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Abstract

Emotion primitive descriptions are an important alternative to classical emotion cat-

egories for describing a human’s affective expressions. We build a multi-dimensional

emotion space composed of the emotion primitives of valence, activation, and dom-

inance. In this study, an image-based, text-free evaluation system is presented that

provides intuitive assessment of these emotion primitives, and yields high inter-

evaluator agreement.
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 An automatic system for estimating the emotion primitives is introduced. We

use a fuzzy logic estimator and a rule base derived from acoustic features in speech

such as pitch, energy, speaking rate and spectral characteristics. The approach is

tested on two databases. The first database consists of 680 sentences of 3 speak-

ers containing acted emotions in the categories happy, angry, neutral, and sad.

The second database contains more than 1000 utterances of 47 speakers with au-

thentic emotion expressions recorded from a television talk show. The estimation

results are compared to the human evaluation as a reference, and are moderately

to highly correlated (0.42 < r < 0.85). Different scenarios are tested: acted vs. au-

thentic emotions, speaker-dependent vs. speaker-independent emotion estimation,

and gender-dependent vs. gender-independent emotion estimation.

Finally, continuous-valued estimates of the emotion primitives are mapped into

the given emotion categories using a k-Nearest Neighbor classifier. An overall recog-

nition rate of up to 83.5% is accomplished. The errors of the direct emotion esti-

mation are compared to the confusion matrices of the classification from primitives.

As a conclusion to this continuous-valued emotion primitives framework, speaker-

dependent modeling of emotion expression is proposed since the emotion primitives

are particularly suited for capturing dynamics and intrinsic variations in emotion

expression.

Key words:

emotion estimation, emotion expression variations, emotion recognition, emotion

space concept, fuzzy logic, man-machine interaction, natural speech

understanding, speech analysis
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 1 Introduction

In recent years, automatic recognition of emotions from speech and other

modalities has achieved growing interest within the human-machine interac-

tion research community. This interest has merit, since emotion recognition

is an essential part of the road map to make communication between humans

and computers more human-like. Moreover, automatic assessment of affective

speech continues to gain importance in the context of speech data mining. A

search query on a speech archive may be located by the affective state of the

target speaker in addition to, or instead of, just the semantic content.

There is a large body of literature on the “classical” approach to emo-

tion recognition. Cowie et al. [1] give an excellent comprehensive review.

Other examples of relevant work include [2],[3],[4],[5],[6]. They all treat

the emotion recognition problem as a multiple classification task of several

emotional categories such as angry, happy, and sad; or simply, negative and

non-negative. However, emotion psychology research has shown that, as

an alternative to categories, emotions can also be described as points in a

multidimensional emotion space. Cowie and Cornelius [7] give a review of

the different concepts. The multi-dimensional description benefits from a

greater level of generality. Additionally, it allows for describing the intensity

of emotions. These properties are necessary for an analysis of the inter-

and intra-speaker emotion expression variability. In this paper we take one

step beyond current emotion recognition algorithms and propose a method

for evaluating and automatically estimating these emotion primitives that

determine the location of an emotion in the multi-dimensional emotion space

from the speech signal.
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 Our approach contributes to an important challenge in automatic emotion

recognition, namely recognizing emotions not only from acted speech of

professional speakers but also from spontaneous speech of non-professional

speakers. An increasing number of recent studies are based on spontaneous

speech of näıve subjects [8],[9],[10],[11]. For these natural emotions, a de-

scription using just one category label is not sufficient. In fact, the emotion

space concept allows for a more adequate description of these emotions. In

particular, gradual emotion transitions, and changes in the intensity of an

emotion can easily be described. Furthermore, speaker-dependent variability

in the expression of emotions, i.e. the spectrum of actually communicated

emotions and the similarity of opposite emotions within this range, can

be characterized. These properties are crucial for analyzing emotions in

spontaneous, natural speech.

Describing emotions by attributes along bipolar axes was originally proposed

by Wundt in 1896 [12]. Although a general emotion description framework

itself is still under discussion in the emotion psychology community (see

Scherer [13] for instance), the concept of description by attributes has been

since pursued in various forms. However, there has been only very limited

research on automatic emotion recognition within the multi-dimensional

emotion space framework.

Yu et al. [9] divide the 2D emotion space of valence and arousal into three

and five levels, respectively. They thereby transform the task of determining

the continuous values of the emotion attributes to a more convenient multiple

classification task. For the LDC CallFriend corpus, they achieve recognition

rates between 54% and 67%, depending on the number of classes used.

Valence and arousal are classified separately. Vidrascu and Devillers [14]
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 report a recognition accuracy of 82% on the two-level classification of valence

into positive and negative values. Their study is based on a large corpus of a

medical call center.

Fragopanagos and Taylor [15] also motivate their choice of the activation-

evaluation space by emotion psychology. They divide the emotion space into

four regions for classification based on activation (positive/negative) and

evaluation (positive/negative), respectively. Tested on their own database,

generated through a Wizard-of-Oz experiment, they report an average recog-

nition rate of 48.5% if only acoustic features are used as input to an Artificial

Neural Net (ANN). Combining these features with facial expression analysis

or emotional salience analysis of the words or both improved the results by

0.3%, 2.5%, and 2.0%, respectively. In the case of separate classification, they

report an average of 73.5% for activation and 64% for evaluation. The results

are improved by up to 6% by using additional information channels.

Thus it can be summarized that using emotion dimensions as motivated by

emotion psychology is a promising step toward improving the state-of-the-art

in emotion recognition. However, to our knowledge there is no previous study

on directly estimating the continuous-valued emotion primitives. We address

this problem in this paper.

In general, there are several ways to represent emotions in a multi-

dimensional emotion space. They can be distinguished by the number and

meaning of their basic entities [7],[16],[17]. The so-called “dimensions”

are actually descriptive, generic attributes of an emotion that function as

constituents. These constituents will be referred to as primitives in this paper.

Note that these primitives are not regarded as meta-features of emotion

categories but as a fully complementary description of emotions.
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 Two-dimensional representations include an additional primitive that de-

scribes the appraisal (or valence, evaluation) taking values from positive to

negative. The other emotion primitive describes the activation (or arousal,

excitation), and is sometimes motivated by the action tendencies of emotions.

Three-dimensional representations additionally include a primitive defining

the apparent strength of the person, which is referred to as dominance (or

power). This third dimension is necessary to distinguish anger from fear for

instance, since the dominance (or the ability to handle a situation) is the

only discriminating element in this case. We chose the combination of the

following three emotion primitives [16]:

• Valence (V) – positive vs. negative,

• Activation (A) – excitation level high vs. low, and

• Dominance (D) – apparent strength of the speaker, weak vs. strong.

