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Bayesian networks for phone duration

prediction

Olga Goubanova and Simon King

Centre for Speech Technology Research, University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW, United Kingdom

Abstract

In a text-to-speech system, the duration of each phone may be predicted by a
duration model. This model is usually trained using a database of phones with
known durations; each phone (and the context it appears in) is characterised by
a feature vector that is composed of a set of linguistic factor values. We describe
the use of a graphical model – a Bayesian Network – for predicting the duration of
a phone, given the values for these factors. The network has one discrete variable
for each of the linguistic factors and a single continuous variable for the phone’s
duration. Dependencies between variables (or the lack of them) are represented in
the BN structure by arcs (or missing arcs) between pairs of nodes. During training,
both the topology of the network and its parameters are learned from labelled
data. We compare the results of the BN model with results for Sums of Products
and CART models on the same data. In terms of the root mean square error, the
BN model performs much better than both CART and SoP models. In terms of
correlation coefficient, the BN model performs better than the SoP model, and as
well as the CART model. A BN model has certain advantages over CART and SoP
models. Training SoP models requires a high degree of expertise. CART models do
not deal with interactions between factors in any explicit way. As we demonstrate,
a BN model can also make accurate predictions of a phone’s duration, even when
the values for some of the linguistic factors are unknown.
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Classification and Regression Trees

Email addresses: ogoubanova@netscape.net (Olga Goubanova),
Simon.King@ed.ac.uk (Simon King).

Preprint submitted to Elsevier 29 October 2007



 

 

 

ACCEPTED MANUSCRIPT 

 

1 Introduction

1.1 Duration modelling for text-to-speech synthesis

We present comparative experimental results for 3 classes of phone duration
prediction model: Bayesian Networks (BNs), Sums-of-Product (SoP) models
van Santen (1992), and Classification and Regression Trees (CARTs). The
principal application for these models is in text-to-speech synthesis.

In text-to-speech systems, it is often necessary to predict the prosody of the
output speech; segment durations are an important aspect of prosody. Al-
though in some unit-selection systems, such as Festival 2 (Clark et al., 2004),
no prediction of duration is required, this can lead to unpredictable prosody in
the output speech. Even if the predicted durations are not imposed on the se-
lected units via signal processing, the prediction of phone duration can still be
used to compute a duration component of the target cost. In other cases, such
as non-concatenative systems (e.g. Hidden Markov Model approaches, Tokuda
et al., 2002) or expressive/emotional speech synthesis (e.g. Strom et al., 2006),
explicit prediction of phone durations are necessary. Since duration is a factor
affecting listener’s perception of naturalness of synthetic speech (e.g. Mayo
et al., 2005), there is still a need for accurate duration predictions.

In common with many other areas of speech and language processing, the
databases used to train phone duration models are unbalanced. In the space of
all possible combinations of linguistic factor values, only some are linguistically
plausible and, of those, only a small fraction will actually be observed in
any corpus. Of the observed feature vectors (these are vectors of linguistic
factor values), many will be very rare – i.e. low in frequency. However, as
was shown by van Santen (1994), the joint probability mass of all these rare
vectors taken together is sufficiently large to mean that they cannot simply be
neglected. In other words, in any individual sentence, it is very likely that we
will encounter one or more of these rare vectors. Therefore, models of phone
duration must be robust: they must predict appropriate durations for rare
(and indeed previously unseen) vectors.

In addition, there exists a problem of factor confounding: different factors
occur with unequal frequencies in the training database. As a result, raw du-
rations calculated from the database can be deceptive. van Santen (1994) gives
an example of within-word position and stress factor confounding. Durations
of vowels turn out to be shorter in word-final syllables than in non-word-final
syllables, if stressed and unstressed vowels are analysed together. But, un-
stressed vowels are shorter than stressed vowels and word-final syllables are
five times more likely to be unstressed than stressed. So, if stressed and un-
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stressed vowels are analysed separately, the vowel duration in final syllables
(all other factors being equal) is longer than in non-final syllables, as we would
expect.

The linguistic factors affecting a phone’s duration interact with one another;
the value of one or more factors may amplify or attenuate the affect of another
factor. van Santen (1994) showed that these effects are easily predicted.

A robust model for predicting phone duration must address all of these issues.
It should generalise well in order to successfully predict the duration of phones
with rare (or previously unseen) feature vectors. It may be desirable to allow
some factors to be unspecified or have ambiguous values; this would be the
case if these factors’ values are predicted by some other model which is not
100% accurate – for example, part of speech or features relating to the position
of syllable boundaries.

We expect a duration model that properly accounts for factor interactions and
confounding to be more accurate than a model that does not.

1.2 Linguistic factors influencing segment duration

1.2.1 Vowels

Umeda (1975b), Klatt (1975) and Crystal and House (1988a) cited in van San-
ten (1992) report that vowels in stressed syllables have longer durations than
in unstressed syllables. Nooteboom (1972), Sluijter and van Heuven (1995),
Turk and White (1999), Turk and Shattuck-Hufnagel (2000) report that sylla-
bles (and their vowels) in accented words are longer than in de-accented words.
van Santen (1992) found interaction between stress and pitch accent: stressed
vowels in accented words were significantly longer than non-stressed vowels; in
de-accented words the difference was smaller but still noticeable. Word-initial
stressed syllables get shorter as the number of syllables in the word increases
(Lehiste, 1972; Klatt, 1973; Port, 1981). Stressed vowels in word-final sylla-
bles are longer than those in non-word-final syllables(Nooteboom, 1972; Oller,
1973). The last vowel in an utterance is longer than other vowels (Oller, 1973;
Lehiste, 1973; Klatt, 1975, 1976; Wightman et al., 1992).

