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Abstract

In this paper, the problem of speech source localization and separation from recordings of convolutive

underdetermined mixtures is studied. The problem is cast as recovering the spatio-spectral speech infor-

mation embedded in a microphone array compressed measurements of the acoustic field. A model-based

sparse component analysis framework is formulated for sparse reconstruction of the speech spectra in a re-

verberant acoustic resulting in joint localization and separation of the individual sources. We compare and

contrast the computational approaches to model-based sparse recovery exploiting spatial sparsity as well as

spectral structures underlying spectrographic representation of speech signals. In this context, we explore

identification of the sparsity structures at the auditory and acoustic representation spaces. The auditory

structures are formulated upon the principles of structural grouping based on proximity, autoregressive cor-

relation and harmonicity of the spectral coefficients and they are incorporated for sparse reconstruction. The

acoustic structures are formulated upon the image model of multipath propagation and they are exploited

to characterize the compressive measurement matrix associated with microphone array recordings.

Three approaches to sparse recovery relying on combinatorial optimization, convex relaxation and

Bayesian methods are studied and evaluated based on thorough experiments. The sparse Bayesian learn-

ing method is shown to yield better perceptual quality while the interference suppression is also achieved

using the combinatorial approach with the advantage of offering the most efficient computational cost. Fur-

thermore, it is demonstrated that an average autoregressive model can be learned for speech localization

and exploiting the proximity structure in the form of block sparse coefficients enables accurate localiza-

tion. Throughout the extensive empirical evaluation, we confirm that a large and random placement of the

microphones enables significant improvement in source localization and separation performance.

Keywords: Structured sparse representation, Model-based sparse recovery, Reverberation, Source
localization and separation, Sparse component analysis, Computational auditory scene analysis
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1. Introduction

Source localization and separation are central problems in various microphone array applications. This

work takes place at the intersection of sparse component analysis and computational auditory scene analysis

(CASA). Motivated by the commonalities between these two approaches to source separation, we consider

structural dependencies influencing our auditory system for structured sparse recovery to develop a model-

based sparse component analysis framework.

We consider the microphone array acquisition model as a linear convolutive mixing process stated as

xm =

N∑
n=1

hmn ~ sn, ∀m ∈ {1, ...,M} (1)

where the signal of each microphone xm is characterized as a superposition of the signal of individual

sources sn, ∀n ∈ {1, · · · ,N} convolved with the acoustic channel, hmn, between the position of source n and

microphone m; N and M denote the number of sources and microphones, respectively.

This formulation is stated in time domain. To exploit the sparsity structures of sound as we shall see in

this paper, the frequency domain representation is considered. Hence, the short time Fourier transform is

applied on the microphone array signals. The convolution-multiplication property of the Fourier transform

leads to the following mixing model

Xm =

N∑
n=1

HmnSn, ∀m ∈ {1, ...,M} (2)

where Xm,Hmn and Sn are the frequency domain representations of xm,hmn and sn respectively.

The goal is to recover the individual source signals fromM recorded mixtures. There is no prior knowledge

about N, M and the acoustic channels Hmn and the estimation of the signals can only be achieved under

assumptions about the signal or channel characteristics. Furthermore, the linear system expressed in (2) is

underdetermined if N >M. Hence, additional assumptions are required to circumvent the ill-posedness of

the separation problem. In the next section, we overview some of the prior works on multichannel techniques

for speech separation.

1.1. Prior Work

The signal of individual sources can be recovered through multichannel linear filtering. These techniques

can be grouped in two categories: independent component analysis and beamforming. The alternative non-

linear strategies to demixing rely on extraction of the descriptions of individual sounds within the framework

of computational auditory scene analysis and sparse component analysis. In the following, we study the

assumptions underlying each approach and the scope of their application.

Independent component analysis (ICA) relies on the assumption that the signals are statistically inde-

pendent. Hence, the objective is formulated to estimate an inverse/demixing filter such that the recovered
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source signals are statistically independent (Comon and Jutten, 2010). This approach typically requires

the number of source and microphones to be known in advance. In addition, the system has to be (over-)

determined, i.e. M > N so that an inverse filter exists. Furthermore, the mixing matrix must remain the

same (stationary acoustic assumption) for a relatively long period of time to provide a reasonable estimate

of a large number of model parameters. This assumption is difficult to fulfill in the realistic scenarios in

which speakers turn their heads or move around.

Buchner et al. proposed to incorporate characterization of the room acoustics in the separation pro-

cess (Buchner et al., 2007). Their approach exploits the statistical independence assumption of the sources

to perform joint deconvolution and separation of the signals in overdetermined scenarios. Nesta et al. pro-

posed an extension for underdetermined scenario where multiple complex valued ICA adaptations jointly

estimate the mixing matrix and the temporal activities of multiple sources in each frequency band to exploit

the spectral sparsity of speech signals (Nesta and Omologo, 2012). The method does not explicitly rely on

identification of the acoustic channel and recovery of the desired source imposes a permutation problem due

to mis-alignment of the individual source components (Nesta and Omologo, 2012; Wang et al., 2011). Other

extensions of ICA for the underdetermined scenarios consist in integration with sparse masking techniques

within a hierarchical separation framework (Araki et al., 2004; Davies and Mitianoudis, 2004).

Beamforming is a geometric method to speech recovery that relies on steering/forming the beam pattern

of the microphone array towards the desired source. This process can spatially filter out interferences from

other directions regardless of the signal nature. Due to the spatial directivity, it can also mitigate the effect

of reverberation which causes a field of dispersed signals. The limitation of beamforming is that separation

is not possible when multiple sounds come from directions that are the same or near to each other (Wolfel

and McDonough, 2009; Parra and Alvino, 2002).

Unlike the ICA approach, the beamforming requires information about the microphone array configura-

tion and the sources (such as the direction of the desired source). However, there is no need to determine the

number of spatially spread and reverberant interferences. It has been shown that beamforming can attain

excellent separation performance in determined or overdetermined time-invariant demixing problems (Ku-

matani et al., 2011; Taghizadeh et al., 2012). However, only partial interference suppression is possible in

underdetermined cases. Recent work considers non-linear combination of beamformers which incorporate

sparsity of the spectro-temporal coefficients to address the underdetermined demising (Dmour and Davies,

2011). The application of this method is however limited to the anechoic scenarios and the performance is

degraded in reverberant condition.

Huang proposed to exploit the acoustic channel to achieve speech separation and dereverberation (Huang

et al., 2005). Their method applies a blind channel identification where the mixing procedure is delineated

with a multiple-input multiple-output mathematical model. The authors propose to decompose the convo-

lutive source separation problem into sequential procedures to remove spatial interference at the first step
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followed by deconvolution of the temporal echoes. The drawback of this approach is that it can only perform

channel identification from single talk periods and it requires a high input signal-to-noise ratio.

Computational auditory scene analysis (CASA) aims to recover the source signals from one or two

recordings of an acoustic scene by exploiting the principles of human auditory scene analysis (Wang and

Brown, 2006). The capability of individual listening in a clutter of sounds is attributed to the ability of

listeners to ”glimpse” the target voice during intervals in the competing interferences (Brungart, 2001). To

state it more specifically, the sparse distribution of speech energy in spectro-temporal plane results in gaps

in the spectrum of the overlapping sounds during which listeners can obtain an uncorrupted estimate of the

target speech signal. The contribution of CASA is thus identifying the spectro-temporal regions that are

dominated by a single sound source (Kollmeier et al., 2008).