Our study consists of the following main parts. (1) We introduce a robust and

efficient human emotion assessment method to produce the three-dimensional

emotion references, which provides quick-and-easy assessment of authentic

emotions in natural speech. (2) We propose a rule-based fuzzy logic method

to estimate the continuous values of the emotion primitives from acoustic fea-

tures derived from the speech signal. (3) We assess our emotion recognition

method based on primitives by comparing the results with conventional cat-

egorical classification. (4) We finally show how emotion primitives are well

suited for capturing the speaker-dependent variability in emotion expression.

The rest of the paper is organized as follows. Section 2 introduces the data we

use. Section 3 describes the human evaluation of emotional speech in terms

of the three emotion primitives. Section 4 presents details of estimating the

three-dimensional emotion primitives from speech using a rule-based fuzzy
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Description Language

Emotion No. No. Avg. no. No.
Type Speakers Sentences sen./speaker Evaluators

EMA Am. English acted 3 680 227 18

VAM I German authentic 19 499 26 17

VAM II German authentic 28 503 28 6

Table 1

Databases used for this study.

logic classifier. Section 5 shows the results and provides a comparison be-

tween the results of real-valued primitives estimation and discrete emotion

classification. Section 6 details how the speaker dependent variability present

in expressed emotions can be described in terms of the emotion primitives.

Section 7 provides conclusions and outlines future work.

2 Data

For this study we use two databases. The first corpus, called the EMA

Corpus 1 , contains speech with acted emotions in American English. The

second corpus, called the VAM Corpus 2 , contains spontaneous speech with

authentic emotions that was recorded from guests in a German TV talk-show.

Table 1 summarizes the key facts about both databases: language, emotion

elicitation type (acted or natural), number of speakers and sentences, average

number of sentences per speaker, and number of evaluators.

The two databases are deliberately chosen to contain two different emotion

production styles. While the spontaneous speech database is used to push

1 The acronym EMA stands for electromagnetographic articulatory study. However,

the articulatory data was analyzed in a different study.
2 The acronym VAM is the abbreviation of the talk-show title Vera am Mittag.
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 the application oriented research on authentic emotions, the acted speech

database is used to provide a comparison with state-of-the-art emotion

categorization.

The use of these two different databases was also partly motivated by our

goal to explore if the proposed methods hold good for two different languages

and across natural and acted emotional speech. We however test the emotion

primitives estimator only with speech of the same language that has been

used for training. Nevertheless, similar recognition results for both languages,

English and German, may imply cross-cultural robustness of the proposed

method.

2.1 Acted speech corpus

The EMA Corpus [18] contains 680 sentences of emotional speech, produced

by one professional (f) and two non-professional (1f/1m) speakers. The female

speakers read 200 sentences, and the male speaker read 280 sentences. These

recordings consist of 10 (14) sentences, each of them repeated 5 times in 4

different emotions. Each block consisted of 14 sentences that were randomized

within the block. Each repetition for a given emotion was block-wise; the sub-

jects produced all sentences within a given block in the same emotion. This

was repeated for each of the four emotions, in a random order of emotions [18].

All sentences are in English, spoken by native speakers of American English.

As described in [19], the EMA corpus was evaluated by four native speakers of

American English. For each sentence, the evaluators assigned one of the cate-

gory labels from among happy, angry, sad, neutral, and other to the utterance.
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 Angry Happy Neutral Sad Other

Angry 80.3 2.2 4.1 0.7 12.7

Happy 3.2 75.6 11.8 1.3 8.1

Neutral 1.2 0.4 84.0 11.8 2.6

Sad 0.3 0.6 6.3 87.5 5.3

Table 2

Confusion matrix of emotion class labeling of EMA corpus, in percent, by four

human listeners (κ = 0.48).

The average human recognition rate of the acted emotions was 81.8%. Happy

emotion was most poorly recognized (76.6%). This was due to the fact that

several sentences that were intended to be happy were perceived as neutral

emotions. See Tab. 2 for the confusion matrix, given as an average of all three

speakers in the database. Similar results were reported by Bulut et al. [20].

To assess the inter-evaluator agreement, we used the parameter κ derived from

the Kappa statistics [21],

κ =
PA − P0

1 − P0

. (1)

This parameter describes the level of inter-evaluator agreement κ ∈ [0, 1].

PA represents the proportion of the evaluators that assigned the same class

label, and P0 corrects for their agreement by chance. We found a moderate

inter-evaluator agreement of κ = 0.48 between the four evaluators, which

is a typical value for such categorical emotion assessment by humans (c.f. [14]).
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 2.2 Natural speech corpus

The second database, the VAM Corpus, consists of recordings of invited guests

in a German TV show called Vera am Mittag 3 . This show is broadcasted

Monday through Friday on Free-TV with a regular duration of one hour.

Each show contains five dialogues between two or three guests, moderated by

an anchorwoman. The speakers mostly discuss personal problems or family

issues in a spontaneous unscripted fashion. The first part of this corpus,

VAM I, was first used in [22]. The second part, VAM II contains sentences

from additional speakers in the talk-show that were evaluated after the initial

experiment was reported.

In total, the VAM database contains 1002 emotional utterances from 47

speakers (11m/36f). All signals were recorded using a sampling frequency of

16 kHz and 16 bit resolution.

The dialogues were manually segmented at the utterance level. Each ut-

terance contained at least one intermediate phrase. The video stream was

not analyzed in this study. The speakers were selected by a preliminary

evaluation during the data segmentation and selection step to guarantee that

each speaker showed both neutral expressions and at least some emotional

deviation from the neutral state.

The emotions covered in the spontaneous speech corpus are summarized in

Section 3.2, after introducing the evaluation method.

3 English: Vera at noon; Vera is the name of the talk-show host.
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 3 Primitives-based emotion evaluation

Evaluation of the emotions contained in the speech data was done through hu-

man listener tests. A popular, and widely used tool for the human evaluation

of emotions in a multi-dimensional emotion space is the Feeltrace tool devel-

oped by Cowie et al. [23]. This instrument allows for time-continuous and

value-continuous assessment of emotions in the activation-evaluation space.

The method is based on Plutchik’s concept of defining emotions as positions

within a circle, wherein the angle determines the character of the emotion, and

the distance from the origin determines the intensity of the emotion. We did

not use this instrument since (1) it is restricted to a two-dimensional emotion

space that has been shown not to be adequate for distinguishing certain emo-

tions such as fear and anger, for instance see [23], (2) a square space (or a cube

in 3D) is more appropriate for our chosen primitives, since valence is a bipo-

lar rather than an angular-type periodic entity [24], and (3) time-continuous

evaluation was not well suited for our utterance-level units.

