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Abstract

The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based
automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look
at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers devel-
oped with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and
valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer
videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that
there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion
recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and
valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-
reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves
performance.
! 2012 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, there has been a growing amount of
research focusing on the automatic recognition of emotion
in several communication modalities, e.g., face, body
posture, gesture, speech etc. The ability to automatically
recognize emotion in speech opens up many research
opportunities and innovative applications. For conversa-
tional agents, the assessment of the emotional state in the
speech of its human interlocutor is one of the key elements

in achieving a humanlike conversation – vocal communica-
tion is a very natural way for humans to communicate.
Further, with the increasing amount of archived speech
and audio data available, the need for useful search queries
grows. Searching through speech data by the emotion of
the speaker is seen as a novel useful feature. Call centers
have also shown interest in automatic emotion recognition
systems which can be used for automated quality monitor-
ing of incoming calls of customers. As illustrated with these
examples, talking is one of the most natural interaction
channels for people and as such, many innovative voice-
based applications can be targeted. Hence, we focus here
on the vocal modality.

We can identify several major challenges in the affect
recognition research community. How to obtain reliable
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emotion annotations of spontaneous emotional behavior is
one of these major challenges. The automatic recognition
of non-prototypical emotions is another one. This paper
addresses these two issues by exploring self-reported emo-
tion ratings, i.e., annotation of emotions by the person
who has undergone the emotion him/herself, and by adopt-
ing continuous arousal and valence dimension to model
non-prototypical emotions. For these purposes, spontane-
ous audiovisual data was collected through a gaming sce-
nario. Using this data, recognizers were trained with
acoustic and lexical features in order to recognize scalar
values of arousal and valence.

There is a vast amount of literature available on the
modeling of emotional speech (e.g., Williams and Stevens,
1972; Banse and Scherer, 1996) in the speech community.
The studies described in this literature usually assume emo-
tion models and descriptions adopted from psychology
research. Stemming from Darwin and made popular by
researchers such as Ekman and colleagues, the most basic
and classical approach to emotion modeling is the use of
discrete emotion categories. Ekman (1972) and Ekman
and Friesen (1975) applied this approach to the description
of facial expressions and proposed six basic emotions (‘the
big six’) that can be assumed universal: happiness, sadness,
surprise, fear, anger, and disgust. As an alternative to this
theory based on discrete emotions, a dimensional theory of
emotion is available which was first described and applied
by Wundt (1874/1905) and Schlosberg (1954). In the
dimensional approach, emotions are described as points
in a multidimensional space. The two main dimensions in
this space are the valence dimension (pleasantness ranging
from positive to negative) and the arousal dimension
(activity ranging from active to passive). Sometimes, a
third dimension is used which usually represents the dom-
inance or power dimension. As a third alternative to dis-
crete and dimensional theories of emotion, several
researchers (Scherer, 2010) have developed a cognitive
approach to emotion. For example, Scherer and colleagues
have proposed an appraisal model called the Compoment
Process Model. The main assumption here is that an emo-
tion is a reaction (e.g., physiological, feeling) to certain
antecedent situations and events that are being evaluated
at the cognitive level by the human. In other words, the
appraisal (i.e., the evaluation process) of a situation deter-
mines how the human is going to react/response to this sit-
uation. Componential models emphasize the link between
the elicitation of emotion and the response, and as such,
these models account for the variability of different emo-
tional responses to the same event that may occur.

One of the attractions of the dimensional approach is
that it allows for more flexibility and generality since it pro-
vides a way of describing emotions without the use of lin-
guistic descriptors that can be language or culture
dependent. Finding category labels to capture every shade
of emotion, that frequently occur in everyday daily life, has
appeared to be difficult (e.g., Cowie and Cornelius, 2003;
Douglas-Cowie et al., 2005). Traditionally, speech-based

emotion recognition studies have concentrated on the rec-
ognition of discrete emotion categories containing stereo-
typical emotions. Some of the relevant work include e.g.,
Batliner et al. (2000), Dellaert et al. (1996), Polzin and Wai-
bel (1998), Petrushin (1999), Devillers et al. (2003), Kwon
et al. (2003), Ang et al. (2002), Lee et al. (2002), Liscombe
et al. (2003), Nwe et al. (2003), Schuller et al. (2003) and
Ververidis and Kotropoulos (2005). Typical emotion cate-
gories in these studies are happy, anger, and neutral. Good
overviews of these emotion recognition studies can be
found in (Cowie et al., 2001; Ververidis and Kotropoulos,
2006). More recently, an increasing number of studies that
adopt a dimensional approach to emotion recognition can
be observed. Representing (everyday) emotion on a contin-
uous scale could better capture different shades of emotion.
Hence, describing emotion by their coordinates in a multi-
dimensional space offers an attractive alternative, especially
for computational modeling of emotion. Usually, two
dimensions are sufficient to cover the emotions under inves-
tigation, where one dimension represents valence and the
other dimension represents arousal. Russell (1980) and
Schlosberg (1954) have shown that a third dimension,
i.e., dominance or power, accounts for only a small propor-
tion of the variance. Hence, the majority of studies have
only targeted arousal and valence modeling of emotion.
However, one should keep in mind that some information
is always lost when mapping to a 2-dimensional emotion
space. We give an overview of studies adopting a dimen-
sional approach to emotion recognition in Section 2.

In a slower tempo, progress is also being made in design-
ing procedures for annotation of spontaneous emotion cor-
pora which lead to higher levels of agreement among
human labelers and which better reflect the spontaneous
nature of the emotion. Emotion annotation is a complex
and hard process performed by humans of which the
results can have significant impact on the system’s perfor-
mance. Emotion recognition systems need somewhat con-
sistent emotion-labeled data for training and testing.
However, it is well-known that the perception of emotion
is to a certain extent subjective and person-dependent. In
order to deal with this person-dependency and to reach a
certain consensus on a specific emotion label, it is common
to use several annotators and apply majority voting, i.e.,
the emotion class with the most ‘votes’ from the annotators
wins (e.g. Batliner et al., 2006). For continuous dimen-
sional annotations, the continuous ratings are usually aver-
aged among the human labelers, see Mower et al. (2009),
Truong et al. (2009) and Grimm et al. (2007a). In addition,
in order to deal with ‘mixed’ or ‘blended’ emotions, which
are not uncommon in spontaneous expressive interaction,
multi-layered annotation schemes have been proposed
(see Devillers et al., 2005). Less attention has been paid
in emotion recognition studies to investigate how the anno-
tations from different types of annotators compare to each
other. For instance, one could compare annotations from
trained emotion labelers to annotations from unexperi-
enced/naı̈ve emotion labelers. Another option is to let the
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recorded subject annotate his/her own emotions that were
felt during an event and compare these to annotations from
outsiders who did not participate in this ‘event’. Hypothe-
sizing that people are better decoders of their own emo-
tions and in pursuing the ultimate goal of automatically
analyzing a person’s felt emotions, it is worthwhile to
investigate how ground truth annotations derived from
self-report differ from annotations made by other persons,
and how these self-reported ratings influence the perfor-
mances of the recognizers trained.

