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Abstract
Objective intelligibility measurement allows for reliable, low-cost, and repeatable assessment of
innovative speech processing technologies, thus dispensing costly and time-consuming subjective
tests. To date, existing objective measures have focused on normal hearing model, and limited use
has been found for restorative hearing instruments such as cochlear implants (CIs). In this paper,
we have evaluated the performance of five existing objective measures, as well as proposed two
refinements to one particular measure to better emulate CI hearing, under complex listening
conditions involving noise-only, reverberation-only, and noise-plus-reverberation. Performance is
assessed against subjectively rated data. Experimental results show that the proposed CI-inspired
objective measures outperformed all existing measures; gains by as much as 22% could be
achieved in rank correlation.
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1. Introduction
With technological advances witnessed in cochlear implant (CI) devices, most CI users can
now achieve reliable speech intelligibility in controlled quiet scenarios, particularly in
predictable conversations (Wilson and Dorman, 2008). Environmental distortions, such as
reverberation and additive noise (and their combined effects), on the other hand, are known
to significantly degrade speech intelligibility (Hazrati and Loizou, 2012; Neuman et al.,
2010; Kokkinakis et al., 2011; Poissant et al., 2006). Reverberation and noise, for example,
(a) distort important speech envelope modulation information, making it extremely
challenging for CI users to perceive e.g., pitch modulations, formant transitions, timbre, and
word/syllable boundaries (Drgas and Blaszak, 2010; Kokkinakis et al., 2011; Watkins and
Holt, 2000), (b) introduce unwanted masking effects (Nabelek et al., 1993, 1989; Poissant et
al., 2006), and (c) cause poor sound localization (Zheng et al., 2011). To overcome these
limitations and to improve speech intelligibility in everyday environments, recent research
has focused on the development of speech enhancement algorithms, such as noise
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suppression, channel selection, and dereverberation (e.g., Kokkinakis et al., 2011; Loizou et
al., 2005; Yang and Fu, 2005).

In order to assess the effects of environmental conditions on the speech intelligibility of CI
users, as well as the recognition gains post speech enhancement, two subjective testing
approaches are commonly taken. The first makes use of vocoded speech to simulate CI
processing and presents vocoded speech to normal hearing (NH) listeners for identification
(e.g., Dorman et al., 1997; Drgas and Blaszak, 2010; Poissant et al., 2006; Qin and
Oxenham, 2003). The second approach is more direct and presents noise-degraded (and/or
enhanced) speech stimuli to CI users (Hazrati and Loizou, 2012; Kokkinakis and Loizou,
2011). Subjective testing, however, is very expensive and time consuming. Objective speech
intelligibility measurement, on the other hand, replaces the listeners with a computational
algorithm, thus allowing for automated, repeatable, fast, and cost-effective intelligibility
monitoring (Moller et al., 2011). Moreover, for speech enhancement, objective metrics can
play an important role, as “on-the-spot” intelligibility assessment can be used for fine-tuning
of algorithm parameters (e.g., CI filterbank settings). Lastly, objective metrics allow for
repetitive and low-cost quantitative comparison between multiple CI devices.

Objective intelligibility (or quality) metrics can be broadly classified as intrusive (also
known as double-ended or full-reference) or non-intrusive (single-ended or noreference)
depending on the need for a reference clean signal or not, respectively (Moller et al., 2011).
Intrusive metrics have the advantage of being able to assess directly the amount and type of
distortion in a corrupted signal. While both can be used during the development of an
enhancement algorithm or for evaluation/comparison of different CI devices, intrusive
metrics cannot be used in practical real-time applications, as in this case a reference clean
signal is not available. Since non-intrusive metrics do not require a clean reference signal, it
is possible to apply them to quantitatively characterize the intelligibility gains achieved with
a blind speech enhancement algorithm (e.g., dereverberation) directly on the device. They
also enable the development of intelligibility-aware enhancement algorithms, which could
adjust CI device parameters in real time taking into consideration the current intelligibility
settings imposed by environmental effects (such as background noise and reverberation
levels).

