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Abstract 

Acoustic feature based speech (syllable) rate estimation and syllable nuclei detection are important problems in automatic speech recog- 
nition (ASR), computer assisted language learning (CALL) and fluency analysis. A typical solution for both the problems consists of two 
stages. The first stage involves computing a short-time feature contour such that most of the peaks of the contour correspond to the syllabic 
nuclei. In the second stage, the peaks corresponding to the syllable nuclei are detected. In this work, instead of the peak detection, we perform 

a mode-shape classification, which is formulated as a supervised binary classification problem – mode-shapes representing the syllabic nuclei 
as one class and remaining as the other. We use the temporal correlation and selected sub-band correlation (TCSSBC) feature contour and 
the mode-shapes in the TCSSBC feature contour are converted into a set of feature vectors using an interpolation technique. A support vector 
machine classifier is used for the classification. Experiments are performed separately using Switchboard, TIMIT and CTIMIT corpora in a 
five-fold cross validation setup. The average correlation coefficients for the syllable rate estimation turn out to be 0.6761, 0.6928 and 0.3604 
for three corpora respectively, which outperform those obtained by the best of the existing peak detection techniques. Similarly, the average 
F -scores (syllable level) for the syllable nuclei detection are 0.8917, 0.8200 and 0.7637 for three corpora respectively. 
© 2016 Elsevier B.V. All rights reserved. 

Keywords: Speech rate estimation; Syllable nuclei detection; TCSSBC; Mode-shape classification; Mode-shape feature vectors; Peak detection. 
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1. Introduction 

Speech rate estimation and syllable nuclei detection are
important problems in the areas of automatic speech recog-
nition (ASR), computer assisted language learning (CALL)
and fluency analysis. The ASR accuracy has been shown to
improve by using the speech rate and syllable nuclei infor-
mation in the recognition model ( Bartels and Bilmes, 2007;
Morgan et al., 1997 ) . In CALL, the features used for fluency
analysis ( Cucchiarini et al., 2000 ) or non-nativeness analysis
( Hönig et al., 2012 ) are based on one or more combinations
of speech rate and syllable nuclei locations. The problems of
speech rate and syllable nuclei detection are closely related.
∗ Corresponding author. Tel.: +91 80 2293 2694; fax: +91 80 2360 0444. 
E-mail addresses: chiranjeevi.yarra@ee.iisc.ernet.in , chiranjeevi.yarra 

@gmail.com (C. Yarra), prasantg@ee.iisc.ernet.in (P.K. Ghosh). 
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he speech rate is typically estimated by counting the number
f speech units per second. Most of the existing works in the
iterature use syllable as the speech unit ( Heinrich and Schiel,
011; Morgan et al., 1997; Wang and Narayanan, 2007 ). The
peech rate estimation typically involves identification of the
yllable nuclei locations followed by syllable rate computation
 Reddy et al., 2013 ). Generally the approaches for the speech
ate estimation and the syllable nuclei detection are based on
ither acoustic features ( Heinrich and Schiel, 2011; Morgan
t al., 1997; Reddy et al., 2013; Wang and Narayanan, 2007 )
r hidden Markov model (HMM) based recognition systems
 Cincarek et al., 2009; Cucchiarini et al., 2000; Hönig et al.,
012; Yuan and Liberman, 2010 ). 

The HMM based methods involve the identification of the
honeme/syllable boundaries using an ASR system. The esti-
ated boundaries are then used to compute the syllable rate.
MM based approaches are used in the applications related

o CALL where a good quality speech rate estimation is
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ssential ( Cucchiarini et al., 2000; Deshmukh et al., 2008;
önig et al., 2012; Witt, 1999 ). However for accurate speech

ate estimation, methods based on HMM are time consuming
articularly when the reference transcription is not available
nd, hence, often not useful in real time applications ( Wang
nd Narayanan, 2007 ). In contrast to the HMM based meth-
ds, the acoustic feature based methods are computationally
ess expensive ( Morgan and Fosler-Lussier, 1998 ). The acous-
ic feature based methods are typically developed using acous-
ic properties of the vowels, which in general correspond to
he syllable nuclei. Therefore, the vowel rate corresponds di-
ectly to the syllable rate ( Pfau and Ruske, 1998; Yuan and
iberman, 2010 ). 