In this paper, we explore how ‘self-annotations’ and
‘observer-annotations’ differ from each other and how
the recognizers trained on these annotations differ from
each other. We adopt a dimensional description of emotion
and represent emotions as points in the 2-dimensional
arousal-valence space. First, we review previous studies
related to our work. In Section 3, we present the data
(TNO-GAMING database) that was collected through a
gaming scenario and we describe how the ‘self-annotations’
were acquired. Section 4 describes how the ‘observer-anno-
tations’ were added to the corpus and provides compari-
sons between the obtained ‘self’ and ‘observer-
annotations’. In Section 5, we present the recognizers and
we report and discuss the results of the classification exper-
iments. Comparative analyses are provided between the
performance of the ‘self-annotation’-based and ‘observer-
annotation’-based recognizers. Finally, we summarize and
discuss the most important findings in Section 6.

2. Related work

A number of studies in the field of affective computing
have adopted a dimensional approach to emotion recogni-
tion. Here, we restrict ourselves mainly to speech-based
studies. For an overview that includes visual and physiolog-
ical cues, the reader is referred to Gunes et al. (2011) and
Nicolaou et al. (2011). In previous research, the 2 dimen-
sions arousal and valence were usually discretized (see
e.g., Truong and Raaijmakers, 2008) or used to divide the
2-dimensional space into 4 quadrants of Positive-Active,
Positive-Passive, Negative-Active and Negative-Passive
emotions. Tato et al. (2002) mapped emotion categories
such as angry, happy, neutral, sadness and boredom onto
three discrete levels of arousal. Yu et al. (2004) classified
user engagement in social telephone conversations between
friends along arousal and valence scales that were discret-
ized into 5 levels. Kim et al. (2005), Zeng et al. (2005) and
Wöllmer et al. (2009) classified emotions in the 4 emotion
quadrants of the arousal-valence space. Instead of classify-
ing emotions on discretized scales of arousal and valence,
some studies have taken up the challenge to classify emo-
tions on continuous scales of arousal and valence. In the
context of media content analysis, Hanjalic and Xu (2005)
combined video and audio features to model continuous
arousal and valence curves for affective video content anal-
ysis which allows users to search for funny or thrilling video
clips. Grimm and colleagues (Grimm et al., 2007a,b) used

fuzzy logic and Support Vector Regression to model contin-
uous dimensions of arousal, valence, and dominance, and
applied these methods to a database of dialogues recorded
from a German TV Talk show. Giannakopoulos et al.
(2009) did something similar and used k-Nearest Neighbor
rule to model continuous affect in speech from movies. With
the aim to build sensitive artificial agents, Wöllmer et al.
(2008) and Eyben et al. (2010) addressed the task of contin-
uous affect modeling in human-machine interaction by
introducing classification techniques that take into account
previous emotion observations. They proposed to use Long
Short-Term Memory Recurrent Neural Networks which
are able to model long-range dependencies between succes-
sive observations. Although progress is being made in terms
of performance which is illustrated in the performance
scores of the studies described, one still needs to interpret
these scores in relation to the way the ‘ground truth’ anno-
tations are obtained. It is still rather unclear how the perfor-
mance is affected by the way the ‘ground truth’ annotations
are obtained.

Several methods have been proposed to process contin-
uous affect annotations from multiple coders in order to
reach a consensus annotation. The most common method
is to average the annotations from multiple coders, either
with or without a form of normalization/scaling, as is per-
formed in e.g., Mower et al. (2009), Eyben et al. (2010),
Giannakopoulos et al. (2009) and Wöllmer et al. (2008).
A weighted average score was proposed by Grimm et al.
(2007a) by introducing evaluator-dependent weights, tak-
ing into account the subjectivity of each coder. The concept
of weighting coders is also applied by Nicolaou et al. (2010)
who introduced automatic methods to derive and segment
ground truth annotations from multiple continuous anno-
tions. In addressing the question how to obtain a ground
truth annotation from multiple continuous annotations,
less attention has been paid to whether ‘auto-coders’, i.e.,
coders who code their own emotions, are also suitable cod-
ers and whether they are different from coders that anno-
tate others’ emotions. Under the hypothesis that people
are better decoders of their own emotions, the labels
derived from ‘self-annotation’ will better reflect the
intended emotions. Auberge et al. (2006) explored this so-
called ‘auto-annotation’ method – the subjects were asked
to label what they felt rather than what they expressed –
but no conclusive results were reported. The ‘self-annota-
tion’ method seems to be complicated by the finding that
most vocal cues are not likely to be related to speakers’
internal states, at least in the case of happiness (Biersack
and Kempe, 2005). Busso and Narayanan (2008) compared
‘self-assessments’ of emotions to assessments made by out-
side observers and found that there is a mismatch between
the expression and perception of emotion. In Truong et al.
(2008), similar findings were reported: significant differ-
ences were found between ‘self-assessments’ of emotion
and assessments from outside observers. In the current
study, we extend the work by Busso and Narayanan
(2008) and Truong et al. (2008, 2009) and develop affect
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recognizers trained with ‘self-annotations’ or ‘observer-
annotations’ and investigate how their performances relate
to each other. First, we present the audiovisual database
collected for this study.

3. The TNO-Gaming corpus: a corpus of gamers’ vocal and
facial expressions

Since there is currently no emotional speech corpus
available with continuous emotion annotations made by
the subjects themselves and outside observers, we recorded
our own corpus. We collected an audiovisual emotion cor-
pus by inviting people to play a videogame.1

3.1. Audiovisual recordings

Seventeen males and eleven females with an average age
of 22.1 years (2.8 standard deviation) participated in the
gaming experiment. Participants were recruited in pairs
by asking each participant to bring along a friend as team
mate since we expect that people are more expressive when
they are playing with friends rather than strangers (see
Ravaja et al., 2006). A compensation was paid to all partic-
ipants. Fifteen participants were relatively experienced
gamers, while thirteen participants hardly ever or never
played videogames.

Speech recordings were made with high quality close-talk
microphones that were attached near the mouth to minimize
the effect of crosstalk (speech from other speakers) and other
background noise. Recordings of facial expressions were
made with high quality webcams (Logitech Quickcam
Sphere) which allows for multimodal modeling of emotion.
The webcams were placed at approximate eye-level on top of
the monitor such that a frontal view of the face was captured
under an angle that was acceptable for reliable automatic
facial recognition. Further, lighting and background condi-
tions were controlled by adjusting the light when needed and
by placing evenly colored dark curtains behind the partici-
pants to avoid clutter and noise in the background. Noldus’
FaceReader (by VicarVision, see Den Uyl and Van Kuilen-
burg, 2005, an automatic face recognition software applica-
tion) was used to test the quality of the video recordings
under these environmental settings and conditions. Video
stills of the hardware setup in the room that was used for
the gaming sessions are shown in Fig. 1. The game content
itself was also stored by capturing the frames (1 per second)
of the video stream during game play.