The evaluation method described below builds upon our preliminary work

reported in [25] and [26]. The novel aspects reported here include a more intu-

itive scaling and orientation of the axes. Additionally, the evaluation tool was

extended to include elicitation of the evaluator’s background such as language

comprehension capabilities, and self-evaluation of his/her personality with re-

spect to handling emotions. However, we could not observe any statistically

significant difference in the evaluation of emotions by humans of different cul-

tural background or different self-evaluation.

Section 3.1 describes the utterance-based assessment method. Section 3.2 con-

tains the primitives-based evaluation results on the acted and spontaneous
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 speech databases, respectively.

3.1 Evaluation method

Fig. 1. Self Assessment Manikins [27]. This evaluation tool is used for a text-free,

three-dimensional assessment of emotion in speech.

For the evaluation of emotions in the 3D emotion space of valence, activation,

and dominance, we propose to use the Self Assessment Manikins (SAMs) pro-

posed originally by Lang [28]. This instrument consists of an array of five

images per primitive (see Figure 1). These images allow us to avoid the use of

categorical labels for emotions. Evaluating emotions using SAMS is fast and

very intuitive. Note that the SAMs originate from self-assessment, however in

our case, the speech was not evaluated by the speakers themselves.

For each utterance n in the database, 1 ≤ n ≤ N, the evaluator k, 1 ≤

k ≤ K, chooses 3 values x̂
(i)
n,k – one for each emotion primitive i ∈

{valence, activation, dominance}. The selection of the icons is mapped to in-

teger values {1, 2, 3, 4, 5} and then transformed to unity space [−1, +1]. For

intuitive comprehension of the primitives, the axes are oriented from neg-

ative to positive (valence), calm to excited (activation), and weak to strong

(dominance).

Although it can be assumed that each evaluator assesses the emotional con-
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 tent of an utterance to the best of his/her knowledge, the assessment does not

necessarily reflect the emotion truly felt by the speaker. There is a number of

“input- and output-specific issues”, as Fragopanagos and Taylor call it [15].

Both the expression and perception of emotions is subject to several influences,

such as display rules and cognitive effects. From a signal processing viewpoint,

these influences can be modeled as signals with superimposed noise on top of

the hidden “true” emotion. Assuming an unbiased ensemble of evaluators, the

hidden emotion can best be determined by estimating it from the combined

assessment results of several evaluators.

In [26], two different methods to merge the evaluation results of several eval-

uators were discussed. We choose the Evaluator Weighted Estimator (EWE),

xEWE,(i)
n =

1
∑K

k=1 r
(i)
k

K
∑

k=1

r
(i)
k x̂

(i)
n,k. (2)

This estimator averages the individual evaluators’ responses, and takes into

account that each evaluator is subject to an individual amount of disturbance

during evaluation. This is done by introducing evaluator-dependent weights

r
(i)
k ,

r
(i)
k =

N
∑

n=1

(

x̂
(i)
n,k − 1

N

N
∑

n′=1
x̂

(i)
n′,k

)(

x̄(i)
n − 1

N

N
∑

n′=1
x̄

(i)
n′

)

√

√

√

√

N
∑

n=1

(

x̂
(i)
n,k − 1

N

N
∑

n′=1
x̂

(i)
n′,k

)2
√

√

√

√

N
∑

n=1

(

x̄
(i)
n − 1

N

N
∑

n′=1
x̄

(i)
n′

)2
. (3)

These evaluator-dependent weights measure the correlation between the lis-

tener’s responses,
{

x̂
(i)
n,k

}

n=1,...,N
, and the average ratings of all evaluators,

{

x̄(i)
n

}

n=1,...,N
, where

x̄(i)
n =

1

K

K
∑

k=1

x̂
(i)
n,k. (4)

The assessment quality is determined by calculating the standard deviation

13



 

 

 

ACCEPTED MANUSCRIPT 

 Standard deviation σ̄ Correlation coefficient r

Valence Activation Dominance Valence Activation Dominance

EMA 0.35 0.36 0.35 0.63 0.79 0.75

VAM I 0.30 0.38 0.33 0.49 0.78 0.68

VAM II 0.28 0.30 0.29 0.48 0.66 0.54

Table 3

Average standard deviation σ̄ and correlation coefficient r for the emotion primi-

tives evaluation of the EMA corpus and the VAM I/II corpus by human listeners,

averaged over all speakers and all sentences.

σ(i)
n of the evaluations,

σ(i)
n =

√

√

√

√

1

K − 1

K
∑

k=1

(

x̂
(i)
n,k − x

EWE,(i)
n

)2
. (5)

A comparison of the EWE and a maximum likelihood estimator, as well as a

discussion of intrinsic evaluation errors due to emotion space quantization by

the SAMs can be found in [26]. It was shown that the EWE yields up to 20%

better results than the maximum likelihood estimator. It converges into the

maximum likelihood estimator in the case of equal weights for all estimators.

Corrected by the emotion space quantization error, the actual evaluation error

was found to be

ǫ(i)
n = σ(i)

n − b(K), (6)

where b(K) ∈
(

1
8
, 1

8

√
2
]

is a constant bias, and depends on the number of

evaluators K.

3.2 Evaluation results

The described method for evaluating emotion primitives was applied to both

the EMA and the VAM database. For each sentence, the EWE estimate was
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Fig. 2. Histogram of emotions in VAM corpus.

calculated according to (2). With K = 18, 17, and 6 evaluators for the 3 cor-

pora, respectively, we use a comparatively high number of evaluators for this

task. Most other studies involve 2 evaluators [10],[14],[29] or, at most, 4 to 5

evaluators [9],[15],[30].

The inter-evaluator agreement was measured by determining the standard de-

viations σ(i)
n of the assessment and the correlation coefficients r(i) using equa-

tions (5) and (3), respectively.

The standard deviation, on the one hand, measures the suitability of a particu-

lar sentence for our task. A low standard deviation indicates that the emotional

expression is perceived by all human listeners similarly. The inter-evaluator

correlation, on the other hand, measures the agreement among the individual

evaluators and thus focuses on the more general evaluation performance.

The average results for each database are reported in Table 3. On average,

the standard deviation was between 0.28 and 0.38 for each primitive. Thus,

the standard deviation was slightly above 0.25, i.e. half the distance between

two SAMs, indicating good evaluation results. There was no significant dif-

ference between the database containing acted emotions and the databases

containing authentic emotions. Note that the standard deviation includes the

quantization error due to the discretization of the SAMs in the emotion prim-

itive space.

