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Abstract

The traditional power spectral subtraction algorithm is computationally simple to implement but
suffers from musical noise distortion. In addition, the subtractive rules are based on incorrect
assumptions about the cross terms being zero. A new geometric approach to spectral subtraction is
proposed in the present paper that addresses these shortcomings of the spectral subtraction algorithm.
A method for estimating the cross terms involving the phase differences between the noisy (and
clean) signals and noise is proposed. Analysis of the gain function of the proposed algorithm indicated
that it possesses similar properties as the traditional MMSE algorithm. Objective evaluation of the
proposed algorithm showed that it performed significantly better than the traditional spectral
subtractive algorithm. Informal listening tests revealed that the proposed algorithm had no audible
musical noise.

l. INTRODUCTION

The spectral subtraction algorithm is historically one of the first algorithms proposed for noise
reduction [1,2], and is perhaps one of the most popular algorithms. It is based on a simple
principle. Assuming additive noise, one can obtain an estimate of the clean signal spectrum by
subtracting an estimate of the noise spectrum from the noisy speech spectrum. The noise
spectrum can be estimated, and updated, during periods when the signal is absent. The enhanced
signal is obtained by computing the inverse discrete Fourier transform of the estimated signal
spectrum using the phase of the noisy signal. The algorithm is computationally simple as it
only involves a single forward and inverse Fourier transform.

The simple subtraction processing comes with a price. The subtraction process needs to be
done carefully to avoid any speech distortion. If too much is subtracted, then some speech
information might be removed, while if too little is subtracted then much of the interfering
noise remains. Many methods have been proposed to alleviate, and in some cases, eliminate
some of the speech distortion introduced by the spectral subtraction process (see review in
[3, Ch. 5]). Some suggested over-subtracting estimates of the noise spectrum and spectral
flooring (rather than setting to zero) negative values [4]. Others suggested dividing the
spectrum into a few contiguous frequency bands and applying different non-linear rules in each
band [5,6]. Yet, others suggested using a psychoacoustical model to adjust the over-subtraction
parameters so as to render the residual noise inaudible [6].
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While the spectral subtraction algorithm can be easily implemented to effectively reduce the
noise present in the corrupted signal, it has a few shortcomings. The spectra obtained from the
subtractive rules may contain some negative values due to errors in estimating the noise
spectrum. The simplest solution is to set the negative values to zero to ensure a non-negative
magnitude spectrum. This non-linear processing of the negative values, however, creates small,
isolated peaks in the spectrum occurring randomly in time and frequency. In the time-domain,
these peaks sound like tones with frequencies that change randomly from frame to frame and
introduce a new type of “noise”, often called musical noise [4]. In some cases, the musical
noise can be more annoying to the listeners than the original distortions caused by the
interfering noise. Other factors contributing to the musical noise phenomenon include the large
variance in the estimates of the noisy and noise signal spectra and the large variability in the
suppression function.

The derivation of the spectral subtraction equations is based on the assumption that the cross-
terms involving the phase difference between the clean and noise signals are zero. The cross-
terms are assumed to be zero because the speech signal is uncorrelated with the interfering
noise. While this assumption is generally valid since the speech signal and noise are statistically
uncorrelated, it does not hold when applying the spectral subtraction algorithm over short-time
(20-30 ms) intervals. Consequently, the resulting equations derived from spectral subtraction
are not exact but approximations. Several attempts have been made to take into account or
somehow compensate for the cross terms [7-9] in spectral subtraction. These studies, however,
focused on improving speech recognition performance rather than improving speech quality.
The study in [9] assessed the effect of neglecting the cross terms on speech recognition
performance. Significant degradations in performance were noted at SNR levels near 0 dB, but
not at high SNR levels (> 10 dB).

In the present paper, we take a new approach to spectral subtraction based on geometric
principles. The proposed algorithm is based on a geometric approach (GA), and we will
henceforth refer it to as the GA algorithm. It addresses the two aforementioned major
shortcomings of spectral subtraction: the musical noise and invalid assumptions about the cross
terms being zero. The approach taken is largely deterministic and is based on representing the
noisy speech spectrum in the complex plane as the sum of the clean signal and noise vectors.
Representing the noisy spectrum geometrically in the complex plane can provide valuable
insights to the spectral subtraction approach that might otherwise not be obvious. For one, such
geometric viewpoint can provide upper bounds on the difference between the phases of the
noisy and clean spectra [10]. It will also tell us whether it is theoretically possible to recover
exactly the clean signal magnitude given the noisy speech spectrum, and under what conditions.
Finally, it will inform us about the implications of discarding the cross terms in as far as
obtaining accurate estimates of the magnitude spectrum.

This paper is organized as follows. Section Il provides an overview of the power spectral
subtraction algorithm and the assumptions made. Section 111 presents the proposed geometric
algorithm, Section 1V provides the implementation details, Section V presents the simulation
results and finally Section VI presents our conclusions.