At the beginning of the gaming experiment, the partici-
pants received a general instruction (15 min), a training ses-
sion to get acquainted with the game (10 min) and
instuctions and a training session for the rating task (both
20 min each). During the training sessions, the subjects
could try out the game and the annotation tool; the

experimenter was also present to address comments and
questions. Subsequently, the first session began with a
game session (20 min), followed by a questionnaire and a
break (25 min), and the annotation tasks which included
a ten-minute break (50 min). For the second session, this
process was repeated (excluding the training sessions) in
the afternoon after a long break of 40 min.

In summary, three streams of information were
recorded: (1) vocal behavior via close-talk microphones,
(2) facial behavior via webcams, and (3) context informa-
tion via screenshots of the videogame-content.

3.2. Eliciting emotions

Videogames have previously succesfully been used as an
emotion elicitation method, see for example, works by
Johnstone et al. (2005), Wang and Marsella (2006) and
Yildirim et al. (2005). In our study, the participants played
a multiplayer first-person shooter videogame called Unreal
Tournament 2004, developed by Epic Games. The game-
mode ‘Capture the flag’ was selected: two teams play
against each other and the goal is to capture each other’s
team flag as many times as possible.

Our goal was to evoke a broad range of different emo-
tions. We employed several strategies to evoke these emo-
tions and to stimulate vocal and facial expressive
behavior and interaction:

1. Use a multiplayer game where each participant had to
bring a friend as team mate. By bringing a friend, we
expect to stimulate more interaction as was suggested
in Ravaja et al. (2006).

2. Bonuses were granted to the winning team, and the team
with ‘best collaboration’. We wanted to motivate the
subjects to be vocally active – hence the subjects were
told that a bonus would be granted to the team with
‘best collaboration’ which was intentionally not clearly
defined and only served as a method to stimulate the
subjects to talk to each other.

Fig. 1. The hardware setup and the room where the gaming sessions took
place.

1 The gaming sessions and recordings took place at TNO in Soesterberg,
The Netherlands.
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3. The videogame was manipulated by generating surpris-
ing events in the game, for example, sudden deaths, sud-
den appearances of monsters, and hampering keyboard
or mouse controls, were inserted in the game (at an
approximate rate of one event per minute).

3.3. Rating procedure

After each game session, the participants watched their
own videos recorded and judged their own emotions in
two different ways: one based on emotion categories and
the other one based on emotion dimensions. In addition,
the videostream of the game itself was also provided as
context information, next to the video recorded, so that
all three information streams recorded were available to
the participants during rating. We asked the participants
to recall what they were feeling during playing. The partic-
ipants rated the running video and could not pause or
rewind the video. If we had allowed this, the rating task
would last much longer and the raters would perhaps
‘over-analyse’ their own emotions. Under the assumption
that ‘self’-raters know the intentions of their own emotions
expressed best, we hence decided not to allow the raters to
pause or rewind the video. An alternative annotation
method would have been to interrupt the game each time
we wanted ratings over the past course of time. However,
this would severely interrupt the flow of the game and
could influence the interaction and feeling of involvement
of the players. Prior to the rating task, the participants
had received a training of 20 min duration.

3.3.1. Categories: event/category-based
Participants were asked to select and de-select emotion

labels whenever they felt the emotion that they experienced
at that moment in the game: in other words, they had to
click to select an emotion label to mark the beginning of
the corresponding emotion and click again on the same
label to de-select and to mark the ending of that emotional
event. The twelve emotion labels from which the partici-
pants could choose are based on the ‘Big Six’, (universal
basic emotions, Ekman, 1972) emotions and are supple-
mented with typical game-related emotions as described
in Lazarro (2004). We expected that these labels, shown
in Table 1, would cover most of the emotions that could
occur during gaming. The selection of multiple emotion
labels at the same time was allowed, which made it possible
to have ‘mixed’ emotions. The participants also had the

option to come up with their own emotion label that was
not listed in the alternatives, but it appeared that the par-
ticipants had not used this option.

3.3.2. Continuous emotion dimensions: continuity/dimension-
based

The participants were also asked to rate their emotions
felt on two emotion scales namely the arousal scale (active
vs passive) and the valence scale (negative vs positive). We
believe that these 2 dimensions will capture the majority of
emotions occurring in a gaming context (see also Russell,
1980; Schlosberg, 1954). As opposed to the category-based
approach where the participants had to mark the beginning
and ending of an emotional event, the participants now had
to give ratings on emotion scales running from 0 to 100
(with 50 being neutral) each 10 s separately (thus not simul-
taneously as is done with some annotation tools such as
Feeltrace (Cowie et al., 2000). Each 10 s, an arrow
appeared on the screen to signal the participants to give
an arousal and valence rating, see Fig. 2.

3.4. Processing the ratings

The emotion data collected were not (immediately)
ready to use for analysis since we are only interested in
emotional speech segments. Subsequently, since response
times might have played a role here and the category and
dimension rating procedures were semi-continuous in time,
which resulted in asynchronicity between the speech seg-
ments and the ratings, we needed a procedure to link the
emotion ratings to speech segments. In short, this proce-
dure can be divided into two parts: (1) obtain speech seg-
ments from the data, and (2) link the emotion ratings to
these speech segments. The first part was achieved by run-
ning an energy-based silence detection algorithm in Praat
(Boersma and Weenink, 2009) which resulted in speech seg-
ments that were used in subsequent analyses and classifica-
tion experiments; hence, the silence detection algorithm
determined the units of analysis. These speech segments
were manually transcribed on word level by the first

Table 1
The emotion categories used in the category-based rating
task.

Happiness Fear
Boredom Anger
Amusement Relief
Surprise Frustration
Malicious Delight Wonderment
Excitement Disgust

ACTIVE

PASSIVE

POSITIVE

NEGATIVE

Arousal Valence

50

0

100

Fig. 2. The emotion scales offered to the participants in the dimension-
based rating task.
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author. Secondly, the speech segments needed to be linked
to emotion ratings. In the category emotion annotation
procedure, participants had to mark the beginning and
ending of an emotional event. We assumed that the marker
of the beginning is more reliable than the ending marker.
One of the reasons is that we noticed that some of the emo-
tional events were extremely long; we suspect that partici-
pants might have forgotten to de-select the emotion label
to mark the ending (in future research this may be solved
by making the selected label blink until it is de-selected
again). Also, we allow for a delay between the real occur-
rence of an emotional event and the moment that an emo-
tion label was selected. In the dimensional emotion
annotations procedure, people had to give an arousal and
valence value when an arrow appeared which happened
each 10 s. For both annotation methods, similar ‘linking’
procedures were applied, taking into account the fact that
people are reacting with a certain amount of delay. Fig. 3
shows how we associated speech segments with emotion
categories or arousal-valence ratings: check for a maximum
number of N segments (we chose N ¼ 5) prior to the
moment that an emotion label E was selected (or when
an arrow appeared) (1) whether a segment Si ends within
a margin of T (we chose T ¼ 3 s) before the label was
selected (or when an arrow appeared), and (2) whether
the segment is labeled as non-silence by the silence detec-
tion algorithm.