A typical approach for estimating syllable nuclei locations,
hich is also useful for estimating syllable rate, involves two

teps – (1) computing a short-time feature contour such that
ost of the peaks corresponding to the syllable nuclei loca-

ions, (2) detecting the peaks belonging to the syllable nuclei.
fau and Ruske (1998) estimated the vowel locations based
n prominent peaks in smoothed loudness contour. They pro-
osed a peak identification strategy based on the steepness in-
ormation around the local maxima. Zhang and Glass (2009)
roposed a contour based on Hilbert envelope and used a
hythm guided peak counting to estimate the syllable nuclei.
e Jong and Wempe (2009) used intensity based envelope
ith simple peak counting based on voicing decisions to esti-
ate speaking rate. Landsiedel et al. (2011) proposed a con-

our based on long short term memory neural networks and
dentified peaks based on the region based selection above a
hreshold limit. Wang and Narayanan (2005, 2007) introduced
 method by proposing a feature contour “temporal correlation
nd selected sub-band correlation (TCSSBC)”, which involves
omputing a spectral and a temporal correlation; they also
roposed a peak detection strategy which involves smoothing
nd a thresholding mechanism. A comprehensive comparative
tudy of eight different methods for speech rate estimation
as been summarized by Dekens et al. (2007) , who found
hat the TCSSBC method performs the best for speaking rate
stimation. 

The methods addressed in the literature for both the prob-
ems focus on the feature computation as well as on the peak
etection strategies. Wang et al improved the speech rate es-
imation accuracy by optimizing parameters in the TCSSBC
eature contour computation and using a robust peak detection
trategy ( Wang and Narayanan, 2007 ). A modified version of
he peak detection strategy is used by Reddy et al. (2013)
long with perceptually motivated features. A neural network
ased syllabic peak detection was proposed by Howitt (2000) .
ost of the existing peak detection strategies are typically

euristic and rule based. A generic formulation for syllabic
eak detection is necessary to overcome the limitations of the
ule based approaches. We observe that the rule based peak
etection strategies often fail to detect target peaks mainly be-
ause the target peaks do not always satisfy the heuristically
esigned rules. In that direction Jiao et al. (2015) proposed
 convex optimization based speech rate estimation to avoid
ependency on heuristic peak detection strategy. Faltlhauser
t al. (2000) used the Gaussian mixture model (GMM) for
lassification of speaking rate into three categories – slow,
edium and fast. Following this, they used the class prob-

bilities to estimate speaking rate with the help of Neural
etworks. 
We, in this work, use TCSSBC as a short-time feature con-

our and perform mode-shape classification. In the vicinity of
yllable nuclei locations TCSSBC contour typically has lo-
al maxima ( Dekens et al., 2007; Howitt, 2000; Wang and
arayanan, 2007 ). Therefore, almost all syllables correspond

o the peaks in the TCSSBC feature contour. However, some
f the peaks corresponding to the syllable nuclei (referred to
s syllabic peaks) are often less prominent compared to the
eaks that do not correspond to any syllable (non-syllabic
eaks). We hypothesize that the contour shape around each
ode of the TCSSBC contour could be used for robust de-

ection of target TCSSBC peaks. 
We use a support vector machine (SVM) based binary clas-

ification method for distinguishing the syllabic mode-shapes
rom the non-syllabic ones. Note that although one mode-
hape carries information about only one peak, we use the
erm ‘mode-shape’ instead of ‘peak’ because we exploit the
hape of the TCSSBC feature contour around the peak for
he binary classification. We propose different feature vectors
panning across multiple modes to represent each mode-shape
f the TCSSBC feature contour. We also propose an auto-
atic way of labeling each mode-shape – syllabic and non-

yllabic – for training the SVM classifier. The effectiveness
f the proposed mode-shape classification (MSC) approach is
emonstrated using three large corpora, namely, Switchboard,
IMIT and CTIMIT. Experiments for both speech rate esti-
ation and syllabic nuclei detection are performed on each

orpus. The proposed MSC based syllabic peak detection ap-
roach achieves better performance in comparison to the best
f the existing methods for both speech rate estimation and
yllable nuclei detection. 