A vowel’s duration depends on voicing and manner of production of the fol-
lowing consonant (Peterson and Lehiste, 1960; Crystal and House, 1988b; van
Santen, 1992). van Santen (1992) defined the “standard order” of postvo-
calic consonant classes arranged in order of increasing vowel duration: voice-
less stops, voiceless affricate, liquids, voiceless fricatives, nasals, voiced stops,
voiced affricate, and voiced fricatives. Given the same linguistic context (e.g.
stress and accent status, phrasal position), different vowels vary in duration:
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Factor # Values Possible values

frontness Front 3 front, mid, back

height Height 3 high, mid, low

length Length 4 short, long, diphthong,
shwa

frontness-height
FH

9 see Table 2

roundness Rnd 2 rounded, unrounded

stress S 2 stressed, unstressed

within-word po-
sition of syllable
Wpos

3 initial, medial, final

within-utterance
position of word
Utt

3 initial, medial, final

following segment
identity Cpos

10 voiceless stop, voice-
less affricate, liquid,
voiceless fricative,
nasal, voiced stop,
voiced affricate, voiced
fricative, vowel, silence

word class Wd 2 function, content
Table 1
Linguistic factors chosen for predicting vowel duration. The encoding of FH is

given in Table 2. Either Front, Height and Length OR FH are used, plus the other
factors; these two systems are referred to as F+H+L or FH-compound .

e.g. /oi/ is more than twice as long as /i/ (van Santen, 1992) (Throughout the
paper we used Machine Readable Phonemic Alphabet (MRPA) to represent
phones as reported in Hiller et al. (1990).)

Durations of more frequent words tends to be shorter than those of less fre-
quent words (Gregory et al., 2001). Function words tend to be shorter than
content words (Bell et al., 2003).

Based on these findings, we selected linguistic (causal) factors for predicting
vowel duration, shown in Table 1. We represent vowel identity as 2 factors
(a compound frontness-height factor, roundness). This set of factors will be
referred to as FH-compound .

In Goubanova (2005), we reported a second way of representing vowel identity,
in which separate Front, Height and Length factors were used instead of FH.
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Frontness

Height front mid back

high 1 2 3

mid 4 5 6

low 7 8 9
Table 2
The encoding of the frontness-height compound factor FH.

This set of factors will be referred to as F+H+L . We did not use the previous
segment identity because, in preliminary experiments, we found this had an
insignificant effect. We also did without Length factor for reasons of data
sparsity and to reduce the computational complexity when estimating BN
model parameters.

1.2.2 Consonants

van Santen (1994) found that duration of intervocalic consonants (VCV ) de-
pends on the consonant’s manner of production and voicing, with voiceless
stops being the shortest and voiced fricatives being the longest. van Son and
van Santen (1997) reports an interaction of manner of production and voicing:
voiced fricatives were found to be the longest and voiced stops the shortest.
Consonant constriction duration is longer in word-initial than in word-medial
position (Oller, 1973; Cooper, 1991; Fougeron and Keating, 1997).

van Son and van Santen (1997) found interaction between within-word po-
sition, stress and consonant identity (represented as the prime articulator –
labial, coronal, post-coronal). Primary stressed syllable duration is affected by
word boundary position (Turk and Shattuck-Hufnagel, 2000) with consonants
in word-initial primary stressed syllables being longer than other consonants.
Previous and following vowel stress affects stop consonant durations (Umeda,
1977). Pre-stressed consonants are longer than others (Oller, 1973; Klatt, 1974;
Umeda, 1975a). van Santen (1994) and van Son and van Santen (1997) also
found a significant effect of stress and within-word position on intervocalic
consonant duration. Haggard (1973) cited in Klatt (1976) reported consonants
being shorter in clusters than in a CV environment. van Santen (1994) also
found that duration of consonants in clusters is affected by the preceding and
following segment identity, position relative to syllable boundary, stress of the
previous and following vowels, and accent status of the word. Consonants in
phrase-final syllables are longer than those in phrase-medial positions (Oller,
1973; Lehiste, 1973; Klatt, 1975, 1976; Wightman et al., 1992).

From these findings, we selected 9 linguistic factors for predicting consonant
duration, shown in Table 3. Consonant identity is represented by the com-
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Factor # Values Possible values

manner-voice MV 9 see Table 4

within word posi-
tion Wpos

3 initial, medial, final

stress S 2 stressed, unstressed

within utterance
position Utt

3 initial, medial, final

syllabic position
Syl

3 onset, coda, syllabic

previous segment
identity Cpre

3 consonant, vowel, si-
lence

following segment
identity Cpos

3 consonant, vowel, si-
lence

frontness of syl-
labic vowel Front

3 front, mid, back

number of sylla-
bles in word NSyls

5 1, 2, 3, 4, >4

Table 3
Linguistic factors chosen for predicting consonant duration. The encoding of MV

is given in Table 4.