The CASA approach may be regarded as a two-stage process. The first stage is decomposition of

the acoustic input into a collection of local spectro-temporal regions. The second stage is grouping the

segments of the spectro-temporal scene that are likely to have arisen from the same environmental source

into a perceptual structure. Bregman recognizes the major primitive grouping principles relying on (1)

proximity in frequency and time (2) harmonicity (3) continuous or smooth transition (forming a continuous

trajectory) (4) common onset and offset (5) amplitude and frequency modulation (Bregman, 1990; Parsons,

1976). These modeling mechanisms has been the source of various algorithmic approaches to deal with the

complex listening situation (Faller and Merimaa, 2004). Many CASA systems achieve source separation

by computing a mask to weight a spectro-temporal representation of the acoustic input and this has been

regarded as the computational goal of CASA (Hu and Wang, 2001; Roman et al., 1991).

Sparse Component Analysis (SCA) relies upon the assumption that the signals have sparse representa-

tion (Zibulevsky and Pearlmutter, 2001). The sparsity implies that the representation of signal occupies only

a small part of a larger space so the mixtures of sparse components are likely to be disjoint. In many cases

that the canonical representation of the signals do not exhibit the sparsity properties, a linear transforma-

tion of the signal such as Fourier or wavelet transform yields sparse representation. Yilmaz et al. exploited

the sparsity and disjoint characteristics of spectro-temporal representation of speech mixtures to perform

separation (Yilmaz and Rickard, 2004). Their method relies on delay and attenuation differences between

the signals acquired by two microphones to construct a binary mask and extract the individual signals. The

extensions of this approach have been proposed for M-channel microphone array and convolutive mixtures

recorded in a reverberant room by Melia et al in (Melia and Rickard, 2007) and Abrard et al. in (Abrard

and Deville, 2005).

The key differences between different SCA techniques boil down to the method of clustering the com-

ponents for mixing matrix estimation as well as mask construction or sparse recovery to achieve source

separation (Jafari et al., 2006; Mourad and Reilly, 2010). Generalized to CASA, in many SCA approaches,

a soft mask is applied thus the assumption that each spectro-temporal coefficient belongs to the same
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source is relaxed and the recovered speech does not suffer from the musical noise and missing components

in their spectrographic representation (Araki et al., 2005; Kearns et al., 1997). Recent advances consider

the structures underlying the sparse coefficients to improve the separation quality in a model-based sparse

component analysis framework while reducing the number of required measurements (Asaei, 2013; Baraniuk

et al., 2010).

1.2. Contributions and Outline

This study takes place in the context of sparse component analysis. Motivated by the success of structured

sparse recovery, our goal is to address two important questions with regard to application of SCA on speech

recordings. The first question is:

1. What are the sparsity structures underlying spatio-spectral representation of multiparty speech data?

To that end, we elucidate the type of structures pertained to propagation and hearing of sound that can be

incorporated to group the sparse coefficients of multichannel signal in the spectral domain. A key source of

inspiration emerges from the psychoacoustic models studied in the field of auditory scene analysis. Building

upon the theories of CASA and SCA, some auditory and acoustic structures are formulated in such a way

that they can be integrated in the framework of sparse recovery. Then, the next question that we address

is:

2. What are the computational methods to sparse recovery that exploit these structures and how do they

perform?

To that end, different model-based sparse optimization procedures are investigated. This study focuses

on the combinatorial, convex geometric and sparse Bayesian learning approaches to sparse recovery. The

procedure underlying each method is briefly elaborated and thorough experiments are devised to evaluate

the performance of each method in terms of source localization and speech separation quality under clean

and noisy conditions.

It may be noted that the sparse recovery framework presented in this paper entangles the synthesis

sparsity of the spatial domain with the analysis sparsity of the spectral domain. The canonical statement

of the spatial representation of the signals exhibits sparsity in the space of source positions, a property

referred to as synthesis sparsity. Furthermore, the measurements and the unknown acoustic signals are

processed in frequency domain hence, the short time Fourier transformation (STFT) is applied that yields

analysis sparsity. Although the theoretical implications of the synthesis and analysis sparsity models are

not within the scope of this work, we would like to bear in mind that when we talk about analysis sparsity,

the transformation always plays a key role and requires further investigations (Tan and Fevotte, 2005).

The rest of the paper is organized as follows. The model-based sparse component analysis is stated in

Section 2.1. The structured sparsity models underlying the perception and propagation of sound are studied
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in Sections 2.2 and 2.3. We will see that the acoustic sparsity enables characterization of the compressive

measurement mechanism associated with microphone array recordings and the auditory sparsity leads to

incorporation of auditory-inspired models for speech signal reconstruction. In Section 3, we explain the

premises of different computational approaches to model-based sparse recovery that exploit these structures

for joint localization and separation of speech sources. Section 4 covers the details of the experimental

analysis. Finally, the conclusions are drawn in Section 5.

2. Model-based Sparse Component Analysis

2.1. Problem Definition

We assume that the planar area of the room is discretized as a 2D grid with G uniform cells and N

speakers are distributed such that each one of them occupies an exclusive cell and N � G1. The spatial

spectrum of an acoustic scene is defined as a vector formed by concatenation of the spectrum from each cell.

If no active source is positioned on a cell, the corresponding spectrum is a vector of all zeros. Hence, in a

typical scenario that the number of sources is smaller than the number of cells, this vector is very sparse,

i.e. the support of non-zero components is a small subset of its actual dimension.

We consider the frequency domain representation of the speech signals. The spatial spectrum of the

acoustic scene is formed from concatenation of the spectral representations of the individual source signals

on all grid cells defined as

S = [S>1 , · · · ,S>g , · · · ,S>G]
> ∈ CGF×1 (3)

where Sg ∈ CF×1 denotes the spectral coefficients of the source located at cell g and F is the number of

discrete frequencies; .> stands for the transpose operator. We express the signal ensemble at the microphone

array as a single vector

X = [X>1 , · · · ,X>m, · · · ,X>M]> ∈ CMF×1 (4)

where each Xm ∈ CF×1 denotes the spectral representation of recorded signal at microphone m.

The sparse vector S generates the microphone observations as X = ΦS; Φ ∈ CMF×GF is the acoustic

measurement matrix consisting of the microphone array manifold vectors associated with the source located

at each cell on the grid; as the matrix is typically very wide, i.e. M� G, we also refer to it as the compressive

measurement matrix. The rigorous definition of Φ is expressed in Section 2.2 (Asaei et al., 2014).

In this paper, we assume that the acoustic measurement matrix is characterized based on the image

model of multipath propagation. Hence, the spatio-spectral speech recovery problem amounts to sparse

reconstruction of S given the compressed measurements in X. Once S is estimated, the support of the high

1There is no algorithmic impediment to consider a 3D grid, but the number of required measurements (microphones) and
the computational cost will be higher.
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energy components indicates the source locations corresponding to the cells on the grid and the coefficients

constitutes the individual source signals.

Contrary to the common SCA practice, this framework merges the two steps of source localization

and separation through a joint objective of sparse reconstruction of the spatio-spectral representation of

the acoustic scene. In addition, the underlying structures can be incorporated to achieve a more efficient

recovery scheme. In this context, the objective of this paper is to identify and formulate the structures

pertained to the propagation and perception of sound. Furthermore, the computational approaches to

model-based sparse recovery are studied in order to compare and contrast their performance in terms of

speech localization and separation using underdetermined recordings in a reverberant environment.

2.2. Sparsity Structures of Sound Propagation

To study the acoustic structures associated with multipath propagation of sound, the image model is con-

sidered (Allen and Berkley, 1979). The image model enables characterizing the acoustic field of a reverberant

enclosure. It asserts that the sound field generated by a point source in a “shoe-box” room can be repre-

sented as the superposition of the original sound field and the ones generated by mirror images of the source

with respect to the surrounding walls. Therefore, we can represent a path involving reflections by multiple

straight line (free-space) paths connecting the microphone to the actual and virtual sources/images. This

model is applicable to general polyhedra assuming that the reflective surfaces are piecewise planar (Borish,

1984).