3.5. Distributions of the emotion ratings obtained by ‘self’-
annotation

The procedure as described above resulted in a set of
speech segments that are labeled with an emotion category
label and/or an arousal and valence rating. In Fig. 4, we
can observe the frequency of emotion category labels as
used by the gamers themselves. It seems that Frustration,
Excitement, Happiness, Amusement and Surprise are fre-
quently occurring emotions, while Boredom, Fear and Dis-
gust are hardly experienced by the gamers. The black areas
represent the number of segments that could be associated
with more than one emotion label. Frequent pairs of emo-
tion labels include Amusement & Happiness, Happiness &
Excitement, Frustration & Surprise, Happiness & Relief,
and Amusement & Excitement. These are not surprising
combinations of emotions and they make sense in a gaming
context. The question remains how to deal with this blend-
edness of emotions in a classification context (see also

Devillers et al., 2005) which is outside the scope of this
paper.

The results of the dimension-based rating task are pre-
sented in Fig. 5. The figure shows that the majority of emo-
tions felt during playing (while speaking) was situated
around Neutral. The Positive-Active quadrant is relatively
well-filled with speech segments, followed by the Negative-
Active quadrant in the arousal-valence space. There are
apparent blank spots in the Positive-Passive and Nega-
tive-Passive quadrants. It appears that the participants
did not often report feeling very Positive or Negative in a
Passive way which resulted in a ‘boomerang’-shape-like fig-
ure. Whether this shape is the direct result of the gaming
context in which the emotions were elicited remains to be

<laugh> I don't know
E

go go run runI fell

S2 S1

T = 3 s

Fig. 3. Procedure for ‘linking’ speech segments to emotional events or
arousal-valence ratings. S1 can be linked to emotion label E (or an arousal-
valence rating) because the end time of S1 falls within T.
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seen, since this quadratic relationship between arousal and
valence has previously been observed in Lang (1995) and
Hanjalic and Xu (2005) for similar ratings tasks but in very
different contexts, i.e., looking at emotion-evoking pictures
and viewing movies or soccer television broadcasts respec-
tively. Finally, our participants mentioned that they some-
times had trouble interpreting the arousal scale: they had
some trouble rating something as Passive or Neutral.

In summary, this gaming experiment resulted in a sub-
stantial amount of labeled speech data (see Table 2) that
can be used for the training and development of automatic
speech-based emotion recognizers (approximately 28% and
67% of all recorded audiovisual data for the category- and
dimension-based ratings respectively). Due to the sponta-
neous character of this gaming experiment, we have
obtained a corpus that does not always contain extreme
emotions, and the corpus is not very well-balanced in the
sense that not all areas in the arousal-valence space are uni-
formly covered with speech segments. One important nov-
elty of the data collected in this gaming experiment, is the
fact that all data is rated by the gamers themselves. We will
refer to these annotations as SELF-ratings. The participants
(i.e., the gamers) who have labeled their own felt emotions
after playing the videogame are referred to as the SELF-rat-
ers. In subsequent experiments, we investigated the relation
between these SELF-ratings and ratings given by other
observers. We used the data to train and test speech-based
affect recognizers. The database collected and described
here will be referred to as the TNO-GAMING corpus. In
Table 3 some examples of emotional expressions are shown
that were captured while the subjects were playing the
videogame.

4. Extending the corpus with perceived affect ratings from
external observers

Our goals are to investigate how the ratings given by the
gamers themselves differ from ratings given by external
observers, and to develop recognizers that continuously
can predict arousal and valence ratings. Hence, we focus
only on the dimension-based ratings and discard the cate-
gory-based labels. To these ends, we let a part of the cor-
pus, that part that is rated on dimensions, be (re-)rated
by external naı̈ve observers who had not participated in
the gaming sessions. Because the number of segments of
the whole corpus is relatively large, we decided to make a
selection of 2400 segments, out of the original set of 7473
segments (i.e., the speech segments that have arousal and

valence ratings), that was offered to a group of naı̈ve
observers. The random selection procedure of these 2400
movie clips that were offered to the observers was partly
restricted by our criterion to roughly maintain the same
proportions of the segments in the arousal-valence space
of the original set, and partly driven by the need for a lar-
ger number of segments in the lower arousal area to adjust
for this strongly imbalanced distribution on the arousal
scale. The distribution of the segments selected for re-rat-
ing in the arousal-valence space is displayed in Fig. 6.
The total length of the whole set of 2400 segments is
approximately 76 min. The mean duration and standard
deviation of a segment is 1.9 and 1.2 s respectively. The
scales of the arousal and valence dimensions are linearly
re-scaled from [0,100] to a range of ½#1; 1$ which allows
for comparison with previous studies (e.g., Grimm et al.,
2007b), the linear re-scaling will not affect the analyses or
results).

4.1. Rating procedure

The set of 2400 emotional speech segments were audiovi-
sually presented to six naı̈ve raters who had not participated
in the gaming sessions. The six raters (1 female, 5 male) are
on average 25.4 years of age. Similar to the SELF-rating pro-
cedure, these raters were asked to rate each audiovisual seg-
ment on the arousal and valence scale that runs from 0 to
100, with 50 being Neutral (afterwards we linearly re-scaled
to [#1,1]). Although we tried hard to maintain as much as
possible the exact same rating procedure that was used for
the SELF-raters, practically, this was not possible. The differ-
ences with the previous SELF-rating procedure are that (1)
the audiovisual segments are already segmented, (2) the rat-
ers now can re-play the segment if they like (as a compensa-
tion for the fact that these raters do not know the gamers),
and (3) no context information was given (one of the rea-
sons for not showing context information was that in our
previous perception experiments with the same data, the
addition of context information gave mixed results – adding
the video game stream did not always increase the agree-
ment among raters, see Truong et al., 2008). We will refer
to the individual emotion ratings of the six raters as OTHER.3

(‘3’ because each segment is rated by 3 different observers,
this will be explained below).

Each observer/rater (TH, PI, CO, RA, FR, and AT)
rated different parts (A, B, C, and D) of the dataset that
overlapped with parts that were rated by other observers.
This division ensured that each segment was rated by three
different raters. The dataset was divided into four parts,
each part consisting of 624 segments. Each observer was
assigned to two parts of the database, and thus rated in
total 2 % 624 segments, see Fig. 7. Of the 624 segments in
each part, 24 segments occurred twice and were used to
assess the rating consistency of the observer (intra-rater
agreement) him/herself. For each observer, it took approx-
imately 4 to 5 h to complete the ratings of all 1248
segments, including breaks. That means that the rating

Table 2
Amount of emotionally labeled speech data according to the gamers’
emotion labeling.

Duration N segments Nwords

Total (min) Mean (s) Stdev (s)

Category-based 78.6 1.67 1.26 2830 1322
Dimension-based 186.2 1.50 1.12 7473 1963

K.P. Truong et al. / Speech Communication 54 (2012) 1049–1063 1055



procedure was carried out at a rate of approximately 6
times real-time.