Commonly, objective metrics are developed and evaluated with normal hearing listeners as
target, with a few studies using vocoded speech to simulate CI hearing (e.g., Chen, 2012).
Recently, several objective metrics were evaluated against vocoded speech degraded by
reverberation (Cosentino et al., 2012), as well as speech degraded by noise and reverberation
and presented directly to CI users (Santos et al., 2012). In these studies, it was observed that
existing intrusive metrics did not correlate highly with CI user intelligibility across three
environmental conditions, namely noise alone, reverberation alone, and noise-plus-
reverberation (Santos et al., 2012). In the reverberation alone case, a recently-proposed non-
intrusive metric termed speech-to-reverberation modulation energy ratio (SRMR) (Falk et
al., 2010) showed promising results (Cosentino et al., 2012). In this paper, we investigate the
performance of five existing objective metrics (two intrusive and three non-intrusive) and
compare their performance with the intelligibility scores of CI users. We also propose two
new measures (one non-intrusive and one intrusive) by refining the so-called SRMR metric
to emulate CI hearing percepts. We show that (i) the investigated intrusive metrics achieve
reliable performance under the three tested conditions, and that the proposed CI-inspired
non-intrusive metric, (ii) outperforms all other non-intrusive benchmarks, and (iii)achieves
results in line with the intrusive metrics, but with the advantage of not requiring a clean
reference signal.
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The remainder of this paper is organized as follows. Section 2 describes the subjective
intelligibility experiments and speech material database, as well as the evaluated objective
intelligibility metrics and performance criteria that were considered. Sections 3 and 4
present the experimental results and discussion, respectively. Lastly, Section 5 shows the
conclusions.

2. Material and methods
2.1. Participants

Eleven adult CI users were recruited to participate in the subjective intelligibility
experiments. The participants were all native speakers of American English with post-
lingual deafness and had an average age of 64 years (±8.9). Participants consented and were
paid for their participation. The interested reader is referred to reference (Hazrati and
Loizou, 2012) for specific demographic details of the participants. All participants had a
minimum one-year experience using their device routinely, with the majority being
bilaterally implanted for over 6 years. Three of the eleven participants used an ‘ESpirit 3G’
device, six a ‘Freedom’ device, and two a ‘Nucleus 5’ device; all devices are developed by
Cochlear Ltd. For consistency, all participants were temporarily fitted with a SPEAR3
research processor, programmed with the advanced combination encoder (ACE) strategy
(Vandali et al., 2000) with parameters matching the individual CI user’s clinical settings.

2.2. Speech material and subjective testing
The speech material presented to the participants consisted of the IEEE sentence corpus
(Rothauser et al., 1969), which contains sentences with 7 to 12 words, organized in 72 lists
of 10 sentences each. The sentences were produced by a male speaker and recorded in
anechoic conditions. The sentences were equalized to the same root mean square value of 65
dB. The sampling frequency used for recording was 25 kHz and the speech files were down-
sampled to 16 kHz for this experiment. The effects of reverberation and additive noise were
introduced via digital simulation.

Room impulse responses (RIR) obtained experimentally were convolved with the clean
speech signals (Neuman et al., 2010; Van Den Bogaert et al., 2009) to generate reverberant
speech with approximate reverberation times (RT60) of 0.3, 0.6, 0.8, and 1 s. The first three
RIRs (Neuman et al., 2010) were obtained using a Tannoy CPA5 loudspeaker inside a
rectangular reverberant room with dimensions 10.06 m × 6.65 m × 3.4 m (length × width ×
height), and a total volume of 227.5 m3. The overall reverberant characteristics of the room
were altered by hanging absorptive panels from hooks mounted on the walls close to the
ceiling. The source-to-microphone distance was beyond the critical distance (at 5.5 m). The
RIR with RT60 = 1.0 s, in turn, was obtained using a CORTEX MKII manikin artificial
head and a single-cone loudspeaker (FOSTEX 6301 B) with 10 cm diameter in a 5.5 m × 4.5
m × 3.1 m room without any absorptive panels (Van Den Bogaert et al., 2009). The
loudspeaker was placed at 0° azimuth in the frontal plane at a 1.25 m distance from the head.
All RIRs were measured biterally, but only one of the responses was used to generate the
reverberant stimuli.

