. IMPLEMENTATION AND PERFORMANCE EVALUATION
A. Implementation

Evaluation of p(Xk) in (9) involves an infinite number of terms, however, computer simulations
indicated that retaining only the first 40 terms in (9), gave a good approximation of p(Xk). This
is demonstrated in Figure 5, which shows p(Xk) estimated using numerical integration
techniques and also approximated by truncating the summation in (9) using the first 40 terms.

As shown in (10a), the derived ApLapMMSE estimator is highly nonlinear and
computationally complex. The implementation of (10a) proved to be challenging due to the
infinite number of terms involved in the summation. In practice, scaling techniques can be used
to implement (10a) to avoid possible overflows or underflows. Instead, we chose to use
numerical integration techniques [13] to evaluate the integrals in (3). More specifically, after
making the assumptions of independence and uniform phase distribution, we used numerical
intergration techniques to evaluate the estimator of the magnitude spectrum as follows:

X̂ k =

∫0∞Xk
2 exp ( − γkXk

2

Yk
2 )I0( 2γkXk

Yk
)pX (Xk)dXk

∫0∞Xk exp ( − γkXk
2

Yk
2 )I0( 2γkXk

Yk
)pX (Xk)dXk

where pX(Xk) is given by (23). The above integrals were used to evaluate the ApLapMMSE
estimator (MATLAB implementation of the above estimator is available in [16]). Numerical
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integration techniques were also used to evaluate the integrals involved in the LapMMSE
estimator in (7).

The proposed estimators were applied to 20-ms duration frames of speech using a Hamming
window, with 50% overlap between frames. The “decision-directed” approach [1] was used in
the proposed estimators to compute the a priori SNR ζk, with α = 0.98. The enhanced signal
was combined using the overlap and add approach. The a priori probability of speech absence,
qk, was set to qk = 0.3 in (13).

B. Performance Evaluation
Twenty sentences from the TIMIT database were used for the objective evaluation of the
proposed LapMMSE estimator, 10 produced by female speakers and 10 produced by male
speakers. The TIMIT sentences were downsampled to 8 kHz. Speech-shaped noise constructed
from the long-term spectrum of the TIMIT sentences as well as F-16 cockpit noise were added
to the clean speech files at 0, 5 and 10 dB SNR. White noise was also used to corrupt the
sentences at 0, 5 and 10 dB SNR. An estimate of the noise spectrum was obtained from the
initial 100-ms segment of each sentence. The noise spectrum estimate was not updated in
subsequent frames.

Objective measures were used to evaluate the performance of the proposed estimators
implemented with and without speech presence uncertainty (SPU) and denoted as LapMMSE-
SPU and LapMMSE respectively. Similarly, the approximate Laplacian estimators
implemented with and without speech presence uncertainty were indicated as ApLapMMSE-
SPU and ApLapMMSE respectively. For comparative purposes we evaluated the performance
of the traditional (Gaussian-based) MMSE estimator [1] with and without incorporating speech
presence uncertainty which were indicated as MMSE-SPU and MMSE respectively. We also
evaluated the performance of the complex-valued MMSE estimator derived in [5] based on
Laplacian speech priors. Note that in [5], the estimator E[X(ωk)|Y(ωk)] was derived by
combining the estimators of the real and imaginary parts of the DFT coefficients.

The segmental SNR, log likelihood ratio (LLR) and PESQ (ITU-T P.862) measures were used
for objective evaluation of the proposed estimators. The segmental SNR was computed as:

S N Rseg = 10
M ∑

k=0

M−1
log10

∑n=Nk
Nk+N−1 x 2(n)

∑n=Nk
Nk+N−1 (x(n) − x̂(n))2

(17)

where M is the total number of frames, N is the frame size, x(n) is the clean signal and x̂(n) is
the enhanced signal. Since the segmental SNR can become very small and negative during
periods of silence, we limited the SNRseg values to the range of [−10 dB, 35 dB] as per [14].
In doing so, we avoid the explicit marking and identification of speech-absent segments. Note
that we report the SNRseg values for completeness and for comparitive purposes with prior
studies. The SNRseg measure has been found in [15] to yield a low correlation (ρ = 0.31) with
subjective quality ratings. The LLR and PESQ measures have been found to yield much
stronger correlations with subjective quality ratings [15].