4.2. Distributions of the affect ratings obtained from the
external observers

The OTHER.3 ratings represent the ratings of 3 distinct
observers. In order to derive a consensus annotation from

these multiple ratings, the ratings of the 3 observers were
averaged for each segment (which is a common procedure
often applied). We will refer to these ratings as OTHER.AVG

(‘AVG’ stands for ‘averaged’). This means that we have 3
types of ratings available that will be used in training and
testing our recognizers: SELF, OTHER.3 and OTHER.AVG-
ratings.

By comparing the 2-dimensional histograms based on
SELF-ratings and OTHER.AVG-ratings, shown in Figs. 6 and
9 respectively, we can observe that the majority of the seg-
ments were, more or less, judged as Neutral by the observ-
ers (on average) which differs substantially from the SELF-
ratings. The SELF-raters appear to have selected more
extreme values for their own felt emotions than the observ-
ers have who seemingly did not perceive these emotions as
such and who mostly selected values in the vicinity of Neu-
trality. In addition, the pull towards Neutrality is also
partly caused by averaging the ratings, compare Fig. 8 to
Fig. 9.

4.3. Analysis of ‘self’ vs ‘observer’ ratings

How do the SELF-ratings, OTHER.3-ratings, and OTHER.-

AVG-ratings compare and relate to each other? The amount
of agreement between raters was analyzed by assessing
Pearson’s correlation coefficient and the absolute differ-
ences between different ratings (see Eq. (3) and (4)). Since
there is no standard measure, we report these several mea-
sures to allow for comparison.

First, we assessed the rating consistency of the observ-
ers, i.e. the intra-rater consistency. We had included
2 % 24 segments that were rated twice by the raters. The
intra-rater agreement figures of each individual rater are
presented in Table 4. We found that raters are more consis-
tent in rating valence than arousal: r ranges from 0.73 to
0.91, and from 0.46 to 0.64 for valence and arousal, respec-
tively. Given these relatively good intra-rater agreement
figures, we considered the raters reliable and hence, all
the raters’ ratings were considered.

When we look at the inter-rater agreement among the
human raters, we can see that this amounts to correlations
of 0.64 and 0.32 for valence and arousal respectively, see
Table 5. The correlations (and eavg) were calculated
between each possible pair of raters and subsequently aver-
aged. Although the correlation coefficients found here are
slightly lower than the ones reported in Busso and Naraya-
nan (2008), who reported correlation coefficients of 0.79
and 0.59 for valence and arousal respectively, we see that
Busso and Narayanan (2008) also report higher agreement
for valence than for arousal. A possible explanation for
their correlation coefficients being higher than ours could
be that Busso and Narayanan (2008) used acted emotion
data. Grimm et al. (2007a) report different results for the
German talk show data: they found higher average correla-
tion coefficients for arousal, 0.72, than for valence, 0.48. It
should be noted that Grimm et al. (2007a) presented audio

Table 3
Examples of gamers’ word transcriptions and emotion ratings (with an
English translation), Val=Valence, Aro=Arousal, NA=Negative Active,
NP=Negative Passive, PA=Positive Active, PP=Positive Passive

Val Aro Transcription

NA 0 99 ‘urgh what are those type of monsters?’
1 100 ‘no yes * *! no! run! no! no!’
3 80 ‘soo irritating’

NP 10 31 ‘yes I I try to go there’
13 5 ‘I don’t what those * weapons’
13 33 ‘na I don’t see anything’

PA 97 99 ‘oh that’s you sorry [laughter]’
81 98 ‘run run run yes good job’
97 83 ‘score a point score a point [laughter]’

PP 71 8 ‘OK now we are going to score a point’
77 18 ‘we are going for the twenty right I have the blue flag’
74 29 ‘I have them I kill them just walk’
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Fig. 6. 2D Histogram plot: the gamers’ arousal and valence ratings (i.e.,
SELF-ratings) that could be associated with speech segments, N ¼ 2400,
selected as stimuli for the external observers.

Fig. 7. Division of dataset into several overlapping parts, each observer
rated two cells (each cell contains 624 segments) such that each segment is
rated by 3 different observers.
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only to the human listeners, whereas in Busso and Naraya-
nan (2008) and our case, audiovisual data was presented.

How do the gamers’ own ratings compare to the observ-
ers’ ratings? This question was approached in two ways.
Firstly, we looked at what the effects are on the averaged
level of agreement when different types of ratings are added
to the group of OTHER.3-ratings, see Table 5. One would
expect that when a rater is added to a group of raters
who in general is disagreeing with this group of raters,
the level of agreement among these raters will decrease
(and vice versa). When the SELF-rater is added, eavg

increases slightly for arousal and more substantially for
valence. The numbers suggest that the SELF-rater is not
agreeing with the OTHER-raters: the addition of the SELF-
rater decreases agreement among the raters. As expected,
adding OTHER.AVG or a fictional rater who perfectly agrees
with one of the OTHER.3-raters increases agreement. Adding
a fictional rater who completely disagrees with one of the
OTHER.3-raters decreases agreement. A ‘perfect’ disagree-er
disagrees as much as possible with one of the three raters
and chooses #1 if a rater’s rating is >0, and chooses +1
if a rater’s rating is <0. These fictional raters were added
to illustrate how the agreement numbers fluctuate under
the influence of added agreeing or disagreeing raters.

Secondly, we calculated agreement directly between the
SELF-ratings, and the OTHER.3 and OTHER.AVG-ratings, see
Table 6. Based on these results and Table 5, we can con-
clude that there is relatively low agreement between the
SELF-ratings, and the OTHER.3 and OTHER.AVG-ratings. Fur-
thermore, there is higher agreement for valence than for
arousal.

We have established that there is a discrepancy between
the different types of ratings: the observers who have rated
perceived affect show relatively low agreement with the
gamers who have rated their own felt affect. What do these
observations mean for the development of speech-based
affect recognizers that will use these ratings for training
and testing? And what does this mean for the concept of
‘ground truth’? These aspects are discussed in the following
sections.

5. Automatic recognition experiment: recognizing felt and
perceived affect

In order to find out how automatic recognizers deal with
these seemingly subjective affect ratings, we trained and
tested 3 types of recognizers in parallel to recognize affect
in speech: one is based on the SELF-ratings, one is based
on the individual OTHER.3-ratings and the final one is based
on the OTHER.AVG-ratings. Using regression techniques, the
task of the recognizers is to estimate scalar values of arou-
sal and valence. We used acoustic and textual features.
Note that our main interest and goal were not to optimize
and tweak classification algorithms to achieve the highest
performance possible (for that reason, thorough compari-
sons between other regression techniques and features were
not included in this study), but rather to see how perfor-
mances change under influence of felt and observed
annotations.
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Fig. 8. 2D Histogram: the distribution of the 2400 selected speech
segments in the arousal-valence space, rated by 6 different observers (i.e.,
the OTHER.3-ratings, N ratings ¼ 3% 2400 ¼ 7200).
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Fig. 9. 2D Histogram: the distribution of the 2400 selected speech
segments in the arousal-valence space, based on the averaged ratings of the
6 observers (i.e., the OTHER.AVG-ratings, N ratings ¼ 2400).

