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Stream weight estimation for multistream

audio-visual speech recognition in a

multispeaker environment 1

Xu Shao ∗, Jon Barker

The University of Sheffield, Department of Computer Science,

Regent Court, 211 Portobello Street , Sheffield, S1 4DP, UK.

Abstract

The paper considers the problem of audio-visual speech recognition in a simulta-

neous (target/masker) speaker environment. The paper follows a conventional mul-

tistream approach and examines the specific problem of estimating reliable time-

varying audio and visual stream weights. The task is challenging because, in the two

speaker condition, signal-to-noise ratio (SNR) – and hence audio stream weight –

cannot always be reliably inferred from the acoustics alone. Similarity between the

target and masker sound sources can cause the foreground and background to be

confused. The paper presents a novel solution that combines both audio and visual

information to estimate acoustic SNR. The method employs artificial neural net-

works to estimate the SNR from hidden Markov model (HMM) state-likelihoods cal-

culated using separate audio and visual streams. SNR estimates are then mapped to

either constant utterance-level (global) stream weights or time-varying frame-based

(local) stream weights.

The system has been evaluated using either gender dependent models that are

specific to the target speaker, or gender independent models that discriminate poorly
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 between target and masker. When using known SNR, the time-varying stream

weight system outperforms the constant stream weight systems at all SNRs tested.

It is thought that the time-vary weight allows the automatic speech recognition

system to take advantage of regions where local SNRs are temporally high despite

the global SNR being low. When using estimated SNR the time-varying system out-

performed the constant stream weight system at SNRs of 0 dB and above. Systems

using stream weights estimated from both audio and video information performed

better than those using stream weights estimated from the audio stream alone, par-

ticularly in the gender independent case. However, when mixtures are at a global

SNR below 0 dB, stream weights are not sufficiently well estimated to produce good

performance. Methods for improving the SNR estimation are discussed. The paper

also relates the use of visual information in the current system to its role in recent

simultaneous speaker intelligibility studies, where, as well as providing phonetic

content, it triggers ‘informational masking release’, helping the listener to attend

selectively to the target speech stream.

Key words: audio-visual speech recognition, multistream, multispeaker,

likelihood, artificial neural networks

1 Introduction

Speech communication in its most natural face-to-face form is an audio-visual

experience. Participants in a conversation both hear what is being said and see

the corresponding movements of the speaker’s face. The human speech percep-
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 tion system exploits this multimodality, integrating both the visual and audio

streams of information to form a robust coherent percept. The central role

of visual information has been described in recent accounts of speech percep-

tion [1,2]. The visual speech information is particularly valuable when there

are competing sound sources in the environment. When this is the case, the

audio signal becomes unreliable, and observation of the speaker’s face greatly

improves speech intelligibility. Sumby and Pollack [3] demonstrated that the

visual speech signal could confer an increase in intelligibility equivalent to that

produced by reducing the noise level by about 16 dB. More recent studies have

demonstrated similarly dramatic benefits, particularly in cases where speech

is masked by a competing speaker [4–6].

Demonstrations of the robustness of audio-visual speech have inspired much

recent research in audio-visual automatic speech recognition (AVASR). There

are two major research questions in this field. First, how best to represent

the visual speech information [7–9]. Second, how to combine the audio and

visual information so as to optimise recognition performance [10–12]. Although

these questions are no doubt subtly connected they are usually addressed in

isolation. It is the latter question, that of audio-visual integration, that forms

the focus of the work presented here.

Although visual speech is inherently ambiguous with many words having an

identical appearance (e.g. ‘pop’, ‘bop’, ‘bob’), its value can be clearly seen

by noting its ability to disambiguate acoustically confusable word pairs. For

example, consider the words ‘met’ and ‘net’. Although they are acoustically

similar, being distinguished by subtle differences in the nasal consonants /m/

and /n/, they are visually distinct, with the lips closing for /m/ but not

for /n/. In situations where the acoustic differences are masked by additive
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 noise, the visual features may be all that is available to distinguish the two

words. Although it is clear that the visual stream carries valuable information,

making optimal use of this information has proved very difficult in practise.

AVASR systems typically incorporate a parameter that controls the relative

influence of the audio and visual streams – in the common multistream formal-

ism, that is used in the current study, this parameter is known as the stream

weight. Much recent research has been devoted to developing schemes for esti-

mating suitable values for the stream weight. A standard approach is to base

the stream weight on an estimate of the signal to noise ratio (SNR) [12–14].

SNR-based stream weights have proven to be very successful in a number of

scenarios, particularly in cases where the background noise is approximately

stationary. These systems typically employ a fixed stream weight for the du-

ration of an utterance. In situations where the background noise is highly

non-stationary a time-varying stream weight based on local SNR estimates,

or local audio reliability measures, is more appropriate (e.g. [13,15]). However,

estimating local SNR is itself a challenging problem.

In the current work we search for solutions to the stream weighting problem

in a particularly challenging condition: the case where the background noise

source is itself a speech signal (which we will refer to as the ‘masking speaker ’).

This situation is of particular interest because it is one that occurs frequently

in everyday life, and it is a situation in which human performance has been

closely studied. Listening tests have shown that speech intelligibility is remark-

ably robust to the effects of background speech. This is particularly true if the

target speaker is sufficiently ‘unlike’ the masker speaker that it can be selec-

tively attended to with minimal distraction [16]. However, background speech

causes particular problems for ASR. The difficulty here is twofold. First, as
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 already mentioned, the noise signal is highly non-stationary. This means that

the SNR is changing from instant to instant, and the reliability of the audio

signal is rapidly varying. Second, the noise is not easily distinguished from the

speech signal. Acoustically, a region of the signal dominated by the masking

speaker (low SNR), may be little different to a region dominated by the target

speaker (high SNR). So the non-stationarity demands a time varying stream

weight, but the weight is hard to estimate reliably from local properties of the

acoustic signal.

We attempt to solve the weight estimation problem by involving both the

audio and video streams in the local SNR estimation. In outline, we employ

a standard state-synchronous multistream system [17] in which the underly-

ing generative model for the audio-visual speech is a hidden Markov model

(HMM) in which each state generates both audio and visual observation drawn

from different distributions (i.e. audio and video observations are modelled as

being independent given the state). The system can be trained on noise-free

audio-visual speech. To make it robust to acoustic noise the audio and visual

likelihood are combined using exponential weights based on a measure of their

relative reliability. In the current work the stream reliability is estimated from

HMM state-likelihood information using artificial neural networks (ANN)[18].

The performance of ANNs trained either on audio-likelihoods, or on combined

audio- and visual-likelihoods is compared. The hypothesis is that the pattern

of audio and visual likelihoods should distinguish between, i) local SNRs close

to 0 where the acoustics match the models poorly; ii) positive SNRs where

the acoustics match the models well and are correlated with the visual infor-

mation; and iii) negative SNRs where the (masker) acoustics may match the

models well, but will be poorly correlated with the target’s visual features.
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 The audio-visual SNR estimator is expected to outperform the audio-only

SNR estimator because the acoustic likelihoods alone are not sufficient for

distinguishing between cases ii) and iii), i.e. regions of high SNR where the

target matches the models and regions of low SNR where the masker matches

the models.

The paper compares the role of video information in stream weight estimation

in two different scenarios. In the first, male target utterances are mixed with

female masker utterances, and recognition is performed using models trained

on male speech. In this task the acoustic models are specific to the target. In

the second scenario, male or female target utterances are mixed with either

male or female maskers (but not from the same speaker), and recognition is

performed using models that have been trained on a mixture of male and

female speech. In this case the acoustic models are not specific to the target,

and could equally well match the masking utterance.