Voicing

Manner unvoiced voiced

stop 1 6

affricate 2 7

approximant 3

fricative 4 8

nasal 5

tap 6

lateral 9
Table 4
The factor encoding of the manner-voice compound factor MV.

pound manner-voice factor MV shown in Table 4, following from the results
in van Santen (1994) and van Son and van Santen (1997)
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1.3 Phone vs Syllable modelling

There is an on-going debate of whether to use the phone, the syllable or a
perception-based unit for duration modelling. Despite the importance of the
syllable in the prosodic organisation of speech, we chose to use phones in our
BN model because it has many advantages over syllables (Campbell and Isard,
1991) or interperceptual centre groups (Barbosa and Bailly, 1994).

First, there is a data sparsity issue. There are only 40 or so phonemes of
English, but there are around 2,000 possible syllables that can be generated
from them. In models that use syllables, it is therefore common to collapse
the syllable inventory down to far fewer types (e.g. Campbell (1992)) but this
is unsatisfactory. These syllable-based models assume that syllables occurring
within the same prosodic and positional context (within-word, within-phrase
position) have equal durations (syllable mediation hypothesis), regardless of
their segmental content. They assume that syllable duration does not de-
pend on the identity of the syllable’s constituent phones. This is the so-called
segmental independence hypothesis Shih and van Santen (2000), but this hy-
pothesis is not supported by experimental evidence presented in, for example,
Shih and van Santen (2000).

In TTS, durations predicted at the syllable level must usually be mapped down
to the phone level. Because phones are not equally “elastic”, this requires a
model of how phone durations change to fit their parent syllable’s duration
Campbell and Isard (1991). On the other hand, models which predict phone
durations directly can take into account the effects of various linguistic factors
on phone durations, without a mapping via syllables.

1.4 Types of models used for duration prediction

The earliest models developed for predicting phone duration were systems of
rules (e.g. Klatt (1976)). Despite being successfully implemented in the MITalk
synthesiser described in Allen et al. (1987), rule-based models have a few
problems. Rule-based models do not account for factor interaction. Instead,
they rely on manual adjustment of the model’s parameters, which eventually
makes the analytical representation of the model very complex. The models do
not explicitly account for various speaking styles, speaking rates, and dialect
differences.

Corpus-based methods, in which a model is automatically learned from la-
belled speech data, include both non-parametric models such as CART (Breiman
et al., 1984; Riley, 1992; Dusterhoff et al., 1999) and parametric models such
as Sums-of-Products (SoP) (van Santen, 1992, 1994). We will use CART and
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SoP baselines (Sections 2 and 3 respectively).

CARTs are easy to build and robust to labelling errors in the training data.
However, when faced with rare or unseen feature vectors, CARTs must “back
off” and cannot interpolate. “Backing off” means relaxing the requirement to
match all elements of the feature vector and allowing one or more elements
to be essentially ignored. The performance of CARTs degrades when the per-
centage of such vectors is too high, as was shown in van Santen (1994).

SoP models use methods such as “ordinal data analysis” (Coombs, 1964) and
“axiomatic measurement” (Krantz et al. (1964) cited in van Santen (1994)),
that allow the discovery of regular patterns in data. By discovering and mod-
elling regularities in duration data, SoP models can interpolate in cases of
rare or unseen feature vectors. SoP models are also robust to noise in the
data. However, a major problem of SoP models is that the search for the best
model is a tedious and time consuming process. The number of possible SoP
models is hyper-exponential in the number of linguistic factors (i.e. dimension
of the feature vector). That is, the number of possible SoP models is of the
order of 22n

, where n is the number factors. This means that finding the best
model requires expert intuition and heuristic search techniques, which makes
SoP modelling both an art and a science.

Bayesian models allow for an intuitive, straightforward representation of the
problem domain information. The model’s structure as well as parameters
are estimated from the data. Building and training a model may be a time
consuming process, but once the model is built and trained it could be easily
implemented in any real TTS system.

1.5 Databases

The data used in all experiments were derived from 3 Rhetorical 1 TTS voice
databases: 2 RP English voices – rjs (male) and lja (female) – and 1 GA
English voice – erm (male). Each database consists of a set of utterances
which we divided into train (90%) and test (10%) sets by taking out every
10th utterance. These databases were designed and recorded specifically for
unit-selection TTS and can be regarded as having good coverage (measured
in terms of diphones in different linguistic contexts). The commercial TTS
system, rVoice, using these voices was widely regarded as very high quality.
Tables 5 and 6 give the sizes of the databases.

1 Rhetorical Systems Ltd, now part of Nuance. Many thanks to Paul Taylor for
access to this data.
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Voice
Number of vowel tokens

Train Test Total

lja 35, 348 3, 876 39, 224

rjs 88, 997 9, 766 98, 763

erm 57, 104 6, 084 63, 188
Table 5
The number of vowel tokens.

Voice
Number of consonant tokens

Train Test Total

lja 54, 489 6, 015 60, 504

rjs 138, 635 14, 998 153, 633

erm 85, 048 9, 039 94, 087
Table 6
The number of consonant tokens.