The log likelihood ratio (LLR) for each 20-ms frame was computed as:

LLR = log ( ae
T Rxae

ax
TRxax

) (18)
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where ax and ae are the prediction coefficients of the clean and enhanced signals respectively,
and Rx is the autocorrelation matrix of the clean signal. The mean LLR value was computed
across all frames for each sentence. Since the mean can be easily biased by a few outlier frames,
we computed the mean based on the lowest 95% of the frames as per [14].

Tables 1 and 2 list the segmental SNR values and log-likelihood ratio values obtained by the
various estimators at different SNRs, and Table 3 lists the PESQ values. Table 4 shows the
evaluation of the proposed estimator with sentences corrupted with stationary white noise. As
can be seen, higher segmental SNR values and higher PESQ values were obtained consistently
by the proposed estimators (LapMMSE and ApLapMMSE). Statistical analysis (paired
samples t-tests) indicated that the SNRseg values (Table 1) obtained with the Laplacian
estimators (ApLapMMSE and ApLapMMSE-SPU) were significantly (p < 0.005) higher
higher than the SRNseg values obtained with the Gaussian estimators (MMSE and MMSE-
SPU) in all SNR conditions. The PESQ values obtained with the Laplacian estimators
(ApLapMMSE and ApLapMMSE-SPU) were also found to be significantly higher (p < 0.05)
than the values obtained by the Gaussian estimators (MMSE and MMSE-SPU) in all SNR
conditions except one (0 dB speech-shaped noise). The PESQ values obtained with the
ApLapMMSE-SPU estimator were not significantly (p > 0.05) higher than the values obtained
by the MMSE-SPU estimator in 0dB speech-shaped noise. Further analysis (paired samples t-
tests) indicated that the SNRseg values (Table 4) obtained with the ApLapMMSE-SPU
estimator were significantly (p < 0.005) higher than the SRNseg values obtained with the
Gaussian MMSE-SPU estimator. The Laplacian estimator proposed in [5] also performed
better than the Gaussian MMSE estimator. The difference in performance between the
LapMMSE and ApLapMMSE estimators was very small and statistically non-significant,
suggesting that our assumptions about the independence of magnitudes and phase were
reasonable and did not cause any significant performance degradation.

The pattern of results was similar with the log-likelihood ratio objective measure (Table 2).
Smaller LLR values were obtained by the proposed Laplacian estimators compared to the
Gaussian-based MMSE estimator for all SNR conditions. Statistical analysis (paired samples
t-tests) confirmed that the LLR values obtained with the ApLapMMSEestimator were
significantly (p < 0.005) lower than the LLR values obtained with the Gaussian MMSE
estimator. Comparison between the LLR values obtained with the MMSE-SPU and the
ApLapMMSE-SPU estimators indicated that the ApLapMMSE-SPU estimator performed
significantly (p < 0.005) better in all SNR conditions but two. The difference in performance
between the two estimators in 10 dB speech-shaped noise and 10 dB fighter noise was not
statistically significant (p > 0.05).

Informal listening tests indicated that speech enhanced by the Laplacian MMSE estimators had
less residual noise. This was confirmed by visual inspection of spectrograms of the enhanced
speech signals. Figure 6 shows the spectrograms of the TIMIT sentence “The kid has no
manners, boys” enhanced by the LapMMSE-SPU, ApLapMMSE-SPU and MMSE-SPU
estimators. The sentence was originally embedded in +5 dB S/N speech-shaped noise. As can
be seen, the sentence enhanced by the Laplacian MMSE estimators had less residual noise
without introducing perceptible distortion in the speech signal. The quality of speech enhanced
by the ApLapMMSE and LapMMSE estimators was nearly identical, consistent with the
objective evaluation of these estimators (Tables 1–3).