Table 4
Intra-rater agreement, based on 48 doubly-rated segments.

Rater eavg Pearson’s r

Valence Arousal Valence Arousal

TH 0.12 0.19 0.91 0.55
PI 0.17 0.34 0.84 0.46
CO 0.08 0.16 0.87 0.64
RA 0.17 0.33 0.84 0.56
FR 0.27 0.43 0.73 0.54
AT 0.16 0.21 0.91 0.64

Mean 0.16 0.28 0.85 0.57
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5.1. Material

As reference annotations, the SELF (Fig. 6), OTHER.3

(Fig. 8) and OTHER.AVG-ratings (Fig. 9) as described in Sec-
tion 4 were used. The differences between the SELF-ratings
and OTHER.AVG-ratings can be seen when comparing
Fig. 6 to Fig. 9; we can observe that the gamers have rated
their own emotions in a more extreme way than the observ-
ers have done. The variances for the arousal SELF- and
OTHER.AVG-ratings are 0.25 and 0.10, respectively, for the
valence SELF- and OTHER.AVG-ratings these are 0.20 and
0.12, respectively. The total length of the material com-
prises approximately 76 min with a mean length of 1.9 s
for a segment (see Table 7).

5.2. Features and method

5.2.1. Support Vector Regression
Since our goal is to predict real-valued output rather

than discrete classes, we used a learning algorithm based
on regression. Support Vector Regression (SVR) was
employed to train regression models that can predict arou-
sal and valence scalar values on a continuous scale. Similar
to SVMs, SVR is a kernel-based method and allows the use
of the kernel trick to transform the original feature space to
a higher-dimensional feature space through a (non-linear)
kernel function. For a more in-depth description of Support
Vector Machine and Support Vector Regression tech-
niques, readers are referred to Smola and Scholkopf
(2004) and Vapnik (2002). We used !-SVR available in lib-
svm (Chang and Lin, 2001) to train our models. In SVR, a
margin ! is introduced and SVR tries to construct a discrim-
inative hyperplane that has at most ! deviation from the ori-
ginal training samples. In our emotion prediction
experiments, the RBF kernel function was used. The
parameters c (cost), ! (the ! of the loss function), and c were
tuned on a development set (see Table 9) via a simple grid
search procedure that evaluates all possible combinations
of c (with exponentially growing values between 2#4 and
24), ! (with exponentially growing values between 10#3

and 100), and c (with exponentially growing values between
2#10 and 22).

5.2.2. Acoustic features
The acoustic feature extraction was performed with Pra-

at (Boersma and Weenink, 2009). Prior to feature extrac-
tion, a voiced-unvoiced detection algorithm (available in
Praat) was applied to find the voiced units. To avoid the
use of an automatic speech recognizer (ASR), that can pro-
vide word alignments, the features were extracted over each
voiced unit of a segment. We made a selection of features
based on previous studies (e.g., Batliner et al., 2006; Banse
and Scherer, 1996), and grouped these into features related
to pitch information, energy/intensity information, and
information about the distribution of energy in the spec-
trum. The spectral features MFCCs (Mel Frequency Cep-
strum Coefficients) as commonly used in ASR were also
included. And finally, global information calculated over
the whole segment (instead of per voiced unit) about the
speech rate and the intensity and pitch contour was
included. An overview of the features used is given in
Table 8.

Pitch and energy/intensity information are known to be
useful in emotion recognition and are thus very commonly
used. MFCCs are powerful speech features and are com-
monly used in automatic speech recognition and speaker
and language recognition technologies. The distribution
of energy in the spectrum can give information about the
vocal effort: in general, when speakers increase their vocal
effort, the energy in the higher frequency regions of the
long-term spectrum increase which results in a less steep
spectral slope. The Hammarberg index is a measure that
measures differences of the energy in different frequency
regions of the long-term spectrum: it is defined here as the
maximum energy measured in the frequency region 0–
2000 Hz minus the maximum energy measured between
2000 and 4000 Hz. The features ‘speech rate1’ and ‘speech
rate2’ are calculated per segment and are defined as the
number of voiced units divided by the segment duration
without and with unvoiced regions respectively. The mean
positive and negative slopes of pitch and intensity are

Table 5
Addition of different type of ratings to the OTHER.3 ratings.

OTHER.3 + SELF + OTHER.AVG + agree-er + disagree-er

eavg r eavg r eavg r eavg r eavg r

Aro 0.40 0.32 0.43 0.26 0.32 0.50 0.34 0.39 0.82 #0.04
Val 0.28 0.64 0.33 0.47 0.22 0.73 0.23 0.66 0.76 0.00

Table 6
Inter-rater agreement (averaged) between SELF and OTHER.3 and between
SELF and OTHER.AVG.

OTHER.3 OTHER.AVG

Aro Val Aro Val

eavg r eavg r eavg r eavg r
SELF 0.46 0.24 0.38 0.35 0.32 0.33 0.23 0.41

Table 7
Material used in automatic affect recognition experiments.

Number of speech segments 2400
Number of unique speakers 11 females/17 males
Size of vocabulary 1141
Total length appr. 76 min
Mean length segment 1.9 s (r ¼ 1:2 s)
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calculated by summing and averaging all the positive and
negative changes in pitch and intensity measured framewise
over the voiced parts.

The majority of our acoustic features were measured per
voiced unit. The features extracted on voiced-unit-level
were aggregated to segment-level by taking the mean, min-
imum, and maximum of the features over the voiced units.
Hence, we obtain per segment a feature vector with
ð3% ð4þ 4þ 5þ 24ÞÞ þ 6 ¼ 117 dimensions. These fea-
tures were normalized by transforming the features to
z-scores: z ¼ ðx# lÞ=r, with l and r calculated over a
development set.

5.2.3. Lexical features
As SVMs (and SVRs) do not naturally take raw text

(words) as input, we used lexical features that are based
on a continuous representation of the textual input (similar
to Truong and Raaijmakers, 2008). The textual input in our
case is a manual word-level transcription made by the
author herself (but could eventually be made by an ASR sys-
tem). A fairly standard method to build features from tex-
tual input, and that has successfully been applied to text
and document classification/retrieval (see e.g., Salton and
Buckley, 1988; Joachims, 1998) was employed, namely a
tf-idf weighting scheme (term frequency-inverse document
frequency). The term frequency tfw;s is defined as the number
of times a given word w appears in a segment s (i.e., an utter-
ance) and reflects its importance to that specific segment.
The document frequency dfw is defined as the number of seg-
ments containing word w. The tf-idf weight for each word w
is then computed by:

tf # idfw;s ¼ tfw;s % idfw ¼ tfw;s % log
N

dfw

! "
ð1Þ

where N is the total number of segments in the training set.
The weights tend to filter out common words. Words that

appear frequently in one utterance (¼ tf ), but rarely in the
whole collection of utterances (¼ idf ) are more likely to be
relevant to that utterance and thus have a high tf-idf
weight. In addition, to adjust for differences in utterance
length, the feature vectors were normalized to unit length
by L2-normalization.

xn ¼
xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼0x2
i

q ð2Þ

where xn is a value in a vector with N dimensions. To give
an idea of the size of N, the number of unique words in the
whole corpus is 1963. Note that these features are normal-
ized over the entire corpus.