1.6 Performance metrics

In order to test the performance of our baseline (CART and SoP) as well as
Bayesian models we used 2 metrics: sample correlation coefficient between ob-
served and predicted values of duration and Root Mean Squared Error (RMSE)
in milliseconds (ms). The sample correlation coefficient is defined as (see for
example, Lee (1997)):

r =

∑M
m=1(d

obs
m − d̄obs)(dpred

i − d̄pred)√
{∑M

m=1(d
obs
m − d̄obs)2}{∑M

i=m(dpred
m − d̄pred)2}

(1)

where M is the size of the test set, dobs
m is an observed duration of a phone

in the m-th feature vector, d̄obs is the mean observed duration across the test
set; dpred

m is a predicted duration of a phone in the m-th feature vector, d̄pred

is the mean predicted duration across the test set. We will refer to the sample
correlation coefficient as correlation coefficient, or just correlation. For the
RMSE we adopt a definition used in Bishop (1998):

RMSE =

√√√√ 1

M

M∑
m=1

(dobs
m − dpred

m )2 (2)

where M is the size of the test set, dobs
m is the observed duration, and dpred

m is
the predicted duration in the m-th feature vector, respectively.
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In order to compare different experimental conditions we used a paired t-
test. The independent variables tested were the sample correlation coefficient
r defined in Equation 1 and the Root Mean Squared Error RMSE defined in
Equation 2. The null hypothesis H0 is that there will be no difference between
the models. H0 is tested against the two-sided non-null hypotheses H1 (r̄ > 0)
or r̄ < 0) by calculating the t statistic (a significance level of p < 0.01, one-
tailed, is assumed, unless otherwise stated).

2 Classification and Regression Trees

CART models are very well known, particularly for tasks in TTS. The reader
is referred to Breiman et al. (1984) for an introduction and to Dusterhoff et al.
(1999), Krishna et al. (2004), among others, for examples of applications in
TTS.

2.1 Experiments

We used Wagon, which is part of the Edinburgh Speech Tools Library (Black
et al., 2003) to build a regression tree. Wagon uses the data variance times
the number of feature vectors (the “impurity”) to determine the best question
to add at each node of the tree, using a standard greedy algorithm to grow
the tree. The algorithm stops growing a branch when one of the following is
true: all questions about all elements of the feature vector have been asked;
all the feature vectors at the current leaf are identical; the number of data
points after the next split would fall bellow a threshold (the “stop value”);
the improvement in impurity after the next split would fall below a threshold.

In addition, in order to prune an over-trained tree with a small stop value, one
can use held-out data: some of the data is taken off to be used for testing a
tree. The tree is built using the training data; it is then pruned back to where
it best matches the held-out data. The advantage of this approach is that it
allows the stop value to vary through different parts of the tree depending on
how good the prediction is when compared against the held-out data.

Because the tree-building algorithm automatically selects the best questions
to ask about the feature vector, it is safe to use a large number of linguistic
factors to describe phones in context, shown in Tables 7-8, even if some are
not predictive of duration, or are redundant. This is in contrast to the CART
and SoP models.

Two CART models (one for vowels, one for consonants) were trained on each
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Name Example
segment’s duration (s) 0.056
segment’s name /ax/

type of a segment vowel
syllabic feature +
length shwa
height low
frontness back
rounded +
manner of production fricative
place of articulation labial
voicing +
previous segment name /b/

previous segment type consonant
previous segment syllabic −
previous segment length short
previous segment height low
previous segment frontness mid
previous segment rounded −
previous segment manner affricate
previous segment place dental
previous segment voicing −
next segment name /l/

next segment type consonant
next segment syllabic +
next segment length long
next segment height mid
next segment frontness −
next segment rounded 0
next segment manner stop
next segment place palatal
next segment voicing 0

Table 7
Linguistic factors used to build CART duration model. Part 1.

of the three databases (lja, rjs, erm) separately. We used the z-score of the
duration (i.e., duration values are shifted and scaled so that their distribution
in the training data has zero mean and unit variance). Held-out data was
used to choose the stop value and balance factor. We also experimented with
different amounts of held-out data: 5%, 10%, 15%. The local maxima of the
correlation – or minima of the root mean square error (RMSE) – on the held-
out set were used to select the best stop value, balance factor and amount of
held-out data. We then re-trained the CART using these values. Results on
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Name Example
segment in stressed syllable true
previous segment in stressed syllable false
next segment false
number of segments in syllable 5
number of segments in previous syllable 3
number of segments in next syllable 2
segment phrase initial true
segment phrase medial false
segment phrase final false
previous segment phrase initial true
previous segment phrase medial false
previous segment phrase final false
next segment phrase initial false
next segment phrase medial true
next segment phrase final true
segment word initial true
segment word medial true
segment word final false
previous segment word initial false
previous segment word medial false
previous segment word final false
next segment word initial false
next segment word medial false
next segment word final true
segment’s syllable position true
previous segment’s syllable position 3
next segment’s syllable position 2
onset/nucleous/coda type O1
frontness of syllabic vowel back
number of syllables in word 3
word class content

Table 8
Linguistic factors used to build CART duration model. Part 2.

the test data are shown in Table 9.

We found that a stop value of 10, between 5% and 15% held-out data and
a balance factor of 10%-15% worked best for vowels. For consonants, these
values were 10, 10% and 5%-10% respectively.
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Correlation RMSE (ms)
Phone Type

lja rjs erm lja rjs erm

Vowels 0.86 0.88 0.89 26 23 27

Consonants 0.73 0.79 0.82 21 20 24
Table 9
The test sample correlation and RMSE results for the the baseline CART models

for vowels and consonants.