The remainder of this paper is arranged as follows. Section 2 reviews the

multistream approach to AVASR that we use to integrate the audio and vi-

sual feature streams. Section 3 details the AVASR system employed in this

work, and in particular, the proposed method for estimating a time-varying

stream weight. Section 4 details experiments that evaluate the behaviour of

the system when using both same-gender and mixed-gender utterance pairs.

Finally, Section 5 presents conclusions and discusses possible directions for

future work.
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 2 Background

2.1 Integration of audio and visual features

AVASR systems can be broadly classified according to the manner in which

they combine the incoming audio and visual information streams – see Lucey

et al. for a recent review [10]. Most systems can be described as performing

either feature fusion or decision fusion. In feature fusion systems – also termed

‘early integration’ (EI) – the audio and visual feature vectors are combined,

typically by simple concatenation, and the classifier learns the statistics of

the joint audio-visual observation. By contrast, in decision fusion systems –

also termed ‘late integration’ (LI) – separate classifiers are constructed for

the audio and visual features, and it is the classifier outputs, rather than the

feature vectors themselves, that are combined. A third class of techniques that

combine the audio and visual signal before the feature extraction stage has

largely been abandoned.

Most recent systems, including the work presented here, use some form of

LI (e.g. [19,20,17]). Although EI allows the modelling of the complete audio-

visual observation (and hence can model detailed correlation between features

of the audio and video observations) it suffers to the extent that corruption

of either the audio or the visual data stream can lead to incorrect decisions

being made. In contrast, late integration systems can easily be made robust to

known corruption of either stream by simply weighting the audio and visual

classifier decisions during combination.

The design of LI systems is very flexible and many variations on the theme
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 exist, but they can be roughly sub-classified according to the the lexical level at

which decision fusion occurs. At the lowest level decisions are fused on a frame

by frame basis. If the streams are modelled using HMMs then this equates

to combining the likelihoods of corresponding audio and visual HMM model

states – often termed ‘state-synchronous decision fusion’. Combining decisions

at higher lexical levels – such as the phoneme or word level – is usually achieved

by using a parallel HMM design. Within each unit (phoneme or word) the

model progresses independently through the states of the separate audio and

visual HMMs under the constraint that the boundaries between units occur

synchronously in the audio and visual domains. This technique can model

some of the asynchrony within the modelling units that is observed between

the audio and visual speech streams. For example, visual evidence for the onset

of a phoneme often precedes the audio evidence of the same event [19,21]. This

extra modelling power can produce small performance improvements when

recognising spontaneous speech. In the current work we are employing a small

vocabulary ‘read speech’ task and precise acoustic modelling of audio visual

asynchrony is considered of secondary importance to the design of techniques

for reliably estimating stream weights. Accordingly we employ the simpler

state-synchronous decision fusion technique.

In the state-synchronous decision fusion AVASR systems, the HMM can be

considered to be a generative model which produces observations for both the

audio and the visual streams that are independent given the state. So the

likelihood of state q given the observed audio and visual features, oa,t and ov,t

respectively, is computed as,

P (oa,t, ov,t|q) = P (oa,t|q) × P (ov,t|q) (1)
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 In order to make the system robust to acoustic noise, at recognition time the

state likelihoods are replaced with a score based on a weighted combination

of the audio and visual likelihood components,

S(oa,t, ov,t) = P (oa,t|q)λa,t × P (ov,t|q)λv,t (2)

where the exponents λa,t and λv,t are the audio and visual stream weights.

Typically, they are constrained such that λa,t, λv,t ≥ 0 and λa,t + λv,t = 1.

These scores are usually computed in the log domain,

log S(oa,t, ov,t) = λt log P (oa,t|q) + (1 − λt) log P (ov,t|q) (3)

where λ lies in the range [0, 1]. Values of λ close to 0 give emphasis to the

video stream and are used when the audio stream is believed to be unreliable

– and values close to 1 give emphasis to the audio stream.

2.2 Stream weight estimation

The stream weighting parameter is related to the relative reliability of the

audio and visual modalities, which in turn is dependent on the SNR. If the

acoustic signal has high SNR at time t, the audio stream is reliable and a high

value of λ can be used. In contrast, during regions of low SNR the stream

weight parameter should be reduced so that the visual information is em-

phasised. In previous studies various audio-based stream weight estimation

strategies have been employed. For example, Glotin et al. [15] used voicing as

a measurement of audio reliability. Garg et al. [20] employed the N -best log-

likelihood as an SNR indicator to measure the modality reliability. Tamura,

Iwano and Furui [22] estimated the stream weight from the normalised like-
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 lihoods. Gurbuz et al. [23] chose the stream confidence value from a lookup

table according to the noise type and SNR. These earlier techniques have all

tried to estimate stream weight from the acoustic signal. However, in the two

speaker problem, the acoustic properties of regions dominated by the masking

speech source may be similar to those of regions dominated by the target.

This ambiguity makes it difficult to achieve accurate stream weight estimates

using purely acoustic measurements. As a solution to this problem, the current

study proposes an audio-visual stream weighting method (see Section 3.3.2).

Another design choice is the time interval over which to estimate the stream

weight. Many previous systems have kept the stream weight fixed over the

duration of an utterance [23,24]. In such systems the stream weight is being

set according to some average value of the SNR. Even when the additive noise

is stationary the SNR computed over a short time window will vary widely.

For example, during voiced regions the speech signal may dominate the noise

making a high value of λ appropriate, whereas during an unvoiced fricative

the noise may mask the speech audio meaning that a low value of λ should be

used to give temporary emphasis to the video signal. In the speech-plus-speech

case the non-stationarity of the masker makes these effects even larger. In the

data we employ, the local (frame-based) SNR can vary by as much as 30 dB

above and below the global SNR. In the current work we attempt to capture

this variation by allowing the stream weight to vary from frame to frame.

Dynamic stream weighting techniques have previously been proposed by Meier,

Hurst and Puchnowski [13] and evaluated with non-speech maskers at SNRs

down to 8 dB, and subsequently evaluated by Glotin et al. on a large vocab-

ulary clean-speech task. However, the stream weighting schemes proposed by

Meier et al. are not appropriate for the two speaker problem. Their SNR-based

10
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 weight estimation technique employs noise spectrum estimation techniques

due to Hirsch [25]. These do not work reliably in speech plus speech situa-

tions. They also proposed a stream weight based on the entropy of posterior

phoneme and viseme probabilities. This technique is closer in spirit to our sys-

tem, but crucially such a technique would fail in the two speaker situation as

it relies on the phoneme entropy being high when the SNR is low, whereas in

fact the opposite happens: the more the SNR is reduced, the more the masker

dominates the target, and the more the acoustics become like those of a clean

speech source. In our system we attempt to overcome these problems by bas-

ing the stream weight estimate on the complete pattern of audio and visual

speech-unit probabilities, using an ANN to learn the mapping. By so doing,

information about the correlation between the audio and visual data can be

learnt – if the audio appears ‘clean’ but does not ‘fit’ with the video then the

target is being dominated by the masker and the audio stream should have a

low weight.

3 System Description

An overview of the AVASR system is shown in Figure 1 illustrating the sys-

tem’s three components: feature extraction, audio-visual HMM training and

audio-visual HMM testing.