VI. SUMMARY AND CONCLUSIONS
An MMSE estimator was derived for the speech magnitude spectrum based on a Laplacian
model for the speech DFT coefficients and a Gaussian model for the noise DFT coefficients.
An estimator was also derived under speech presence uncertainty and a Laplacian model
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assumption. Results, in terms of objective measures, indicated that the proposed Laplacian
MMSE estimators yielded better performance than the traditional MMSE estimator, which is
based on a Gaussian model [1]. Overall, the present study demonstrated that the assumed
distribution of the DFT coefficients can have a significant effect on speech quality.
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VIII. APPENDIX A

In this Appendix, we derive the PDF of the random variable X = Xr
2 + X i

2, where Xr, Xi are
the real and imaginary parts respectively of the DFT components of the clean speech signal,
assumed to have a Laplacian probability density function of the form:

pXr
(xr) = 1

2σ exp ( − ∣ xr ∣

σ ) (19)

where σ is the standard deviation. Let Y1 = Xr
2 and Y2 = X i

2. Then, we know [12] that

pY1
(y1) =

1
y1

px1
( y1) and so:

pY1
(y1) =

1
y1

1
2σ exp ( − y1

σ ), pY2
(y2) =

1
y2

1
2σ exp ( − y2

σ ) (20)

Let Z = Xr
2 + X i

2 = Y1 + Y2 (Y1 > 0, Y2 > 0), then pZ(z) = pY1(y1) * pY2 (y2), where ‘*’ indicates
convolution. Thus

pZ(z) = ∫−∞
∞ pY1

(z − y2)pY2
(y2)d y2

= 1

4σ 2∫0z 1
y2(z − y2)

exp ( −
z − y2 + y2

σ )dy2

(21)

After substituting y2 = z sin2 t, we get:

pZ(z) = 1

2σ 2∫0π/2
exp ( − 2z cos (t − π /4)

σ )dt (22)

Now, let X = Z , then we know [12, p. 133] that pX(x) = 2xpZ(x2)u(x), where u(x) is the step
function. Substituting θ = t−π/4 in the above equation, we get:

pX (x) = 2x

σ 2∫0π/4
exp ( − 2x cos θ

σ )dθ

= 2x

σ 2∫0π/4
exp (Ax cos θ)dθ x ≥ 0

(23)

where A = − 2/σ. After making use of the generating function:

exp w
2 (t + 1

t ) = ewt/2ew/2t

= ( ∑
m=0

∞ 1
m!

wmt m

2m )( ∑n=0

∞ 1
n !

wnt −n

2n ) (24)

with t = exp(jθ) and w = Ax, we can express exp(Ax cos θ) in terms of Bessel functions:

exp (Ax cos θ) = I0(Ax) + 2 ∑
k=1

∞
Ik(Ax) cos kθ (25)
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where Ik(·) denotes the modified Bessel function of kth order. Finally, after substituting (25)
in (23) and integrating, we get:

pX (x) = 2x

σ 2
π
4 I0( − 2

σ x) + 2 ∑
k=1

∞ 1
k Ik( − 2

σ x) sin πk
4 u(x) (26)

where u(x) is the step function.

IX. APPENDIX B
In this Appendix, we derive the approximate Laplacian MMSE estimator of the magnitude
spectrum. We start from [1]:

X̂ k = E Xk ∣ Y (ωk) =
∫0∞∫02πXk p(Y (ωk) ∣ Xk, θk)p(Xk, θk)dθkdXk

∫0∞∫02πp(Y (ωk) ∣ Xk, θk)p(Xk, θk)dθkdXk

(27)

The p(Y (ωk)|Xk, θk) term is given by [1]:

p(Y (ωk) ∣ Xk, θk) = 1
πλd(k) exp { − 1

λd(k) ∣ Y (ωk) − X (ωk)∣2 } (28)