3 Sums of Products

Sums-of-Products (SoP) models (van Santen, 1992) are general linear models
which compute the duration of a phone using a sum of product terms. Each
product term involves various linguistic factors. In contrast to CARTs, the
linguistic factors must be carefully chosen. It is usual to predict the log of
duration. A full explanation of SoP is beyond the scope of this article. In
brief, a SoP model computes the duration of a segment thus:

log(duration) =
∑
l∈A

∏
j∈Bl

Slj(xj) (3)

where set A is a set of summation terms, Bl is the set of product terms for the
l-th summation term, Slj, are “factor scales” which correspond to the weight
on the contribution of the value of the j-th linguistic factor xj.

Slj(·) is a “factor scale” and is a function of the value of its argument (its ar-
gument being a linguistic factor). When the linguistic factor is discrete (which
is the case throughout this article), then this function is implemented as a ta-
ble, which has one entry for each possible value of the corresponding linguistic
factor. The table entries are learnt from data.

As van Santen (1994) demonstrates, many of the duration models in the lit-
erature can be represented as sums of products: Lindblom and Rapp (1973),
Coker et al. (1973), Klatt (1976) and Kaiki et al. (1990), to name a few.

3.1 Experiments

3.1.1 Vowels

For his original SoP model, van Santen (1992) selected the following linguistic
factors: the vowel identity V, syllabic stress S, accent status of the word A,
number of syllables to the word end Wpos, number of consonants preceding
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Correlation RMSE
Model

lja rjs erm lja rjs erm

Vowels 0.71 0.72 0.70 25 28 32

Consonants 0.74 0.79 0.76 25 26 33
Table 10
The test sample correlation and RMSE results for the the baseline SoP models for
vowels and consonants.

the vowel in the word Wpre, preceding and following segment identity Cpre
and Cpos, and utterance position Utt. The model predicted vowel duration
(zero-mean and unit-variance normalised before taking the log) as:

log(duration) =

K1,1(A)×K1,2(S) + K2,3(V ) + K3,4(Cpre)

+K4,6(Wpre) + K5,7(Wpos) + K6,5(Cpos)

+K7,5(Cpos)×K7,8(Utt) (4)

For our baseline SoP model, we used Equation 4 but without the accent status
term, because our data were not labelled with phrasal accent information. Our
stress factor S has only two possible 2 values, stressed and unstressed, because
in our data, no distinction is made between primary and secondary stressed
vowels.

In Goubanova (2005), instead of the factor V representing vowel identity we
used factors based on 4 phonological features: frontness, height, roundness,
length, but here we describe only the model with vowel identity based on
2 factors: compound frontness-height FH and roundness Rnd because this
model performs just as well and is slightly simpler. The complete list of the
factors that we used for our baseline SoP model for vowels is shown in Table
1 and the SoP formulation is:

log(duration) =

K1,1(S) + K2,2(FH) + K3,3(Rnd)

+K4,4(Wpos) + K5,5(Cpos) + K6,6(Utt) + K7,7(Wd) (5)

The model was trained using a standard least-squares method on the data
introduced in Section 1.5. The test sample correlation and RMSE (ms) results
are shown in Table 10.
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3.1.2 Consonants

van Santen (1994) performed an analysis of consonants in different segment-
level contexts and suggested using separate models for intervocalic consonants
and for consonants in clusters, with different linguistic factors for each. For
consonants in clusters, he made even finer distinctions based on the syllabic
and phrasal position of the target consonant. Consequently, 4 different mod-
els were defined for intervocalic consonants, consonants in syllable onsets,
phrase-medial codas, and phrase-final codas. Correlation values reported by
van Santen (1994) range from 0.824 for consonants in phrase-medial codas to
0.907 for intervocalic consonants.

For simplicity, we used the same model for all types of consonant. As in van
Santen (1994), this was a simple multiplicative model (which is additive in
the log domain), with the factors defined in Table 3 and the SoP formulation:

log(duration) =

K1,1(MV ) + K2,2(S) + K3,3(Wpos)

+K4,4(Utt) + K5,5(Syl) + K6,6(Cpre)

+K7,7(Cpos) + K8,8(Front) (6)

Again, the model was trained using a standard least-squares method, and
used the same data sets as the vowel models. In a pilot study described in
Goubanova and King (2005) and Goubanova (2005) we also built a model in
which consonant identity was represented directly with a factor that had 24
possible values but found that the compound MV encoding performed better.
Results are given in Table 10.

Although direct comparison with van Santen’s results is not possible, not least
due to differing data sets, our results are broadly in line with those from van
Santen (1992) and van Santen (1994).

4 Bayesian Networks

In many statistical modelling problems, we wish to do computations with the
joint probability distribution (JPD) of a number of variables. Doing such com-
putations directly would involve a potentially very large joint probability table
(if all variables are discrete). This is often infeasible either computationally or
because insufficient data is available to reliably estimate all the entries in this
table. One solution to this challenge is to factor the joint distribution into the
product of a number of simpler conditional distributions (each with a much
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smaller probability table). For example, factoring the JPD of three discrete
variables P (A, B, C) into P (A|B)P (B|C)P (C) is making the assumption that
A is conditionally independent of C, given B. The tables needed to represent
P (A|B), P (B|C) and P (C) will, in total, have fewer entries than the table
needed for P (A, B, C). Similar arguments apply to the case of continuous
variables, or combinations of discrete and continuous variables.