The rest of the paper is organized as follows: Section 2 de-
cribes the corpora details, Section 3 discusses the details of
he proposed MSC approach including TCSSBC feature con-
our computation, smoothing, mode-shape feature vector com-
utation, labeling and classification procedures. Section 4 in-
ludes the experimental setup, results on various corpora and
iscussions. The conclusions are summarized in Section 5 . 

. Database 

We use ICSI Switchboard ( Godfrey et al., 1992 ), TIMIT
 Zue et al., 1990 ) and CTIMIT ( Brown and George, 1995 )
orpora for all experiments in this work. Switchboard is a
pontaneous speech corpus consisting of sentences spoken by
70 speakers with a wide range of speech rate, ranging from
.26 to 9.2 syllables per second. The audio in the Switch-
oard corpus was collected through the telephone channel.
 subset of 7300 audio segments, each of duration greater

han 200 ms, is used for our experiments. TIMIT is a read
peech database, which has phonetically balanced 6300 sen-
ences spoken by 630 speakers with a speech rate ranging
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Fig. 1. An illustrative example describing location of the modes with respect to the syllable boundaries – (a) TCSSBC feature contour, (b) smoothed TCSSBC 

feature contour, (c) peaks and valleys in the smoothed TCSSBC feature contour. The syllables and peaks are indicated by S i and P i , respectively. The peak P 5 

is located at M 5 and has nearest left neighboring minima is at V 5, L and right neighboring minima is at V 5, R . The red dots indicate samples of the contour. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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from 1.44 to 8 syllables per second. All sentences from the
TIMIT are used for our experiments. CTIMIT corpus is sim-
ilar to TIMIT except that the audio was collected through the
cell phone channel under various noisy conditions. All 3370
sentences, spoken by 630 speakers, are used for our experi-
ments. The speech rate in the CTIMIT sentences ranges from
1.87 to 8 syllables per second. Using the available phonetic
transcriptions, silences in the initial and final parts of each
sentence of all corpora are removed. 

3. Proposed mode-shape classification technique 

The TCSSBC feature contour typically has peaky nature
near the syllable nuclei. Fig. 1 shows a TCSSBC feature con-
tour, its peaks and original syllable boundaries for an example
speech segment taken from the Switchboard corpus having
transcription so she’s a genuine chowperd . There are a to-
tal of eight syllables (indicated by S i , i = 1 , 2, . . . 8 ) whose
boundaries are shown on the TCSSBC and smoothed TC-
SSBC feature contours in Fig. 1 (a) and (b), respectively. The
peaks of the smoothed TCSSBC contour are indicated by
P i , i = 1 , 2, . . . , 11 in Fig. 1 (c). It is clear that there are one
or multiple peaks within a syllable. The syllables with more
than one peak are S 2 , S 6 and S 7 . In the syllable S 2 , the value
of the TCSSBC at P 2 (referred to as peak strengths) is lower
than P 3 ; similarly P 8 and P 9 are lower than P 7 and P 10 respec-
tively in syllables S 6 and S 7 . P 3 , P 7 and P 10 correspond to the
yllable nuclei of S 2 , S 6 and S 7 respectively and hence, they
re referred as syllabic peaks while P 2 , P 8 and P 9 are referred
s non-syllabic peaks. Note that P 1 , P 4 , P 5 , P 6 , P 11 , are syl-
abic peaks. While a syllabic peak is, in general, higher than
he non-syllabic peaks within a syllable, it is not so across
yllables. For example, the syllabic peak P 4 in S 3 is lower
han a non-syllabic peak P 9 in S 7 . 

In the existing techniques for syllabic peak detection, the
eaks of the TCSSBC feature contour corresponding to the
yllable nuclei are typically identified by one or more combi-
ations of the following rules – (1) using simple peak count-
ng process ( Dekens et al., 2007; Morgan and Fosler-Lussier,
998 ), (2) thresholding the height of a peak relative to its
arger neighboring minima ( Wang and Narayanan, 2007 ), (3)
hresholding the distance in time between two neighboring
eaks ( Wang and Narayanan, 2007 ). Thus, it is clear that
ost of these strategies are based on the heights and loca-