In brief, audio and visual feature vectors are extracted from the acoustic and

visual data respectively and concatenated at a 100 Hz frame rate to form

audio-visual feature vectors (Section 3.1). The multistream HMMs are then

trained (Section 3.2). The audio and visual HMMs are first trained sepa-

rately using clean audio and visual features. After independent training the
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Fig. 1. The block diagram for the audio-visual speech recognition system.

state alignments implied by the audio and video HMMs are not necessarily

consistent. A joint AV training step is employed to make the models compat-

ible. The optimised AV HMMs are then passed to the testing stage (Section

3.3). First, the unweighted audio and video state likelihoods, P (oa|q) and

P (ov|q), are computed. An ANN is used to learn how to map these likelihoods

onto frame-based SNR estimates. Then, using a hand optimised mapping, the

frame-based SNR estimates are either i) mapped directly onto a time-varying

stream weight, or ii) first converted into an utterance level SNR (global SNR)

estimate and then mapped onto a stationary stream weight. The audio and

visual state likelihoods are then weighted and combined to produce scores for

each HMM state. The recogniser output is obtained using a standard Viterbi

decoder to find the best scoring state sequence. The details of these procedures

are described in the following sections.
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 3.1 Feature extraction

The acoustics are represented using standard MFCC features [26]. The 25

KHz acoustic signal is passed through a high pass preemphasis filter (1 −

0.97z−1). 13 MFCC coefficients are computed using 25 ms Hamming windows

at a 10 ms interval. The MFCC coefficients are supplemented by their temporal

differences computed using linear regression over a 3 frame window, to produce

a 26-dimensional feature vector.

The video features are based on a 2D-DCT representation of a rectangular

region encompassing the speakers lips extracted using a technique similar to

that of Patterson et al. [7]. For each speaker, six video frames are randomly

selected. For each frame the outer lip contour is hand labelled. These hand

segmented images are then used to train separate three-component Gaussian

mixture models (GMM) for the distribution of pixel RGB values in i) the lip

region, and ii) the region surrounding the lips. Then in each frame of a video

sequence, a Bayes’s classification of the pixels in a search region around the

estimated centre of the mouth is performed such that each pixel is labelled as

either ‘lip’ or ‘skin’ (i.e. a binary image). Opening and closing morphological

operations are then applied to remove ‘salt and pepper’ noise from the binary

image. The largest connected region bearing the ‘lip’ label is identified. Then

the centre of gravity of this region is taken as the new position of the mouth

centre. In this way the centre of the mouth can be tracked from frame to frame

(this simple tracking system is similar in principle to the CamShift algorithm

[27]). The region of interest is then taken as a rectangular box positioned at

the mouth centre with an area proportional to that of the area of the estimated

lip region. This procedure was applied to all 34 speakers in the database. The

13
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 results were checked to ensure that the box reliably tracked the lips throughout

each utterance.

For each video frame the image in the box surrounding the lips is downsam-

pled to 32 × 32 pixels, and then projected into feature space using a 2-D

DCT from which the 36 (6 by 6) low-order coefficients are extracted as visual

features. These are supplemented with their dynamic features to produce a

72-dimensional visual feature vector. Linear interpolation is then employed

to upsample the visual stream from 25 frames per second to the rate of 100

frames per second employed by the audio stream.

Note, in this work we wish to examine the issue of audio-visual integration

assuming the presence of high quality video features without regard to how

these features have been produced. The reliability of the visual features is being

ensured by training speaker specific colour models that are also specific to the

lighting conditions of the particular corpus recording session. Furthermore,

results of the feature extraction are being monitored and poorly represented

speakers are being rejected. By using artificial but high quality video features

we hope to be able to focus the study on the problem of stream integration,

without having to contend with the problems of varying reliability in the

video features. Whether such reliable video features can be produced in a real

application is a separate research question.

3.2 Audio and video HMM training

The construction of the multistream AV HMM commences by first training

independent audio and video word-level HMMs using clean audio and visual

14
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 features. These two models are then used to initialise the parameters of the

state-synchronous multistream AVASR systems described in Section 2.1. The

Gaussian mixture models (GMMs) describing the observation distributions for

the states of the audio and visual stream are taken directly from the corre-

sponding states in the independently trained models. The transition matrix

for the multistream HMM is initialised to be that of the transition matrix of

the audio HMM. Unfortunately, the portions of the signal that are presented

by corresponding HMM-states of the independently trained audio and visual

HMMs are not necessarily the same. Generally there is an audio-visual asyn-

chrony with the onset of lip movement often preceding the acoustic evidence

for the phoneme [19,21]. This lack of synchrony leads to poor performance as

the AV HMM model has been made by combining corresponding audio and

visual HMM states under that assumption of state synchrony. The parameters

of the AV HMM have to be retrained so that the audio and visual components

are compatible. As the clean speech recognition performance suggests that the

audio parameters are far more informative than their video counterparts, the

retraining stage is performed in such a way that the audio parameters and

the transition matrices (which were adopted from the audio HMM) are held

constant and only the GMMs of the visual stream are adapted.

The retraining step (shown in the block diagram, Figure 1) proceeds as follows:

The full set of AV-HMM parameters are retrained using the Baum-Welch

algorithm [28,29] and the clean data training set. During training the stream

weight is set to 0.5. After each Baum-Welch iteration, the emission distribution

for the audio component, and the state transition probability matrices, are

reset to the value they had before reestimation. This forces the AV model to

adopt the segmentation that was inferred by the audio-only model. If the audio

15
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 parameters are not held constant in this way it was found that the training

unacceptably reduces the performance of the system in clean conditions where

the video stream weight is close to 0. It is possible that the clamping of the

audio parameters would not have been necessary if a higher audio stream

weight was used during training. However, the current procedure produces a

model that performs well in both the video-only and audio-only condition,

and seems to be appropriate for the small vocabulary task employed in which

the video parameters are essentially redundant in the clean speech condition.

Fig. 2. The development of the audio-visual speech recognition performance mea-

sured on the clean cross-validation set during joint AV HMM reestimation. Accuracy

is plotted after each iteration of parameter reestimation.

After each training iteration, performance is tested on a cross-validation data

set and the procedure is repeated until the performance reaches a maximum.

Figure 2 shows the development of the recognition performance during the

joint training of the audio-visual HMMs. Performance for the clean speech

cross-validation set is plotted against the number of reestimation iterations.

When the audio and visual models are initially combined, the performance

is not as good as that obtained using the audio model alone – presumably

because of the mismatch in the audio and visual models described above. As

16
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 the retraining iterations are repeated the performance of the system improves.

The state-alignment implied by the parameters of the visual HMMs becomes

consistent with that of the audio HMMs. At a particular point – 8 iterations,

in this case – the performance reaches a peak after which performance starts

to reduce. This pattern is consistent with the effects of over-fitting. The model

trained with 8 iterations is the one that is selected to be applied to the test

set.

Interestingly, it was also noted that, in our experiments, the video-only per-

formance gained using the retrained visual stream HMMs was slightly better

than that obtained using the visual stream HMMs before joint AV training.

This can possibly be understood by analogy to supervised training – the audio

parameters, which are generally more powerful than the visual parameters, act

like labels to the unknown state indicated by the visual parameters. The fact

that there is scope for the audio parameters to help in this way may indi-

cate that the initial video-only training was not robust and suffered from poor

initialisation.

3.3 Audio visual HMM testing

The recognition process involves three stages, i) calculation of state log-likelihoods

for both the audio and visual components of the HMM, i.e. P (oa,t|q) and

P (ov,t|q) in Equation 2, ii) estimation of the stream weights, i.e. λt and 1−λt,

by first estimating either local or global SNR as a function of the state log-

likelihoods, iii) Viterbi-decoding the HMM state scores, S(oa,t, ov,t), computed

from the stream weights and the log-likelihoods according to Equation 2.