Speech-shaped noise was also added to the anechoic and the abovementioned reverberant
signals to generate the noise-only and noise-plus-reverberation conditions, respectively.
Noise was added at a signal-to-noise-ratio (SNR) of −5, 0, 5 and 10 dB for the anechoic
samples and 5 and 10 dB for the reverberant samples. For the noise plus reverberation
condition, the reverberant signals served as reference for SNR computation.

Two different sentence lists (20 sentences) were used for each of the above mentioned
conditions. The volume of the presented sentences was adjusted by the individual listeners

Santos et al. Page 3

Speech Commun. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to a comfortable level prior to the beginning of the experiment and then kept constant
throughout the experimental protocol. To maintain consistency across all participants,
speech stimuli were presented unilaterally (to the ear with the highest performance for
bilateral users). Listeners were instructed to repeat all identifiable words and per-participant
intelligibility scores were calculated as the ratio of the number of correctly identified words
to the total number of presented words.

2.3. Objective intelligibility measurement
As mentioned previously, objective intelligibility metrics can be classified as intrusive or
non-intrusive. In scenarios dealing with noise and reverberation, two intrusive metrics have
been found to perform well, namely the normalized covariance metric, NCM, and the
coherence-based speech intelligibility index, CSII (Chen and Loizou, 2011; Cosentino et al.,
2012; Santos et al., 2012). For non-intrusive measurement, in turn, the so-called speech-to-
reverberation modulation energy ratio (SRMR) metric (Falk et al., 2010) and the
International Telecommunications Union (ITU-T) standard algorithm called P.563 (Malfait
et al., 2006; ITU-T P.563, 2004) have been used. While these objective measures have
shown to be highly correlated with normal hearing subjective ratings, performance is
deteriorated for CI users (Cosentino et al., 2012). Notwithstanding, recently a non-intrusive
measure tailored towards CI users was developed (the so-called modulation-spectrum area,
ModA, measure) and evaluated in reverberant environments (Chen et al., 2012). In the
subsections to follow, a more detailed description of these five objective intelligibility
metrics is given; the two proposed CI-inspired measures are also presented.

2.3.1. Normalized covariance metric (NCM)—The NCM measure estimates speech
intelligibility based on the covariance between the envelopes of the clean and degraded
speech signals (Chen and Loizou, 2011; Golds-worthy and Greenberg, 2004; Holube and
Kollmeier, 1996). Computation of NCM values depends on deriving speech temporal
envelopes, via a Hilbert transform, for each of the 23 gammatone filterbank channels, which
are used to emulate cochlear processing. The normalized correlation between the clean and
degraded speech envelopes produces an estimate of the so-called apparent SNR given by:

(1)

where rk is the correlation coefficient between the clean and degraded speech envelopes
estimated in filterbank channel k, and the []−1515 operator refers to process of limiting and
mapping SNRapp into the [−15,15] range. The last step consists of linearly mapping the
apparent SNR to the [0,1] range using the following rule:

(2)

The  values are then weighted in each frequency channel according to the so-called
articulation index (AI) weights W(k) recommended in the American National Standards
Institute ANSI S3.5 Standard (S3.5–1997, ANSI, 1997). The final NCM value is given by:

(3)
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2.3.2. Coherence-based speech intelligibility index (CSII)—The CSII is a spectral-
based speech intelligibility measure which takes into account the coherence (e.g. similarity)
of the spectral coefficients for both the degraded and clean speech signals (Kates and
Arehart, 2005; Ma et al., 2009). In order to compute CSII values, a short-time Fourier
transform is first performed such that each time-frequency segment can be weighted by a
parameter called the magnitude squared coherence (MSC). The MSC is computed between
the clean and processed signals as:

(4)

where f indexes a particular frequency bin, Pcr(f) is the cross spectral density estimated
between the clean (c) and the degraded speech signal (r), while Pcc(f) and Prr(f) are the
power spectral densities of the clean and degraded signals, respectively. The MSC values are
commonly grouped into 25 frequency bands using critical pass-band filters G(k) described
by Moore and Glasberg (1996). The MSC values are then used to estimate the channel-
dependent SNR given by:

(5)

where R(n,f) is the spectrum of the degraded speech signal estimated at time frame n using a
sliding Hanning window of length 30 ms (25% overlap); N indicates the total number of
frames within a particular sentence. The [[0,1]] operator refers to [−15,15] dB clipping and