IIl. POWER SPECTRAL SUBTRACTION: BACKGROUND AND ERROR
ANALYSIS

Let y(n) = x(n) + d(n) be the sampled noisy speech signal consisting of the clean signal (x)n
and the noise signal (d)n. Taking the short-time Fourier transform of (y)n, we get:
Y (wi) =X (wp) +D (wi) (1)
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for wx =2nk/Nand k=0,1, 2, ---, N — 1, where N is the frame length in samples. To obtain the
short-term power spectrum of the noisy speech, we multiply Y(wy) in the above equation by
its conjugate Y*(w). In doing so, Eq. (1) becomes:

[Y(w) P = 1X(wr) P+ID(r) P+X(wr) - D* (i) +X () D(wy)

= |X(wp) P+ID(wr) P42 [X(wi) | ID(wg) | cos (6,(k) — 6,,(k)) @)

The terms | D(wy) |2, X(wy) - D *(0k) and X*(wy) - D(wk) cannot be obtained directly and are
approximated as E{|D ()2}, E{X"(o)-D(wi)} and E{X(cy)- D (o)}, where E [] denotes the
expectation operator. Typically, E{|D(wy)[?} is estimated during non-speech activity, and is
denoted by |D(wy)[2. If we assume that d(n) is zero mean and uncorrelated with the clean signal
x(n), then the terms E{X"(y) - D(w)} and E{X(ey)- D*(w)} reduce to zero. Thus, from the
above assumptions, the estimate of the clean speech power spectrum, denoted as [X(wy)|, can
be obtained by:

o 2 2 — 2

IX () | =1Y (i) I = D () | 3
The above equation describes the so called power spectrum subtraction algorithm. The
estimated power spectrum |X(ey)|2 in Eq. (3) is not guaranteed to be positive, but can be half-

wave rectified. The enhanced signal is finally obtained by computing the inverse Fourier
transform of |X(cwy)| using the phase of the noisy speech signal.

Equation (3) can also be written in the following form:

= 2
IX (wi) [ =H? () 1Y (wp) I 1)
where
_ Dol
Hlwo = 1= e
_ yk)-1
- y(k) (5)

is the gain (or suppression) function and y(k) = |Y (w)|%/|D(w)[2. Assuming that the cross terms
in (2) are zero, H(wy) is always positive taking values in the range of 0 < H(wy) < 1.

The cross terms, however, are not necessarily zero and can in some instances be extremely
large relative to | Y(cwy)|2. To assess the error introduced by Eq. (3) when the cross terms are
left out, we rewrite Eq. (2) as follows:
Y@ P = X (@) P+ID (@) PHAY (@p)
—~ 2
= Y (wp) | +AY (wi) 6)

where ()2 = | X(ok)[? + |D(w)[? and A Y(wy) denotes the cross-terms. From the above

equation, we can define the following relative error introduced when neglecting the cross terms:
2 < 2
Y o) [ = [V (@ |1 |AY ()|

ek) =
¥ o) [ Y o’ @

Note that the above cross-term error g(k) is normalized with respect to the noisy power spectrum
of speech. Also, it is assumed in Eq. (7), that the noise spectrum | D(wy) | is known exactly.
Consequently, the cross-term error £(k) underestimates the true error incurred when in practice
the noise spectrum needs to be estimated via a voice activity detection algorithm or a noise
estimation algorithm.

Of great interest is finding out how this relative error g(k) varies as a function of the SNR at
frequency bin k. The answer to this question will tell us about the range of SNR values for
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which the assumption that the cross terms are zero are valid. That is, it will tell us the conditions
under which the power spectral subtraction rule (Eqg. (3)) is accurate.

It is easy to show that the normalized cross-term error g(k) can be written in terms of the SNR
(in bin k) as follows (see proof in Appendix A):

2 \JE ) cos (6, (k) — 6, (k)
14& (k) +2 \JE () cos (8, (k) — 6, (k) ®)

e(k)=|

where &(K)=[X(y)|%/|D(wy)[? denotes the true SNR in bin k. As expected, e(k) = 0 when cos
(0x(k)— 6p(K)) = 0, consistent with Eq. (2). From Eqg. (8), we can see that g(k) — 0 when &(k)
— oo or when &(k) — 0. Hence, asymptotically as the SNR — *oo, it is safe to make the
assumption that the cross terms are negligible. For SNR values in between, however, the cross-
term error g(K) is not negligible and it can be quite large reaching a maximum when (k) = 1
(i.e., SNR=0 dB).

Figure 1 plots (k) as a function of £(k) (expressed in dB) for fixed values of cos (0x (k)—
0p(K)). It is clear from this figure that (k) is large for a wide range of §(k) values centered
around 0 dB, and particularly within the [-20, 20] dB range. Outside this range, (k) is
extremely small. The error £(k) depends on the value of cos (8x(k)— 06p(K)), but is more sensitive
to the values of cos (0x(k)— 6p(k)) for SNR values near 0 dB. The error is largest when cos
(0x(k)— 0p(k)) <0and &(k) = 1 (i.e., SNR = 0 dB), with g(k) = o when cos (0x(k)— 0p(k)) = -1
and (k) = 1. The error is considerably smaller when cos (8x(k) — 6p(k)) > 0. In fact, it is
bounded in the range 0 < (k) < 0.5, with the upper bound attained when cos(6x(k) — 6p(k)) =
1and g(k) = 1.