To analyse the performance of the system, two pairs of conditions (audio-
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 likelihood vs. audio-visual-likelihood and local SNR vs. global SNR) are com-

bined to give four possible sets of results to compare.

3.3.1 Audio and video state-likelihood computation

At recognition time, for each frame of observed audio and video features the

log-likelihood of each HMM state is computed. Hence for an N -state HMM,

N audio-based likelihoods and N video-based likelihoods are computed and

stored as a pair of N -dimensional likelihood vectors. For the small-vocabulary

Grid task [30] used for the current evaluations, word-level HMMs are em-

ployed with a total of 251 states (see Section 4.1 for details). Some of the

states have very similar emission distributions. For example, considering the

audio stream, the states corresponding to the phoneme /iy/ in the English

letters, E, D, and the digit, three will have similar distributions. Likewise, in

the video stream, the states corresponding to the plosive visemes at the starts

of the Grid corpus words bin and place will also be similar (see Section 4.1

for the full set of words used in the Grid task). These states will have very

similar likelihoods regardless of the observation. Hence, it is possible to reduce

the dimensionality of the likelihood vector without loss of information by rep-

resenting the likelihood for such groups of states with a single value. This is

implemented by first employing a state-clustering technique [29] to identify

similar states. The clustering is performed separately for the audio and video

based HMMs and the degree of clustering is determined by that which gives

the best recognition performance when testing on clean speech. The dimen-

sionality of the likelihood vector is then reduced by replacing the elements

corresponding to the members of a cluster with a single value computed by

averaging the likelihoods of those states. The reduced likelihood vectors are
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 then used as the basis for the stream weight estimation described in the next

section.

3.3.2 ANN-based stream weight estimation

In this work we wish to see whether the use of video information may solve a

problem specific to the speech-plus-speech case: in regions of the signal where

the target talker dominates, the patterns of log-likelihood can be similar to

the patterns seen in regions where the masker dominates – in general there is

a symmetry around 0 dB local SNR. This symmetry will exist to the extent

that the target and masker speaker fit equally well to the speech models. For

example, this problem should be particularly apparent when using speaker

independent models, but less apparent if using gender-dependent models and

mixed gender utterance pairs. Potentially, this confusion can be disambiguated

using the visual likelihoods. At positive local SNRs, the visual and audio

likelihoods will be concentrated in corresponding HMM states (e.g. if the state

representing an audio ‘f ’ has a high likelihood then the state representing a

visual ‘f ’ should also have a high likelihood). At negative local SNRs, the

audio and visual likelihoods will generally be concentrated in different HMM

states because the masker’s speech is not correlated with the target speaker’s

lip movements.

Based on these considerations, our system operates in two stages: first, SNR

is estimated by considering the match between the data and the clean speech

models, and second, SNR is mapped to stream weight using a hand optimised

mapping (see dash-dot box in Figure 1.) The difficulty arises in producing reli-

able estimates of either local or global SNR. Following previous work, the SNR
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 estimates are based on the HMM-state likelihoods. However, unlike previous

approaches which have based the estimates on specific features of the pattern

of likelihoods, such as entropy [31,32] or dispersion [32,33], we attempt the

more general approach of trying to learn the SNR directly from the complete

likelihood data using artificial neural networks (ANN). Furthermore, in our

experiments, as well as employing mappings based on the audio-only stream

likelihoods, we also consider mappings that are based on the state likelihoods

of both the audio and visual stream.

Multi-layer perceptrons (MLPs) with three layers were employed with an in-

put unit for each element of the likelihood vector and a single output unit

representing local SNR. The network employs a single hidden layer. Units in

the hidden layer and output layer have sigmoid and linear activation functions

respectively. The network is trained using conjugate gradient descent [34]. The

number of hidden units is optimised by observing the errors between the MLP

output and the target SNR over a validation data set. The MLP topology that

produces the minimum error is selected. The network is trained using either

the log-likelihoods of the audio stream, or the concatenated log-likelihoods of

both the audio and visual streams.

The sequence of MLP outputs is median smoothed to remove outlying SNR

estimates. The time-varying local SNR can either be used directly to produce

a time-varying stream weight estimate, or the local SNR estimates are first

converted into a single global SNR estimate and are then used to produce a

single utterance level stream weight. The global SNR is calculated according

to,

SNRg = 10 log10

(
I∑

i=1

Ei

1 + Bi

/
I∑

i=1

Ei · Bi

1 + Bi

)
(4)
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 where Bi = 10

SNRi
10 and Ei and SNRi represent the ith frame energy and

SNR respectively. SNRg denotes the global SNR and I is the total number of

frames in the utterance.

3.3.3 Optimising the lookup table and likelihood scaling factor

It has been documented in previous studies (e.g. [35]) that normalising the

log-likelihood of both streams to have equal standard deviation can improve

the performance of multistream based systems. This normalisation can be

expressed as,

b′vi =
Stda

Stdv

· bvi (5)

where bvi and b′vi are log-likelihoods of the ith frame of the visual stream,

log P (ov,t|q), before and after scaling respectively. Stda and Stdv denote the

original standard deviation of the log-likelihoods for the audio and visual

stream respectively. The normalisation is performed on a per-utterance ba-

sis, i.e. a separate scaling factor is computed for each utterance by pooling

log-likelihoods across all states and across all frames of the utterance.

In the current work it was further noted that, for the time-varying stream

weight system, a further increase in performance could be gained by optimising

a global scaling constant, η, applied to the normalised video stream likelihood,

b′′vi = η · Stda

Stdv

· bvi (6)

The inclusion of η allows the ratio of the standard deviation of the audio and

visual streams to be set to an arbitrary value.
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 Note that varying η will have no effect on the global SNR system. The effect

of any multiplicative constant applied to one set of likelihoods can be equally

well introduced as part of the SNR to stream weight mapping. As the mapping

is optimised for the global SNR system after the application of Equation 6,

scaling the video likelihoods will change the mapping but will not change the

recognition result. However, scaling the likelihoods does have an effect on the

performance of the local SNR-based system.

As noted above, the SNR to stream weight lookup table is dependent on

the value of η. In other words, the lookup table and scaling factor must be

jointly optimised. This joint optimisation is performed in such a way as to

maximise recognition performance for both the global and local SNR-based

systems. First, the value of η is chosen from a number of predefined values

varying from [0.35...1...25]. When η = 1 the standard deviation of both audio

and visual likelihood are the same. When η > 1 the standard deviation of

audio likelihood is greater than that of visual likelihood and vice versa. The

selected value of η and the training dataset (the same dataset that was used

for training the neural network) are both passed to the exhaustive search

block. This block performs an exhaustive search to optimise the lookup table

which maps between the global SNR and stream weight, i.e. at each value of

global SNR a series of different stream weights is tested and the stream weight

that produces the best recognition performance is recorded. This table is then

employed to lookup dynamic stream weights for recognition tests using the

same training dataset and the same likelihood scaling factor, η. The lookup

table and likelihood scaling factor, η, which lead to the best performance for

both the global SNR and the local SNR system are chosen as those to be used

for evaluation of the final test.
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 4 Experimental Results and Analysis

This section describes the evaluation of the system. It will commence by de-

scribing the audio-visual speech data employed and the specifics of the system

set-up. Following this, three sets of ASR experiments are presented. First, ex-

periments are performed using known SNR (Section 4.2). Results using either

known local or known global SNR are compared against audio-only and video-

only baselines. These results establish an upper limit for the performance of

the system. Section 4.3 presents a direct evaluation of the MLPs ability to pre-

dict SNR. These estimated SNRs are then mapped onto the stream weights

used in the second set of ASR experiments (Section 4.4). The use of SNR

estimates based on audio-only versus audio-visual state likelihoods are com-

pared. The final set of ASR experiments (Section 4.5) illustrates the impact

of errors in the estimation of the sign of the SNR. These errors result from

foreground/background ambiguity. The structure of the training/testing data

and details of the HMM-models employed which are common to all the exper-

iments are described in Section 4.1.