The inter-evaluator correlation was moderate to high with values in the range
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 of 0.48 to 0.79. The correlation was in general greater for the EMA database

than for the VAM database. This result is probably due to the more stereo-

typical nature of the emotions portrayed by the actors. Furthermore it could

be observed that the valence primitive yields a smaller inter-evaluator cor-

relation than activation or dominance. In particular, for the VAM database

containing authentic emotions from talk show dialogues this result might be

due to the fact that the distribution of valence values was narrower than the

distributions of activation or dominance, and thus evaluators’ deviations by

the same amount resulted in a smaller correlation coefficient. All correlation

coefficients were statistically significant (p < 0.0001).

Figure 2 shows the histogram of the emotions in the VAM talk show database.

It has to be noted that a large percentage of the utterances in this database

contains neutral or negative speech with high activation and dominance val-

ues. This distribution is probably due to the nature of the topics discussed in

the talk show, which include family problems, paternity questions and friend-

ship issues. The restrictiveness of recording a wide spectrum of emotions is an

intrinsic problem in spontaneous speech processing. Moreover, averaging as-

sessment results naturally tends to result in a more Gaussian-like distribution.

We addressed the problem of unequally distributed emotions in the database

by using a rule-based emotion primitives estimator that is not influenced by

a priori probabilities, c.f. Section 4.

We calculated the standard deviations for each sentence to discard a few

outliers: All utterances that had been evaluated with a standard deviation

σ(i)
n > 0.5 for any of the emotion primitives i ∈ {V,A,D} were not used for

the further study. In many of these cases the utterances were too long, and

contained more than one, conflicting emotions. The remaining utterances were

all evaluated with a deviation of one SAM or less. Thus the VAM I database
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 was reduced to 490 utterances (98.2%), the VAM II database was reduced

to 489 utterances (94.2%), and the EMA database was reduced to 614 sen-

tences (90.3%), respectively. The resulting new average standard deviations

were marginally smaller than the ones reported above.

For comparison: Cowie et al. report similar standard deviations using the Feel-

trace tool on a different evaluation task and three evaluators [23]. From [23,

Figure 4], it can be inferred that the standard deviation of their chosen prim-

itives, evaluation and activation, was in the range of 0.2 to 0.3.

It can be summarized that 1) the SAMs are well suited for evaluating emotions

in speech, 2) the inter-evaluator correlation on activation and dominance is

higher than on valence, and 3) the inter-evaluator correlation on acted emo-

tions is slightly higher than the one on authentic emotions.

4 Primitives-based emotion estimation

In this section, we focus on automated emotion estimation from speech. Specif-

ically, we describe a fuzzy logic inference system for primitives-based auto-

mated emotion estimation. Fuzzy logic lends itself to continuous-valued es-

timates of emotions in spontaneous natural speech. Such continuous-valued

emotion estimates are necessary to automatically assess temporal dynamics

in emotion, or to tackle the problem of a speaker-dependent variability in

emotion expression.

The emotion estimator described below builds upon our previous work [22]

[31]. The preliminary results reported were based on a fraction of our database,

and a smaller number of evaluators than in the present study.

Fuzzy logic was chosen because the nature of linguistic emotion class labels
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 is inherently fuzzy and vague. Fuzzy logic transforms crisp values into fuzzy

values using membership grades. The crisp values that are extracted from

the acoustic speech signal are processed as linguistic variables. For instance,

the mean value of the pitch is processed as a high, medium, or low mean

pitch value. While the idea of applying fuzzy logic to the problem of emotion

recognition has been previously discussed with other objectives [30],[32], fuzzy

logic has not been used to estimate continuous values of emotion primitives

yet. We consider this approach in this paper. An alternative would be multidi-

mensional, kernel-based regression methods [33], which we will analyze in the

future. Section 4.1 describes the pre-processing and the acoustic feature ex-

traction. Section 4.2 details the proposed estimation method, and it describes

how the rule system is derived from acoustic features.

4.1 Pre-processing and feature extraction

All signals were sampled at 16 kHz sampling rate and a resolution of 16 bit.

They were processed at the utterance-level.

The acoustics of emotional speech have been studied for many years. In

general, the differences of the prosodic characteristics between emotionally

loaded and neutral speech have been analyzed and reported [34],[35],[1]. The

major acoustic speech features considered include fundamental frequency f0

(“pitch”), speaking rate, intensity, and voice quality. For example, Murray

and Arnott state that angry speech is slightly faster, has a very much higher

pitch average, much wider pitch range, and higher intensity [34]. Some of these

characteristics can be related directly to physiological changes in the vibration

of the vocal chords.
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 The number of features extracted from the speech signal varies significantly

from approximately 10 basic features such as mean values and range in pitch

and intensity [36] to 276 in the case of systematic application of functionals to

a set of basic trajectories [11]. This spectrum results from the fact that it is

still unclear which features are suited best, and that the feature set is highly

dependent on the data and the classification task. We chose M = 46 acoustic

features that were derived from the pitch and the energy contour of the speech

signal, as well as features related to the speaking rate and spectral character-

istics. This is in accordance with most studies in this field. The emotionally

colored prosody of the utterance is thus described in terms of statistics, such

as mean value, standard deviation, and percentiles.

The following features were extracted from the speech signal:

Pitch related features: f0 mean value, standard deviation, median, mini-

mum, and maximum, 25% and 75% quantiles, difference between f0 maxi-

mum and minimum, difference of quartiles.

These features related to the fundamental frequency f0 describe the in-

tonation and speaking melody. They capture monotone speech or highly

accented syllables, for example. The pitch was estimated using autocorre-

lation method since it was shown to give good results in a wide range of

applications [37].

Speaking rate related features: ratio between the duration of unvoiced

and voiced segments, average duration of voiced segments, standard devia-

tion of duration of voiced segments, average duration of unvoiced segments,

and standard deviation of duration of voiced segments.

These features describe the temporal characteristics in the prosody. They

might reveal whether the speech sounds urged or relaxed, for example.
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 Intensity related features: intensity mean, standard deviation, maximum,

25% and 75% quantiles, and difference of quartiles.

Intensity related features are used to capture the energy in speaking, and

helps to discriminate shouting from sad or depressed speech, for example.

Spectral features: mean value and standard deviation of 13 Mel Frequency

Cepstral Coefficients (MFCC).

The MFCCs are very common in automatic speech recognition (ASR).

While the short-term statistics are very useful for phoneme recognition,

the long-term statistics indicate voice quality and are thus often included

in the feature set for automatic emotion recognition.

A Principal Component Analysis (PCA) was applied to the feature set to

reduce the number of features using an eigenvalue threshold of 0.01. However,

the estimation results were best when all features were used.

