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Abstract
Making meaningful comparisons between the performance of the various speech enhancement
algorithms proposed over the years, has been elusive due to lack of a common speech database,
differences in the types of noise used and differences in the testing methodology. To facilitate such
comparisons, we report on the development of a noisy speech corpus suitable for evaluation of speech
enhancement algorithms. This corpus is subsequently used for the subjective evaluation of 13 speech
enhancement methods encompassing four classes of algorithms: spectral subtractive, subspace,
statistical-model based and Wiener-type algorithms. The subjective evaluation was performed by
Dynastat, Inc. using the ITU-T P.835 methodology designed to evaluate the speech quality along
three dimensions: signal distortion, noise distortion and overall quality. This paper reports the results
of the subjective tests.
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1 Introduction
Over the past three decades, various speech enhancement algorithms have been proposed to
improve the performance of modern communication devices in noisy environments. Yet, it
still remains unclear as to which speech enhancement algorithm performs well in real-world
listening situations where the background noise level and characteristics are constantly
changing. Reliable and fair comparison between algorithms has been elusive for several
reasons, including lack of common speech database for evaluation of new algorithms,
differences in the types of noise used and differences in the testing methodology. Without
having access to a common speech database, it is nearly impossible for researchers to compare
at very least the objective performance of their algorithms with that of others. Subjective
evaluation of speech enhancement algorithms is further complicated by the fact that the quality
of enhanced speech has both signal and noise distortion components, and it is not clear as to
whether listeners base their quality judgments on the signal distortion, noise distortion or both.
This concern was recently addressed by a new ITU-T standard (P. 835) that was designed to
lead the listeners to integrate the effects of both signal and background distortion in making
their ratings of overall quality.
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In this paper, we report on the subjective comparison and evaluation of 13 speech enhancement
algorithms using the ITU-T P.835 methodology. The speech enhancement algorithms were
chosen to encompass four different classes of noise reduction methods: spectral subtractive,
subspace, statistical-model based and Wiener-type algorithms. These algorithms were
evaluated using a newly developed noisy speech corpus (NOIZEUS) suitable for evaluation
of speech enhancement algorithms and available from our website. The enhanced speech files
were sent to Dynastat, Inc (Austin, TX) for subjective evaluation using the recently
standardized methodology for evaluating noise suppression algorithms based on ITU-T P.835
[1]. This paper presents the results from the comparative analysis of the subjective tests.

2 NOIZEUS: A noisy speech corpus for evaluation of speech enhancement
algorithms

NOIZEUS 1 is a noisy speech corpus recorded in our lab to facilitate comparison of speech
enhancement algorithms among research groups. The noisy database contains 30 IEEE
sentences [2] produced by three male and three female speakers, and was corrupted by eight
different real-world noises at different SNRs. The noise was taken from the AURORA database
[3] and includes suburban train noise, multi-talker babble, car, exhibition hall, restaurant, street,
airport and train-station noise. The list of sentences used in NOIZEUS are given in Tables 1-2,
and the broad phonetic class distribution is shown in Figure 1.

2.1 Speech Material
Thirty sentences from the IEEE sentence database were recorded in a soundproof booth using
Tucker Davis Technologies (TDT) recording equipment. The sentences were produced by three
male and three female speakers (5 sentences/speaker). The IEEE database was used as it
contains phonetically-balanced sentences with relatively low word-context predictability. The
thirty sentences were selected from the IEEE database so as to include all phonemes in the
American English language (see Figure 1). The sentences were originally sampled at 25 kHz
and downsampled to 8 kHz.

2.2 Noise
To simulate the receiving frequency characteristics of telephone handsets, the speech and noise
signals were filtered by the modified Intermediate Reference System (IRS) filters used in ITU-
T P.862 [4] for evaluation of the PESQ measure. The frequency response of the filter is shown
in Figure 2.

Noise was artificially added to the speech signal as follows. The IRS filter was independently
applied to the clean and noise signals. The active speech level of the filtered clean speech signal
was first determined using method B of ITU-T P.56 [5]. A noise segment of the same length
as the speech signal was randomly cut out of the noise recordings, appropriately scaled to reach
the desired SNR level and finally added to the filtered clean speech signal.