[0,1] linear mapping. Lastly, per-band  values are weight-averaged using AI weights
to form the CSII measure:

(6)

2.3.3. Speech-to-reverberation modulation energy ratio (SRMR)—SRMR is a
recently-proposed non-intrusive metric developed originally for reverberant and
dereverberated speech and evaluated against subjective normal hearing listener data (Falk et
al., 2010). Recently, promising results were also reported when evaluated against vocoded
speech simulating CI hearing (Cosentino et al., 2012). Computation of the SRMR metric is
performed in four stages. First, the input signal x̂ (n) is filtered by a 23-channel gammatone
filterbank which emulates cochlear processing. Filter center frequencies range from 125 Hz
to approximately 8 kHz (i.e., half the sampling frequency) with bandwidths characterized by
the equivalent rectangular bandwidth, ERB (Glasberg and Moore, 1990). Second, temporal
envelopes ej(n) are computed for each of the j = 1,…,23 filterbank output signals x̂j(n) using
the Hilbert transform. Temporal envelopes are then windowed (256 ms frames, 32ms
frameshifts) to create ej(m, n) (where m refers to the frame index) and a discrete Fourier
transform f is applied to obtain the so-called modulation spectral energy for each critical
band Ej(m,f)=¦F(ej(m,n)2)|, where f indexes the modulation frequency bins. The third step
emulates frequency selectivity in the modulation domain Ewert and Dau (2000); this is
obtained by grouping the modulation frequency bins into eight overlapping modulation
bands with centre frequencies logarithmically spaced between 4 and 128 Hz. Lastly, the
SRMR value is computed as the ratio of the average modulation energy content available in
the first four modulation bands (circa 3–20 Hz, consistent with clean speech modulation
content (Arai et al., 1996) to the average modulation energy content available in the last four
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modulation bands (circa 20–160 Hz). The interested reader is referred to Falk and Chan
(2010), Falk et al. (2010) for more details on the SRMR metric, as well as an adaptive
version of it.

2.3.4. ITU-T Recommendation P.563—Recently, ITU-T standardized the first non-
intrusive speech quality metric for telephone-band speech applications (Malfait et al., 2006;
ITU-T P.563, 2004). The standard algorithm estimates the quality of the tested speech signal
based on three principles. First, vocal tract and linear prediction analysis is performed to
detect unnaturalness in the speech signal. Second, a pseudo-reference signal is reconstructed
by modifying the computed linear prediction coefficients to the vocal tract model of a
typical human speaker. The pseudo-reference signal serves as input, along with the degraded
speech signal, to an intrusive algorithm (similar to ITU-T P.862 (2001)) to generate a basic
voice quality index. Lastly, specific distortions such as noise, temporal clippings, and
robotization effects (voice with metallic sounds) are characterized. The algorithm detects
major distortion events in the speech signal and classifies them as belonging to one of six
possible classes: high level of background noise, signal interruptions, signal-correlated
noise, speech robotization, and unnatural male and female speech. Once a distortion class is
found, class-specific internal parameters are mapped to an objective quality score. While P.
563 was developed as an objective quality measure for normal hearing listeners and
telephony applications, a recent study has shown promising results with P.563 as a correlate
of noise-excited vocoded speech intelligibility for normal hearing listeners, but not tone-
excited vocoders (Cosentino et al., 2012). This could be due to the fact that P.563 has a
robotization module which characterizes robotization effects, such as voice with metallic
sounds. The P.563 algorithm is explored here as a correlate of speech intelligibility of CI
users.

2.3.5. Average modulation-spectrum area (ModA)—Similar to the SRMR measure
described above, the so-called modulation-spectrum area (ModA) (Chen et al., 2012)
measure is based on the principle that the speech signal envelope is smeared by the late
reflections in a reverberant room, thus affecting the modulation spectrum of the speech
signal. In order to obtain the ModA metric, the signal is first decomposed into N(= 4)
acoustic bands (lower cutoff frequencies of 300, 775, 1375, and 3676 Hz, as in Chen et al.
(2012)); the temporal envelopes for each acoustic band are then computed using the Hilbert
transform, then downsampled and grouped using a 1/3-octave filter-bank with center
frequencies ranging between 0.5 and 8 Hz. As in Chen et al. (2012), 13 modulation filters
are used to cover the 0.5 – 10 Hz modulation frequency range. For each acoustic frequency
band, the so-called “area under the modulation spectrum” is computed (Ai) and finally
averaged over all N(= 4) acoustic bands to obtain the ModA measure:

(7)

2.3.6. Speech-to-reverberation modulation energy ratio tailored to CI devices
(SRMR-CI)—In order to tailor the SRMR measure for CI processing, a few modifications
were implemented. First, the 23-channel gammatone filterbank was replaced by the 22-
channel filterbank (mel-like spacing) used in the Nucleus devices. For comparison purposes,
the frequency responses of the two filterbank implementations are depicted in Fig. 1; subplot
(a) corresponds to the original filterbank, and subplot (b) to the Nucleus filterbank. Second,
while the 4–128 Hz range of modulation filterbank centre frequencies were shown to be
reliable to predict the intelligibility of normal hearing listener data, such range may not be
optimal for CI users. In Chen and Loizou (2011), for instance, the authors showed that
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incorporating modulation frequencies up to 100 Hz in the NCM measure improved
significantly the prediction of intelligibility of vocoded speech. Alternately, in Chen et al.
(2012), only modulation frequencies up to 10 Hz were shown to be useful for predicting
speech intelligibility in CI users. Here, we investigate the optimal number of filters to be
used in the modulation filterbank, as well as the centre frequencies for each filter. Through
pilot experiments it was observed that a modulation filterbank with 8 filters and center
frequencies logarithmically spaced between 4–64 Hz resulted in superior intelligibility
prediction performance. As such, the SRMR-CI measure used in the experiments herein is
based on the modulation filter center frequencies and band-widths shown in Table 1; for
comparison purposes, the values are also shown for the original SRMR metric.

2.3.7. Normalized SRMR-CI (SRMR-CInorm)—Previous studies have shown that the
SRMR metric may exhibit high per-sentence variability due to e.g., varying speaking rates
and acoustic frequency content (e.g., male versus female speech) (Schröder et al., 2009). As
such, in order to reduce measurement variability, a normalization strategy is needed. Here,
focus is placed on the ideal scenario in which the SRMR value of the clean original signal is
used for normalization. Note that such normalization strategy places the SRMR – CInorm
measure into the intrusive category. While this is not preferable, it does provide us with a
gold-standard benchmark with which future normalization strategies can be assessed against.
The normalized metric for a given speech file is given by:

(8)

where SRMR-CIclean is the SRMR-CI value for the file’s clean speech counterpart.

2.4. Performance criteria
In order to assess the performance of the developed and benchmark algorithms, four
performance criteria are used. As suggested in the objective quality/intelligibility monitoring
literature, performance values are reported on a per-condition basis, where condition-
averaged objective performance ratings and condition-averaged subjective intelligibility
ratings are used in order to reduce intraand inter-subject variability (Moller et al., 2011). In
the experiments described herein, thirteen conditions are available (four noise-only
conditions: −5 to 10 dB SNR with 5 dB increments; four reverberation-only conditions:
RT60 = 0.3, 0.6, 0.8, 1.0 s; and four noise-plus-reverberation conditions: RT60 = 0.6 s with
SNR = 5 dB or 10 dB and RT60 = 0.8 s with SNR=5 dB or 10 dB). Three of the four
performance criteria are used to measure the relationship between the objective and
subjective scores. First, the well-known Pearson correlation coefficient (ρ) is used to
measure a linear relationship between the two scores (Pearson, 1894). Second, the Spearman
rank correlation (ρspear) is used to assess the ranking capability of the objective metrics.
Ultimately, the goal in objective intelligibility estimation is to design an algorithm whose
scores rank similarly to subjective ratings, as suitable monotonic mappings can then be used
for scale adjustment. Rank-order correlations are calculated in the same manner as Pearson’s
correlation, but with the original data values replaced by their ranks. Third, a sigmoidal
mapping function is used to map the objective metrics into the intelligibility scale prior to
Pearson correlation computation; this mapping is motivated by Plomp’s work (Plomp,
1986), and given by:

(9)

where α1 and α2 are the fitting parameters, X represents the objective metric and Y the
mapped intelligibility score (on a 0–100% scale). Henceforth, the correlations computed
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post sigmoid mapping are represented as ρsig. The last performance criterion used is the
root-mean-square estimation error (RMSE), which is given by:

(10)

where Yi,i = 1,…, 13 corresponds to the average mapped intelligibility score for a particular
degradation condition and INTi is the corresponding average subjective intelligibility score.
An ideal objective metric possesses correlation coefficients close to unity and an RMSE
close to zero.