As it is evident from Figure 1, the cross-term error g(k) is large particularly when the SNR is
near 0 dB. Unfortunately, this is the spectral SNR that most speech enhancement algorithms
operate. To illustrate this, we show in Figure 2 and Figure 3 histograms (normalized) of (k)
obtained using real speech data embedded at low (5 dB SNR) and high (15 dB SNR) global
SNR levels (estimated using the rms levels of speech and noise) in multi-talker babble and car
noise respectively. These figures also show the corresponding histograms of (k) (in dB) for
the same data and SNR levels (note that the histograms show &(k) for all frequency bins). A
total of 30 sentences (> 1 min of speech) taken from the NOIZEUS corpus [11] was used for
the computation of these histograms. As shown in Figure 2 and Figure 3, the instantaneous
SNR &(k) has a wide distribution which spans the range of —40 dB to +40 dB, with a peak near
0 dB in both types of noise and SNR levels. Hence, the &(k) = 0 dB value is quite common
even at high SNR levels. Examining the distribution of the cross-term error g(k) (right column
in Figure 2 and Figure 3), we note that it spans for the most part the range of [0, 0.5], with a
small portion exceeding 0.5. As mentioned earlier (see also Eq. (7)), the error g(k) is expressed
relative to the value of |Y(wy)[? and is not absolute. So, if for instance, (k) = 0.5, then the
magnitude of the cross terms will be 50% of the value of |Y(wy)[2, i.e., it will be quite significant.
The fact that the distribution of g(k) is not concentrated at zero (see right panels in Fig. 2)
provides further support to our hypothesis that the cross terms in Eq. (2) are not necessarily
zero and should not be ignored.

To summarize, the above error analysis suggests that the implicit assumption in Eq. (3) that
the cross terms are zero is not valid for spectral SNR (i.e., (k) values near 0 dB, which is the
region wherein most speech enhancement algorithms operate. Consequently, large estimation
errors can result from the approximation given by Eq. (3). The conclusion that the cross-term
error g(k) is largest for SNR levels near 0 dB is consistent with the analysis in [9]. Significant
degradations in speech recognition performance were noted in [9] for SNR levels near 0 dB,
but not at high SNR levels (> 10 dB). Next, we present a new algorithm that makes no
assumptions about the cross terms in Eq. (2) being zero.
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lll. A GEOMETRIC APPROACH TO SPECTRAL SUBTRACTION

From Eq. (1) we note that the noisy spectrum Y(wy) at frequency wy is obtained by summing

two complex-valued spectra at frequency my. As such, Y(wy) can be represented geometrically
in the complex plane as the sum of two complex numbers, X(wy) and D(wy). This is illustrated
in Figure 4 which shows the representation of Y(wy) as a vector addition of X(wy) and D(wy)

in the complex plane.

Equation (5) gave the commonly used gain function of power spectrum subtraction algorithms
that is obtained after making the assumption that the cross terms are zero or equivalently that
the phase difference [0x(k) —0p (k)] is equal to + 7t/ 2. Next, we derive the general gain function
for spectral subtraction that makes no assumptions about the value of the phase difference
between the noise and clean signals. We first rewrite Eq. (1) in polar form as:

ayejoY:axejOX +aDej00 (9)

where {ay, ay, ap} are the magnitudes and {6y, 8y, 6p} are the phases of the noisy, clean and
noise spectra respectively. We henceforth drop the frequency index k for convenience.

Next, consider the triangle shown in Figure 5. Using the Law of Sines or equivalently the right

triangle A B CwithAB 1 BC, we have:
AB=a, sin (6, — 6,)=a, sin (6, — 6,)
= a’sin*(6, — 6,)=a’ sin*(6, — 6,)
= a%[l —cos (6, — 0,)1=a2[ 1 — cos *(6, — 6,)]
= a)z/(l - C%D):a)%(] - c)z(n) (10)

where cyp = cos(fy — 0p) and cxp = cos(fx — Op). From the above equation, we can obtain
the new gain function:

H Ay l_cf'[)
“ g, \1-¢2
Y XD (11)

The above gain function is always real and positive (i.e., Hga > 0) since the terms cyp and
cxp are bounded by one. Unlike the power spectral subtraction gain function (Eqg. (5)) which
is always positive and smaller (or equal) than one, the above gain function can be larger than
one if | cyp|<| cxpl- Eq. (11) is one of many equations that can be derived using trigonometric
principles. Alternative equations can be found in [3, Ch. 5].

It is worthwhile noting that the above suppression function reduces to the suppression function
of the power spectral subtraction method (i.e., Eq. (5)) if cxp =0, i.e., if the signal and noise
vectors are orthogonal to each other. Statistically, if the signal and noise are orthogonal to each
other (i.e., E[X(wk)-D(wk)] = 0) and are zero mean, then they are also uncorrelated [12, p. 211].
To prove that the above suppression function reduces to that given in Eq. (5) when cxp =0, it
is easy to see from Figure 4 that when the noise and clean signal vectors are orthogonal to each
other (i.e., cxp = 0), then:

a, (12)

Substituting the above equation in Eq. (11), we get Eq. (5). In view of the above analysis, we
can say that the suppression rule given in Eq. (11) is the true and exact suppression rule for
spectral subtractive algorithms if no assumptions are made about the statistical relationship
between the signal and the noise. In contrast, the suppression rule given in Eq. (5) is merely
an approximation since it assumes that cyp =0, i.e., that the clean signal and noise vectors are
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orthogonal to each other over short-time intervals (20-30 ms). Multiplication of the noisy signal
by the suppression function given in Eg. (5) would not yield the clean signal magnitude
spectrum even if we had access to the true noise magnitude spectrum (i.e., |[D(w)|). In contrast,
multiplication of the noisy magnitude spectrum (ay) by the suppression function given in Eq.
(11) would yield exactly the clean signal magnitude spectrum (i.e., ay).