Now lets assume that the grid is expanded over the boundaries of the enclosure; applying the image

model to a source at a particular cell leads to a sparse lattice of virtual sources. Given the room geometry

and the source location, a spatial structure underlies the multipath recordings which is known for each

position inside the room. This structure is referred to as the acoustic multipath sparsity structure exploited

in the spatial characterization of the microphone array recordings (Asaei et al., 2014).

To state it more precisely, we define Hmg(f,µm,νg) as the multipath channel response at frequency f

between a source g located at νg and the microphone m located at µm. Based on the image model, we can

characterize the channel as a superposition of free-space Green’s function stated as

H(f,νg,µm) =

R∑
r=1

ιr

‖µm − νrg‖α
exp(−j2πf

‖µm − νrg‖
c

) (5)

where νrg indicates the position of the rth virtual sources with the reflective energy ratio of ιr. Let F ′ =

{f1, · · · , fπ} represents a set of π frequencies, the compressive measurement matrix associated with the
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microphone array for a broadband source positioned on the grid is obtained through

Hdiag(F ′,νn,µm) =

diag ([H(f1,νn,µm) H(f2,νn,µm) · · ·H(fπ,νn,µm)]) ,

Φ =


Hdiag(F ′,ν1,µ1) · · · Hdiag(F ′,νN,µ1)

...
. . .

...

Hdiag(F ′,ν1,µM) · · · Hdiag(F ′,νN,µM)


(6)

The spatial sparsity of the sources enables recovery of the signals S from the compressed measurements X

using the compressive measurement model X = ΦS. The unique map of the source location to the acoustic

multipath structure guarantees the exact localization/separation (Dokmanić et al., 2013).

2.3. Sparsity Structures of Auditory Perception

The perceptual mechanism that governs the auditory system guide us to identify the structures underlying

spectrographic speech representation. We rely on Bregman’s framework for auditory scene analysis to

characterize the auditory sparsity structures (Bregman, 1990; Wang and Brown, 2006); the theory asserts

that the acoustic signal in the form of spectro-temporal scene is decomposed into a collection of segments,

which are subsequently grouped to form coherent streams. The mechanism underlying grouping can be

either a bottom-up process relying on the intrinsic structure of environmental sound or a top-down process

based on prior knowledge on schema patterns (e.g. syllabic or linguistic). We investigate and formulate

some of the bottom-up structures that can be exploited for sparse recovery. These structures are exhibited

in the form of harmonicity, proximity and autoregressive dependency. The top-down structures often require

language dependent processing modules and integration of the top-down structures in sparse recovery is an

interesting subject of future studies.

2.3.1. Harmonicity

The set of acoustic components that are harmonically related (i.e. have frequencies which are integer

multiples of the same fundamental frequency) tend to be grouped together. The harmonic structure is

manifested in voiced speech as it comprises a small number of spectral peaks at harmonics of a fundamental

frequency; at other frequencies the energy is typically low or negligible. We can therefore model the dis-

tribution of energy over frequencies as having harmonic sparsity structure. To state it more precisely, the

support of S in sparse recovery must conform to the following model

FH , {kf0|1 < k < K} (7)

where the group of FH frequencies correspond to a single cell; f0 denotes the fundamental frequency and K

is the number of harmonics to be grouped together.
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2.3.2. Proximity

The set of adjacent frequencies tend to be grouped together while we are listening to the sound in a

complex environment (Wang and Brown, 2006). Based on the principle of proximity, the closer acoustic

components are in frequency/time, the greater is the tendency to group them into a single stream/source. To

formulate this model for sparse reconstruction of S, a block of B neighboring discrete frequencies is defined

as

FB , {[f1, ..., fB], . . . , [fF−B+1, ..., fF]} (8)

where all these frequencies are recovered as the spectral components of a single source corresponding to one

cell of the grid. Hence, this block structure indicates that the spatial sparsity is the same at all adjacent

frequencies.

Considering a single frequency component of multiple frames, the block structure boils down to simul-

taneous sparsity which is a special case of block structure when the manifold vectors corresponding to a

group of sparse components are all the same. This structure enables capturing the sequential structure of

the coefficients while processing multiple frames together. It is also referred to as multiple measurement

model (Wipf and Rao, 2007).

2.3.3. Autoregressive Correlation

Another principle of structural grouping relies on amplitude modulation. Frequency components that

exhibit the same modulation tend to be grouped together by our auditory system while analyzing the acoustic

scene. This dependency can be captured through linear prediction by fitting an autoregressive (AR) model

to find the optimal linear combination of a fixed-length history to predict the next component.

The AR inter-dependency implies a correlation among the block coefficients of each source, that we

model using an AR process of order R characterized as the following

FAR , [1,βg(1),βg(2), . . . ,βg(R)] (9)

where βg ∈ (−1, 1) denotes the AR coefficients. The sources Sg are mutually independent, but each source

satisfies an AR model as

Sg(b) = FAR [u(b), Sg(b− 1), . . . , Sg(b− R)]> (10)

where u(b) denotes the input sequence and b corresponds to the indices of adjacent frequencies or a single

frequency at multiple frames. We will see how the AR correlation is taken into account in sparse reconstruc-

tion in Section 3.2.4 and study the empirical evaluation results in Section 4.3.2.

In this section, we explained about the sparsity structures underlying the spatio-spectral representation of

convolutive speech mixtures recorded by an array of microphone. In the following section, we overview some

of the computational methods to sparse recovery and explain how the spectrographic sparsity structures can

be incorporated for sparse reconstruction of the individual speech sources.
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3. Model-based Sparse Recovery

Defining a set M as the union of all vectors with a particular support structure, estimation of the

structured sparse coefficient of vector S from the microphone recordings X can be expressed as

Ŝ = argmin
S∈M

‖S‖0 s.t. X = ΦS (11)

where the counting function ‖.‖0 : RGF → N returns the number of non-zero components in its argument.

3.1. Computational Methods

The major classes of computational techniques for solving sparse reconstruction problems rely on com-

binatorial, geometric or probabilistic frameworks (Tropp and Wright, 2010).

Combinatorial optimization: The nonzero components of S are estimated through an iterative procedure

by modifying one or several coefficients chosen to yield a substantial improvement in quality of the estimated

signal. In this paper, we consider the algorithms based on iterative hard thresholding (IHT) (Blumensath and

Davies, 2009; Kyrillidis and Cevher, 2011) as well the agglomorative greedy approach of orthogonal matching

pursuit (OMP) to evaluate the combinatorial method to speech localization and separation incorporating

the sparsity structures underlying spectrographic coefficients (Gribonval and Bacry, 2003).

Convex relaxation: The counting function in (11) is replaced with a sparsity inducing convex norm

defined for the convex hull of the union of sparse vectors S. Therefore, a convex objective is obtained which

can be solved using convex optimization (McCoy et al., 2014). We consider a particular extension of basis

pursuit algorithm which relies on L1-norm (defined as the sum of absolute values of the vector elements)

relaxation of the counting objective and L1L2 formulation of group sparse recovery (Berg and Friedlander,

2008).

Bayesian methods: A prior distribution is associated with S with sparsity inducing hyperparameters and

a maximum a posteriori estimation is obtained given the distant microphone measurements, X. We consider

in particular the Multiple measurement FOCal Underdetermined System Solver,(MFOCUSS) (Cotter et al.,

2005) and the sparse Bayesian learning, (SBL) framework (Wipf and Rao, 2007; Zhang and Rao, 2011,

2012).