Noise signals were taken from the AURORA database [3] and included the following
recordings from different places: babble (crowd of people), car, exhibition hall, restaurant,
street, airport, train station, and train. The noise signals were added to the speech signals at
SNRs of 0dB, 5dB, 10dB and 15dB.

1Available at: http://www.utdallas.edu/∼loizou/speech/noizeus/
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3 Algorithms evaluated
A total of 13 different speech enhancement methods were evaluated based on our own
implementation (see list in Table 3). Representative algorithms from four different classes of
enhancement algorithms were chosen: three spectral subtractive algorithms, two subspace
algorithms, three Wiener-type algorithms and five statistical-model based algorithms. The
Wiener-type algorithms were grouped separately since these algorithms estimate the complex
spectrum in the mean square sense while the statistical-model algorithms estimate the
magnitude spectrum. The parameters used in the implementation of these algorithms were the
same as those published unless stated otherwise. No adjustments were made for the algorithms
(e.g., [11]) originally designed for a sampling rate of 16 kHz. To assess the merit of noise-
estimation algorithms, two speech-enhancement algorithms (denoted in Table 3 with the suffix
-ne) were also implemented with a noise-estimation algorithm [23]. That is, a noise-estimation
algorithm was used in the speech enhancement algorithms indicated in Table 3 with -ne, to
estimate and update the noise spectrum. The majority of the algorithms tested updated the noise
spectrum using a voice activity detector (more on this later).

With the exception of the multi-band (MB) spectral subtraction algorithm developed in our lab
[14,19], the remaining algorithms have been well documented and referenced in the literature.
Next, we provide a brief description of the MB algorithm.

The spectrum is first divided into a number of frequency bands, from which a posteriori
segmental SNR is estimated from each band. A subtraction factor is derived according to the
segmental SNR in each band. The estimate of the clean speech spectrum Ŝi(k) at frequency bin
k and band i is obtained as follows:

(1)

where Ŷi(k) is the preprocessed noisy speech spectrum (see Eq. (5)), D ̂i(k) is the noise spectrum
estimate, bi and ei are the beginning and ending frequency bins of band i, αi is the over-
subtraction factor and δi is a tweaking factor that can be individually set for each frequency
band to customize noise removal. Negative values in Eq. (1) are spectrally floored to: 0.002 ·
|Ŷi(k)|2. To further mask any remaining musical noise, a small amount of the noisy spectrum

is introduced back to the enhanced spectrum as follows: ,

where  is the newly enhanced power spectrum. A total of eight linearly-spaced bands
were used in Eq. (1), and δi was empirically set to:

(2)

The band-specific subtraction factor αi is a piecewise linear function of the segmental SNR of
band i and is calculated as follows [20]:

(3)

where

(4)
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Prior to the subtraction operation in Eq. (1), the noisy speech spectrum |Yi(k)| is pre-processed
to reduce the variance of the spectrum estimate using the following weighted spectral average:

(5)

where j is the frame index, |Ŷj(k)| is the pre-processed noisy speech magnitude spectrum, |
Yj(k)| is the noisy speech magnitude spectrum, M = 2 and the filter weights Wi were empirically
set to W = [0.09 0.25 0.32 0.25 0.09]. A 20-ms Hamming window with 50% overlap between
frames was used in the MB algorithm and in all the other Fourier-transform based algorithms
tested.

A voice activity detector (VAD) was used in most of the speech enhancement methods to
update the noise spectrum. More precisely, a statistical-model based voice activity detector
(VAD) [21] was used to update the noise spectrum during speech-absent periods. The following
VAD decision rule was used:

(6)

where

(7)

where ξk and γk are defined as in [8], and ξk is estimated using the decision directed approach
(α = 0.98). L is the size of the FFT, H1 denotes the hypothesis of speech presence, H0 denotes
the hypothesis of speech absence, and η is a preset threshold. In our implementation, η = 0.15
for all conditions. During the speech-absent periods, i.e., when the left side of Eq. (6) was
smaller than η, the noise power spectrum was updated according to:

(8)

where Nj(k) is the estimate of the noise power spectrum at frame j for frequency bin k, β = 0.98
is a preset smoothing factor, and |Yj(k)| is the noisy speech magnitude spectrum. The initial
estimate of Nj(k) was obtained from the first (speech-absent) 120-ms segment of each sentence.