4.1 Database and feature extraction

All experiments have employed the audio-visual Grid corpus [30] which con-

sists of high quality audio and video recordings of small vocabulary ‘read

speech’ utterances of the form indicated in Table 1 spoken by each of 34

speakers (sixteen female speakers and eighteen male speakers). An example

sentence is “bin red in c 3 again”. Of the 34 speakers, 20 (10 male and 10

female) are employed in the experiments reported here.
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 Table 1 Structure of the sentences in the GRID corpus [30].

VERB COLOUR PREP. LETTER DIGIT ADVERB

bin blue at a-z 1-9 again

lay green by (no ‘w ’) and zero now

place red on please

set white with soon

Figure 3 shows a representative selection of lip regions extracted from the

corpus following the procedures described in Section 3.1. The upper half of the

figure shows neutral positions for 8 of the 34 speakers illustrating the very large

inter-speaker variability in lip appearance. The lower half shows a selection

of lip positions for one of the male speakers. In order to give an indication of

the high quality of the original video data the images are shown before the

downsampling to 32 × 32 pixels that occurs during feature extraction. It can

be observed that the images are evenly illuminated and have a high level of

detail.

Fig. 3. Example lip regions extracted from the Grid corpus. The images in the

top panel show eight different speakers in a resting lip position illustrating the

inter-speaker variability. The images in the lower panel are examples of a single

speaker with lips in different positions to illustrate the intra-speaker variability.
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 In all the following experiments the behaviour of two different model config-

urations has been separately considered: i) a gender-dependent configuration

in which models of male speech are used to recognise a male target masked

by a female speaker; ii) a more challenging gender-independent configuration

where gender-independent models are used to recognise a target of unknown

gender mixed with a masker that is also of arbitrary unknown gender.

In the gender-dependent condition, 3500 utterances chosen from the 10 differ-

ent male speakers (350 utterances from each speaker) have been employed to

train a set of male (gender-dependent) HMMs. A collection of simultaneous

speech mixtures was generated to be used variously for training the SNR es-

timator and evaluating the recognition system. 3100 utterances that have not

been used during training were randomly chosen from the 10 male speakers

to mix with 3100 utterances selected from 10 female speakers (310 utterances

from each speaker). A Viterbi forced alignment was used to detect the initial

and final silences which were then removed. The shorter utterance of each pair

was zero-padded to the length of the longer one. The two signals were then

artificially mixed at global SNRs of -10, 0, 5, 10, 15 and 20 dB. These mixed

utterances were then randomly divided into three sets: 1000 utterances were

employed to train the ANNs; 100 utterances were used as cross validation data

to prevent the ANNs overfitting; the remaining 2000 utterances were used for

the final recognition test set.

Preparation of the gender-independent condition was similar except 4000 ut-

terances, taken from the 10 male and 10 female speakers, were used to train a

set of gender-independent HMMs. Again 3100 simultaneous speech examples

were constructed, but this time pairs of utterances were randomly chosen from

the 20 speakers with the only restriction being that the target and masker are
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 never the same speaker.

For each utterance, the 26-dimensional MFCC-based audio feature vectors and

the 72-dimensional DCT-based video feature vectors were extracted according

to the procedures described in Section 3.1. The 98-dimensional audio-visual

feature vectors were constructed by simple concatenation of the audio and

video components.

Word-level HMMs were employed to model the 51 words in the recognition

task’s vocabulary. The models contained between four and ten states per word

determined using a rule of 2 states per phoneme. In each state both the audio

and video emission distributions were modelled using a 5-component Gaussian

mixture model with each component having diagonal covariance.

The audio and visual HMMs were trained independently using audio-only and

visual-only features. The AV model was produced from the independent audio

and visual HMM according to the procedure detailed in Section 3.

4.2 ASR Experiment 1: Known SNR

In the first experiments the known SNR is mapped onto a stream weight using

the mapping – which takes the form of a global-SNR-to-weight lookup table –

that has been previously optimised so as to maximise recognition performance

as described in Section 3.3.3. The mapping is either applied to the global SNR

to produce a single stream weight to use for all frames in the utterance, or

the mapping is applied to the local (frame-based SNRs) to produce a time

varying stream weight. In the latter case, the mapping is linearly interpolated

to handle local SNRs that do not necessarily match the six global SNRs in

26



ACCEPTED MANUSCRIPT 
 the look up table.

At the same time, the likelihoods for the audio and visual streams are scaled

appropriately for use in either the global SNR or the local SNR systems us-

ing the likelihood scaling factor optimised using the techniques described in

Section 3.3.3. It was found, in both our tasks, that the local SNR-based per-

formance was the greatest if the likelihood scaling factor was set such that

the standard deviation of audio likelihood was 7.5 times that of the visual

likelihood.

Fig. 4. A comparison of performance on the gender-dependent task for audio-only,

visual-only and audio-visual ASR. The AV system employs stream weights estimated

using known SNR. The audio-visual recognition accuracy is plotted against global

SNR and is shown for both a constant stream weight (estimated from the global

SNR) and a time-varying stream weight (estimated from the local SNR).

Figure 4 shows the results for speech recognition performance using gender-

dependent models where the line marked with the circle and the line marked

with the triangle are the traditional audio-only and visual-only speech recog-

nition performance respectively. These results are in agreement with previous
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 studies in that the visual stream produces significantly poorer results than the

audio in low noise conditions (above an SNR of 8 dB). The video-only data

is inherently ambiguous as many phonemes have similar visual appearance

[36,37]. However, the video-only result is obviously not affected by the level of

the acoustic noise and remains at 73.1% for all SNRs.

The line marked with the ‘+’ symbol and the line indicated by the ‘x’ show the

results of the multistreams model when using either the mapping from global

SNR to fixed stream weight (AV-GSNR), or local SNR to time-varying stream

weight (AV-LSNR) respectively. The audio-visual results are better than both

the audio-only and visual-only baselines across all SNRs tested. The system

using local SNRs outperforms that using global SNR in all SNR categories.

The maximum gain is at an SNR of 5 dB where the recognition accuracy of

the local SNR system is 5.8% (absolute) higher than that of the global SNR

system. This is presumably because the time-varying stream weight allows the

system to achieve better performance by exploiting the audio information in

regions where the local SNR is temporarily favourable.

Figure 5 is the same as Figure 4 except that it shows speech recognition

performance for the gender-independent task. Note that the pattern of results

is very similar, though the average performance using the gender-independent

models is clearly worse than that using the gender-dependent models. The

speech recognition performance of the visual-only system falls from 73.1% for

the gender-dependent system to 58.4% for the gender-independent system. As

before, the local SNR information provides a relative improvement over using

the single global SNR, with a maximum gain in accuracy of 9.9% occuring at

the SNR of 5 dB.
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Fig. 5. A comparison of performance on the gender-independent task for audio-only,

visual-only and audio-visual ASR. The AV system employs stream weights estimated

from known SNR. The audio-visual recognition accuracy is plotted against global

SNR and is shown for both a constant stream weight (estimated from the global

SNR) and a time-varying stream weight (estimated from the local SNR).