5.3. Experimental setup

The automatic affect recognition experiments were carried
out speaker-independently, but separately for female and
male speakers. We performed N-fold cross-validation, where
in each fold, we left out one specific speaker for testing. In
each fold, the data set was divided into three sets: a training,
development and test set (see Table 9), where the training
and test sets are disjoint. The test set consists of speech seg-
ments from a specific speaker that is excluded from the train-
ing and development set. The development set is comprised
of randomly chosen segments, drawn from the remaining
segments after the test speaker has been filtered out.

The development set is used for parameter tuning and z-
scoring. The features were normalized by z-scoring
(z ¼ ðx# lÞ=r) where the l and r were calculated on the
development set. In parameter tuning, the parameter set
that achieved the lowest error rate, averaged over N folds,
was selected to use in the final testing. The error rate is a
simple measure based on the absolute difference between
the reference and the predicted value, see Eq. (3) and (4).

Three prediction experiments using different types of
annotations were performed. With these 3 experiments,
we compared the added value of annotation of felt emotion
versus annotation of perceived emotion, and we assessed
the effect of averaging annotations. The SELF-ratings refer
to the annotations that were made by the gamers themselves
which are most likely to reflect ‘felt’ emotions. The OTHER.-

AVG-ratings refer to the averaged ratings of 3 different
observers. The OTHER.3-ratings are the individual ratings

Table 9
Experimental setup of the material for N-fold cross-validation
experiments.

Gender Total
segments

N fold Splits (approximately) in training–
development–testing sets

Female 1048 11 80%–10%–10%
Male 1352 17 87%–8%–5%

Table 8
Acoustic features used for emotion prediction with SVR.

Level Features N feat

Voiced unit Pitch (PITCH) Mean, standard deviation, range (max-min), mean absolute pitch slope 4
Voiced unit Intensity (INTENS) Root-Mean-Square (RMS), mean, range (max-min), standard deviation 4
Voiced unit Distribution energy in

spectrum (ESPECTR)
Slope Long-Term Averaged Spectrum (LTAS), Hammarberg index, standard deviation,
center of gravity (cog), skewness

5

Voiced unit MFCC (MFCC) 12 MFCC coefficients, 12 deltas (first order derivatives) 24
Whole

segment
other speech rate1, speech rate2, mean positive slope pitch, mean negative slope pitch, mean positive

slope intensity, mean negative slope intensity
6
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of the observers. Not each segment was rated by the same 3
observers as each of the 6 observers rated different parts of
the data, see Fig. 7. Given this situation, the training and
testing procedure for OTHER.3 were not as straightforward
as for SELF and OTHER.AVG. Each observer complements
another observer such that all segments are rated once:
TH pairs with CO, PI pairs with FR, and RA pairs with
AT (see Fig. 7). For OTHER.3, the recognizers were trained
on each of these pairs’ ratings and tested using ratings
drawn randomly from the other 2 observers not used during
training (to make the tests more conservative, in contrast
with the OTHER.AVG experiments where the raters are drawn
from the same pool in training and testing). The perfor-
mance reported are the evaluation metrics’ averages taken
over the 3 pairings of observers.

We report several evaluation metrics so that these can be
compared to other results in the literature. Firstly, we used
a relatively simple evaluation metric (similar to Grimm
et al., 2007b) that measures the absolute difference between
the predicted output and the reference input:

ei ¼ xpred
i # xref

i

$$ $$ ð3Þ

eavg ¼
1

N

XN

i

ei ð4Þ

and we report the error eavg that is averaged over a total of N
segments. The lower eavg, the better the performance. Sec-
ondly, Pearson’s r correlation coefficient was also reported.

5.4. Results

Here, we present the results of our automatic affect
recognition experiments which were performed separately

for female and male data, and separately for arousal and
valence dimensions. The affect recognizers were developed
with either acoustic information or lexical information.
The main evaluation metrics are eavg and r. We present
the results for the acoustics-based and text-based arousal
and valence recognizers in Table 10.

From Table 10, we can make several observations. First
of all, we observe that performances are highest when
OTHER.AVG-ratings are used, followed by OTHER.3 and SELF,
respectively (note: the lower eavg the better, the higher r
the better). This suggests that emotions as perceived by
observers can be better modeled than emotions as felt
and reported by the gamers themselves: predicting individ-
ual observers’ ratings is easier than predicting the gamers’
own ratings. In addition, averaging ratings from multiple
raters results in better recognition performances than using
individual-specific ratings such as the SELF and the OTHER.3-
ratings (which is in line with Mower et al., 2009). Secondly,
the arousal dimension is better modeled by acoustic fea-
tures, while the valence dimension is better modeled by tex-
tual features, see Table 11 re-confirming Grimm et al.
(2007a) and Truong and Raaijmakers (2008) (a feature
analysis of the acoustic and lexical features is out of scope
for the current paper, however, Truong and Raaijmakers,
2008, provide a small feature analysis of the lexical features
used although performed with a different learning algo-
rithm). Finally, we note that in general, performance is rel-
atively low, but that the majority of recognizers perform
better than the baseline. One aspect that may have contrib-
uted to these relatively low performance scores for the per-
ceived affect recognition is that the observers rated the
stimuli on the basis of audiovisual information whereas
our recognizers are based on audio information only. The

Table 10
Results (averaged over male and female performances) of the acoustics-based and text-based arousal and valence recognizers: the last column under
‘Baseline’ represent results from a baseline recognizer that always predicts Neutrality.

Reference TestSVR TestSVR Baseline

eavg r eavg r eavg

Acoustic Textual

Aro SELF 0.41 0.25 0.44 0.01 0.45
OTHER.3 0.32 0.31 0.34 0.04 0.39
OTHER.AVG 0.21 0.55 0.24 0.29 0.31

Val SELF 0.36 0.18 0.36 0.14 0.36
OTHER.3 0.30 0.32 0.28 0.48 0.31
OTHER.AVG 0.26 0.41 0.21 0.62 0.28

Table 11
Summary of several comparable speech-based studies working with dimensional ratings.

Study Data Human–interrater agreement Human–machine agreement

Val Aro Val Aro

Grimm et al. (2007a) German talk show r 0.48 0.72 0.34 0.73
eavg 0.34 0.19

Busso and Narayanan (2008) Dyadic interactions r 0.79 0.59
Current study (OTHER.AVG) Video game r 0.64 0.32 0.41 0.55

eavg 0.28 0.40 0.26 0.21
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expectation is that adding a facial expression classifier will
additionally increase performance (which is future work).