Bayesian Networks are a graphical representation of such a factorisation. They
are directed graphical models with one node for each variable; the nodes are
connected into a directed acyclic graph. Each variable thus has incoming arcs
from zero or more other variables: these are called the parents of that vari-
able. Because they are graphical, BNs are intuitive to work with and give an
easy-to-interpret representation of this factorisation in which the conditional
independence assumptions inherent in the factorisation can be simply read
off the graph structure: the JPD is

∏
i P (Vi|Pa(Vi)) where i indexes the vari-

ables in the graph, and Pa(Vi) is the set of variables that are parents of V .
Importantly, given its parents, Vi is independent of all other variables. This
structure (i.e. the factorisation of the JPD) can be devised by hand, or learnt
from data.

Given a BN, and settings for some of the variables, inference can be used
to determine the most probable value(s) for the remaining variable(s). This
is how we will use BNs for duration prediction: During learning, all variable
values will be known (from the training data) and the model’s parameters
(conditional probability tables and conditional Gaussians) will be learnt; To
make a prediction of duration, the values of the discrete linguistic variables will
be set to known values and the most probable value of the continuous duration
variable will be inferred. For background material on Bayesian Networks and
the algorithms available for parameter learning and inference, the reader is
referred to Heckerman (1995).

The differences between the models presented in the following sections are
both in the way that the linguistic factors are encoded as variables in the
graph, and in the structures of the graphs.

4.1 Learning

Although we will use an automatic procedure for learning the network topol-
ogy, we still need to specify by hand what the variables in the BN will be.
For vowels, we experimented with the two versions of the set of linguistic fac-
tors, already described in Section 1.2.1 and referred to as FH-compound and
F+H+L . For consonants, the factor set described in Section 1.2.2 will be used.

For a given network structure (topology), standard algorithms are used for
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Factor # Values Example

consonant identity C 24 /ch/

within-word position Wpos 3 initial

stress S 2 stressed

frontness Front 3 back

number of the syllables in word NSyls 5 2
Table 11
Linguistic factors chosen for the hand crafted 6-factor model.

learning the parameters (Dempster et al., 1977). A more difficult problem is
that of learning the network topology: that is, what are the parents of each
variable? We used an algorithm called K2 (Cooper and Herskovits, 1992).

4.1.1 Learning Bayesian Network structure

The most common approach to network structure learning is to apply some
heuristic search techniques to search through the hypothesis space of possible
network structures and evaluate a scoring metric (function) for each candidate
network. The network with the highest score is selected. To this end, there are
two common scoring functions used in network structure learning algorithms:
Minimum Description Length (e.g. Lam and Bachus, 1994) and the Bayesian
measure used in the present research and described below.

The number of possible networks of n nodes is hyperexponential in n. Exhaus-
tive search is infeasible, so we must resort to heuristic approaches. Based on
the Bayesian measure, Cooper and Herskovits (1992) developed an algorithm
called K2, for learning the structure of networks with discrete variables from
data.

The K2 algorithm starts with an ordered list of the variables and an empty
parent set for each variable. It successively adds parents to each variable (par-
ents are chosen from earlier in the list, thus ensuring the graph remains acyclic)
to maximally improve the Bayesian measure. It must be pointed out that the
variable ordering greatly affects the quality of the network structure learnt:
it is essential to provide a good node ordering, and this must be done using
expert intuition. We always placed the duration variable last in the ordering:
any variable could be a parent of duration, but duration is no other variable’s
parent.

Since K2 only works for discrete variables, the duration variable D must be
discretized, which we do using the z-scores of the duration values by assigning
them to evenly spaced bins. We experimented with 9 different levels of dis-
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cretization (from 2 to 10 bins) and, with the three voices we are using, this
results in 27 distinct data sets.

For example, 9 linguistic factors (F+H+L ) have 9! = 40, 320 different or-
derings. Trying all of these for all 27 datasets is computationally infeasible.
Instead, for each of the three voices in turn, we tried all possible levels of dis-
cretization for just one variable ordering (Wpos, Front, Height, Length, Rnd,
Wd, Utt, S, Cpos, D), and all possible variable orderings for just one dis-
cretization level (5 bins). For the FH-compound model, the single ordering
was (Wpost, S, Utt, Cpost, FH, Round, Wd) and for the consonant model it
was (MV, Wpos, S, Utt, Syl, Cpre, Cpos, Front).

4.1.2 Uniqueness of Bayesian Network structures

K2 algorithm assigns the same score (Bayesian measure) to two or more DAGs
with different node orderings given the same discretization level. For each
discretization level, the DAGs found have the same duration node parent set
and differ only in a few (equal to the number of node permutations) of the
CPTs. After we found all the DAGs for all discretization levels, we then get
rid of the identical DAGs (up to the arc reversal), then group the rest into
equivalence classes based on the identity of the duration node parent set.
This reduced the number of networks to 947 (vowels, FHLR), 590 (vowels,
FH-compound ) and 915 (consonants, MV-compound). All networks had the
same value for the Bayesian measure so, in order to further reduce the number
of networks to a feasible number for experimentation, we considered the set
of variables that are parents of the duration variable. Sets of networks with
the same parent set for duration were considered equivalent, and only one
of the set was retained. Note that, in the case of all discrete variables being
observed, all networks within such classes will predict the same distribution
for the duration variable. As a result, there were 7 different vowel F+H+L
networks, 4 vowel FH-compound networks and 8 consonant networks.