The described features form the basis of the rule system in the fuzzy inference

emotion estimator. Each feature m, 1 ≤ m ≤ M , is related to each of the

emotion primitives x(i) := xEWE,(i), i ∈ {V,A,D}, to be estimated.

4.2 Rule-based fuzzy logic emotion estimation

The fuzzy logic classifier consists of the three components fuzzification, infer-

ence, and defuzzification [38]. Until the last step of defuzzification, the emotion

primitives x(i), i ∈ {V,A,D}, will therefore be represented by the fuzzy, lin-
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Fig. 3. Membership functions of the emotion components.

guistic variables

x(V ) → B
(V )
l ∈ B(V ) = {negative, neutral, positive}

x(A) → B
(A)
l ∈ B(A) = {calm, neutral, excited}

x(D) → B
(D)
l ∈ B(D) = {weak, neutral, strong}.

(7)

The membership functions of these fuzzy variables are depicted in Figure 3.

The three emotion primitives are estimated separately. In the following, we

briefly summarize the three elements of the fuzzy inference system reported in

[22],[31]. Figure 4 shows an example of the fuzzy logic inference system. It is

based on an example of two features and intends to give a compact overview

on the individual elements of the fuzzy logic estimator.

4.2.1 Fuzzification

In the fuzzification step, each feature m is transformed from a crisp value vm

to three fuzzy variables Aj, j = 1, 2, 3, where

Aj ∈ A = {low,medium, high}. (8)
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Fig. 4. Fuzzy logic for emotion primitives estimation: fuzzification, inference (im-

plication, aggregation, accumulation) and defuzzification for valence, an example

using two features.

This reflects the fact that, for example, the absolute value of the average fun-

damental frequency is not relevant, but it is important to distinguish between

low, medium and high pitch average. These generalized terms A are applied

to all features, although when talking about an individual feature we would

rather use more specific terms for description.

The degree of membership µj,m of each linguistic variable Aj is determined by

the value of the membership function µAj ,m(α) at the point of the crisp feature

value,

µj,m = µAj ,m(vm). (9)
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 The membership functions of the input features, µAj ,m(vm), have the same

piecewise linear shape as the membership functions of the emotion primitives

depicted in Figure 3. This shape is common in fuzzy logic systems [38], and it

has been found to be well suited for emotion representation, too [31]. The edges

of the membership functions are determined by the 10% and 90% quantiles

of the distributions of the feature values, Q10 = Q10(m) and Q90 = Q90(m).

Thus for feature m the membership functions are defined as follows:

µ1,m =


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
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, (12)

where Q50 is an abbreviation for (Q10 + Q90)/2.

Figure 4 (top left) shows the fuzzification of a crisp feature value (v8) into
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 membership grades of the fuzzy variables negative, neutral, positive for valence

(µ1,8, µ2,8, µ3,8).

4.2.2 Inference

The rule base is derived from the correlation ρ(i)
m between the acoustic features

m, with 1 ≤ m ≤ M , and the emotion x(i)
n attested by human listeners

(c.f. Section 3),

ρ(i)
m =

N
∑

n=1
(vm,n − v̄m)

(

x(i)
n − x̄(i)

)

√

N
∑

n=1
(vm,n − v̄m)2

√

N
∑

n=1

(

x
(i)
n − x̄(i)

)2
, (13)

where v̄m = 1
N

∑N
n=1 vm,n, and x̄(i) = 1

N

∑N
n=1 x(i)

n .

Thus for each linguistic input variable Aj ∈ A, one rule is formulated to link

it to each linguistic output variable Bl ∈ B,

IF vm is Aj THEN x(i) is B
(i)
l . (14)

The sign of the correlation coefficient ρ(i)
m thereby determines which variable

pairs (j, l) are related to one another,

l(i)m = 2 + (jm − 2) · sign(ρ(i)
m ), jm = 1, 2, 3; m = 1, . . . ,M. (15)

For example, we derive the following rules from ρ
(A)
8 = 0.8 and ρ

(V )
19 = −0.4,

respectively: If the pitch range (m = 8) is high (j8 = 3) then the activation

(i = A) is excited (l
(A)
8 = 3). Or, if the average pause duration between con-

secutive words (m = 19) is high (j19 = 3) then the valence (i = V ) is negative

(l
(V )
19 = 1). That is why in Figure 4 a low feature value of feature 8 is implied

to negative, while a low feature value of feature 19 is implied to positive.

The absolute value |ρ(i)
m | determines the importance of the rule and is defined
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 as the rule weight. This way the rules are generated in an automatic way.

The expert knowledge is reflected in the fact that features which are highly

correlated with the emotion primitives are given large impact in the rule base.

Applying the rules to each acoustic feature, each fuzzy input yields a degree

of support for each fuzzy output variable. This degree of support is the mem-

bership grade of the feature assigned to the appropriate fuzzy variables of the

emotion primitives, multiplied with the rule weight.

In the aggregation step, the degrees of support of all acoustic features are fused

using a maximum operator. This maximization has been found to be superior

to sum aggregation [31]. In Figure 4 the aggregation is found in vertical direc-

tion. It can be applied before or after implication as it gives the same result

for the chosen operators.

The implication draws the actual conclusion and scales the output member-

ship functions by the appropriate aggregated degree of support using a mul-

tiplication (product implication). By this, the output membership functions

depicted in Figure 3 are scaled to the appropriate level determined by the

rules. Still, the emotion primitives are described by the values of the fuzzy

variables, c.f. (7).

In the accumulation step, the three scaled membership functions of the fuzzy

variables B
(i)
l , l = 1, 2, 3, are accumulated using a maximum operator. For

valence, for example, this accumulation fuses the three fuzzy variables nega-

tive, neutral, and positive that were used to scale the three output membership

functions into one curve for valence. Thus the result is one continuous mem-

bership function µ
(i)
B (α) describing the fuzzy value of valence, activation, and

dominance for i ∈ {V,A,D}, respectively. Figure 4 shows the accumulation

in the bottom row: the three output membership functions resulting from the

implication are depicted in thin lines, while the accumulation result is depicted
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 in a bold line. Another elaborate example of this inference system is described

in [22].

4.2.3 Defuzzification

The last step in the fuzzy logic emotion estimator, defuzzification, transforms

the fuzzy values to crisp values. We use the centroid method,

x̂FL,(i) =

1
∫

−1
α · µ(i)

B (α)dα

1
∫

−1
µ

(i)
B (α)dα

. (16)

The defuzzification is shown in Figure 4, bottom right, for the same sample

values. The result is one crisp, real-valued number per emotion primitive.