4.3 Evaluation of SNR estimation

The previous section demonstrated the potential of the system when using a

priori SNR values. The success of the real system will depend on the degree

of reliability with which SNR can be estimated from the likelihood streams.

This section presents a direct evaluation of this component of the system.

Separate MLPs of the structure described in Section 3.3.2 were trained for the

audio-only and audio-visual SNR estimation. The MLPs had an input unit

for each element of the likelihood feature vector. Using the state-clustering

techniques described in Section 3.3.1, it was found that the 251-dimensional

likelihood vectors could be reduced down to 54 and 18 dimensions for the audio

and video stream respectively without reducing the audio-only and video-
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 only recognition performance. Hence, it was decided that this would be an

appropriate degree of clustering to apply to the likelihood vectors to be used

in the SNR estimation. So, the audio-only MLP has 54 input units, whereas

the audio-visual MLP has 72 (54 + 18) input units. The MLPs were trained

using around 600,000 frames of data randomly drawn from the training data

set. The target SNR at each frame is computed using a priori knowledge of the

target and masker (i.e. knowledge of the clean target and masker utterances

prior to mixing). The number of units in the hidden layer was optimised using

a randomly drawn validation set consisting of 60,000 frames. In the gender-

dependent task, the best performance for the audio-only MLP was achieved

with 46 hidden units, while 30 hidden units gave best performance for the

audio-visual MLP. In the gender-independent task, 11 hidden units gave the

best performance for both audio-only and audio-visual MLPs.

The more challenging gender-independent system has been evaluated using a

selection of 100 utterances taken from the test set mixed at the range of global

SNRs used for the ASR experiments. The average magnitude of the difference

between the SNR estimate and the target was computed. Also, the global SNR

for each utterance was estimated from the sequence of local SNR estimates –

using Equation 4 – and compared to the known global SNR. Table 2 shows

the size of the local and global SNR error for both the audio-only and audio-

visual estimates. It can be seen that other than for the local SNR at 20 dB,

the audio-visual system consistently outperform the audio-only system. The

error reduction is around 5 dB for the global SNR estimate with the largest

gains at the lowest SNRs. The gain is particularly large at -10 dB. This large

increase is presumably because at -10 dB there are many frames which appear

to be clean speech but are in fact frames that are dominated by the masker. It
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 is precisely this condition that can be disambiguated by the inclusion of video

evidence.

Table 2 Average magnitude of local and global SNR estimation error (LSNR

and GSNR respectively) for estimations based on either audio-only or audio-visual

evidence. SNR estimation errors are shown in dB and are reported separately for

utterances mixed at each global SNR.

Audio-only Audio-visual

SNR (dB) LSNR GSNR LSNR GSNR

20 16.1 15.6 18.2 12.9

15 15.8 16.1 15.4 11.2

10 16.1 16.9 13.7 11.3

5 17.8 17.1 13.3 11.8

0 22.4 18.4 15.2 12.1

-10 34.7 28.9 21.5 17.1

To get an impression of what the figures in Table 2 mean in practice, Figure

6 compares the true and estimated local SNR over the course of a single pair

of male utterances mixed at a global SNR of 5 dB. It can be seen that the

audio-only system is prone to occasional regions of gross error (e.g. around

frames 95 and 125). These gross errors are largely repaired by introducing

visual information, and although the estimates are seldom very precise, the

trajectory of the estimate is a reasonable match to that of the true SNR.

It may be considered that the errors in Table 2 seem disappointingly large. It

would seem that state-likelihoods of a single frame do not contain sufficient

evidence to consistently estimate SNR – possible reasons will be discussed in

Section 4.6. However, large errors in the SNR estimation do not in themselves

mean that the ASR results will be poor. First, it should be remembered that

the SNR to stream weight mapping can be fairly flat over large SNR regions.

For example, below 0 dB the optimum audio stream weight becomes very close
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Fig. 6. The figure illustrates the quality of the SNR estimation for a typical utter-

ance pair: The upper panels show the spectrogram of a target (top) and a masker

utterance. Energy contours for the target and masker are shown for a global SNR of

5 dB. The bottom panels compares the true local SNR (dashed line) with the esti-

mates produced by the MLP using audio evidence only (solid) and audio-visual evi-

dence (dot-dash). Note that although the errors can be quite large, the audio-visual

curve shows a similar trend to the true SNR, and makes fewer gross errors than the

audio-only system.
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 to 0 and above 20 dB it is very close to 1. So a large SNR estimation error

in these regions – for example, estimating SNR as -30 dB rather than -10 –

will not necessarily have a large impact on the ASR result. Second, for some

frames, and even some utterances, there may be larger tolerance to error in

the stream weighting parameter. If the errors are not occurring in the sensitive

regions then they may not lead to recognition errors. Finally, the impact of the

errors will depend not just on their average size, but also on their distribution.

Although the average error can be large, it can be seen from Figure 6 that

there can also be regions in which the SNR is well estimated. It is possible

that a small number of poorly estimated stream weights can be tolerated by

the HMM decoder. In short, although the direct evaluation of the MLP is

informative and may be helpful in the development of system improvements,

an evaluation via ASR results is the only fair test of the system as a whole.

4.4 ASR Experiment 2: Estimated SNR – Audio vs. Audio-visual estimators

In the second set of experiments the recognition systems are retested but this

time using the SNRs that have been estimated from the likelihood data. Again,

performance of both the global and local SNR-based systems is compared.

A comparison is also made between the performance of the SNR estimates

obtained using audio-only likelihoods and that of the SNR estimates obtained

using the combined audio and visual streams (see Section 3.3.2).

Recognition accuracies for the gender-dependent task are shown in Figure 7.

Results using the neural networks trained from either audio-only likelihood or

both audio and visual likelihood are labelled with (A-*) and (AV-*) respec-

tively. Both neural networks were employed to estimate either global SNR
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Fig. 7. Recognition accuracy obtained at each global SNR when using gen-

der-dependent models and using SNR estimated from the log-likelihoods of either

the audio-only or the audio-visual stream (A or AV) and when estimating either

global or local SNR (GSNR or LSNR).

(*-GSNR) or local SNR (*-LSNR). It can be seen that the proposed stream

weighting method leads to better results than both audio-only and visual-only

baselines at all SNRs except -10 dB. However, comparison with Figure 4 in-

dicates that recognition performances using estimated global and local SNR

are worse than corresponding results using the known SNR. This figure also

shows that the recognition results achieved using estimated local SNR are bet-

ter than those for estimated global SNR at noise levels in the SNR range from

15 dB down to 0 dB, despite the fact that local SNR is harder to estimate

robustly.

Comparing the pair of local SNR results, A-LSNR with AV-LSNR, or the pair

of global SNR results, A-GSNR with AV-GSNR shows that the audio-only

and the audio-visual based estimators provide broadly similar performance.

At high noise levels – i.e. SNRs less than 10 dB – the audio-visual estimate
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 provides a small but consistent benefit.

Fig. 8. Recognition accuracy obtained at each global SNR when using gen-

der-independent models and using SNR estimated from the log-likelihoods of either

the audio-only or the audio-visual stream (A or AV) and when estimating either

global or local SNR (GSNR or LSNR).

Figure 8 shows the recognition accuracies for the gender-independent task.

As with Figure 7, Figure 8 also indicates that the performance based on the

local SNR (*-LSNR) is better than that based on the global SNR (*-GSNR)

across a range of SNRs, i.e. 15 dB down to 0 dB. However, at very low SNRs

the performance of the global SNR system is superior to that of the local

SNR system. This is possibly because although in these conditions local SNR

estimates have a significant mean-square error, they are generally unbiased, so

the per-frame errors tend to be averaged out during the global SNR estimation.