The aforementioned suppression function relies on the estimation of the phase differences
between the noisy (or clean) and noise signals. That by itself, however, is a difficult task and
no methods currently exist to determine the values of these phases accurately. One possibility
is to derive and make use of explicit relationships between the phases of noisy and noise signals
using trigonometric principles. In doing so, we can solve explicitly for cyp and cxp yielding
(see proof in Appendix B):

2,2 _ 2
. _a,ta, —ay
YD~
2a,a, (13)
2_ 2 _ 2
_ay a, —a,

- 2a,a, (14)

Clearly, the main obstacle in utilizing the above equations to estimate the phase differences
between the signal and noise signals is their dependency on the clean signal amplitude, which
we do not have. We can however derive an alternative equation for cyp and cxp by dividing

both numerator and denominator of Equation (13) and Equation (14) by ai. In doing so, we
get:
_y+l =&

C
T2y (15)

y-1-¢&

o 2y=1-¢
W 24E (16)

where the variables y and & are defined as follows:

. 9
y: =
612

D 17)

P
II>
QlQ
SIS )

(18)

Note that the terms y and & are the instantaneous versions of the posteriori and a priori SNRs
respectively used in MMSE algorithms [13,14]. Substituting Equation (15) and Equation (16)
into Eqg. (11), we get the following expression for the suppression function in terms of y and

&

(19)

The above suppression function can in principle be larger than one. Much like the gain function
of MMSE-based enhancement algorithms [13], the above gain function depends on two
parameters, y and &. To better understand the dependency of these two parameters on
suppression, we plot in Figure 6, Hga(&, v) as a function of (y — 1) for fixed values of &. The
suppression curves of the MMSE algorithm [13] are superimposed for comparison. It is clear
that the gain functions of the GA algorithm follow for the most part the pattern of the MMSE
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gain functions. For values of (y — 1) smaller than 5 dB, the gain functions of the GA approach
follow closely the MMSE gain functions, and deviate thereafter. For values of (y — 1) greater
than 5 dB, the gain functions of the GA algorithm become increasing more suppressive than
the MMSE gain functions.

Figure 7 plots Hga(&, ) as a function of & for fixed values of (y — 1). The Wiener gain function
(e.g., Hy =&/ (¢ + 1)) and the MMSE gain function are also plotted for comparison. Overall,
for the same value of (y — 1), the GA gain function follows closely the MMSE gain function
for small and negative values of (y — 1). The GA gain function, however, becomes more
suppressive than the MMSE gain function for values of (y — 1) larger than 5 dB, consistent
with the suppression curves in Figure 6.

The fact that the gain function of the GA algorithm has similar characteristics as those found
in the MMSE algorithms, suggests that it inherits the properties and behavior of the MMSE
algorithm [15]. Much like in the MMSE algorithm, the posteriori parameter y acts as a
correction parameter that influences attenuation only when & is low. The correction, however,
is done in an intuitively opposite direction. As shown in Figure 6, strong attenuation is applied
when vy is large, and not when vy is small as one would expect. This counter-intuitive behavior
is not an artifact of the algorithm, but it is in fact useful when dealing with low-energy speech
segments. In segments containing background noise, the y values are in some frames
unrealistically high, and those frames are assigned an increased attenuation. This over-
attenuation is done because the suppression rule puts more “faith” in the & values, which are
small in those frames compared to the y values. Since the attenuation in the MMSE algorithm
is primarily influenced by the smoothed value of the a priori SNR, the attenuation itself will
not change radically from frame to frame. Consequently, the musical noise will be reduced or
eliminated altogether. In contrast, the standard power spectral subtraction algorithm depends
on the estimation of the posteriori SNR which can change radically from frame to frame. As
aresult, musical noise is produced. In summary, it is the smoothing behavior of the “decision-
directed” approach in conjunction with the MMSE suppression rule that is responsible for
reducing the musical noise effect in the MMSE algorithm [15]. Since the GA algorithm inherits
the behavior of the MMSE algorithm, we expect little or no musical noise with the GA
algorithm.

We should point out here that there are two main differences between the proposed GA
algorithm and the MMSE algorithm. First, the GA algorithm is deterministic and is not derived
using any statistical model. The clean magnitude spectrum is treated as unknown, but
deterministic. Consequently, no assumptions are made about the statistical distributions of the
speech and noise Fourier transform coefficients, as done in the MMSE algorithm. Second, the
parameters y and § are instantaneous values and not long-term, statistical average values.
Consequently, different techniques need to be employed to estimate these parameters, and these
techniques are discussed next. For completeness, we assess and compare the performance of
the proposed GA algorithm using both instantaneous and long-term average measurements of
yand &.