The crisp emotion estimates are normalized by a constant factor c = 1.63 to

account for the restricted interval of possible values. This restriction results

from the shape of the membership functions µ
(i)
Bl

. The centroid method has

been shown to give better results than the mean of maximum or bisector

method, respectively [31].

5 Results

The fuzzy logic emotion estimator was applied to the EMA and the VAM

databases. The rule base was constructed for male and female speakers sepa-

rately, and for all speakers jointly. In total, we defined 13 different scenarios,

as itemized in Table 4. The number of speakers and the number of sentences

used in each scenario are stated as “#Sp.” and “#Sen.”, respectively.

For the emotion estimation test using the described fuzzy logic method

we generated the rule base from all available utterances, depending on the
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Scenario Selection Database #Sp. #Sen.

Estimation Evaluation
Mean Mean Mean Mean
error correlation error correlation

1 All VAM I 19 478 0.27 0.71 0.21 0.65

2 All VAM II 28 469 0.23 0.43 0.15 0.56

3 All VAM I+II 47 947 0.24 0.60 0.18 0.61

4 Male VAM I 4 90 0.28 0.85 0.20 0.66

5 Female VAM I 15 388 0.28 0.68 0.20 0.63

6 Male VAM II 7 106 0.17 0.42 0.11 0.41

7 Female VAM II 21 363 0.23 0.44 0.14 0.58

8 Male VAM I+II 11 196 0.25 0.70 0.15 0.52

9 Female VAM I+II 36 751 0.26 0.58 0.18 0.61

10 Female EMA(1) 1 200 0.23 0.80 0.22 0.80

11 Female EMA(2) 1 200 0.16 0.82 0.22 0.66

12 Male EMA(3) 1 280 0.17 0.79 0.23 0.67

13 All EMA 3 680 0.19 0.75 0.22 0.72

Table 4

Mean error and correlation to reference for the automated emotion primitives es-

timation (“Estimation” columns) of the EMA corpus and the VAM I/II corpus,

respectively. Manual results of the human evaluation are added for comparison

(“Evaluation” columns).

scenario, and then tested with each of the utterances sequentially. Due to the

large database size and the nature of the rule base in the classifier, which

was determined in a generic way from the correlation between the individual

acoustic features and the emotion primitves, we found that there was no

difference in the results if the tested utterance was excluded from the training

set.

The following sections discuss these results. Section 5.1 describes several

aspects of the estimation results, for example the impact of the individual

features, the emotion type, and the speaker dependency. Section 5.2 compares
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 the results of the real-valued emotion primitives estimation to the results of

a classical discretized emotion classification task.

5.1 Estimation results

The automatic estimation of emotion primitives was assessed by calculating

the estimation error

e(i)
n =

∣

∣

∣xEWE,(i)
n − x̂FL,(i)

n

∣

∣

∣ (17)

for each utterance in the database, 1 ≤ n ≤ N , and for each emotion primitive

i ∈ {V,A,D} separately. The mean error for each scenario is reported in

Table 4. On average, the estimation error was between 0.16 and 0.28 for the

different scenarios. These errors are comparable to the standard deviation

in the human evaluation of emotions in the emotion space, c.f. Table 3

and Equation (6). They are in the range of half the distance between two

evaluation manikins and thus notably small. Since these results are based on

a large number of samples, N > 100, they can be regarded as statistically

significant.

The correlation coefficients were also used as a means for assessing the

estimation results. For all scenarios, the correlation coefficient was found to

be positive, and for most of the scenarios we found fairly high correlation

in the range of 0.70–0.85. Again, for the EMA database the correlation

coefficient was in general higher than for the VAM database. Using separate

classifiers for male and female speakers, or increasing the database size by

joining VAM I and II, did not improve the correlation significantly.
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 Impact of individual features

The ranking of the rules with respect to the rule weights |ρ(i)
m | was database

and speaker-gender dependent. The highest correlation between an individual

acoustic feature and the emotion was found to be the 25% quantile of the pitch

(m = 6) for the male speakers in the VAM I database with ρ
(V )
6 = 0.70, ρ

(A)
6 =

0.89, and ρ
(D)
6 = 0.91. Other features of high correlation to emotion primitives

included the f0 median and the standard deviation of the 3rd and 13th MFCC,

respectively.

In general, it was observed that all features had a non-zero rule weight, and

thus at least partly contribute some information about the emotion. Although

there is some agreement with the feature ranking found in other studies [29],

it has to be suspected that the ranking strongly depends on the data used.

Natural emotions vs. acted emotions

In general, the error was higher for the natural speech database VAM (0.17

in scenario 6, to 0.28 in scenarios 4 and 5) than for the acted speech database

EMA (0.16 in scenario 11, to 0.23 in scenario 10). The error in recognizing

acted emotions (0.19 in scenario 13) was approximately 20% below the error

in recognizing authentic emotions (0.24 in scenario 3), when all speakers were

used. Thus, acted emotions yielded better recognition results.

The result of the human evaluation of the acted emotions (EMA) also gave

higher inter-evaluator agreement (0.66 to 0.80) than for the spontaneous, nat-

ural emotions in the VAM corpus (0.41 to 0.65). For these stereotype emotions

the machine recognition even outperformed the human evaluation in terms of

error and correlation.
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 Impact of the database

The two modules VAM I and II are comparable in the number of speakers and

sentences. The mean error of the estimation was similar for the two modules

VAM I and II (0.27 and 0.23). This was not the case for the evaluation (0.21

and 0.15), which gave a smaller error for VAM II. However, this might be due

to the different set of evaluators or due to more explicit emotional content

which led to a smaller inter-evaluator deviation.

The correlation coefficient of the estimation was higher for VAM I than

for VAM II (0.71 and 0.43 in scenarios 1 and 2, respectively). The same

tendency was found for the evaluation (0.65 and 0.56). This discrepancy

might be due to the different a priori distributions of the emotions in the two

database modules. While VAM I has a very narrow distribution of emotion

primitives, in particular for valence, VAM II has a much wider distribution.

For example, the variance for valence in VAM I was only 67% of the variance

in VAM II. Since the variance of the distribution contributes reciprocally to

the correlation coefficient (c.f. Eq. 3), the correlation coefficient for VAM II

is intrinsically smaller than for VAM I.

When we compared the separate modules to the joint database (scenarios

1–3) we found that the mean error for the joint database was between the

results of the two modules. The same observation was made when only male

(scenarios 4, 6, 8) or only female speakers (scenarios 5, 7, 9) were analyzed.