The subspace methods used the VAD method proposed in [22] with the threshold value set to
1.2. The frame windowing scheme proposed in [7] was adopted in both VAD methods. More
specifically, the signal was divided into 32-ms frames with 50% overlap between frames. The
samples in the 32-ms frame were used to construct a 32×32 Toeplitz covariance matrix. The
32-ms frames were further subdivided into 4-ms frames with 50% overlap. The noisy data in
each 4-ms frame were enhanced using the same eigenvector matrix derived from the 32 × 32
Toeplitz covariance matrix.

Table 3 lists all the algorithms evaluated along with the associated parameters and Equations.

4 Subjective evaluation
To reduce the length and cost of the subjective evaluations, only a subset of the NOIZEUS
corpus was processed by the 13 algorithms and submitted to Dynastat, Inc. for formal subjective
evaluation. A total of 16 sentences (see Tables 1-2) corrupted in four background noise
environments (car, street, babble and train) at two levels of SNR (5dB and 10dB) were
processed. These sentences were produced by two male speakers and two female speakers.
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4.1 Test methodology
The subjective tests were designed according to ITU-T recommendation P.835. The P.835
methodology was designed to reduce the listener's uncertainty in a subjective test as to which
component(s) of a noisy speech signal, i.e., the speech signal, the background noise, or both,
should form the basis of their ratings of overall quality. This method instructs the listener to
successively attend to and rate the enhanced speech signal on:

(1) the speech signal alone using a five-point scale of signal distortion (SIG) (Table 4),

(2) the background noise alone using a five-point scale of background intrusiveness (BAK)
(Table 5),

(3) the overall effect using the scale of the Mean Opinion Score (OVRL) - [1=bad, 2=poor,
3=fair, 4=good, 5=excellent].

The process of rating the signal and background of noisy speech was designed to lead the
listener to integrate the effects of both the signal and the background in making their ratings
of overall quality. Each trial in a P.835 test involved a triad of speech samples, where each
sample consisted of a single sentence recorded in background noise. For each sample within
the triad, listeners successively used one of the three five-point rating scales (SIG, BAK, and
OVRL) to register their judgments of the quality of the test condition. In addition to the
experimental conditions, each experiment included a number of reference conditions designed
to independently vary the listener's SIG, BAK, and OVRL ratings over the entire five-point
range of the rating scales.

4.2 Preparation of test sequences
The single-sentence sample files were concatenated into four triads for each of the talkers and
for each condition. The P.835 standard permits the use of triads made up of either three different
samples or the same sample repeated three times. For this experiment, the same sample was
used three times in each triad. As per the P.835 standard, for half of the trials in the experiment
the rating scale order was SIG, BAK, and OVRL, and for the other half of the trials the order
was BAK, SIG, and OVRL.

The total number of test conditions was too large to present in a single P.835 test. Therefore,
the test conditions were partitioned into two sub-sets which were evaluated in two separate P.
835 tests. The conditions were assigned to the two tests such that the primary factors involved
in the experiment (algorithm, noise type, SNR) would be confounded at the highest order
interaction. Each of the two tests involved the various test conditions and the 12 standard P.
835 reference conditions. Each of the test and reference conditions was represented by files
from four talkers arranged in four triads. The files within each test were allocated to four
presentation sets under a partially-balanced/randomized-blocks experimental design. In each
presentation set, the samples were ordered in a pseudo-randomized balanced-block
presentation sequence to control for the effects of time and order of presentation.