IV. IMPLEMENTATION

The gain function given in Eq. (19) is the ideal one and in practice it needs to be estimated
from the noisy observations. The implementation of the gain function requires estimates of y
and &. According to Eq. (17) and (18), y and & are instantaneous values and not long-term,
statistical average values as in [13]. Note that in [13], these two terms were defined as

&y = E [aﬁ] /E [ai]and Yu £ a/E [ai]. Therefore, the methods proposed in [13] can not be
used to estimate y and & in Eq. (19). Alternative methods are thus proposed in this paper for
estimating y and &.
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To estimate &, we propose to use present as well as past spectral information. More specifically,
we can make use of the enhanced magnitude spectrum obtained in the past frame and
approximate & as:

£ (A0 =@ (A - 1k) [@ (A~ 1,k) 20)

where & (4:) indicates the estimate of & at frame A and bin k, and the subscript I indicates
instantaneous measurement. The above estimate of the instantaneous value of £ utilizes only
(immediate) past spectral information. We can also utilize the relationship between the true
values of y and & (see Appendix B, Eq. (29)) and get an estimate of & based on spectral
information available in the present frame. More precisely, as shown in Appendix B,

§=y+1 =2~y - ¢y, and after exploiting the fact that cyp is bounded, we can use the lower

P 2
bound of & (see Appendix B, Eq. (29)) as its estimate, i.e., §(A)=(VY(4.k) = 1) 'where y
(A,k) denotes the estimate of y at frame A and bin k. Combining the two estimates of & derived
using past and present spectral information, we get:

_ _la, -1} 2
fu,k)_a-[m +(1-a) (k) -1) o

where o is a smoothing constant, and a, (A.k) s the estimate of the magnitude spectrum of the
noise. The above equation is a weighted average of past and present SNR instantaneous
measurements, and the smoothing constant controls the weight placed on past and present
spectral information. Note that Eq. (21) gives an average estimate of & utilizing past and present
spectral information. On that regard it is similar to the decision-directed approach used in
[13]. If o = 1, then Eq. (21) reduces to the instantaneous estimate of & given in Eq. (20). Both
estimates (instantaneous and average) of & will be explored and evaluated.

For y(A,k), we use the following instantaneous estimate:

a, (k)
@, (LK)

Y, (k) :(
(22)

where @5 (4,k) js an estimate of the noise spectrum obtained using a noise-estimation algorithm.
We considered smoothing and limiting the values of y(A,k) in order to reduce the rapid
fluctuations associated with the above computation of y(),k) and also to limit the over-
suppression of the signal for large values of y(A,k) (see Figure 6). We consider smoothing y
(k) as follows:

Vo (LK) =B -7, (A= 1k)+ (1 = B) - min [y, (1,k),20] 23)

where e (4:k) s the smoothed estimate of ¥-¥; (4. is given by Eq. (22) and B is a smoothing
constant. The min operation was used to limit the value of ¥, (k) to a maximum of 13 dB (=
10 log 1p(20)) and avoid over-attenuation of the signal (see Figure 6). Note that when =0 in
Eq. (23), we get Ya (44 =Y, (4.k). We found that the smoothing of y(1k) improved the
estimate of @x (4.) in the mean-square error sense (see experiments in the next section). Note
also that Eq. (21) gives an average estimate of y utilizing past and present spectral information.
If =0, then Eq. (23) reduces to the instantaneous estimate of y given in Eq. (22). Both estimates
(instantaneous and average) of y will be explored and evaluated.

The above estimated values of y and & (i.e., Yos (k) and &(\,k)) are used to approximate the
gain function in Eqg. (19). In principle, the transfer function given in Eq. (19) is based on
instantaneous values of y and &. In practice, however, the true values of y and & may vary
drastically from frame to frame and it is extremely challenging to estimate those values with
high degree of accuracy and reliability. Furthermore, we can not compute the true value of &
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as we lack access to the clean signal spectrum. We are thus forced to rely on past estimates of
the clean signal spectrum to approximate &. Given that y and & can be estimated using either
instantaneous (e.g., Eq. (22)) or average estimates (e.g., Eq. (23)), we will explore both
possibilities. In doing so, we will make use of two transfer functions. The first transfer function,

denoted as o, @’7'), is based on the instantaneous measurements of y and & given by Eq.

(22) and Eq. (20) respectively. The second transfer function, denoted as Ha (f’%‘*), is based
on the long-term average measurements of y and & given by Eq. (23) and Eq. (21) respectively.
Both transfer functions will be explored and compared.

As mentioned earlier, Hga (5,7) (as well as o1 (6761) O Hay, (€1:Y1)) can be larger than one.

From Eqg. (2) we see that Hga (§,y) > 1 when cxp < 0. But, as shown in Figure 1, when cxp <
0, the normalized cross-term error g(k) can be large, particularly if £~ 0 dB. This suggests that
the cross-term error g(k), and possibly the magnitude spectrum estimation error, can be large

when e (5’7’04) >1 For that reason, we decided to limit the value of Ha («5’704) to be always
smaller (or equal) to 1.