Thus we could not make the observation that a larger database automatically

yielded better results. However, the advantage gained from using the larger

joint VAM database in terms of more thorough training of the rule base

might have been over-compensated by different emotion expression styles of

the different speakers.
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Gender dependency

For the scenarios comparing gender-specific versus non-gender-specific rule

bases, we could not observe consistent tendencies despite the fact that male

and female speakers express their emotions differently [17]. Only for the

male speakers in VAM II, a gender-dependent rule base gave remarkable

improvements from 0.23 to 0.17 in average error values (scenarios 2, 6, 7). For

all other scenarios of VAM I (scenarios 1, 4, 5) or VAM I+II (scenarios 3, 8,

9), the mean error was approximately the same, and independent from using

separate estimators for both male and female speakers or one joint estimator.

This result might be caused by the method the rules in the rule system are

derived, which are all based on the same feature set for all scenarios. Those

features that might indeed have different values depending on the emotion

and the gender were ruled out by features depending on the emotion only.

This can easily happen in the case of greater rule weights.

Speaker dependency

For the EMA database we found that the estimators using only one speaker

to build the rule system (scenarios 10, 11, 12), when tested on that particular

speaker’s speech, achieved better results than the estimator using all three

speakers (scenario 13). This coincides with previous work indicating that

speaker-dependent training of the estimator achieves the most accurate

emotion classification results.
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Comparison with respect to the emotion primitives

The mean errors and correlation coefficients mentioned in Table 4 contain

the average values for each of the emotion primitives valence, activation,

and dominance. We observed that for each of the scenarios, the error in

the valence dimension was greater than the error in either the activation or

dominance dimension. For scenario 3 (all speakers of VAM I+II) for instance,

the individual mean values of the estimation error are 0.34, 0.19, and 0.20,

for valence, activation, and dominance, respectively. When observing the

correlation between the emotion estimates and the emotion reference we

observed a similar discrepancy. For each scenario, the correlation coefficient

was smaller for valence than for activation or dominance. In scenario 3 for

instance, the correlation coefficient for valence was 0.34, while it was 0.73

and 0.71 for activation and dominance, respectively. Thus valence was more

difficult to estimate automatically using our feature set than activation

or dominance. Note that the better results obtained for activation and

dominance are in accordance with the inter-evaluator correlation, c.f. Table 3.

Comparison to the manual results of the evaluation done by listeners

The estimation results achieved with the automated method can be compared

to the evaluation results of the human listeners. While for classical emotion

categorization we could simply compare confusion matrices, it is less intuitive

to compare emotion assessment results within the emotion space approach in
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 terms of real-valued emotion primitives.

In Table 4, the last two columns recall the evaluation results of Table 3,

corrected for the emotion space quantization (c.f. Section 3.1) and more

detailed for the individual scenarios. The evaluation measures only compare

the evaluators amongst themselves, i.e. we do not have a “ground truth” for

the emotion. Therefore the comparison between the estimation error and

the evaluation error, as well as the comparison of the respective correlation

coefficients can only be a rough one.

We can see that the estimation performs in the same range as the human eval-

uation. In most cases the human agreement is still higher than the machine

recognition. However, a comparison of the human evaluation performance

and the machine recognition with respect to the database modules is difficult

due to the different set of evaluators.

It can be summarized that the fuzzy logic system for emotion estima-

tion is well suited for this task, since a small estimation error and a moderate

to high correlation to the emotion reference can be observed. Estimation

results for acted emotions in performed speech yield slightly higher results

than for authentic emotions expressed in unrehearsed natural speech.

5.2 Comparing emotion primitives estimation and categorical classification

The proposed method to estimate emotion primitives from acoustic features

derived from the speech signal was shown to yield low errors and a high cor-

relation to the reference. Since most previous studies target discrete emotion

categories instead of continuous-valued emotion primitives, it is important to
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 compare the estimation errors from the fuzzy logic estimator to the perfor-

mance achieved with categorical recognition. To facilitate this comparison, we

analyzed the EMA corpus, since each sentence in this corpus has a defined

emotion category label. The recognition rates for the EMA corpus may serve

as a rule of thumb for the VAM corpus, for which strict emotion categorization

could not be applied due to the lack of objective emotion class labels.

Toward enabling this comparison, we conducted a straightforward classifica-

tion task. We used the emotion primitives estimates as an input to a k Nearest

Neighbor (kNN) classifier. The kNN classifier estimates the a posteriori prob-

ability P (Q|x) of the emotion class Q ∈ {angry, happy, neutral, sad} given

the emotion primitives x = (x(V ), x(A), x(D))T for a local volume element in

the 3D emotion space from given training data [38]. Depending on the feature

set and the data, this classifier achieved results comparable to Support Vec-

tor Machines and Linear Discriminant Classifiers [39] [40], and in some cases

outperformed these other classifiers [2] [41]. The experiment was done using

Leave-One-Out (LOO) cross-validation.

We tested k ∈ {1, 3, 5, 7, 9} as a parameter of the kNN classifier, and ap-

plied the classification to both the individual speakers of the EMA database

(speaker-dependent task) and the combined set of all sentences across all

speakers in the database (speaker-independent task). The best recognition

rate was achieved using k = 7 for the speaker-dependent, and k = 9 for the

speaker-independent task. For these parameters, the average recognition rate

was 83.5% for the speaker-dependent, and 66.9% for the speaker-independent

task. The confusion matrices are given in Tables 5 and 6, respectively. An-

gry achieved the best recognition results (91.9% and 84.1%, respectively).

In contrast, the classification error was highest for neutral and sad for both

tasks (neutral→sad: 13.9%/36.2%, sad→neutral: 26.6%/30.8%). Another ma-
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 Angry Happy Neutral Sad

Angry 91.9 2.0 4.3 1.9

Happy 18.8 80.5 0.7 0.0

Neutral 0.7 0.0 85.4 13.9

Sad 0.0 0.0 26.6 73.4

Table 5

Confusion matrix for automatically classifying emotion categories from emotion

primitives using a kNN approach showing average values of speaker-dependent re-

sults.

jor difference in the results between the speaker-dependent and the speaker-

independent task was found in the mutual misclassification of happy and neu-

tral (happy→neutral: 0.7%/10.4%, neutral→happy: 0.0%/13.5%).

It can be summarized that the emotion primitives estimation lends itself well

to emotion categorization. An average estimation error of 0.17 corresponded

to an average recognition rate of 83.5% for speaker-dependent emotion recog-

nition. The emotion estimation and classification errors are mainly due to

ambiguous neutral speech that actually sounded emotionally charged (happy

or sad) rather than neutral. This effect is caused by speaker-dependent ex-

pression variations that cannot be captured by the emotion categories, as will

be discussed in the following section.