3.2. Sparse Recovery Algorithms

In this section, the model-based sparse recovery algorithms that are used for our empirical study in

Section 4 are briefly explained.
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3.2.1. IHT

The iterative hard thresholding (IHT) offers a simple yet effective approach to estimate the sparse vectors.

We use the algorithm proposed in (Kyrillidis and Cevher, 2011) which is an accelerated scheme for hard

thresholding methods with the following recursion

Ŝ0 = 0, Ri = X−ΦŜi

Ŝi+1 = MF.

(
Ŝi + κΦTRi

) (12)

where the step-size κ is the Lipschitz gradient constant to guarantee the fastest convergence speed; i denotes

the iteration variable. To incorporate for the underlying structure of the sparse coefficients, the model

approximation operator MF. is defined as reweighting and thresholding the energy of the components of Ŝ

with either FH or FB structures defined in (7) and (8).

In Sections 4.3 and 4.4, this method is evaluated for sparse recovery considering the proximity/block

structure underlying the spectral and temporal components as well as the harmonicity of the spectral

components of S.

3.2.2. L1L2

An extension of the basis pursuit algorithm for group sparse recovery can be used for model-based sparse

recovery. The optimization problem to recover the group sparse coefficients Ŝ is formulated as follows:

Ŝ =argmin
S

{‖S‖L1L2 s.t. X = ΦS} ,

‖S‖L1L2 =

G∑
g=1

√√√√nF.∑
b=1

(Sg(b))2
(13)

where the number of group members nF. is determined by the underlying structure of the grouped compo-

nents. From the formulation of (13), we can see that the inner sum calculates the L2 norm of the group

components whereas the outer sum calculates the L1 norm of the groups. Hence, the L1L2 objective imposes

sparsity at a group level while the coefficients for each individual group can be dense.

Like IHT, this method is also evaluated for sparse recovery considering the proximity/block structure

underlying the spectral and temporal components as well as the harmonicity of the spectral components of

S in Sections 4.3 and 4.4.

3.2.3. MFOCUSS

The Multiple measurement FOCal Underdetermined System Solver (MFOCUSS) algorithm employs an

Lρ-norm like diversity measure; it is formulated to recover the sparse matrices with a simultaneous sparsity

structure (Section 2.3.2) via

Ŝ = arg min
S

‖X−ΦS‖2F + λ

G∑
r=1

(‖Sr.‖)ρ (14)
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where S and X are formed from the spectral vectors S and X of multiple frames: S = [S1, · · · SL] ∈ CG×L

and X = [X1, · · ·XL] ∈ CM×L considering a single frequency. The ρ ∈ [0, 1] is a user-defined parameter2, to

prevent models with many nonzero rows.

The factored-gradient iterative algorithm to minimize the objective stated in (14) is summarized as

ci.l = ‖Xi.l‖ =
(∑L

l=1(X
i
.l)

2
)1/2

, ∀l ∈ {1, · · · ,L}

Wi+1 = diag ((ci.l)
1−ρ/2),

Qi+1 = (ΦWi+1)†X

Ŝi+1 = Wi+1Qi+1

(15)

where the notion Xr. refers to the rth row of matrix X and (.)† stands for the pseudo-inverse operation.

The update rules stated in (15) are guaranteed to converge monotonically to a local minimum of the objec-

tive (Cotter et al., 2005).

The MFOCUSS objective function (14) can be derived using a generalized Gaussian prior on the row

norms of spectro-temporal components. Thereby, it admits the Bayesian analysis on maximum a posteriori

(MAP) estimation of the sparse coefficients given the observation X and linear measurement matrix Φ (Saab

et al., 2007). The difficulty with this procedure is twofold: either the prior is not sufficiently sparsity-

inducing (Cevher, 2009) and the MAP estimates sometimes fail to be sparse enough, or a combinatorial

number of suboptimal local solutions must be dealt with if a highly sparse prior is chosen. Hence, alternative

Bayesian strategy based on sparse Bayesian learning framework are developed (Wipf and Rao, 2007) that

is considered in this paper.

In Sections 4.3 and 4.4, the MFOCUSS method is evaluated for sparse recovery considering the proxim-

ity/block structure underlying the temporal components of S.

3.2.4. BSBL

This algorithm is an extension of Sparse Bayesian Learning (SBL) incorporating block sparsity thus

denoted by BSBL. The empirical Bayesian sparse learning method (Zhang and Rao, 2012) assumes that

the component of S are mutually independent and each has a Gaussian distribution. Hence, the prior

distribution for S has a multivariate normal distribution. If we assume that the components of S consist in

blocks of B adjacent coefficients (e.g. multiple frequencies or frames of a single source), the joint distribution

of each block is p(Sg;γg,βg) ∼ N(0,γgBg) where γg is a non-negative hyper-parameter controlling the

block-sparsity of S; γg = 0 indicates that the associated block in Ŝ is zeros or no source is located on the

corresponding cell. The Bg ∈ RB×B is a positive definite matrix that captures the correlation structure of

Sg. For example to account for the AR dependency model stated in (10), the covariance matrix Bg of each

2A typical value for speech-specific task can be selected as 0.6 (Saab et al., 2007) or 0.8 as suggested by the authors of the
MFOCUSS algorithm (Cotter et al., 2005).
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source has the following Toeplitz structure

Bg =


1 βg . . . βB−1

g

βg 1 . . . βB−2
g

...
...

. . .
...

βB−1
g βB−2

g . . . 1

 (16)

Under the assumption that the blocks are mutually uncorrelated, the prior for S is p(S;γg,Bg,∀g) given by

N(0,Σ0), Σ0 = diag ([γ1 B1 . . .γGBG])

Assuming the Gaussian likelihood for the block sparse model as p(X|S;σ2) ∼ N(ΦS,σ2I) and

applying the Bayes rule, we obtain the posterior density of S, which is also Gaussian, thus

p(S|X;σ2, {γg,Bg}
G
g=1) ∼ N(µs,Σs) where

Σs = (Σ−1
0 +

1

σ2
ΦTS)−1X

Having all the hyperparameters σ2, γg, Bg, the MAP estimate of S is given by the mean defined as

Ŝ , µs = Σ0Φ
T (σ2I+ΦΣ0Φ

T )−1X (17)

The hyperparameters can be efficiently estimated through the EM procedure (Zhang and Rao, 2012). We

will see in Section 4.3 that the AR model can be estimated offline for the specific task of speech localization.

3.2.5. TMSBL

This algorithm exploits the temporal structure in multiple measurements sparse Bayesian learning thus

coined as TMSBL. The multiple measurements share simultaneous sparsity as the support of sparse coef-

ficients are the same for all measurements. To exploit the temporal structure in a form of simultaneous

sparsity, the matrix of measurements, X obtained by concatenation of the coefficients along multiple con-

secutive frames is transformed to a vector through

X = vec(X) ∈ CML×1,

Ψ = Φ⊗ IL,

S = vec(S) ∈ CGL×1

The transformation leads to X = ΨS with a block structure obtained as

X = [φ1 ⊗ IL, ...,φG ⊗ IL][ST1 , ...,STG]
T =

G∑
g=1

(φg ⊗ IL)Sg

where Sg ∈ CL×1 is the gth block in S and Sg = STg.. Having N nonzero rows in S means N nonzero

blocks in S. Thus, S is block-sparse. Given the vectorized formulation, the rest of the procedure is similar

to BSBL. This algorithm is referred to as temporal multiple measurement SBL or TMSBL (Wipf and

13



Rao, 2007) that is used for evaluation of speech localization and separation incorporating the temporal

proximity/block sparsity structure taking into account the AR correlation of the source-specific coefficients.