4.3 Listening panels
A total of 32 listeners were recruited for the listening tests. For each of the two P.835 tests,
each of the four presentation sequences was presented to a separate panel of eight naive
listeners. Listeners were recruited from Dynastat's database of native speakers of North
American English. Listeners were between the ages of 18 and 50 years of age. No listener had
participated in a listening test in the previous three months. The listening panels in the two
experiments were independent, i.e., no listener participated in more than one experiment.
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4.4 Audio presentation
The processed speech material were presented to listeners seated at separate, visually-screened
listening stations in a soundproof room. Speech materials were presented monaurally via
Sennheiser HD-25 supra-aural headphones. Subjects were instructed to use the headphone on
their preferred listening ear. The other ear was open and a constant ambient noise floor was
maintained at 30 dBA using Hoth noise [1]. The headphones were driven by a distribution
amplifier set to deliver active speech at a level of 79 dB Sound Pressure Level (SPL) at the ear
reference plane. Headphones were calibrated with a B&K 4153 Artificial Ear with supra-aural
headphone adapter, a 4134 microphone element and a 2609 measurement amplifier. The
processed speech files were channelled through a Townshend Computer Tools DAT-Link+
and recorded on Digital Audio Tape (DAT) for presentation to the listening panels. In each
listening station the rating scales were presented on a PC monitor and ratings were registered
with a PC keyboard.

4.5 Test Sessions
The tests lasted approximately 1.25 hours. Listeners took short breaks (10 minutes) between
sessions. At the beginning of Session 1, the listeners were presented with a practice block of
12 trials to familiarize them with the task and the timing in the trial presentation. The practice
blocks were also designed to present the listeners with the range of conditions that would be
involved in the tests on both the Signal and the Background scales. For each test, half the panels
were presented with trials in which the rating scale order was SIG-BAK-OVRL for the first
two sessions and BAK-SIG-OVRL for sessions 3 and 4. To train the listeners for the change
in scale order, listeners were presented with the practice block again at the beginning of session
3. For the other half of the panels, the sessions and scale order was counter-balanced.

4.6 Evaluation results
Figures 3-6 show the mean scores for the SIG, BAK, and OVRL scales for speech processed
by 13 different speech enhancement algorithms evaluated in four types of background noise
and at two SNR levels (5 dB and 10 dB). The mean scores for the noisy speech (unprocessed)
files are also shown for reference.

5 Statistical Analysis and Discussion
We present comparative analysis at three levels. At the first level, we compare the performance
of the algorithms within each of the four classes (subspace, statistical-model, subtractive, and
Wiener-type). This comparison was meant to examine whether there were significant
differences between algorithms within each class. At the second level, we compare the
performance of the various algorithms across all classes aiming to find the algorithm(s) that
performed the best across all noise conditions. Lastly, at the third level, we compare the
performance of all algorithms in reference to the noisy speech (unprocessed). This latter
comparison will provide valuable information as to which algorithm(s) improved significantly
the quality of noisy speech.

In order to assess significant differences between the ratings obtained with each algorithm, we
subjected the ratings of the 32 listeners to statistical analysis. Analysis of variance (ANOVA)
indicated a highly significant effect (F(13,403)=20.17, p < 0.0005) of speech enhancement
algorithms on the ratings of signal, noise and overall quality (a highly significant effect was
also found in all SNR conditions and types of noise). Following the ANOVA, we conducted
multiple comparison statistical tests according to Tukey's HSD test to assess significant
differences between algorithms. Differences between scores were deemed significant if the
obtained p value (level of significance) was smaller than 0.05.

Hu and Loizou Page 6

Speech Commun. Author manuscript; available in PMC 2008 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5.1 Within-class algorithm comparisons
In terms of overall quality, the two subspace algorithms performed equally well for most SNR
conditions and four types of noise, except at 5 dB car noise. The generalized subspace approach
[6] performed significantly (p=0.006) better than the pKLT approach [7] in 5 dbB car noise.
Lower noise distortion (i.e., higher BAK scores) was observed with the pKLT method in most
conditions, however, the difference in scores was not found to be statistically significant.
Significantly (p=0.017) lower noise distortion (i.e., higher BAK scores) was observed with the
pKLT method only in 5 dB train noise. Lower signal distortion was generally observed with
the generalized subspace method in most conditions with significant differences in 5 dB train
noise and in both car noise conditions (5 dB and 10 dB). In brief, of the two subspace methods,
the generalized subspace approach performed slightly better in terms of overall quality and
lower signal distortion. The pKLT approach was more successful in suppressing background
noise, however at the expense of introducing signal distortion.