The duration variable D parent sets Pa(D) for the various resulting networks
are shown in Tables 4.1.2 and 12. An example network of each type is shown
in Figures 1, 2 and 3. The rest are shown in Goubanova (2005).

4.2 Results

4.2.1 Vowels

Table 13 presents the results for vowels. All models perform no worse than the
CART models in terms of correlation (p > 0.01, insignificant). In addition,
all F+H+L models significantly (p < 0.001) outperform both the SoP and
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Name Pa(D) # params

Vowel-F+H+L-1 Cpos Length Round 80

Vowel-F+H+L-2 Cpos Front Length
Rnd

240

Vowel-F+H+L-3 Cpos Front Height
Length Rnd

720

Vowel-F+H+L-4 Cpos Front Height
Length Wd

720

Vowel-F+H+L-5 Wpos S Cpos Rnd 120

Vowel-F+H+L-6 Wpos Cpos Length
Rnd Wd

480

Vowel-F+H+L-7 Wpos Utt Cpos Front
Height Length Wd

6480

Vowel-FH-compound -1 Cpos FH 90

Vowel-FH-compound -2 Cpos FH Rnd 180

Vowel-FH-compound -3 Wpos S Cpos Rnd 120

Vowel-FH-compound -4 Wpos S Utt Cpos FH
Rnd Wd

6480

Consonant-1 MV, Cpos 27

Consonant-2 MV, Syl, Front 81

Consonant-3 MV, Wpos, S, Syl,
Cpre, Cpos, Front

4374

Consonant-4 MV, Wpos, S, Utt, Syl,
Cpre, Cpos

4374

Consonant-5 MV, Wpos, S, Utt, Syl,
Cpre, Cpos, Front

13122

Consonant-6 MV, Wpos, Syl, Cpre,
Cpos

729

Consonant-7 MV, Wpos, Syl, Cpre,
Cpos, Front

2187

Consonant-8 MV, Wpos, Utt, Syl,
Cpre, Cpos, Front

6561

Table 12
BNs learnt by the K2 algorithm. The number of parameters in the conditional

Gaussians of the duration variable is shown in the third column.
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D

WdUtt

Cpos HeightLength

Wpos

Front Rnd

S

Fig. 1. A Bayesian network of size 10 learnt by the K2 algorithm, with vowel dura-
tions being uniformly discretized. Duration parent set Pa(D) = { Wpos, Utt, Cpos,
Front, Height, Length, Wd }.

Utt

WdCl

Round CpostFH

S
Wpos

D

Fig. 2. A Bayesian network learnt by the K2 algorithm, with vowel durations being
uniformly discretized. The duration D parent set Pa(D) = { Wpos, S, Utt, Cpos,
FH, Rnd, Wd }.

CART baselines in terms of RMSE. In particular, the Vowel-F+H+L-5 model
significantly outperforms the SoP model in terms of correlation (p < 0.01)
and RMSE (p < 0.005); the Vowel-F+H+L-3 and Vowel-F+H+L-4 models
perform significantly better (p < 0.005) than both the SoP and CART models
in terms of RMSE.

Hence, we chose the Vowel-F+H+L-3 and Vowel-F+H+L-4 models as the best
models for the RP (lja, rjs) voices and the Vowel-F+H+L-5 model as the best
model for the GA (erm) voice.
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D

Cpos

S

SylPos MV

Front

Cpre

Utt

Wpos

Fig. 3. Bayesian network learnt by the K2 algorithm, with consonant durations
being uniformly discretized: Consonant-5 model for consonants.

Correlation RMSE (ms)

Model
Voice

lja rjs erm lja rjs erm

Vowel-F+H+L-1 0.83 0.80 0.67 2.3 2.2 2.6

Vowel-F+H+L-2 0.86 0.85 0.68 1.7 1.5 1.8

Vowel-F+H+L-3 0.88 0.90 0.68 2.5 2.4 2.7

Vowel-F+H+L-4 0.86 0.82 0.75 1.5 1.5 1.7

Vowel-F+H+L-5 0.83 0.84 0.78 1.9 1.6 1.8

Vowel-F+H+L-6 0.84 0.82 0.72 2.14 2.0 2.3

Vowel-F+H+L-1 0.82 0.84 0.60 2.54 2.4 2.7

Vowel-FH-compound -1 0.84 0.84 0.81 2.82 1.6 2.8

Vowel-FH-compound -2 0.84 0.84 0.81 2.8 1.6 2.8

Vowel-FH-compound -3 0.83 0.82 0.76 4.0 2.5 4.2

Vowel-FH-compound -4 0.84 0.84 0.80 4.1 2.4 4.7

SoP 0.71 0.72 0.70 25 28 32

CART 0.86 0.88 0.89 26 23 27
Table 13
Results for vowels. The maximum correlation / minimum RMSE values within each
of the F+H+L and FH-compound groups of models, per voice, are shown in bold.
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Correlation RMSE (ms)