If the autoregressive correlation of the coefficients is completely ignored, the basic multiple measurement

SBL (MSBL) algorithm (Zhang and Rao, 2011) is used for evaluation in sections 4.3 and 4.4.

4. Experimental Analysis

The experiments are conducted to evaluate the performance of the model-based sparse recovery algo-

rithms in terms of source localization, speech separation as well as computational cost. More specifically, the

goal of our experimental analysis is to study the performance of model-based sparse recovery of multiparty

speech signals considering the following issues:

� Sparsity structures underlying spectrographic speech representations.

� Different computational methods exploiting these structures for sparse reconstruction.

� Robustness to noise and mismatch in characterization of a reverberant acoustic field.

� Sensitivity to coherence of the measurements entangled with the geometry of the microphone array.

4.1. Acoustic and Analysis Setup

The speech utterances are taken from the Wall Street Journal (WSJ) corpus (Lincoln et al., 2005). The

WSJ corpus consists of 20000 words from read Wall Street Journal sentences. The sentences are read by a

range of speakers (34 in total) with varying accents (including a number of non-native English speakers).

This database provides a broad phonetic space for speech separation evaluation. The utterances used for

the experiments presented here are selected arbitrarily. The length of the signal used for speech separation

evaluation is about 2.5 min.

The overlapping speech was synthesized by mixing sentences from the test set with interfering sentences

from the development set. The interference files are normalized in speaker localization evaluation and scaled

to yield −20 dB source to interference ratio (SIR) for speech separation experiments.

The planar area of a room with dimension 3m×3m×3m is divided into cells with 50 cm spacing. The

acoustic recordings are synthesized for two four-channel microphone arrays. The scenarios include random

and compact placement of the microphones at different noise levels. The random placement has a large

aperture and it is motivated by the theoretical insights on the performance of sparse recovery algorithms

and the importance of random and incoherent measurements. The data collection setup is depicted in Figure

1. The center of the compact microphone array is located at the room center. The number of sources is

N = 5 for speech separation experiments. The source-microphone configuration has the topology depicted

in Figure 1. For the source localization experiments, the number of sources varies as N ∈ {5, · · · , 10} and all

the combinatorial unique topologies are considered while the microphone locations are fixed.
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Figure 1: Overhead view of the room set-up for uniform (black dots) and random microphone array (white dots).
The angle of the random microphones (white dots) located in the first to fourth quadrants are 80, 140, 200 and 340
degrees with respect to the horizontal axis.

The room impulse responses are generated with the image model (Allen and Berkley, 1979) using intra-

sample interpolation, up to 15th order reflections and omni-directional microphones for a room reverberation

time equal to 200 ms; the speed of sound is assumed to be c = 343 m/s. The speech signals are recorded

at 16 kHz sampling frequency and the spectro-temporal representation for source separation is obtained by

windowing the signal in 250 ms frames using Hann function with 50% overlapping for applying the short

time Fourier transform. The number of FFT points is 4096. This relatively long window is selected based on

the reverberation time and its importance in modeling the acoustic field using image method (Asaei et al.,

2014).

4.2. Coherence of the Measurements

The compressive acoustic measurement matrix is forced by the laws of physics governing the propagation

of sound and it is a function of source and microphone placements, enclosure properties as well as the

emanating signal frequency. Exploiting the broadband frequencies of speech provides us a handle to select

a microphone array measurement matrix meeting the desired spectral properties.

The theory of sparse signal reconstruction requires the measurements to be incoherent. This condition

can partly be fulfilled by designing a microphones array geometry to minimize the coherence in spatial

sampling which is out of the scope of this paper. Hence, we rely on an intuitive design based on randomness

and distant positioning of the microphones.

To analyze the measurement matrix for the broadband speech spectrum, we compute the condition

number of Φ for the random array setup at different frequency bands; the condition number is defined as

the ratio of the maximum to the minimum singular values. The results are illustrated in Figure 2. The

results suggest subband processing in order to increase the efficiency of sparse recovery algorithms and in

particular it demonstrates the importance of high frequencies to obtain a less coherent measurement matrix.
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Figure 2: Condition number computed per frequency band for the ad hoc microphone array measurement matrix.
The upper plots correspond to the linear frequencies whereas the lower bars are centered at Bark frequencies. It
is evident that the high frequencies results in less correlation and the measurement matrix exhibits better spectral
properties.

4.3. Source Localization Performance

Recall from 2.1 the sparse vector S consisting of the source-specific coefficients positioned on the grid cells

(cf. (3)). This vector is reconstructed using sparse recovery methods elaborated in 3.2. The support of the

high energy coefficients indicates the source locations. In this section, we study the localization performance

using different sparse recovery algorithms.

4.3.1. Evaluation Criterion

The localization accuracy is quantified as the ratio of the number of sources found at the right locations

divided by the total number of sources. For example, if there are 5 simultaneous sources, the coefficients of S

are sorted based on their energy and the top five are considered for localization; if only 4 of the actual loca-

tions are present in the top five high energy cells, the localization accuracy is 80%. The localization accuracy

is measured for each frame independently. The length of the speech signal for frame-based localization is

about two seconds and the average of the frame-based accuracies is reported.

The expected localization performance is quantified by averaging the results over an exhaustive set of

unique configurations consisting of N ∈ {5− 10} sources. The exhaustive evaluation is necessary to quantify

the expected performance as the deterministic bounds of sparse recovery algorithms are too pessimistic and

they are particularly derived for the worst case scenario which is not likely to occur (Asaei, 2013)3.

3More specifically, the deterministic performance bounds are guaranteed when the number of measurements are in order
of CN log(G/N) where C is a constant more than 2. Considering N = 5 sources on a grid of G = 36 cells, it indicates
that the number of required measurements is at least eight. On the other hand, the experimental evaluation shows that
only four microphones is enough for localization and separation. This observation can be justified through two reasons: (1)
the deterministic bounds are pessimistic and derived according to the worst case scenarios and (2) the number of non-zero
coefficients in each time-frequency point is often associated with only one source due to the disjointness property of overlapping
speech sources (Asaei et al., 2010, 2014) hence, N = 1 and four measurements are essential based on the theory.
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4.3.2. Average Autoregressive Model

In this section, we study an average temporal AR model for speech signal and exploit it for source

localization. To obtain the average AR model, the spectro-temporal representation of speech signal of

length 10 min is first obtained using short time Fourier transform. Next, starting from the first frame and

shifting by one frame, similar frequency coefficients of all consecutive frames (segments) of length 13 are

used to learn an AR model of order 13. Finally, the AR coefficients of all segments at all discrete frequencies

are averaged. Figure 3 illustrates the average temporal AR coefficients. The AR model is estimated from

the voiced speech segments using an energy-based voice activity detector. The speech signal is recorded in

clean condition.

1 2 3 4 5 6 7 8 9 10 11 12 13

0

0.2

0.4

Coefficient Number

Figure 3: The 13-order average temporal AR coefficients estimated for 10 min speech. The cross lines show the
variance of the estimates.

The first-order AR coefficient is estimated as 0.3. We can observe that a first-order average AR model is

a good approximation to capture the temporal correlation across multiple frames. This correlation structure

is applicable for general speech sources and it can be attributed to the shape of human’s vocal tract.

The autoregressive correlation of the sparse coefficients is considered in the framework of sparse Bayesian

learning. The TMSBL method is developed to learn the AR parameters during the optimization proce-

dure (Zhang and Rao, 2011). However, the algorithm is expensive in terms of computational cost and we

empirically observe that it does not yield better performance than MSBL (Wipf and Rao, 2007) where the

AR correlation is completely ignored. Hence, we use the average first-order AR coefficient estimated above

as an input to the TMSBL algorithm alleviating the requirement for frame-wise AR estimation. By doing so,

the algorithm performs both faster and more accurate. The gain in accuracy is more noticeable in compact

microphone array scenario. Figure 4 illustrates the improvement obtained using an average AR model. We

further estimated an average AR model per frequency, but it did not yield a higher localization accuracy.