The majority of the statistical-model based algorithms examined performed equally well in
terms of overall quality. There was no statistically significant difference in overall quality
between the MMSE-SPU, the log-MMSE, the logMMSE with noise estimation (logMMSE-
ne) and the pMMSE algorithms. The logMMSE algorithm that incorporated signal-presence
uncertainty (logMMSE-SPU) [11] performed significantly worse than the other algorithms in
overall quality. This was surprising at first, but close analysis indicated that the logMMSE-
SPU algorithm was sensitive to the noise spectrum estimate, which in our case was obtained
with a VAD algorithm. Furthermore, the parameters given in [11] were appropriate for a
sampling rate of 16kHz, while the present performance evaluation involved a sampling rate of
8kHz. Hence, the experimental results do not necessarily represent the best performance
obtainable with the logMMSE-SPU algorithm. Indeed, subsequent listening tests (conducted
after Dynastat's subjective evaluation) confirmed that the logMMSE-SPU algorithm 2
performed better than the logMMSE algorithm when a noise-estimation algorithm [10] was
used to update the noise spectrum.

In terms of noise distortion, all algorithms, including the logMMSE-SPU algorithm, performed
equally well. Lower noise distortion (i.e., higher BAK scores) was obtained with the pMMSE
method (compared to the MMSE-SPU method) in some conditions (5dB train, 5dB car, 10dB
street), however the difference was not statistically significant (p > 0.05). In terms of speech
distortion, nearly all algorithms (MMSE-SPU, log-MMSE, logMMSE-ne and pMMSE
algorithms) performed equally well. Incorporating a noise estimation algorithm in the
logMMSE method did not produce significant improvements in performance. One explanation
for that is that the duration of the sentences was too short to observe the real benefit of noise-
estimation algorithms. In brief, with the exception of the logMMSE-SPU algorithm, the MMSE
algorithms performed equally well in overall quality, signal and noise distortion.

Of the three spectral-subtractive algorithms tested, the multi-band spectral subtraction
algorithm [14] performed consistently the best across all conditions, in terms of overall quality.
In terms of noise distortion, the MB and RDC algorithms performed equally well except in 5
dB train and 10 dB street conditions, in which the multi-band algorithm performed significantly
better (i.e., lower noise distortion). Performance (noise distortion) of the RDC algorithm that
included noise estimation (RDC-ne) was significantly lower than the MB algorithm in all
conditions. There was no real benefit, in terms of overall quality, of including noise estimation
in the RDC method. In terms of speech distortion, the MB and RDC algorithms performed
equally well in most conditions except in 5 dB car noise and in 10 dB street noise, in which
the MB algorithm performed significantly better (i.e., lower speech distortion). In brief, the

2We would like to thank Dr. Cohen for providing his code with the implementation of the logMMSE-SPU algorithm with noise estimation.
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MB algorithm generally performed better than the RDC algorithm in overall quality, signal
and noise distortion. It should be pointed out, however, that the MB algorithm has an unfair
advantage over the RDC algorithm in that it uses non-causal filtering (Eq. 5) to smooth out the
noisy speech spectra.

Finally, of the three Wiener-filtering type algorithms examined, the Wiener-as and WT
algorithms performed the best. In terms of overall quality, the Wiener-as method performed
better than the WT method in three conditions: 5 dB train, 10 dB car and 5 dB babble noise.
In the remaining five conditions, the Wiener-as method performed as well as the WT method
[15]. The Wiener-as method also produced consistently lower signal distortion for most
conditions, except in 10 dB train, 10 dB babble and street conditions, in which it performed
equally well with the WT method. All three Wiener-type algorithms produced the same level
of noise distortion in all conditions. In brief, the Wiener-as method performed, for the most
part, better than the other Wiener algorithms in terms of overall quality and signal distortion.

5.2 Across-class algorithm comparisons
The above comparisons assessed differences between algorithms within each of the four classes
of speech enhancement methods, but did not provide the answer as to which algorithm(s)
performed the best overall across all noise conditions. Such comparisons are reported in this
section.

Multiple paired comparisons (Tukey's HSD) were conducted between the algorithm with the
highest score against all other algorithms. Tables 6-8 reports the results for the overall quality,
signal distortion and noise distortion comparisons respectively.