3. Results
Table 2 presents the performance criteria obtained by the seven investigated objective
metrics. As can be seen, all metrics showed high correlations with subjective ratings. The
SRMR-CI measure showed significant improvements in all performance criteria relative to
the original SRMR measure (p < 0:05, t-test), thus suggesting that emulating CI processing
can be beneficial in objective intelligibility monitoring for CI listeners. Moreover, the
normalized SRMR-CInorm measure further improved performance by decreasing RMSE.
Relative to the NCM intrusive measure, the SRMR-CInorm intrusive measure resulted in a
4% increase in ρspear and a 13% decrease in RMSE.

The subjective versus objective intelligibility scatterplots for the seven investigated
measures are also depicted in Fig. 2 and Fig. 3 for the intrusive (NCM, CSII, and SRMR-
CInorm) and non-intrusive (P.563, SRMR, ModA, and SRMR-CI) metrics, respectively.
Each scatterplot presents the average data point for a given degradation condition and is
overlaid by the respective fitted sigmoidal function; Table 3 reports the fitted α1 and α2
parameters for each measure. Moreover, the scatterplots also show the variability of the
objective intelligibility values for each condition on the horizontal error bars, while the first
scatterplot (Fig. 2) shows also the variability for the subjective intelligibility scores. From
Fig. 3, it can be seen that the P.563 and ModA measures obtain poor intelligibility estimates
for the noise-only condition.

4. Discussion
4.1. Objective intelligibility measurement: importance of temporal envelope cues for CI
users

Preservation of temporal envelope cues has long been regarded as an important factor in
speech perception (Dudley, 1939; Lorenzi and Moore, 2008). This is particularly true for
hearing-impaired listeners who have reduced ability to process fine temporal structure and
spectral cues (Moore, 2008; Xu and Pfingst, 2008). To this end, it was observed that the
NCM intrusive measure, which itself is based on temporal envelope cues, outperformed the
CSII measure, based on fine spectral cues (see Table 2) in terms of the correlation metrics;
higher RMSE, however, was obtained. Moreover, the results obtained with both SRMR-
based measures and ModA provide further evidence of the importance of temporal envelope
cues for speech intelligibility prediction in cochlear implants. These findings corroborate
those previously reported in the literature showing reliable intelligibility predictions for
vocoded speech with NH listeners obtained by intrusive and non-intrusive measures based
on temporal envelope cues (Cosentino et al., 2012). Lastly, it is also known that
reverberation modifies temporal envelope cues, thus severely degrades speech recognition
for CI users.
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4.2. CI-inspired metrics: are they always better?
The original SRMR metric depends on temporal envelope cues obtained from multiple
acoustic frequency bands, similar to the cues used by CI listeners. Notwithstanding, the
SRMR metric mimics several normal hearing percepts, such as cochlear processing (i.e., 23-
channel gammatone filterbank) and temporal envelope frequency selectivity (Ewert and
Dau, 2000). As such, it was expected that improved performance would be obtained once CI
hearing percepts were incorporated into the measure. This was indeed observed and the
proposed SRMR-CI measure incorporated a CI-inspired filterbank (i.e., emulated the
Nucleus mel-like filterbank) and explored an optimal modulation frequency filterbank
configuration (see modulation filter center frequencies and bandwidths in Table 1). With
such changes to the metric, an increase of up to 9% was obtained in ρspear relative to the
original SRMR measure. A reduction of approximately 16% in RMSE was obtained once a
normalization factor was incorporated into the SRMR-CInorm measure.