Again, comparing these results with those in Figure 5 shows that the recogni-

tion performance using the proposed stream weighting method achieves better

results than using either the audio or visual stream alone, but as expected, the

performance using estimated SNR is somewhat less than that achieved using
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 the known SNR.

Comparison of either A-GSNR with AV-GSNR, or A-LSNR with AV-LSNR

illustrates that using visual information during the stream weight estimation

leads to better recognition performance. This is as expected – the visual in-

formation is reducing the effects of ‘informational masking ’ (which is large

in the gender independent condition) and helping to disambiguate regions of

positive and negative SNR.

It can also be noted from Figure 8 that the performance of the audio stream

(A-*) is slightly better than that of the audio-visual system (AV-*) in the

high SNR region. Particularly in the local SNR case. The audio stream weight

appears to be too low, an indication that the high SNRs are being underesti-

mated.

Comparing the audio-visual (AV-*) results in Figure 8 with those in Figure

7 it is seen that the visual stream provides greater benefit in the gender-

independent task than in the gender-dependent task. This is also as expected.

In the gender-dependent task the acoustic models specifically match the gender

of the target. The fact that the models match the acoustics of the target but

not those of the gender, enables target and masker to be distinguished using

acoustics alone, i.e. there is less role for the visual information in the gender-

dependent task as there is less acoustic informational masking.

Both the above experiments show that the visual stream can help to improve

speech recognition accuracies across a wide range of SNRs. However, the per-

formance is still limited by an inability to form reliable estimate of local SNR,

particularly when the target and masker are mixed at a low global SNR.
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 4.5 ASR Experiment 3: Estimated SNR magnitude with known sign

In the simultaneous speech condition the foreground and background are

acoustically similar. So, although the magnitude of the SNR may be well esti-

mated, the sign of the SNR may be ambiguous and hard to estimate correctly.

The final experiments investigated the impact of this specific problem on the

performance of the recognition system. The audio-only and audio-visual MLPs

were retrained using the same dataset, parameters and optimising method as

in the last experiment except that the signs of the local SNR targets were

removed. During the testing stage, the estimated SNR magnitude for each

frame is combined with the a priori SNR sign obtained using knowledge of

the unmixed signals.

Figure 9 and Figure 10 show the results for gender-dependent task and the

gender-independent task respectively.

Considering first the gender-dependent system, it was noted that the results

obtained using the audio-only estimator were not significantly different from

those obtained using the audio-visual estimator (because they are not signif-

icantly different only the AV estimator results are shown in Figure 9). Fur-

thermore, it can be noted that the results are close to those obtained by the

known-SNR system (Figure 4). This would suggest that the poor performance

seen in the previous systems that estimated both the sign and magnitude of

the SNR (Figure 7) are arising due to an inability to estimate the sign. Fur-

thermore, if only the magnitude of the SNR needs to be estimated then the

audio likelihoods are sufficient. It also suggests that the previous small advan-

tage provided by the visual stream when estimating both sign and magnitude
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Fig. 9. Comparison of speech recognition performance obtained at each global SNR

when combining the estimated SNR magnitude and the a priori SNR sign when

using either global or local SNR (*-GSNR or *-LSNR) and gender-dependent mod-

els. Whether the SNR magnitude is estimated with audio-only likelihoods or au-

dio-visual likelihoods makes no significant difference, so for the sake of clarity only

the results using the audio-visual estimate are shown.

(Figure 7) is due to an improvement in the estimation of the sign of the SNR

rather than its magnitude. This is expected as ambiguity in the sign of the

SNR arises due to ambiguity in the determination of which source is the target

and which the masker – it is precisely to reduce this ambiguity that the visual

information is introduced

Figure 10 shows results for the gender independent task. As before, the struc-

ture of this figure is the same as that in Figure 8. It can be seen that the

behaviour of the results is similar to that of the gender-dependent task (Fig-

ure 9) in that they are now very similar to the results obtained in when the

SNR sign and magnitude are both known (Figure 5). The large advantage

of using visual information for SNR estimation that is observed in the real
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Fig. 10. Comparison of speech recognition performance obtained at each global SNR

when combining the estimated SNR magnitude and the a priori SNR sign when

using either audio-only likelihoods or audio-visual likelihoods (A-* or AV-*) and

when using either global or local SNR (*-GSNR or *-LSNR) and gender-independent

models.

system (Figure 8) is again reduced when the true SNR sign is known a priori.

Again, this suggests that the main contribution of visual formation is in the

estimation of this sign.

4.6 Discussion

4.6.1 The multiple roles of visual information

Considering the audio-visual speech recognition task, it is possible to identify

three different levels at which the visual information may be employed. First,

visual information may play an early role in mitigating the effects of energetic

masking. For example, there may exist multimodal mechanisms that are simi-

lar to the auditory mechanisms that operate to provide comodulation masking
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 release [38]. Second, audio visual integration may operate at a later stage to

reduce the impact of informational masking (IM), that is, to help the listener

selectively attend to the target while ignoring the masker. This particular role

of visual speech has been the focus of recent perceptual studies, such as the

work of Helfer and Freyman [6] and Wightman, Kistler and Brungart [39].

Finally, visual information may play a role in the speech unit classification

task that underlies speech recognition. This is the role that has been central

in the great majority of audio-visual ASR research to date. At this level, the

visual information is useful to the extent that it provides extra features to

help discriminate between partially masked, and otherwise ambiguous, speech

sound classes.

A major contribution of the current work lies in emphasising the role of vi-

sual information as a cue for reducing ‘informational masking’, i.e. the 2nd

of the three roles described above. In the current system, as in the study of

Helfer and Freyman [6], the visual speech signal is helping to discriminate

between the acoustic foreground and background, providing greatest benefit

in the situation where the target and masker are most greatly confusable.

In many everyday listening situations the release from informational masking

afforded by the visual signal may be very significant. Brungart has demon-

strated large informational masking effects on small vocabulary recognition

tasks when the masker and target have the same gender and have a target-

masker ratio in the range -3 dB to +3 dB [16]. For conversational speech where

the perplexity of the recognition task is greater there is perhaps even more

scope for target/masker confusion. A mechanism that allows the listener to

reliably extract the target from the background is invaluable.

From the earliest audio-visual speech perception studies it has been noted that
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 the audio-visual error rate is usually significantly lower than both the audio-

only and video-only error rates. This is usually explained in terms of the

complementarity of the phonetic/visemic cues. Some speech units are highly

discriminable acoustically, while others are highly discriminable visually. How-

ever, this result may also be in part due to the role visual features play in

reducing IM. Even if visual features carried no visemic information, and video-

only ASR performance was no more than chance, it would still be possible for

them to help drive auditory attention toward the acoustic foreground hence

improving AV performance over that achieved using audio alone. Schwartz,

Berthommier and Savariaux [40] have demonstrated exactly this point us-

ing carefully controlled intelligibility tests in which target words are visually

identical and are masked by a speech background. This observation raises in-

teresting possibilities. For example, consider a visual signal that is so low in

quality (e.g. having a very poor resolution) that by itself it affords no more

than chance recognition performance. It is possible that this signal may use-

fully reduce IM. In terms of the current system, this would be a case where

the visual signal is sufficient to improve the stream weight estimation, but not

to provide any visemic information at the classification stage.