Table 6 shows the results obtained from the statistical analysis for overall quality. Asterisks in
the table indicate absence of statistically significant difference (i.e., p > 0.05) between the
algorithm with the highest score and the denoted algorithm. That is, the algorithms denoted by
asterisks in Table 6 performed equally well. It is clear from Table 6, that there is no single best
algorithm, but rather that several algorithms performed equally well across most conditions.
In terms of overall quality, the following algorithms performed equally well across all
conditions: MMSE-SPU, logMMSE, logMMSE-ne, pMMSE and MB. The Wiener-as method
also performed well in five of the eight conditions (see Table 6).

Table 7 shows the results obtained from the statistical analysis for signal distortion. The
following algorithms performed the best, in terms of yielding the lowest speech distortion,
across all conditions: MMSE-SPU, logMMSE, logMMSE-ne, pMMSE, MB and Wiener-as.
The KLT, RDC and WT algorithms also performed well in a few isolated conditions (see Table
7).

Finally, Table 8 shows the results obtained from the statistical analysis for noise distortion.
The following algorithms performed the best, in terms of yielding the lowest noise distortion
across nearly all conditions: MMSE-SPU, logMMSE, logMMSE-ne, pMMSE and MB. The
pKLT method also performed well in five of the eight conditions. The KLT, RDC, RDC-ne,
Wiener-as and AudSup algorithms performed well in a few isolated conditions (see Table 8).

Comparing the results in Tables 6-8, we observe that the algorithms that yielded the lowest
noise distortion (i.e., lowest noise residual) were not necessarily the algorithms that yielded
the highest overall quality. The pKLT algorithm, for instance, performed well in terms of noise
distortion, but performed poorly in terms of overall quality and speech distortion. In contrast,
the algorithms that performed the best in terms of speech distortion were also the algorithms
with the highest overall quality. This suggests that listeners are influenced more by the
distortion imparted on the speech signal than on the background noise when making judgments
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of overall quality (more on this in Section 5.4). That is, listeners seem to place more emphasis
on speech rather on noise distortion when judging the quality of speech enhanced by a noise
suppression algorithm.

5.3 Comparisons in reference to noisy speech
Lastly, we report on the comparisons between the enhanced speech and the noisy (unprocessed)
speech. Such comparisons are important as they tell us about the possible benefits (or lack
thereof) of using speech enhancement algorithms.

Multiple paired comparisons (Tukey's HSD) were conducted between the ratings obtained with
noisy speech (unprocessed) samples and the ratings obtained with speech enhanced by the
various algorithms. The results are reported in Tables 9-11 for overall quality, signal distortion
and noise distortion comparisons respectively. In these tables, asterisks indicate significant
differences (i.e., significant benefit) between the ratings of noisy speech and enhanced speech.
Table entries indicated as ‘ns’ denote non-significant differences between the ratings of noisy
speech and enhanced speech, i.e., noisy and enhanced speech were rated equally. Blank entries
in the Tables indicate inferior ratings (i.e., significantly poorer ratings) for the enhanced speech
compared to the ratings of noisy speech samples.

Table 9 shows the comparisons of the ratings of overall quality of noisy speech and enhanced
speech. The striking finding is that only a subset of the algorithms tested provided significant
benefit to overall quality and only in a few conditions (car, street and train). The algorithms
MMSE-SPU, log-MMSE, logMMSE-ne, and pMMSE improved significantly the overall
speech quality but only in a few isolated conditions. The majority of the algorithms (indicated
with ‘ns’ in Table 9) did not provide significant improvement in overall quality when compared
to the noisy (unprocessed) speech.

Table 10 shows the comparisons of the ratings of signal distortion of noisy speech and enhanced
speech. For this comparison, we do not expect to see any asterisks in the Table. Good
performance is now indicated with ‘ns’, suggesting that the enhanced speech did not contain
any notable speech distortion. The algorithms MMSE-SPU, log-MMSE, logMMSE-ne,
pMMSE, MB and Wiener-as performed the best (i.e., no notable speech distortion was
introduced) in all conditions. The algorithms WT, RDC and KLT also performed well in a few
isolated conditions.