When we inspect the errors that the recognizers produce,
we notice that the largest errors are made in the extremeties
of the arousal-valence space. On the one hand, this makes
sense since the chance of large errors is highest in the
extremeties. On the other hand, when we assume that the
annotations correctly reflect the emotions expressed, then
we would expect that the errors in the extremeties would
be smaller since extreme emotions are expected to be easier
to detect.

5.5. Cross-rating emotion recognition experiments

We performed cross-rating recognition experiments,
training on one type of ratings and testing on another type
of ratings, in order to see whether there are ratings that are
more ‘robust’ than others; can we, for example, use OTHER.-

AVG ratings to predict SELF ratings? According to the error
rates shown in Table 12, it appears that OTHER.AVG-ratings
are easiest to predict and that they are most robust, i.e.,
they can also be used to recognize SELF. Conversely, SELF-
ratings are most difficult to model.

6. Conclusions and discussions

6.1. Summary

We have presented a spontaneous audiovisual emotion
database that was collected in a videogame environment
and that has some unique properties: (1) part of the corpus
is rated by both the gamers themselves and observers on
continuous arousal-valence scales, and (2) the elicitation
method used in this corpus exploits the advantages of mul-
tiplayer videogames. By putting friends together in one
room and letting them play a (manipulated) multiplayer
videogame, a natural environment is created in which spon-
taneous, affective vocal and facial interaction can easily take
place. With this corpus, we explored several research ques-
tions. Under the assumption that people are the best decod-
ers of their own emotions, we compared self-reported and
observed emotion ratings to each other. We found confir-
mations that there are discrepancies between SELF-ratings
and OTHER.AVG-ratings. The SELF-raters appeared to rate
their own emotions much more extremely than the

OTHER.AVG-raters. This observation suggested that the emo-
tions felt by the gamers were not always perceivable with the
observers. Furthermore, human observers have difficulty
agreeing with each other on the perception of spontaneous
affect. In general, the human-human agreement scores
among the 3 observers were relatively low, especially for
arousal – eavg of 0.40 (r ¼ 0:32) and 0.28 (r ¼ 0:64) for arou-
sal and valence respectively. The human raters showed
more agreement among each other along the valence dimen-
sion than the arousal dimension.

The differences between ‘self’ and ‘observer’ ratings
influenced the development and performance of automatic
affect recognizers. The results, obtained with acoustics-
based and text-based regression models, showed that the
observed emotion ratings were much better predicted than
the self-reported emotion ratings. Here, we should remark
that in the SELF condition, by design, the ratings were made
by different raters and hence, the recognizers are perform-
ing ‘rater-independent’ recognition, whereas in the OTHER.-

AVG condition, the raters are drawn from the same pool in
training and testing; this means that the task in the SELF

condition is presumably more difficult than the task in
the OTHER.AVG condition. We also have to keep in mind that
despite our efforts, there are some differences between the
way the SELF- and OTHER.AVG-ratings are obtained (see
Section 4) which may have affected performance. Recogni-
tion experiments were also performed with the individual
OTHER.3-ratings which resulted in intermediate recognition
performances, illustrating that integrating different views
from multiple raters by averaging increases recognition
performance, and also results in more ‘robust’ ratings as
illustrated by the cross-data recognition experiments we
performed.

In conclusion, the differences between human self-
reported and observed emotion ratings also lead to large
differences in performances of the emotion recognizers:
the self-reported ratings were much harder to recognize
than the observed ratings. The results raise the question
whether future machine recognizers should be able to rec-
ognize ‘felt’ or ‘perceived’ affect, and how machine recog-
nizers should learn to recognize ‘felt’ affect.

6.2. Discussion and future research

We suggest that the validation of human affect ratings
and how these subjective ratings influence the behavior of
automatic affect recognizers should require more attention.
The way the data is rated is of much importance, especially
in the case of annotation of spontaneous affect where a high
level of subjectivity is intrinsic to the data. We have seen
that it matters who you ask to annotate: whether you ask
people to report their own emotions or ask other people
to rate observed emotions makes a big difference. Other
annotation aspects may affect the emotion ratings as well.
For example, during the rating processes, we have also
experienced that some participants expressed difficulties
with the interpretation of the arousal scale – they found it

Table 12
eavg for cross-rating experiments: train on one type of ratings and test on
another type (error rates averaged over acoustics and text-based
recognizers).

Training Testing Baseline

SELF OTHER.3 OTHER.AVG

Aro Val Aro Val Aro Val Aro Val

SELF 0.41 0.36 0.35 0.31 0.25 0.26 0.45 0.36
OTHER.3 0.42 0.36 0.33 0.29 0.24 0.24 0.39 0.31
OTHER.AVG 0.39 0.35 0.32 0.29 0.21 0.21 0.31 0.28

K.P. Truong et al. / Speech Communication 54 (2012) 1049–1063 1061



difficult to make a distinction between neutrality and pas-
siveness. Whether this was due to the specific gaming con-
text or the specific annotation tool that was used and how
much this has affected the ratings remains to be seen. In
addition, the way we measured the ‘felt’ emotion of the
participants was constrained by practical issues and can
hence be improved: one could for example add physiologi-
cal measures, such as heart rate, to obtain a more reliable
assessment of ‘felt’ emotion. As a consequence, there were
(unavoidable) small differences between the rating proce-
dures of the self-raters and the observers which should be
addressed in future work. Furthermore, it would be inter-
esting to see whether more training of the raters in emotion
annotation would improve agreement and consistency of
the annotations. However, this would mean that the recog-
nizer will learn to recognize the views of trained emotion
experts rather than the ‘layman’s’ view from naive observers
which is not always what one wants. As mentioned earlier,
the large differences between self-reported emotion and
observed emotion, and the relatively low recognition per-
formance for the self-reported emotion, makes one think
about whether an emotion recognizer should aim to detect
felt or perceived emotion. For speech, few investigations
have been performed on the relation between vocal charac-
teristics and the felt emotion, i.e., the internal emotional
state (e.g., Biersack and Kempe (2005)). Humans have more
control over the speech that comes from the vocal tract than
they have over physiological effects such as heart rate which
raises the expectation that the internal emotional state is
difficult to measure in speech. However, this requires more
investigation. Furthermore, the search for more reliable
acoustic correlates and modeling of emotion continues.
Moreover, it is still unknown how acoustic and other mul-
timodal cues of emotion interact with each other and how
this interaction can be modeled computationally for recog-
nition purposes (the TNO-GAMING corpus allows for an
audiovisual analysis). Finally, we have approached the rec-
ognition of spontaneous affect with a dimensional approach
and adopted regression techniques to recognize arousal and
valence values separately. This is a relatively new approach
that has not been fully explored and matured yet, and there
are many aspects up for discussion: e.g., how realistic is it to
develop models to recognize spontaneous affect in terms of
a pair of arousal-valence coordinates, or what other tech-
niques than regression techniques can we use to model
ordered scales of affect, or what other ways can be used to
obtain reliable ‘ground truth’ dimension-based labels? As
illustrated, many of these issues need more investigation
and addressing these issues will gradually take us one step
closer to understanding how we can develop more adequate
spontaneous (speech-based) affect recognizers.
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