4.6.2 Improving audio-visual stream weight estimation

Comparison of the results achieved using known SNR (Figures 4 and 5) with

those achieved using estimated SNR (Figures 7 and 8) highlights the fact that

performance of the system is limited by the extent to which SNR can be esti-

mated. Good performance can be achieved if the models are sufficiently specific

to the target (e.g. mixed genders and gender-dependent models), but when the

background and foreground are statistically similar local SNR estimates are
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 poor. In this condition visual information can help the SNR estimate (Figure

8) but, even then, AV recognition performance falls below that achieved using

video alone at SNRs below 0 dB. The poor estimates can be largely overcome

by averaging over an utterance to produce a global SNR, but this sacrifices

the responsiveness of the time-varying stream weight which Figures 4 and 5

demonstrate to be important for the speech plus speech task.

The current SNR estimation technique bases its judgements on a single frame

of data. To be effective the audio-visual system needs to judge whether the

audio and visual states correspond. Despite the use of temporal difference fea-

tures to capture local audio and visual dynamics, there may often be periods

where there is insufficient context to reliably judge audio-visual correspon-

dence. Many audio speech units have the same visual appearance, so a mask-

ing phoneme may differ from the target phoneme, but still be consistent with

the target’s lip movements. The temporal granularity is too small. A potential

solution would be to train the MLP using feature vectors formed by concate-

nating several frames of data. There is some precedence for such an approach

in speech recognition. Feature vectors that include even up to half a second

of context have been shown to be useful in improving phonetic discrimination

[41]. However, a temporal window that is too long, if not employed with care,

may lead to oversmoothing of the rapidly varying SNR, reintroducing the com-

promise that exists in the per-utterance SNR system employed in the current

work. Therefore experiments would be needed to carefully optimise the win-

dow design, and the compression applied to the larger likelihood vector that

would be generated by a larger window.

A further shortcoming of the existing system is that the local SNR to stream

weight mapping is performed using a table that has been optimised for global

42



ACCEPTED MANUSCRIPT 
 SNR. Training a mapping using global SNR is convenient as each SNR point

in the mapping can be independently optimised using a separate training set.

However, it is not clear that this mapping should produce the best performance

for a local SNR-based system. Thus, the results achieved with known local

SNR, which are presented as an upper limit of the performance given perfect

SNR estimation, could potentially be improved upon if an SNR to weight

mapping more suitable for local SNR were found. One approach would be to

use a parameterised curve to estimate the mapping. For example, given that

stream weight is likely to be monotonically increasing with increasing SNR,

and that is is constrained to lie in the range -1 to +1, a sigmoid might be

a reasonable approximation. If the number of parameters is small enough it

would be possible to locate the curve that maximises the ASR performance

by a straightforward search of the parameter space.

4.6.3 Relation to other robust ASR approaches

The standard multistream approach to AV-ASR – of which the current work

is an example – treats the acoustic feature vector as a single monolithic stream

that has a single reliability weight. For the combination of additive noise and

cepstral features employed in the current system this may be appropriate.

Additive noise, whether broadband or narrowband, will effect the entire cep-

strum. However, if the acoustics are represented in the spectral domain, then

additive noise, at any particular time, will generally have a local effect. In the

same way that some time frames may be relatively free of the masker, even

in time frames that are heavily corrupted, some frequency bands will contain

more masker energy than others.
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 Many robust ASR techniques have been proposed to take advantage of local

spectro-temporal regions of high SNR that can be found in noisy speech sig-

nals: multi-band systems have been developed which apply separate reliability

weights to independent frequency bands [42]; soft-mask missing data system

generalise this idea by attempting to judge the SNR at each spectro-temporal

point [43]; speech fragment techniques attempt to piece together a partial

description of the clean speech spectrum from reliable spectro-temporal frag-

ments [44]. Such techniques might make a better starting point for developing

robust audio-visual ASR systems. For example, using both acoustic and visual

features to estimate multi-band reliability weights, or missing data soft-mask

values would be a possibility.

Another general approach to robust ASR is to attempt to remove the noise

from the mixture prior to recognition. For example, spectral subtraction tech-

niques attempt to remove estimates of the noise spectrum in order to recover

the clean speech spectrum [45,46]. This class of techniques may be considered

complementary to the multistream approach described in this paper. Any tech-

nique that removes noise from the mixture to leave a cleaner version of the

speech representation could be added to the current system as a preprocessing

stage.

A common approach to the simultaneous speaker task is to exploit continu-

ities in the speech spectrum, (primarily pitch), to track and separate the target

and masker speakers. This was the strategy of several systems competing in

the Pascal Speech Separation Challenge held at Interspeech 2007 2 . However,

2 Details of the Speech Separation Challenge can be found at

http://www.dcs.shef.ac.uk/ martin/SpeechSeparationChallenge.htm
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 apart from in exceptional circumstances such approaches are normally unable

to offer a single unambiguous interpretation of the acoustic scene. For example,

pitch tracks of competing sound sources can cross in ambiguous ways, or they

may contain breaks leading to problems of sequentially grouping discontinu-

ous pitch track segments. Pitch tracking is however sufficient to locate local

regions of spectral-temporal dominance (e.g. vowel formants). So a potential

strategy could be to first use such tracking technique to form a number of

spectro-temporal acoustic fragments of unknown origin, and then to use both

audio and visual evidence to judge the source identity of each spectro-temporal

fragment. The target versus masker ambiguities that arise in the current sys-

tem when considering a single acoustic frame would be much reduced when

considering an extended spectro-temporal speech fragment. Integration of au-

dio and visual features at this level is likely to lead to systems with greater

robustness.

5 Conclusion

This paper has examined the problem of applying multistream audio-visual

speech recognition techniques in a challenging simultaneous speaker environ-

ment using both gender-dependent and gender-independent hidden Markov

models. It has been shown that in this condition, either a static stream weight

parameter based on a global SNR estimate, or a dynamic stream weight pa-

rameter based on a local SNR estimate can be used to successfully integrate

audio and visual information. The dynamic stream weight parameter leads

to better overall performance. A technique for estimating either the local or

global SNR from audio and visual HMM state likelihoods has been presented.
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 Despite a lack of precision in the SNR estimates, the estimates were suffi-

ciently reliable to lead to recognition results that are better than both the

audio-only and visual-only baseline performance across a wide range of SNRs

in both a gender-dependent and a gender-independent task.

Experiments using a priori SNR estimates have shown that a time-varying

stream weight based on local SNR has the potential to greatly outperform a

per-utterance stream weight based on a per-utterance SNR. The performance

difference was most marked for global SNRs of around 0 dB. However, in

practise, the difficulty of making accurate local SNR estimates means that

real systems cannot match this performance level. Particular problems occur

due to the difficulty in distinguishing between the acoustic foreground and

background in local regions. Basing SNR estimates on a combination of both

audio and visual likelihoods went some way to reducing this problem.

The paper has demonstrated the potential for a time-varying stream-weighting

approach for AV speech recognition in multispeaker environments. However, it

has also highlighted the difficulty in achieving results that match up to those

that can be achieved using a priori SNR information. Possibilities for improv-

ing SNR estimation have been discussed, as have possibilities for combining

the current approach in a complementary fashion with existing robust ASR

approaches.

Finally, and most importantly, the paper has highlighted the potential for

using visual information at multiple stages of the recognition process. In par-

ticular, there appears to be great potential for developing the use of visual

speech information in the separation of acoustic sources, and in the disam-

biguation of the foreground/background confusions that occur when speech
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 targets are mixed with acoustically similar maskers. More complete, multi-

level integration of visual information into recognition systems may lead to

future AV-ASR technology that comes closer to exhibiting the robustness of

human speech processing.
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