Table 11 shows the comparisons of the ratings of noise distortion of noisy speech and enhanced
speech. The algorithms MMSE-SPU, log-MMSE, logMMSE-ne, logMMSE-SPU and
pMMSE lowered significantly noise distortion for most conditions. The MB, pKLT and
AudSup also lowered noise distortion in a few (2−3) conditions. The remaining algorithms
(indicated with ‘ns’ in Table 11) did not produce significantly lower noise distortion compared
to the noisy (unprocessed) speech. That is, the background noise level was not perceived to be
significantly lower in the enhanced speech than the noisy speech.

5.4 Contribution of speech and noise distortion to judgment of overall quality
As mentioned earlier, the P.835 process of rating the signal and background of noisy speech
was designed to lead the listener to integrate the effects of both the signal and the background
in making their ratings of overall quality. Of great interest is finding out the individual
contribution of speech and noise distortion to judgment of overall quality. Our previous data
(Tables 6 and 7) led us to believe that listeners were influenced more by speech distortion when
making quality judgments. To further substantiate this, we performed multiple linear regression
analysis on the ratings obtained for overall quality, speech and noise distortion. We treated the
overall quality score as the dependent variable and the speech and noise scores as the
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independent variables. Regression analysis revealed the following relationship between the
three rating scales:

(9)

where ROVL is the predicted overall (OVL) rating score, RSIG is the SIG rating and RBAK is the
BAK rating. The resulting correlation coe cient was ρ = 0.927 and the standard error of the
estimate was 0.22. Figure 7 shows the scatter plot of the listener's overall quality ratings against
the predicted ratings obtained with Eq. (9). The above equation confirms that listeners were
indeed integrating the effects of both signal and background distortion when making their
ratings. Different emphasis was placed, however, on the two types of distortion. Consistent
with our previous observation, listeners seem to place more emphasis on the distortion imparted
on the speech signal itself rather than on the background noise, when making judgments of
overall quality.

6 Conclusions
The present study reported on the subjective evaluation of 13 different speech enhancement
algorithms using the ITU-T P.835 methodology designed to evaluate the speech quality along
three dimensions: signal distortion, noise distortion and overall quality. A total of 32 listeners
participated in the listening tests. Based on the statistical analysis of the listener's ratings of
the enhanced speech, in terms of overall quality, speech and noise distortion, we can draw the
following conclusions:

(1) In terms of overall quality and speech distortion, the following algorithms performed the
best: MMSE-SPU, logMMSE, logMMSE-ne, pMMSE and MB. The Wiener-as method also
performed well in some conditions. The subspace algorithms performed poorly.

(2) The algorithms that performed the best in terms of yielding low speech distortion were also
the algorithms yielding the highest overall quality. This suggests that listeners were influenced
for the most part by the distortion imparted on the speech signal than on the background noise
when making judgments of overall quality. This was also confirmed by regression analysis
(Eq. 9).

(3) Incorporating noise estimation algorithms in place of VAD algorithms for updating the
noise spectrum did not produce significant improvements in performance. One explanation for
that is that the duration of the sentences was too short to observe the real benefit of noise-
estimation algorithms.

(4) Comparisons of ratings of the overall quality of noisy (unprocessed) speech against that of
enhanced (processed) speech revealed that only a subset of the algorithms tested provided
significant benefit to overall quality and only in a few conditions (car, street and train). No
algorithm produced significant quality improvement in multi-talker babble, i.e., in highly non-
stationary environments.

(5) In terms of low computational complexity and good performance, the two winners were
the Wiener-as and multi-band spectral subtraction algorithms. Unlike the Wiener-as method
which relies on the decision-directed approach to estimate the a priori SNR, the multi-band
spectral subtraction algorithm does not make use of a priori SNR information. Yet, the multi-
band spectral subtraction algorithm performed as well as the statistical-model based algorithms
in nearly all conditions (Tables 6-8).
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Fig. 1.
Broad phonetic class distribution of the NOIZEUS corpus.
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Fig. 2.
Frequency response of IRS filter.
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Fig. 3.
The mean scores for SIG, BAK, and OVRL scales for the 13 methods evaluated in babble noise
background and for SNR levels of 5dB and 10dB
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Fig. 4.
The mean scores for SIG, BAK, and OVRL scales for the 13 methods evaluated in car noise
background and for SNR levels of 5dB and 10dB
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Fig. 5.
The mean scores for SIG, BAK, and OVRL scales for the 13 methods evaluated in street noise
background and for SNR levels of 5dB and 10dB
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Fig. 6.
The mean scores for SIG, BAK, and OVRL scales for the 13 methods evaluated in train noise
background and for SNR levels of 5dB and 10dB
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Fig. 7.
Regression analysis of listener's OVL ratings, based on SIG and BAK ratings.
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Table 1
List of sentences used in NOIZEUS. The sentences used in the subjective evaluation are underlined.