In addition to the temporal correlation, we investigate the spectral correlation of the adjacent spectral

coefficients. To estimate the AR coefficients, the frequency band is split into blocks of size 16 and processed

independently. Figure 5 demonstrates the average spectral AR model for 10 min speech signal. The first-

order coefficient is estimated as 0.45. Similar to the temporal AR model, we verify that modeling the blocks

as a first-order AR process can be sufficient to incorporate the intra-block correlation.
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Figure 4: TMSBL localization accuracy using L = 13 frames. The light (blue color) bars correspond to the performance
when the average AR model parameter is fixed, i.e. first-order model with a coefficient equal to 0.3; the algorithm does
not update the correlation coefficient. The dark (blue color) bars shows the performance when the AR correlation
coefficients is learned by the algorithm. We can see that it is beneficial to estimate the average AR coefficients offline
and use the first-order coefficient.
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Figure 5: The 10-order average spectral AR coefficients estimated for 10 min speech signal. The cross lines illustrate
the variance of the estimates.

4.3.3. Localization Accuracy

We first study the localization accuracy exploiting the proximity structure associated with simultaneous

recovery of multiple frames. For this experiment, L frames of microphone array recordings are considered.

The localization performance of all sparse recovery algorithms improves with L > 1. We can empirically

observe that L ∈ {10, ..., 15} is a good choice to maximize the performance of different algorithms; the

localization results for L = 13 in clean and noisy conditions are illustrated in Figure 6. The noisy condition

includes both the effect of additive noise as well as mismatch in acoustic modeling. The SNR of noisy

scenario is 10 dB after adding white Gaussian noise and the absorption coefficients of the forward model are

25% deviated from the actual parameters.

Although the number of microphones is limited to 4, we can localize up to 9 sources in noisy condition

and uncertainties in acoustic channel modeling. Given that each frame is 250 ms and the frames are 50%

overlapping, L = 13 frames indicates that 1.6 seconds of speech recordings yields perfect localization from

highly incomplete spatial information of only 4 microphones. There is no noticeable difference between

IHT, L1L2 and MFOCUSS algorithms. However, it is clear that the large random setup leads to significant

improvement in source localization. We can not explain why sparse Bayesian learning framework does not

perform comparable to the other methods.

The frame-based localization accuracy exploiting spectral structures are illustrated in Figure 7. In this
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Figure 6: Expected localization accuracy evaluated for 5-10 simultaneous sources exploiting temporal structured
sparse recovery. The expected performance is quantified by averaging the results over an exhaustive set of unique
configurations consisting of N ∈ {5 − 10} sources.

experiment, we choose the size of each block as B = 16. The algorithms are run for the stopping threshold

fixed to 1e-2 and the maximum iteration of 150. The value of p is selected 0.8 as suggested by the authors

of MFOCUSS (Cotter et al., 2005). We evaluated other values as suggested in (Saab et al., 2007), but no

difference was obtained.

We can see that exploiting the frequency structure yields high accuracy in localization of multiple simul-

taneous sources using only one frame. The L1L2, MFOCUSS and IHT are the best performing algorithms.

Note that the large and random placement of the microphones is essential to achieve highly accurate lo-

calization results. The number of microphones is only 4 whereas we can localize up to 9 sources with 95%

accuracy. These results are beyond the deterministic performance bounds. The orthogonality or disjointness

of spectrographic speech signals is a key property to achieve this performance (Asaei et al., 2014).

Exploiting the temporal structures require the sources to be stationary. Comparing the results illustrated

in Figures 7 and 6 shows that we can relax this requirement and rely on spectral sparsity models to achieve

highly accurate localization. The results of harmonic sparse recovery were comparable to the block-sparse

recovery demonstrated in Figure 7 thus, they are not further elaborated here.

4.4. Speech Separation Performance

In this section, the quality of speech separation using convolutive mixtures provided by four microphones

is evaluated. The number of simultaneous sources is five. The simulated scenario is depicted in Figure 1.

The criteria for evaluation are source-to-interference ratio (SIR) (Vincent et al., 2006), source-to-noise ratio
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Figure 7: Localization accuracy evaluated for 5–10 simultaneous sources exploiting spectral structured sparse recovery.
The expected performance is quantified by averaging the results over an exhaustive set of unique configurations
consisting of N ∈ {5 − 10} sources.

(SNR), perceptual speech quality (PESQ) (ITU-T, 2001) and weighted spectral slope (WSS) (Persia et al.,

2008). This wide range of objective measures is considered to enable thorough evaluation and analysis of

the six different computational methods stated in Section 3 in different scenarios of noise and microphone

array geometries.

4.4.1. Evaluation Criteria

The quality of the separated speech is measured according to the performance metrics proposed in (Vin-

cent et al., 2006). They rely on decomposition of the estimated signal into distinct components of target,

interference and noise. The decomposition is performed by orthogonal projection of the estimated source

signal onto the subspace spanned by specific components of the true source, interference and noise vec-

tors accordingly. For example, if the sources are mutually orthogonal and a time-invariant filtered version

of estimated signal of the true source is denoted by S̃target, the error due to interferences is defined as

einterf =
∑N
j=1〈S̃target,Sj〉Sj/‖Sj‖ where 〈., .〉 stands for the inner product. The subspace of a filtered version

of the true signal is characterized by the true signal vector and all of its delayed versions upto the filter

length; the filter length is chosen to be 512 for our evaluations. Note that to quantify these objective mea-

sures we need to have access to the original source signal and interference signals. The recipe of (Vincent

et al., 2006) also requires to input the noise signal. We did not use any input noise and the spatial (or

filtering) distortion component is used instead; this spatial error is obtained as the difference between true

source signal and the filtered version of the estimated source signal.

The relative amount of these four terms is computed numerically as the energy ratios expressed in

decibels. The objective measures that we evaluate here include source-to-interference ratio (SIR) and source-
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to-noise ratio (SNR), defined as

SIR := 10 log10

‖Starget‖22
‖einterf‖22

, SNR := 10 log10

‖Starget‖22
‖enoise‖22

(18)

In addition, we evaluate the perceptual speech quality in terms of PESQ (ITU-T, 2001). The PESQ

measure was found to have high correlations with subjective rating of overall quality of recovered speech

signals. The databases used during training included various kinds of noises, including babble, so it is a

valid measure to evaluate the results of speech separation.

The PESQ quantification procedure is specifically designed to predict the perceived quality that would

be given to a processed speech signal in a subjective listening test. The original and the recovered speech

signals are pre-processed to compensate for the time-delay, frequency response and gain that are irrelevant

for a subjective score. Then, the signals are transformed to a short-time spectrum with perceptual frequency

(Bark) and intensity (loudness) scales. In particular, the calculation of the short-time loudness spectrum

considers the effect of simultaneous masking in the human auditory system (ITU-T, 2001).

The differences in the internal short-time representations between both signals are computed; the (signed)

difference over time is called disturbance density. Two disturbance vectors, one for positive and one for

negative differences are computed and the values of both disturbance vectors are aggregated over various

time spans with different norms and combined to a raw PESQ score in the range [-0.5, 4.5]. Following

the standardization of PESQ as Recommendation P.862, the standardization sector of the International

Telecommunications Union (ITU-T) created a simple mapping function to allow comparisons between the

raw PESQ score and the traditional MOS (Mean Opinion Score) (ITU-T, 2003).