ions of the peaks of the TCSSBC feature contour. However,
hese strategies often fail to detect the target peaks. For ex-
mple, rule 1 would fail to remove P 9 and keep P 3 as well as
 10 with one threshold value. Similarly one threshold in rule
 won’t distinguish the peak P 9 from P 6 , because the ratio of
he heights of P 9 and its neighboring largest minimum ( V 9, R )
s more than the ratio of the heights of P 6 and its neighbor-
ng largest minimum ( V 6, R ). Considering ( P 3 , P 4 ) and ( P 7 ,
 8 ) peak pairs, it is seen that rule 3 does not work since the
ap between P 3 and P 4 is lower than that between P 7 and P 8 
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Fig. 2. Block diagram summarizing the steps of the proposed mode-shape classification (MSC) approach. 
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lthough P 3 and P 4 correspond to different syllables while P 7 

nd P 8 fall within one syllable. Thus rule based syllabic peak
etection may not be always robust to the variations in the
eak heights and locations. In contrast to employing several
ules on the peak heights and locations, we hypothesize that
he shape of the TCSSBC feature contour around each of its
odes would be indicative of the syllabic peaks. We propose
 multi-dimensional feature vector to represent each mode-
hape, which are finally used for mode-shape classification. 

We define a mode-shape as the segment of a TCSSBC
eature contour between two consecutive valley locations of
he contour. An exemplary mode-shape is indicated with a
olid blue line in Fig. 1 (c). The highlighted mode-shape is
rom location V 5, L to V 5, R containing the peak P 5 . The multi-
imensional feature vector is proposed to capture the shape
f the TCSSBC contour around each mode. 

The proposed MSC method has four major stages as shown
n Fig. 2 . The first stage computes the TCSSBC feature con-
our from a speech signal followed by smoothing of the con-
our using a low-pass filter. The smoothed TCSSBC feature
ontour is denoted by x ( n ), where n is the frame index. In the
econd stage, we represent the i th (1 ≤ i ≤ Q ) mode-shape
f ( x ( n )) using a D -dimensional feature vector ( f ( i )), where
 is the total number of modes in x ( n ). In the third stage,
 subset of mode-shapes are selected from the entire set ({
 ( i ); i ∈ {1, 2,…, Q }}) based on the voicing decision. The
elected subset of mode-shape feature vectors are denoted by
f ′ (l ) , 1 ≤ l ≤ Q̄ , where Q̄ ( ≤ Q ) is the number of modes that
all within the voiced segments of the speech signal. In the
ast stage, SVM based binary classifier is used to categorize
he selected mode-shapes into two groups – one represent-
ng the syllable nuclei and other comprising the remaining
nes. The details of the all stages are given in the following
ubsections. 

.1. TCSSBC and smoothing 

We have computed the TCSSBC feature contour following
he steps outlined by Wang and Narayanan (2005) as follows:

1. 19 short-time sub-band energy contours ( y i ( n ); 1 ≤ i ≤
19, where n is frame index) corresponding to non-uniform
filter banks ( Holmes, 1980 ) are computed using steps out-
lined by Huckvale (2000) . 

2. Using Eq. (1) , temporal correlation is computed on each
windowed sub-band energy contour ( y w 

i (n) = W (n) y i (n) )
with a window shift of one frame. W ( n ) is a Gaussian
window of length K ( Wang and Narayanan, 2005 ). 

z i (n) = 

1 

K (K − 1) 

K−2 ∑ 

j=0 

K−1 ∑ 

p= j+1 

y w 

i (n + j) y w 

i (n + p) (1)

3. At every frame, from all temporally correlated sub-band
energies ( z i ( n )), M highest energies are selected. Using
these M components, sub-band correlation is computed
with Eq. (2) . By using sub-band correlation the syllable
peak in the contour gets boosted ( Morgan and Fosler-
Lussier, 1998; Wang and Narayanan, 2005 ). 

x(n) = 

2 

M(M − 1) 

M−1 ∑ 

i=1 

M ∑ 

j= i+1 

z i (n) z j (n) (2)