Assuming that Xk and θk are independent and θk is uniformly distributed in [0 2π], and after
using (26), we get

p(Xk, θk) ≈ 1
2π p(Xk) (29)

=
Xk

4λx(k) I0( − 2
λx(k)

Xk) + 2Xk
πλx(k) ∑

n=1

∞ 1
n In( − 2

λx(k)
Xk) sin ( πn

4 ) (30)

Now, substituting (28) and (29) into (27), we get:

X̂ k =
Ak

′ + Bk
′

Ck
′ + Dk

′ (31a)

where

Ak
′ = ∫0∞

Xk
2

4λx(k) exp ( − Xk
2

λd(k) )I0( − 2
λx(k)

Xk)I0(2XkYk /λd(k))dXk (31b)

Bk
′ = 2

πλx(k) ∑
n=1

∞ 1
n sin ( πn

4 )∫0∞Xk
2 exp ( − Xk

2

λd(k) )In( − 2
λx(k)

Xk)I0(2XkYk /λd(k))dXk (31c)

Ck
′ = ∫0∞

Xk
4λx(k) exp ( − Xk

2

λd(k) )I0( − 2
λx(k)

Xk)I0(2XkYk /λd(k))dXk (31d)

Dk
′ = 2

πλx(k) ∑
n=1

∞ 1
n sin ( πn

4 )∫0∞Xk exp ( − Xk
2

λd(k) )In( − 2
λx(k)

Xk)I0(2XkYk /λd(k))dXk (31e)
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After using [11, Eq. 6.633.1], we derive the MMSE estimator in closed form:

X̂ k =
Ak + Bk
Ck + Dk

(32a)

where

A =
λd(k)

3
2

2 ∑
m=0

∞ Γ(m + 3
2 )

m ! Γ(m + 1) ( λd(k)

2λx(k) )mF ( − m, − m; 1; 2
λx(k)

λd
2(k)

Yk
2) (32b)

B = 8
π ∑

n=1

∞ 1
n sin ( πn

4 )
( 2Yk
λd(k) )n( 1

λd(k) )−
n+3
2

2n+1Γ(n + 1)
∑

m=0

∞ Γ(m + 1
2 n + 3

2 )

m ! Γ(m + 1) ( − λd(k)

2λx(k) )m
· F ( − m, − m; n + 1; 2

λx(k)

λd
2(k)

Yk
2)

(32c)

C =
λd(k)

2 ∑
m=0

∞ 1
m! ( λd(k)

2λx(k) )mF ( − m, − m; 1; 2
λx(k)

λd
2(k)

Yk
2) (32d)

D = 8
π ∑

n=1

∞ 1
n sin ( πn

4 )
( 2Yk
λd(k) )n( 1

λd(k) )−
n
2 −1

2n+1Γ(n + 1)
∑

m=0

∞ Γ(m + 1
2 n + 1)

m ! Γ(m + 1) ( λd(k)

2λx(k) )m
· F ( − m, − m; n + 1; 2

λx(k)

λd
2(k)

Yk
2)

(32e)

where Γ(·) is the gamma function and F(a, b, c; x) is the Gaussian hypergeometric function
[11, Eq. 9.100]. The above terms are given as a function of the signal and noise variances, but
can also be expressed in terms of the a priori SNR ιk (ιk = λx(k)/λd(k)) and a posteriori
SNRγk (γk = Yk

2/λd (k)) using the following relationships:

1
λd(k) =

γk

Yk
2 (33)

1
λx(k) =

γk

ξkYk
2 (34)

Finally, after substituting Equations (33) and (34) in (32b)–(32e), we get (10a)–(10e).

X. APPENDIX C
In this appendix, we derive the PDF of Y (ωk) = X(ωk) + D(ωk), where X(ωk) = Xr(ωk) +
jXi(ωk) and D(ωk) = Dr(ωk) + jDi(ωk). The pdfs of Xr(ωk) and Xi(ωk) are assumed to be
Laplacian and the pdfs of Dr(ωk) and Dr(ωk) are assumed to be Gaussian with variance

σd
2/2 and zero mean. We assume that pXr

(xr) =
1

2σx
exp ( −

∣ xr ∣

σx
), and
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pDr
(dr) =

1
πσd

exp ( −
dr

2

σd
2 ). For simplicity, we neglect the frequency index ωk in the

following derivation.