To summarize, the proposed GA algorithm involved the following steps, which were applied
to each frame of noisy speech:

Step 1) Using the FFT, compute the magnitude spectrum ay (A,k) of the noisy signal at
frame A.

Step 2) Using a noise estimation algorithm (e.g., [16]), update the power spectrum of the
noise signal, i.e., update [@, (16)]*

Step 3) Compute Ys1 (4:K) according to Equation (23) and Equation (22).

Step 4) Use Yo (4:K) to estimate &(),k) according to Eq. (21). Floor &(A,k) to &min for values
of &(\,k) smaller than &min, Where Emin = —26 dB.

Step 5) Estimate the gain function He (.E?G,\) using Eq. (19) and limit itto 1.

Step 6) Obtain the enhanced magnitude spectrum of the signal by:
@, (4k) =H,, (£7,,) - ay (k).

Step 7) Compute the inverse FFT of @y (4.k) - 0 \here By(\k) is the phase of the
noisy signal, to obtain the enhanced speech signal.

The above algorithm uses the transfer function Hg, (fim) that is based on smoothed
measurements of y and & (Eq. (21) and Eq. (23)). The algorithm which uses the transfer function
He,, (& ’71), based on instantaneous measurements of y and &, can be implemented in a similar
fashion by setting g = 0 in Eq. (23) and a = 1 in Eg. (21). We will be referring to the

instantaneous version of the GA algorithm as the GAi algorithm.

The proposed GA algorithm was applied to 20-ms duration frames of speech using a Hamming
window, with 50% overlap between frames. The overlap-and-add method was used to
reconstruct the enhanced signal. The smoothing constants used in Equation (21) and Equation
(23) were set to a = 0.98 and B = 0.6 respectively. These constants were chosen based on
listening experiments as well as experiments assessing the mean-square error between the
estimated and true magnitude spectra (see evaluation in next section). For the GAi algorithm,
these constants were set to o= 1 and p = 0. The minimum statistics noise estimation algorithm
[16] was used for estimating/updating the noise spectrum.
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V. EVALUATION

We performed two types of evaluation of the proposed GA algorithm. In the first evaluation,
we computed the mean square error (MSE) between the estimated (enhanced) magnitude
(@) and the true (clean) magnitude spectra (ay). This evaluation was done for both the proposed
algorithm and the traditional spectral-subtraction algorithm which assumes that the cross-terms
are zero. This comparison will tell us whether the MSE value will be reduced when the cross-
terms are taken into account. Small values of MSE, however, might not necessarily imply better
speech quality as the MSE is not a perceptually motivated error criterion [14]. For that reason,
we conduct a second evaluation in which we compare the quality of enhanced speech by the
proposed and standard spectral subtractive algorithms using objective measures.

A. MSE evaluation
The MSE between the true and estimated magnitude spectra is defined as:
M—-1N-1

I _
MSE=~— D7 (a4 (1k) - @, ()
A=0 k=0 (24)

where ay(A,k) is the true (clean) magnitude spectrum at frame A and bin k, @x (4:&) is the
estimated magnitude spectrum (following enhancement), M is the total number of frames in a
sentence, and N is the number of frequency bins.

The MSE was computed for the proposed algorithm and compared against the corresponding
MSE values obtained by the traditional spectral subtraction algorithm. To assess whether
smoothing y(A,k) as per Eq. (23) provided any significant reductions in MSE, we also conducted
another set of experiments in which we varied the smoothing constant  (Eq. (23)) from 0 to
1. A value of p = 0 corresponds to no smoothing of y(),k). The smoothing constant o was fixed
ata=0.98 (this was based on prior experiments demonstrating that best performance is obtained
with high values (close to one) of a. As an additional comparison, we included the evaluation
of the GAi algorithm in which f = 0 and a = 1. In fairness, we also implemented the basic
spectral subtractive algorithm given in Eq. (5), and replaced y(k) in Eq. (5) with its smoothed
version given in Eq. (23). We refer to this algorithm as SSsm. Thirty sentences from the
NOIZEUS database [11] were used for the MSE evaluation of the proposed algorithm. The
NOIZEUS sentences! were sampled at 8 kHz, and were corrupted by white noise at 0, 5 and
10 dB SNR levels. The results are given in Table 1.

It is clear from Table 1 that the proposed GA algorithm produced significantly smaller MSE
values than the traditional spectral subtraction algorithm, and the difference was particularly
evident at low SNR levels (0 and 5 dB) with = 0.98. The MSE values obtained by the two
algorithms at 10 dB were comparable, with the traditional spectral subtraction algorithm
yielding slightly smaller MSE values. Best performance (smaller MSE values) was obtained
with the GA algorithm with p = 0.98, clearly indicating that the smoothing of y(A,k) helped
reduce the MSE. The benefit brought by smoothing y(A,k) in the SS algorithm was relatively
small. Worst performance (larger MSE values) were obtained by the GA algorithm when y and
& were not smoothed (i.e., when instantaneous measurements were used) suggesting that
inclusion of past and present spectral information can be beneficial. The outcome that the SS
algorithm performed reasonably well and its performance was comparable to that obtained by
the GA algorithm is consistent with the earlier observation (see Figure 1) that the cross-terms
are negligible and can be ignored when the SNR is high. In stark contrast, the cross-terms can
not be ignored when the SNR is near 0 dB (but can be ignored for extremely low SNR, i.e.,

Lavailable from: http://www.utdallas.edu/~loizou/speech/noizeus/
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SNR — —0). In brief, the derived gain function (Eg. (19)) remains robust even at low SNR
levels (0-5 dB), whereas the SS gain function (Eq. (5)) becomes inaccurate at low SNR levels
(0 dB).