Finally, the spectral distortion can be quantified in terms of weighted spectral slope distance measure

(WSS) (Persia et al., 2008). This distance measure is based on comparison of smoothed spectra from the

clean and distorted speech samples. The smoothed spectra can be obtained from either linear prediction

analysis, or filter-bank analysis. One implementation of WSS can be defined as follows,

dWSS =
1

L+ 1

L∑
l=0

∑B
f=1W(f, l)(S(f, l) − Ŝ(f, l))2∑B

f=1W(f, l)
(19)

where B is the number of bands, L is the total number of frames, and S(f, l) and Ŝ(f, l) are the spectral

slopes (typically the spectral differences between neighboring bands) of the fth band in the lth frame for

clean and recovered speech, respectively. W(f, l) are weights, which can be calculated described in (Klatt,

1982). The WSS of clean speech signal is 0.

4.4.2. Speech Separation Quality

The speech separation performance exploiting temporal structures in clean and noisy conditions are

summarized in Table 1. The noisy condition includes both the effect of additive noise as well as mismatch in
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acoustic modeling. The SNR of noisy scenario is 10 dB after adding white Gaussian noise and the absorption

coefficients of the forward model are 25% deviated from the actual parameters. The number of frames, L

is set to be 2 as it yields the best performance. The simulations are done in MATLAB 7.14 on 4 Core(TM)

i7 CPU @ 2.8-GHz, 11.8-GiB RAM PC and the absolute elapsed times (in seconds) are measured for each

algorithm.

The evaluation of the speech separation quality exploiting temporal proximity and autoregressive cor-

relation for simultaneous sparse recovery shows that the MFOCUSS algorithm performs the best in speech

reconstruction. The amount of interference suppression is higher while the signal is less distorted and it

preserves better perceptual quality. We can also see that if the coherence of the measurements is small (i.e.

large and random microphone array), the algorithm is not very sensitive to noise and mismatch in acoustic

model characterization.

If the measurements are highly correlated which is the case in a compact uniform microphone array

setup, the greedy methods such IHT achieves higher interference suppression whereas the sparse Bayesian

learning approach performs the best in terms of quality and distortion. Although, in clean condition, the

interference suppression performance drops by 2 dB, this degradation is more pronounced in noisy condition;

for instance, the SIR of MFOCUSS is decreased by 10 dB. The discrepancy between the performance using

compact microphone recording and a large random array is more noticeable for sparse Bayesian learning

whereas it is less exhibited using greedy methods in particular OMP; for example, the SIR using MSBL is

reduced by 10 dB in clean condition while it drops by less than 1 dB using OMP.

In addition, we can see that MSBL outperforms the BSBL framework simply by ignoring the autore-

gressive correlation. In terms of computational cost, OMP is the most efficient algorithm and it offers

computational speed up to 25 times faster than MFOCUSS and 176 times faster than the group sparse basis

pursuit using L1L2 objective.

Furthermore, we evaluate the quality of speech separation exploiting spectral structures. The formulation

of MFOCUSS and MSBL are developed for simultaneous sparsity model and it can not exploit the spectral

block sparse structure. Hence, our experiments are confined to L1L2, IHT, OMP and BSBL methods. The

block-size, B is equal to 2 as it yields the best results. The results are summarized in Tables 2. It is clear

that greedy sparse recovery is the best method to achieve high interference suppression whereas in terms

of quality and distortion, L1L2 and BSBL perform better. In the clean scenario where there is no noise

and mismatch in acoustic model, L1L2 tends to perform better. However, it demonstrates higher sensitivity

to noise and BSBL achieves the best results under mismatch and acoustic model uncertainties. It may be

noted that the BSBL recovery performance in spectral grouping is far better than exploiting the temporal

proximity and autoregressive correlation, particularly in noisy condition.

Comparing the results with simultaneous sparse reconstruction exploiting temporal structures, demon-

strates the effectiveness of the spectral sparse recovery approach as the perceived quality in terms of PESQ
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Table 1: Speech separation quality in clean and noisy conditions exploiting temporal proximity and AR correlation
models. The SNR of noisy data is 10 dB by adding white Gaussian noise and the absorption coefficients required for
characterizing the acoustic by the image model are 25% deviated from the actual parameters. “LR” corresponds to
the large random placement of the microphones and “UC” indicates the uniform compact microphone array.

Temporal proximity & AR - Clean

LR L1L2 IHT OMP BSBL MSBL MFOC

SIR 14.52 14.24 12.47 12.15 24.16 26.4
SNR 4.99 4.66 4.54 3.53 26.35 28.3
PESQ 1.80 1.69 1.80 2.80 1.72 3.09
WSS 62.59 93.88 86.50 69.23 40.39 34.25

UC L1L2 IHT OMP BSBL MSBL MFOC

SIR 14.09 14.16 12.72 8.24 14.57 24.12
SNR 4.75 4.23 3.62 2.67 15.7 23.41
PESQ 1.86 1.79 1.85 1.79 2.59 2.96
WSS 66.46 93.15 87.92 67.55 49.32 35.3
Time 132.46 4.62 0.75 17.6 2.96 2.55

Temporal proximity & AR - Noisy

L1L2 IHT OMP BSBL MSBL MFOC

10.39 12.45 10.63 11.13 15.37 14.71
4.61 4.32 4.32 3.14 15.86 18.35
1.73 1.73 1.74 1.8 2.09 2.19
70.62 74.94 74.13 68.67 69.89 63.70

L1L2 IHT OMP BSBL MSBL MFOC

8.26 9.78 9.07 6.47 4.2 4.08
4.29 4.00 3.28 2.22 3.99 3.22
1.66 1.72 1.79 1.82 1.05 1.34
75.02 82.73 86.8 69.20 87.78 71.46
136.3 7.17 0.75 18.3 3.6 2.88

is higher, the distortion in terms of SNR and WSS is smaller and the interference suppression is achieved

better as quantified by SIR.

To evaluate the effect of harmonic sparse recovery, we consider the fundamental frequency f0 ∈ [150−400]

Hz. The frequencies that are not harmonics of f0 are recovered independently in IHT and L1L2 methods.

We also consider that the harmonic structures are non-overlapping and k spans the full frequency band. The

harmonic sparse recovery approach does not require estimation of f0. We start from f0 = 50 and consider

all of its harmonics within the frequency band (i.e., f 6 8000); hence, a block of size K = 80 of harmonics

of f0 = 50 are recovered jointly. Then we move to f0 = 51 for the next group sparse reconstruction and

proceed up to f0 = 400. Therefore, the size of the blocks are variable. To prevent overlapping, the priority

is given to the first seen frequency components; for example, if a particular frequency is first included in the

harmonics of f0 = 50, it is excluded from the harmonics of f0 = 100. The remaining frequency components

are recovered independently. For the OMP method, the harmonic subspaces are used to select the bases

while projection is performed for the full frequency band. This procedure is applied on all of the frames

regardless of the voiced/unvoiced characteristics. Therefore, we expect the model to be more effective if the

ratio of the voiced segments is greater than the unvoiced segments; a combination of block and harmonic

model could be considered for effective model-based speech recovery. The results are summarized in Tables 3.

We can see that harmonic sparse recovery can lead to better interference suppression compared to block

sparse recovery whereas the overall distortion is more and the perceived quality is less indicating some

artifacts. The best results are often achieved by L1L2 sparse recovery algorithm. Similar experiments on

Numbers corpus (Mccowan, 2003) yields better separation quality using the harmonic model (Asaei et al.,

2014). The difference can be justified as the harmonicity of numbers (pronunciation of 0− 20) are generally

higher than the average phonetically rich speech utterances provided in MC-WSJ corpus. Moreover, like
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Table 2: Speech separation quality in clean and noisy conditions exploiting the spectral proximity and AR correlation
models. The SNR of noisy data is 10 dB by adding white Gaussian noise and the absorption coefficients required for
characterizing the acoustic by the image model are 25% deviated from the actual parameters.