The parameters ( K , variance of Gaussian window and M )
n Eqs. (1) and (2) are selected following work in Wang and
arayanan (2007) . 
In TCSSBC computation, like all short-time windowing

ethods, a larger window makes the contour to lose the fine
emporal details. A smaller window provides more temporal
etail but makes the contour noisy. Hence it results in noisy
eaks, also called spurious peaks, and in turn renders spu-
ious mode-shapes. This makes the peak detection problem
hallenging ( Wang and Narayanan, 2005 ). So these spurious
ode-shapes are removed by smoothing the contour. Typical

ange of articulation rate is 3–15 Hz which also determines
he speaking rate ( Crystal and House, 1990 ). Thus, TCSSBC
eature contour is expected to have peaks (or mode-shapes)
t a similar rate. However, the spurious mode-shapes in the
CSSBC feature contour introduces the noise, which could
ake the peak rate beyond the range of the articulation rate.
hese noisy peaks are removed by applying a low-pass filter
ith a cut-off frequency ( F c ). The best choice of F c is de-

ermined by varying it over the range of the articulation rate
nd maximizing the performance of the speech rate estima-
ion over a development set. Note that even after smoothing,
he TCSSBC feature contour contains mode-shapes that do
ot correspond to the syllable nuclei, e.g., P 2 , P 8 and P 9 in
ig. 1 (b). We design feature vector for each mode-shape such

hat using the mode-shape features these non-syllabic mode-
hapes can be distinguished from the syllabic ones. 

.2. Mode-shape feature vector computation 

All mode-shapes of the TCSSBC feature contour have nei-
her identical shape nor identical number of samples of TC-
SBC. So the cardinality varies across mode-shapes. These
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Fig. 3. Example describing the mode-shape feature vector computation. (a) TCSSBC feature contour with syllable boundaries, (b) Mode-shape vectors (MSV) 
with mode-shape boundaries (cyan lines), (c) first-neighborhood mode-shape feature vector (FMSV) and (d) second neighborhood mode-shape feature vector 
(SMSV). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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1 � x � and 	 x 
 are the highest and lowest integers lower and higher than x , 
respectively. 

2 We observed that the speech rate estimation performance degrades when 
the peak strength is used as a feature in addition to the mode shape. Hence, 
variations can be observed in Fig. 1 (c); for example, mode-
shapes corresponding to peaks P 1 , P 5 and P 11 have 7, 5 and 6
TCSSBC samples, respectively. The samples of a mode-shape
describe the strength and shape of the respective mode. In or-
der to compensate for the variability in the cardinality of the
mode-shapes, we compute a fixed dimensional feature vec-
tor representing every mode-shape which is finally used for
classification. The details of the mode-shape feature vector
computation are described below. 

We compute N (odd) values from every mode-shape which
are used for computing a D -dimensional feature vector. The
feature vector for the i th mode-shape is denoted by f i . The
steps of the feature vector computation are explained in detail
with the help of Fig. 3 , which illustrates the TCSSBC fea-
ture contour of a sentence taken from the Switchboard corpus
with transcription everybody has their home phone number
type job . The syllable boundaries (black lines) of the sen-
tence are indicated on the smoothed TCSSBC feature contour
in Fig. 3 (a). Part of the contour (marked by red rectangle) is
shown in Fig. 3 (b) to explain the steps of the mode-shape
feature computation. The i th mode-shape has the mode loca-
tions at M i and it spans from V i, L to V i, R . The start location
of the i th mode-shape is the same as the end location of
the (i − 1) th mode-shape; V i, L = V (i−1) ,R . It is also clear that
M i − V i,L � = V i+1 ,L − M i due to the asymmetry in the mode-
shape. The mode-shape feature vector is computed in two
steps. In the first step, the left and right segments of the i th
mode-shape around M i are resampled to (N − 1) / 2 equally
 w
paced points with spacing of δi, L and δi, R respectively. The
esampling locations for the i th mode-shape are given as fol-
ows: 

 i (k) = 

{ 

V i,L + ( k − 1 ) δi,L , 1 ≤ k ≤ N−1 
2 

M i + 

(
k − N+1 

2 

)
δi,R , 

N+1 
2 ≤ k ≤ N 

(3)
δi,L = 

M i − V i,L 

( N − 1 ) / 2 

, δi,R = 

V i,R − M i 

( N − 1 ) / 2 

In general, each resampling location need not match with a
CSSBC sample index. In such cases, we interpolate the TC-
SBC samples to obtain the interpolated TCSSBC value y i ( k )
t location n i ( k ). This is done by using the closest TCSSBC
alues ( x ( � n i ( k ) � ) and x ( 	 n i ( k ) 
 )) 1 using linear interpolation
echnique. 