Model
Voice

lja rjs erm lja rjs erm

Consonant-1 0.80 0.77 0.69 3.8 4.4 3.8

Consonant-2 0.73 0.76 0.67 5.1 5.6 5.1

Consonant-3 0.84 0.80 0.69 3.5 4.1 3.6

Consonant-4 0.72 0.74 0.80 4.6 5.1 4.5

Consonant-5 0.71 0.73 0.74 3.7 4.3 4.5

Consonant-6 0.80 0.74 0.75 4.6 5.2 4.6

Consonant-7 0.76 0.73 0.73 4.7 5.3 4.7

Consonant-8 0.56 0.49 0.75 3.5 4.1 3.7

SoP 0.74 0.79 0.76 25 26 33

CART 0.73 0.79 0.82 21 20 24
Table 14
Results for consonants. The maximum correlation / minimum RMSE values for the
BN models, per voice, are shown in bold.

All FH-compound models perform significantly (p < 0.01) better than the
SoP model and no worse (p > 0.1; insignificant) than the CART model in
terms of correlation. In particular, the Vowel-FH-compound -1 and Vowel-FH-
compound -2 models outperform the SoP model at a higher significance level
of p < 0.001 in terms of correlation and RMSE. We therefore selected these
two models as the best FH-compound models for all voices.

4.2.2 Consonants

Table 14 summarises results for consonants.

All consonant models perform no worse than the CART models in terms of
correlation (p > 0.05, insignificant). They also significantly outperform both
the SoP and CART baselines in terms of the RMSE (p < 0.01). In particular,
the Consonant-3 model significantly outperforms both SoP and CART models
in terms of RMSE (p < 0.005). The Consonant-4 model performs significantly
better than the CART model in terms

For the two RP voices (lja, rjs), the Consonant-3 model is best; the parents
of duration are all variables except for within-utterance position. For the GA
voice (erm) the Consonant-4 model is best; the parents of the duration variable
are all variables except the frontness of the syllabic vowel.

22



 

 

 

ACCEPTED MANUSCRIPT 

 

5 Conclusions and Future Work

We have demonstrated that Bayesian Network models can be successfully
used to predict phone duration and that they outperform CART and SoP
models. Building and training these models can be be time consuming but,
once the model is trained, it is computationally very cheap to use for duration
prediction, since it is essentially a look-up table. The BN structures found here
could probably be used directly on other voice databases (i.e. relearn only the
parameters, not the network structure), particularly for consonants.

5.1 Parents of the duration variable

As can be seen from Table 4.1.2, the F+H+L vowel models that performed
best on RP voices (Vowel-F+H+L-3 and Vowel-F+H+L-4) had Front, Height,
and Length as parents of duration D, whereas the best model for the GA erm
voice, the Vowel-F+H+L-5 model, had the roundness Rnd variables as the
parent of duration D. It appears that the best choice of parent variables is
dialect dependent. It is also obvious that the Length variable is important,
since 6 out of 7 models in Table 4.1.2 have this variable as a parent of the
duration variable.

5.2 Effectiveness of the K2 algorithm

In an earlier study, we devised a model structure by hand (Goubanova and
King, 2005; Goubanova, 2005). Overall, this model performed worse than the
SoP and CART models. Almost all the models learnt by the K2 algorithm
reported above perform significantly better than this hand-crafted model.

5.3 Limitations of the approach

5.3.1 Problem domain specification

Despite being successful overall, there were some limitations to predicting
phone duration using Bayesian models. It turns out that for the GA erm
voice, the models learnt from data demonstrated slightly lower performance
in comparison to the results for the 2 RP voices: lja, rjs. This difference can
not be explained by the training data size, since the training set for the lja
voice contains 54, 489 consonant tokens, and for the erm voice 85, 048 tokens.
The tendency of poorer performance on the erm voice occurs across different
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models for both vowels and consonants. It may be that the linguistic factors
we chose are appropriate for RP but not for GA. For GA vowels we may
need extra factors, such as Tense (amount of articulatory effort). Since GA is
rhotic, a factor accounting for this may have proved useful.

5.3.2 Number of model parameters

The number of parameters in the BN models is highly variable (Table 12)
and can be quite large. The Consonant-5 model for consonants has 13, 122
parameters in the conditional Gaussians alone, which is 70 times larger than
the 196 parameters reported in van Santen (1994) for a SoP models for con-
sonants. Parameter estimation is the most time-consuming part of the model
training process and typically takes tens of hours of CPU time. Techniques
exist for reducing the number of parameters: for example, replacing the full
table of conditional Gaussians with a noisy-OR (Pearl, 1988), decision tree
(Boutilier et al., 1996), or default table (Friedman and Goldszmidt, 1996).

5.4 Future work

As mentioned above, van Santen used a number of different SoP models for
different classes of segments. This would also be possible with BNs. A more
sophisticated approach would be to automatically cluster phones into classes
such that within a class, a single BN topology was the optimal one.

With BNs, duration predictions can still be made if the values of some vari-
ables are not specified (i.e. the variables are unobserved, or “hidden”); this is
impossible with CART and SoP models. BNs can even be trained with some
variables hidden. We have made a preliminary exploration of this possibility
Goubanova (2005) and have demonstrated that good predictions can still be
made.
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