Let Zr = Xr + Dr and Zi = Xi + Di, then Y = Zr + jZi. The pdf of Zr can be computed by the
convolution of the Laplacian and Gaussian densities, and is given by:

pZr
(zr) = ∫−∞

∞ pXr
(zr − dr)pDr

(dr)ddr

= ∫−∞

zr 1
2σxσd π

exp ( − σxdr
2 − σd

2dr + σd
2zr

σxσd
2 )ddr +

∫zr
∞ 1

2σxσd π
exp ( − σxdr

2 − σd
2dr + σd

2zr

σxσd
2 )ddr

(35)

After using [11, Eq. 2.338.1] we get:

pZr
(zr) = pZr

(zr) =

exp (
σd
2

σx
2 )

2 2σx
exp ( −

zr
σx

) + exp (
zr
σx

) + exp ( −
zr
σx

)erf(
zr
σx

−
σd
σx

)

− exp (
zr
σx

)erf(
zr
σx

+
σd
σx

)

(36)

where erf(·) is the error function. Finally, after expressing the above equation in terms of ιk and
γk using Equations (33) and (34), we get:

pZr(k)(zr) =

γk exp ( 1
2ξk

)

2 2ξkYk
exp ( −

γkzr
Yk ξk

) + exp (
γkzr
ξkYk

) +

exp ( −
γkzr
ξkYk

)erf(
γkzr
ξkYk

− 1
ξk

) − exp (
γkzr
ξkYk

)erf(
γkzr
ξkYk

+ 1
ξk

)

(37)

The probability density for the imaginary part, i.e., pZi(zi), has exactly the same form as that
of pZr(zr). Assuming independence between Zr and Zi we get the following expression for the
conditional density p(Y (ωk ) ∣ H1

k ) at frequency bin ωk:

p(Y (ωk) ∣ H1
k) = p(zrzi) = pZr(k)(zr)pZi(k)(zi) (38)
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Fig. 1.
Plot of the joint density p(xk, θ) of a zero mean complex Laplacian random variable (σ2 = 1).
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Fig. 2.
Plot of p(xk)p(θ), where p(xk) is given by (9) and p(θ) is given by (8) [λx(k) = 1].
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Fig. 3.
Plot of the absolute difference between the densities shown in Figs. 1 and 2.
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Fig. 4.
Plot of p(θ) (solid lines) superimposed to a uniform distribution (dashed lines).
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Fig. 5.
The pdf of the magnitude of the DFT coefficients assuming the real and imaginary parts are
modeled by a Laplacian distribution (σ2 = 1). The plot indicated by ’+’ shows the pdf computed
by numerical integration of Eq. (23). The plot indicated by the solid line shows the pdf
approximated by truncating the infinite summation in (6) with the first 40 terms. The Rayleigh
distribution (dashed lines), used in the Gaussian-based MMSE estimator [1], is superimposed
for comparative purposes.
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Fig. 6.
Spectrograms of a TIMIT sentence enhanced by the Gaussian and Laplacian MMSE estimators.
From top to bottom, are the spectrograms of the signal in quiet, signal in noise, signal enhanced
by the Gaussian MMSE estimator [1], signal enhanced by the LapMMSE estimator and signal
enhanced by the ApLapMMSE estimator. All estimators incorporated signal-presence
uncertainty.
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TABLE IV
Comparative performance, in terms of segmental SNR, of the Gaussian-based MMSE and Laplacian-based
MMSE estimators in white noise.
Estimator White Noise

0 dB 5 dB 10 dB
MMSE-SPU 2.915 5.198 6.98

ApLapMMSE-SPU 3.587 5.945 7.875
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