Filename Speaker Gender Sentence text

sp01.wav CH M The birch canoe slid on the smooth planks.
sp02.wav CH M He knew the skill of the great young actress.
sp03.wav CH M Her purse was full of useless trash.
sp04.wav CH M Read verse out loud for pleasure.
sp05.wav CH M Wipe the grease off his dirty face.
sp06.wav DE M Men strive but seldom get rich.
sp07.wav DE M We find joy in the simplest things.
sp08.wav DE M Hedge apples may stain your hands green.
sp09.wav DE M Hurdle the pit with the aid of a long pole.
sp10.wav DE M The sky that morning was clear and bright blue.
sp11.wav JE F He wrote down a long list of items.
sp12.wav JE F The drip of the rain made a pleasant sound.
sp13.wav JE F Smoke poured out of every crack.
sp14.wav JE F Hats are worn to tea and not to dinner.
sp15.wav JE F The clothes dried on a thin wooden rack.
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Table 2
List of sentences used in NOIZEUS. The sentences used in the subjective evaluation are underlined.

Filename Speaker Gender Sentence text

sp16.wav KI F The stray cat gave birth to kittens.
sp17.wav KI F The lazy cow lay in the cool grass.
sp18.wav KI F The friendly gang left the drug store.
sp19.wav KI F We talked of the sideshow in the circus.
sp20.wav KI F The set of china hit the floor with a crash.
sp21.wav SI M Clams are small, round, soft and tasty.
sp22.wav SI M The line where the edges join was clean.
sp23.wav SI M Stop whistling and watch the boys march.
sp24.wav SI M A cruise in warm waters in a sleek yacht is fun.
sp25.wav SI M A good book informs of what we ought to know.
sp26.wav TI F She has a smart way of wearing clothes.
sp27.wav TI F Bring your best compass to the third class.
sp28.wav TI F The club rented the rink for the fifth night.
sp29.wav TI F The flint sputtered and lit a pine torch.
sp30.wav TI F Let's all join as we sing the last chorus.
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Table 3
List of the 13 speech enhancement algorithms evaluated. SPU=speech presence uncertainty, ne=noise estimation.

Algorithm Equation/parameters Reference

KLT Eq. 14,48 [6]
pKLT Eq. 34, v=0.08 [7]
MMSE-SPU Eq. 7,51, q=0.3 [8]
log-MMSE Eq. 20 [9]
logMMSE-ne Eq. 20 [9]
logMMSE-SPU Eq. 2,8,10,16 [11]
pMMSE Eq. 12 [12]
RDC Eq. 6,7,10,14,15 [13]
RDC-ne Eq. 6,7,10,14,15 [13]
MB Eq. 4-7 [14]
WT Eq. 11,25 [15]
Wiener-as Eq. 3-7 [16]
AudSup Eq. 26,38, vb(i)=1,2 iterations [17]
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Table 4
Scale of signal distortion (SIG).

5 - VERY NATURAL, NO DEGRADATION
4 - FAIRLY NATURAL, LITTLE DEGRADATION
3 - SOMEWHAT NATURAL, SOMEWHAT DEGRADED
2 - FAIRLY UNNATURAL, FAIRLY DEGRADED
1 - VERY UNNATURAL, VERY DEGRADED
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Table 5
Scale of background intrusiveness (BAK).

5 - NOT NOTICEABLE
4 - SOMEWHAT NOTICEABLE
3 - NOTICEABLE BUT NOT INTRUSIVE
2 - FAIRLY CONSPICUOUS, SOMEWHAT INTRUSIVE
1 - VERY CONSPICUOUS, VERY INTRUSIVE
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