6 Speaker-dependent variability in emotion expression

In this section, we consider speaker dependent variability in the inherent

range of emotional expressions. Previous emotion recognition experiments,

which target overall categorization of speech-based evidence into a few

discrete emotion classes, by nature of their formulation are not suited to
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 Angry Happy Neutral Sad

Angry 84.1 13.9 2.0 0.0

Happy 14.6 72.9 10.4 2.1

Neutral 1.2 13.5 49.1 36.2

Sad 0.6 5.1 30.8 63.5

Table 6

Confusion matrix for automatically classifying emotion categories from emotion

primitives using a kNN approach showing average values of speaker-independent

results.

describing the underlying variability well. In contrast, the real-valued emotion

space approach using emotion primitives considered in this paper lends itself

to a conceptual description of speaker dependent variability as described

below.

To start with, let us recall that there is a degradation in classification

performance if we switch from speaker-dependent to speaker-independent

emotion recognition. The reason for the higher amount of misclassifications

is the high degree of speaker-dependency in the expression of emotions. To

investigate this fact further, we analyzed the emotion primitives obtained

from the EMA corpus as a function of both the emotion category and the

speaker [19].

Based on evaluation results from 18 human listeners, we calculated the

centroids and the covariances for each emotion cluster in the 3D emotion

primitives space. Figure 5 shows the results indicating the 2σ-regions for

each emotion category and each speaker individually. In [19], these cluster

centroids were found comparable to class distributions achieved with other

emotion evaluation methods. The position of the individual emotion clusters

and the distance of their centroids is a measure for the variability in the
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Fig. 5. Covariance plot of the emotion classes Angry (A), Happy (H), Neutral (N),

and Sad (S) for speakers 1, 2, and 3 in the EMA database.

emotion expression behavior of a speaker [42].

The emotion classes clustered in individual subspaces of the emotion prim-

itives space. However, the sad and neutral classes, as well as the happy

class of speaker 3 were located relatively closely. The spatial ambiguity of

these emotion categories led to a high number of misclassifications. The

considerably greater variance of the emotion clusters for speaker 1 explains

the happy and angry mismatches observed in the classification experiment.

Similarly, the low confusion error of angry and sad can be explained by

the large distance between the respective emotion clusters in the emotion

primitive space.

Both, for neutral↔happy and neutral↔sad, we observed an increase in

error rates of approximately 10% absolute, when we switched from speaker-

dependent to speaker-independent emotion recognition. These results can also

be explained by the speaker-dependent emotion cluster locations, as shown
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 in Figure 5. It can be observed that the distance between the neutral and the

sad clusters of speaker 3 is relatively large when compared to the distance

between the neutral cluster of speaker 3 and the sad cluster of speaker 2.

Thus the confusion error was higher when the classifier was trained with

sentences from both speakers than in the case of training with sentences from

speaker 3 only.

The location of the cluster for happy emotions in the 3D emotion space

was significantly different for the individual speakers. While the calcu-

lated centroid was x(happy) = (0.58, 0.44, 0.27)T for speaker 1, it was

x(happy) = (0.23, 0.13, 0.11)T and x(happy) = (0.12,−0.08,−0.01)T for

speakers 2 and 3, respectively. Thus, the expression of happiness in the

latter ones was manifested in a manner that was closer to neutral. Such

small emotion variability could be due to individual expression patterns, a

long-term mood, or other affective influences.

These inter-speaker differences are the main reason for the difficulty in

speaker-independent emotion recognition. The wide range of emotion prim-

itive values within one emotion category stresses the fact that emotion

recognition in terms of simple emotion categories is not sufficient.

7 Conclusions and Outlook

In this study, we focused on a novel approach towards automatic estimation

of emotions in speech, using emotion primitives, rather than attempting

direct classification of emotion categories. Following the concept of a three-

dimensional emotion space, we defined emotions to be composed by the

values of the three emotion primitives, namely valence, activation, and
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 dominance, each assumed to take values in the range of [-1,+1]. We analyzed

both acted and spontaneous speech. We tested several scenarios including

gender-specific classification, and speaker-dependent vs. speaker-independent

emotion estimation.

We introduced a text-free, image-based evaluation method, the Self Assess-

ment Manikins (SAMs). This method was shown to yield low assessment

deviation, with an average standard deviation σ̄ in the range of 0.28 to 0.38.

A moderate to high inter-evaluator agreement was measured. The correlation

between the evaluators was between 0.48 and 0.79, depending on the database

and the primitive indicating that emotions were fairly reliably assessed in the

emotion primitive space by the human listeners.

We also described methods for directly estimating the emotion primitives

from acoustic features derived from the speech signal. For the feature set, we

extracted 46 different speech signal characteristics describing pitch, energy,

speaking rate, and spectrum on an utterance-based segmentation level.

Using a rule-based fuzzy logic estimator, the emotion primitives were esti-

mated on the basis of simple IF-THEN rules. The mean error was between

0.17 and 0.28. Speaker-dependent classification (ēmin = 0.16) gave up to 15%

better results than speaker-independent classification for the acted speech.

The estimation error for the acted database (ē = 0.19) was approximately

20% below the error for the authentic emotion database (ē = 0.24), which is

in accordance with other studies in this field. Moreover, it was found that

gender-dependent estimators improved the results only in one case.

The correlation between the automatically-derived estimates of the emo-

tion primitives and the human evaluation ratings was moderate to high

(0.42 ≤ r̄ ≤ 0.85). Again, the correlation was higher for the acted database

and the speaker-dependent task in general. However, the discrepancy between
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 the experimental settings only resulted in relatively small deviations in the

results. The machine recognition was compared to the manual evaluation by

human listeners. It showed that the results were in the same range, especially

with respect to the mean error. Apart from the acted emotions case, the

human performance was always slightly superior to the automatic emotion

recognition.

Classical emotion categories were analyzed in terms of the emotion primitives.

It was found that the confusion rates of emotion categorization are reflected

in the distances of the respective emotion cluster centroids in the 3D emotion

primitives space. Moreover, speaker-dependent variations in emotion expres-

sion were found to result in significant deviations of the cluster locations in

the emotion space.

It can be summarized that emotion primitives provide a good means of

handling emotions in both acted and spontaneous productions of natural

speech. The results of automatic estimation are in the range of the human

evaluation performance. Emotion primitives lend themselves naturally to

capturing speaker-dependent emotion expression variations.

In our future work we plan to fuse other modalities with the acoustic

analysis. The integration can be accomplished in a straightforward manner

by implementing additional rules in the rule base. In this framework, speaker-

dependent emotion expression variations are explicitly described by speaker

models: this can in turn lead to model-based or parameter-driven emotion

recognition that is adapted to individual speakers. Finally, the integration

of the automatic emotion estimation into specific man-machine interaction

applications, such as a humanoid robot, will indicate further needs in this

field of research.
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