Inspired by the improvements in correlation with the above CI-inspired metrics, two updates
to the NCM and CSII measures were also investigated. More specifically, the NCM measure
was updated to include the Nucleus-inspired filterbank and the 3–80 Hz modulation
frequency range. Unlike the SRMR-CI measure, the so-called NCM-CI measure did not
show any improvements in objective speech intelligibility prediction, thus suggesting that it
is the ratio of low-to-high modulation frequency content that correlates with speech
perception in noise, and not the entire modulation spectrum. A second update included the
reduction of the dynamic range of the NCM and CSII measures from [−15,15] dB to [−5,5]
dB, to mimic the limited electrical dynamic range associated with electrical stimulation.
While a slight increase in ρ was observed for the NCM measure, all other performance
criteria resulted in slightly lower correlation for both the NCM and CSII measures.

The ModA metric, in turn, despite being developed specifically with CI users in mind, does
not emulate device characteristics, such as is proposed in this paper for SRMR-CI. Instead, it
uses a simplified filterbank based on four 4th-order Butterworth bandpass filters with mel-
scale like center frequencies. While this setup was shown to perform well in reverberation-
only conditions (e.g., in Chen et al. (2012)), the experiments described herein have shown
reduced performance in the noise-only condition, likely due to the fact that the 0.5–10 Hz
modulation frequency range was significantly affected by the speech-shaped noise. As such,
it is recommended that objective intelligibility measures tailored towards CI applications be
equipped with a higher-resolution CI-inspired acoustic filterbank, such as the one used in the
investigated NCM and SRMR-CI measures.

4.3. Study limitations
This study describes the first step towards the development of a non-intrusive intelligibility
metric for CI users. It incorporated insights from a conventional cochlear implant processor
(a 22-channel Nucleus processor). Further studies are needed to assess the potential benefits
of incorporating ideas from other device types and coding strategies. Moreover, a gold-
standard normalization technique was investigated here where the SRMR-CI value of a
degraded speech file was normalized by the SRMR-CI value of its clean speech counterpart.
Such normalization strategy results in an intrusive algorithm, which may not be very
practical for real-time intelligibility prediction for e.g., intelligibility-aware speech
enhancement. As such, alternate normalization strategies are still needed in order to
maintain the non-intrusive capability of the SRMR-CI measure. Lastly, the results reported
herein have made use of speech files uttered by a male speaker only, thus it is not clear if the
same results will be obtained with female speech.
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5. Conclusions
This paper has evaluated several objective speech intelligibility measures for CI users in
noisy and reverberant everyday environments. It was shown that existing non-intrusive
metrics are outperformed by intrusive ones. Notwithstanding, an extension to the so-called
SRMR non-intrusive measure was proposed to better simulate CI hearing. Experimental
results showed improvements over its predecessor and the obtained performance levels were
in line with intrusive ones, but with the advantage of not requiring a clean reference signal.
Ultimately, access to a reliable non-intrusive speech intelligibility metric may open doors to
intelligibility-aware speech enhancement, thus improving speech-in-noise recognition for CI
users.
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Fig. 1.
Acoustic filterbanks of (a) the original SRMR, and (b) the Nucleus-inspired filterbank.
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Fig. 2.
Scatterplots of subjective intelligibility versus objective scores for condition-averaged data
points of the three intrusive metrics: (a) CSII, (b) NCM, (c) SRMR – CInorm.
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Fig. 3.
Scatterplots of subjective intelligibility versus objective scores for condition-averaged data
points of the four non-intrusive metrics: (a) P.563, (b) SRMR, (c) ModA, (d) SRMR-CI.
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Table 2

Overall per-condition performance criteria of the seven investigated objective measures.

Metric ρ ρspear ρsig RMSE

NCM 0.96 0.93 0.93 12.4

CSII 0.93 0.91 0.93 10.57

P.563 0.89 0.88 0.89 12.52

SRMR 0.93 0.89 0.92 12.77

ModA 0.82 0.76 0.82 15.70

SRMR-CI 0.96 0.97 0.94 11.29

SRMR – CInorm 0.96 0.97 0.95 10.76
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Table 3

Fitted sigmoidal parameters for each of the seven investigated measures.

Metric α1 α2

NCM −4.99 15.38

CSII −6.06 11.57

P.563 −5.57 8.19

SRMR −5.2 12.96

ModA −5.68 9.15

SRMR-CI −5.29 12.49

SRMR – CInorm −5.3 12.82
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