B. Quality evaluation

The proposed geometric approach (GA) algorithm was evaluated using the PESQ and log
likelihood ratio (LLR) objective measures, which were found in [17,18] to correlate moderately
high with subjective judgments of speech quality. Thirty sentences from the NOIZEUS
database [11] were used for the objective evaluation of the proposed algorithm, with half of
the sentences produced by 3 female speakers and the other half produced by 3 male speakers.
The NOIZEUS sentences were sampled at 8 kHz, and were corrupted by multi-talker babble,
street, and car noise taken from the AURORA database [19] at 0, 5 and 10 dB SNR levels. The
sentences were also corrupted by white noise at 0, 5 and 10 dB SNR levels.

The PESQ [20] and LLR objective measures [17] were used to assess speech quality. The PESQ
measure obtained a correlation of p = 0.67 in predicting overall quality of noise-suppressed
speech [17,18], and the LLR measure obtained a correlation of p = 0.61 . Higher correlations
were obtained with the PESQ (p = 0.89) and LLR (p = 0.85) measures in [18] after averaging
objective scores and ratings across the various noise conditions. The segmental SNR measure,
which is often used to evaluate the performance of speech enhancement algorithms, performed
very poorly (p = 0.31) in [17,18] and was therefore not used in this study.

For comparative purposes, we evaluate the performance of the traditional spectral subtraction
(SS) algorithm implemented using Eq. (5), and implemented using the smoothed version of
(k) given in Eq. (23). We refer to the latter implementation as the SSsm algorithm. In fairness,
we used the same smoothing constant 8 as in the GA algorithm. For completeness, and for
reference purposes only2, we report the performance of the traditional MMSE algorithm [13]
along with an implementation based on a smoothed version of y(k) (i.e., Eq. (23)), which we
refer to as the MMSEsm algorithm. The decision-directed approach was used in the
implementation of the MMSE algorithm to estimate & with o = 0.98. All algorithms were tested
using two different values of B (B = 0.6 and = 0.98) and with o = 0.98. The latter value of B
was found (see Table 1) to yield smaller MSE values than the traditional spectral subtraction
algorithm.

The objective results are given in Table 2 for the PESQ measure and in Table 3 for the LLR
measure. High values of PESQ indicate better performance, while high values of LLR indicate
poor performance. The GA algorithm, implemented with = 0.6, performed significantly and
consistently better than the spectral subtractive algorithms (SS and SSsm) in all conditions.
Statistical analysis (paired samples t-tests) confirmed that the differences were statistically
significant (p<0.05). The GA algorithm performed relatively worse when implemented with
B =0.98, particularly at the low-SNR levels. This suggests that the GA algorithm is sensitive
to the value of p used for estimating and updating y(A,k). A value of B = 0.6 provides roughly
equal weight to the use of past and spectral information when estimating y(A,k). In contrast,
the performance of the spectral subtractive algorithm was not affected significantly when y
(A,k) was smoothed. The GAi algorithm, based on instantaneous measurements of y and &,
performed the worst in all conditions. This is not surprising given that the instantaneous values
of y and & vary dramatically from frame to frame causing in turn high levels of musical noise
[15] resulting from rapid fluctuations (over time) of the gain function. This outcome suggests

2The objective evaluation of the MMSE algorithm is only included in this paper for completeness; as it shares some of its properties with
the GA algorithm (see Section I11). The MMSE algorithm can not be directly (or fairly) compared with the GA algorithm as it is based
on difference principles, designed using different assumptions and belonging to a different class of algorithms, namely the statistical-
model based algorithms.
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that the smoothing of y and & is necessary to obtain high quality speech free of musical tones.
The pattern in performance was very similar when the algorithms were evaluated using the
LLR objective measure (Table 3).

The performance of the MMSE algorithm was significantly better (p<0.05) than the GA
algorithm in most conditions, except in babble at 0 and 5 dB SNR (see Table 2). Smoothing
of y in the MMSE algorithm yielded a decrement in performance in all conditions (see
MMSEsm entries in Table 2). Computationally, the GA algorithm has the advantage over the
MMSE algorithm in that its implementation only requires a few multiply and add operations
(see Eqg. (19)). The MMSE algorithm, on the other hand, requires implementations of Bessel
functions or alternatively requires sufficient storage for two-dimensional (y and &) look-up
tables. Computationally simple implementations of the MMSE algorithm were reported in
[21].

Figure 8 shows spectrograms of an example sentence processed by the subtractive (SS and
SSsm) and GA algorithms (B = 0.6) in 5 dB SNR (babble). It is clear that the GA algorithm
yielded significantly lower residual noise than the spectral subtractive algorithms. Informal
listening tests confirmed that the GA-enhanced speech signal had a smoother background with
no audible musical noise, at least for the SNR levels and types of noise tested. As mentioned
earlier (see Section I11), we believe that the GA algorithm does not have musical noise because
it inherits some of the properties of the MMSE algorithm. In contrast, the spectral subtractive
algorithms yielded large amounts of musical noise3.