Spectral proximity & AR - Clean

Large-Random L1L2 IHT OMP BSBL

SIR 20.00 22.69 16.59 15.71
SNR 25.52 13.54 11.22 11.33
PESQ 3.11 2.45 2.46 2.58
WSS 31.01 104.5 59.71 50.46

Uniform-Compact L1L2 IHT OMP BSBL

SIR 15.85 15.25 15.19 9.30
SNR 20.58 14.21 8.61 7.02
PESQ 2.98 2.38 2.39 2.49
WSS 33.57 87.91 75.74 53.62
Time 148.2 4.25 0.97 5.85

Spectral proximity & AR - Noisy

Large-Random L1L2 IHT OMP BSBL

SIR 16.45 19.32 14.31 12.63
SNR 16.14 13.36 8.98 8.03
PESQ 2.31 2.32 2.27 2.45
WSS 52.38 66.74 59.49 50.75

Uniform-Compact L1L2 IHT OMP BSBL

SIR 11.72 14.67 9.92 7.25
SNR 13.65 10.32 9.27 4.95
PESQ 2.04 2.26 2.07 2.36
WSS 62.85 73.74 67.53 57.55
Time 139.2 4.79 0.846 7.2

Table 3: Speech separation quality in clean and noisy conditions exploiting spectral harmonic structure. The SNR
of noisy data is 10 dB by adding white Gaussian noise and the absorption coefficients required for characterizing the
acoustic by the image model are 25% deviated from the actual parameters.

Spectral Harmonicity - Clean

Large-Random L1L2 IHT OMP BSBL

SIR 19.75 14.40 9.99 20.85
SNR 5.68 4.68 6.02 5.38
PESQ 2.44 1.99 1.94 2.16
WSS 32.83 50.91 43.55 46.49

Uniform-Compact L1L2 IHT OMP BSBL

SIR 15.55 10.32 6.49 21.43
SNR 5.37 4.40 5.97 5.16
PESQ 2.36 1.97 1.86 2.11
WSS 35.09 54.00 50.38 42.16

Spectral Harmonicity - Noisy

Large-Random L1L2 IHT OMP BSBL

SIR 16.69 15.46 9.35 15.60
SNR 5.46 4.57 6.05 5.35
PESQ 1.45 1.42 1.27 1.37
WSS 52.29 51.86 58.04 62.33

Uniform-Compact L1L2 IHT OMP BSBL

SIR 14.08 11.13 5.89 3.84
SNR 5.14 4.31 5.95 3.89
PESQ 1.45 1.45 1.34 0.73
WSS 56.72 56.77 70.24 81.12
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Figure 8: Speech recovery performance in terms of source to interference ratio (SIR) and perceptual evaluation of
speech quality (PESQ). SIR measures the amount of interference suppression. PESQ is a perceptually motivated
metric which shows high correlation with speech recognition performance (Persia et al., 2008).

the former experiments, comparing the results obtained from the recording of a large random microphone

array with that of a uniform compact microphone array, demonstrates that the large random array setup

enables higher quality of the separated speech.

From the evaluation results listed in Tables 1– 3, we can say that although the sparse Bayesian learn-

ing framework shows higher sensitivity to the measurement coherence for temporal sparse recovery, the

performance degrades almost equally for all the algorithms in spectral sparse recovery results.

To get the essence of this thorough empirical evaluation and better contrast the performance of differ-

ent computational sparse recovery methods exploiting either the temporal or spectral proximity structures

along with the random and compact microphone placement, some graphs are extracted from the tabulated

results and demonstrated in Figure 8. The bar charts illustrate the amount of interference suppression

(SIR) (Vincent et al., 2006), perceptual quality (PESQ) (ITU-T, 2001) as well as weighted spectral slope

distance measure (WSS). It is evident that incorporating the spectral structures yields superior performance

to the temporal structures in terms of SIR and PESQ; hence, the spectrographic speech representation holds

stronger spectral dependencies among the coefficients that affect the reconstruction performance. In addi-

tion, we observe that the highest perceptual quality is achieved using the sparse Bayesian learning framework

(BSBL) and convex optimization (L1L2). It can be due to the zero-forcing limitation of the IHT and OMP

methods. This deficiency of forcing the small coefficients to zero is particularly exhibited for speech-like

signals which do not possess high compressibility. However, in some applications such as speech recognition,

where the reconstruction of the signal is not desired, we can exploit the sparsity of the information bearing

components in greedy sparse recovery approaches which offer a noticeable computational speed in efficient

implementation and a reasonable performance (Asaei et al., 2011).

Further experiments show that increasing the size of the blocks leads to degradation in the quality

of the separated speech although in some cases, it increases the signal to interference ratio (SIR); this

observation is in accordance with the perceptual grouping principles relying on proximity in spectro-temporal
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space (Wang and Brown, 2006; Asaei, 2013). The block structure underlies the phonetic information (Yang

and Hermansky, 2000) which motivates further consideration for speech recognition applications.

5. Concluding Remarks

In this paper, the underdetermined convolutive speech localization and separation is formulated as struc-

tured sparse recovery from compressive acoustic measurements. In this context, our studies aim to address

two important issues: (1) Identification of the sparsity structures underlying spatio-spectral representation

of multiparty speech recordings and (2) Evaluation of the computational methods that incorporate these

structures for model-based sparse recovery.

We exploit the spatial sparsity of multipath propagation for characterization of the acoustic measure-

ments based on its unique relation to the source locations inside the enclosure. The spectrographic sparsity

structures are formulated upon the auditory principles of structural grouping. It is demonstrated that lo-

calization of simultaneous speech sources is more accurate, and quality of the separated speech is better

preserved, if the proximity, autoregressive correlation and harmonicity of the spectral or temporal coefficients

are incorporated in the sparse reconstruction procedure.

Through the source localization evaluation, we found that grouping a few consecutive frames enables

exact localization of up to 9 simultaneous sources from only 4 microphone recordings using either of the

convex, combinatorial or Bayesian methods. We could also achieve highly accurate localization using a single

frame of overlapping speech by taking into account the spectral structures. To exploit the autoregressive

correlation model, it was shown that an average model exists at both temporal and spectral levels and it

is more efficient than learning the AR coefficients online. The BSBL method yields the best localization

results per frame.

Furthermore, the source separation evaluation under clean and noisy scenarios with acoustic model

mismatch confirmed the effectiveness of the sparse Bayesian learning via BSBL algorithm to achieve the

best results in terms of perceived speech quality and distortion whereas a high inference suppression is also

obtained by IHT and OMP.

Although the performance of both localization and separation improve by incorporating the sparsity

structures, learning the hyper-parameters for these structures is application-specific. For example, it is

desirable to exploit a large block (e.g. size = 16) of frequencies or frames to enable accurate localization

whereas the quality of the reconstructed speech is degraded as the block size goes beyond 2. In addition,

the AR correlation model can be computed offline for the source localization task, but it needs to be learned

online through the BSBL procedure for high quality speech separation.

The computational cost of the greedy combinatorial methods developed for IHT and OMP demonstrates

the efficiency required for real time implementation. Given the accurate localization and high interference
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suppression achieved by this approach, in some applications that the perceptual quality of the separated

speech is not a desired objective, the greedy combinatorial methods may be considered for sparse recovery.

Throughout the extensive experimental evaluation, we observe that the layout of microphone placement

has a great impact on localization and separation performance. Indeed, a random placement of the micro-

phones at a large pairwise distance enables better results compared to a uniform compact setup. The optimal

design of the microphones for sparse localization and separation framework remains an open question for

future research.
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