VI. CONCLUSIONS

The present paper presented a new approach (GA algorithm) to spectral subtraction based on
geometric principles. Unlike the conventional power spectral subtraction algorithm which
assumes that the cross terms involving the phase difference between the signal and noise are
zero, the proposed algorithm makes no such assumptions. This was supported by error analysis
that indicated that while it is safe to ignore the cross terms when the spectral SNR is either
extremely high or extremely low, it is not safe to do so when the spectral SNR falls near 0 dB.
A method for incorporating the cross terms involving phase differences between the noisy (and
clean) signals and noise was proposed. Analysis of the suppression curves of the GA algorithm
indicated that it possesses similar properties as the traditional MMSE algorithm [13]. Objective
evaluation of the GA algorithm showed that it performed significantly better than the traditional
spectral subtraction algorithm in all conditions. Informal listening tests and visual inspection
of spectrograms revealed that the GA algorithm had no audible musical noise (at least for the
SNR levels tested) and had a smooth and pleasant residual noise. The main conclusion that can
be drawn from the present study is that in the context of spectral subtraction algorithms, phase
estimation is critically important for accurate signal magnitude estimation. In fact, it is not
possible to recover the magnitude spectrum of the clean signal exactly even if we had access
to the noise signal. Access to phase information is needed.

Appendix A

In this appendix, we derive the expression for the cross-term error (k) given in Eq. (8). After
dividing both sides of Eq. (2) by |Y(w})[? we get:
X (@p) P+ID (wp) IP |

1Y () P (25)

ek)y=|1-

3Audio demonstrations of example sentences enhanced by the GA algorithm can be found at:
http://www.utdallas.edu/~loizou/speech/demos/. MATLAB code is available from the second author.
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After substituting |Y (cy)|? from Eq. (2) in the above equation, and dividing both numerator and
denominator by ([X(w)|2 + |D(w)[%) we get:
1

ek)=11- I

VE®)
I+ #5712 cos (6 (k) — 6, (k)

(26)

where &(k) £ |X(wy/%/|D(wyl?. Finally, after computing the common denominator and
simplifying the above equation, we get Eqg. (8).

Appendix B

In this appendix, we derive the expressions given in Equation (15) and Equation (16) for cyp

and cyp. It is easy to show that the following relationships hold:

2

2, 2
a,=a,+a, —2a,a, cos (6, —6,) ©7)

2

_ 22
a,=a +a,+2aya, cos (0 —6,) (28)

Eq. (27) was derived by applying the Law of Cosines to the triangle shown in Figure 4. Eq.
(28) was derived in the main text and is copied for completeness from Eq. (2). After dividing

both sides of the above equations by ai and using the definitions of y and & given in Eq. (17)-
(18), we get:
E=y+1- ZW‘CYD (29)

y=£+1+42 \/2 “Cyp (30)
After solving for cyp and cxp in the above equations, we get Equation (15) and Equation (16).

It is worth noting here that after using the fact that cyp and cxp are bounded (e.g., [cyp| < 1),
we can use Eq. (29) to derive the following bounds on &:

(V¥ - 1) < &< (V1) 31)

Restricting & to lie within the above range, ensures that |cyp| < 1 and |cxp| < 1.
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Figure 1.

Plot of the normalized cross-error term (k) as a function of spectral SNR, &, in dB for different
values of cyp, where cxp £ cos(0x — 0p).
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Figure 2.

Plots on the left show histograms of & (in dB) for speech embedded in multi-talker babble at
5 and 15 dB SNR. Plots on the right show histograms of the normalized cross-error term g(k)
for speech embedded in multi-talker babble at 5 and 15 dB SNR.
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Figure 3.

Plots on the left are histograms of & (in dB) for speech embedded in car noise at 5 and 15 dB
SNR. Plots on the right are histograms of the normalized cross-error term g(k) for speech
embedded in car noise at 5 and 15 dB SNR
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Figure 4.
Representation of the noisy spectrum Y(wy) in the complex plane as the sum of the clean signal

spectrum X(wy) and noise spectrum D(wy).
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Figure 5.
Triangle showing the geometric relationship between the phases of the noisy speech, noise and
clean speech spectra.
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Figure 6.

Plot of the suppression curves (solid lines) of Hga (&,y) as a function of (y — 1) for fixed values
of &. The corresponding suppression curves (dashed lines) of the MMSE algorithm [13] are
superimposed for comparison.
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Plots of the suppression curves of Hga (€,7) as a function of & for fixed values of (y — 1). The
corresponding suppression curves (dashed lines) of the MMSE algorithm [13] and Wiener

algorithm are superimposed for comparison
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Figure 8.

Spectrograms of the IEEE sentence “Wipe the grease off his dirty face” (sp05.wav in NOIZEUS
database) in 5 dB SNR babble processed by the proposed GA algorithm (bottom panel €), the
spectral subtractive algorithm (panel ¢) and smoothed spectral subtractive algorithm (panel d).
Top two panels show the spectrogram of the sentence in quiet and in noise respectively.
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