The mode-shapes representing the syllable nuclei may
ave different peak strengths. In order to capture only
he mode shape information, we divide y i ( k ), 1 ≤ k ≤
 by y i ((N + 1) / 2) (value at M i ) and discard the fea-

ure value corresponding to the peak 

2 of the i th mode-
hape to construct a (N − 1) -dimensional feature vector f 

i 
=

 

y i ( 1 ) 
y i ( N+1 

2 ) 
, .., 

y i ( N−1 
2 ) 

y i ( N+1 
2 ) 

, 
y i ( N+3 

2 ) 
y i ( N+1 

2 ) 
, .., 

y i ( N ) 
y i ( N+1 

2 ) 
] T , where T denotes the
e consider only the mode shape and discard the peak strength. 
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Fig. 4. An example TCSSBC feature contour segment describing the labeling 
approach. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.) 
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ranspose operator. Fig. 3 (b) shows the feature vector val-
es (red dots) corresponding to the i th mode-shape, which
apture the shape of the TCSSBC contour around the i th
ode. We refer to this D(= N − 1) -dimensional vectors as

he mode-shape feature vectors (MSV). In order to capture the
hape of the TCSSBC feature contour over a longer segment
round a mode, we compute a feature vector which represents
he shape of a mode in relation to its neighboring mode-
hapes. For this purpose, the feature values for the i th mode-
hape are obtained by considering (i − 1) th and (i + 1) th
ode-shapes. Each of these three mode-shapes are resam-

led to N values following Eq. (3) . Note that V i−1 ,R = V i,L 

nd V i,R = V i+1 ,L . Thus, we obtain 3 N − 2 values after re-
ampling the TCSSBC feature contour over (i − 1) th , i th and

(i + 1) th mode-shapes. In order to capture only the shape
nformation, we divide 3 N − 2 feature values by the TC-
SBC value at M i and discard the feature value correspond-

ng the peak of the i th mode-shape (since it equals 1 after
ivision) to construct a 3(N − 1) -dimensional feature vector

f F 
i 

= [ y i−1 ( 1 ) 
y i ( N+1 

2 ) 
, .., 

y i−1 ( N−1 ) 
y i ( N+1 

2 ) 
, f T 

i 
, 

y i+1 ( 2 ) 
y i ( N+1 

2 ) 
, .., 

y i+1 ( N ) 
y i ( N+1 

2 ) 
] T . We refer

o this D(= 3 N − 3) -dimensional feature vector by the first
eighborhood mode-shape feature vector (FMSV). Simi-
arly, we compute a feature vector by resampling the TC-
SBC feature contour over (i − 2) th , (i − 1) th , i th, (i +
) th and (i + 2) th mode-shapes to a total of 5 N − 4 val-
es and then dividing by the TCSSBC value at M i result-
ng in a D(= 5 N − 5) -dimensional feature vector, denoted by
f S 

i 
= [ y i−2 ( 1 ) 

y i ( N+1 
2 ) 

, .., 
y i−2 ( N−1 ) 
y i ( N+1 

2 ) 
, f F 

i 

T 
, 

y i+2 ( 2 ) 
y i ( N+1 

2 ) 
, .., 

y i+2 ( N ) 
y i ( N+1 

2 ) 
] T . We refer

o this by the second neighborhood mode-shape feature vec-
or (SMSV). The FMSV and the SMSV feature values are
llustrated by red dots in Fig. 3 (c) and (d), respectively. 

.3. Mode-shape labeling procedure 

It is required to label each mode-shape as either a syl-
abic (1) or a non-syllabic (0) mode-shape to train the SVM
ased binary classifier. Note that while majority of the sylla-
le segments contain one or multiple mode-shapes, the num-
er of mode-shapes within a syllable could also be zero. The
yllabic mode-shapes typically fall within a voiced segment
hich forms the syllable nuclei. Thus, we use voicing deci-

ions to determine the label of each mode-shape. For illustra-
ion, we demonstrate the mode-shape labeling procedure using
n exemplary TCSSBC feature contour segment in Fig. 4 . The
reen plot indicates the voicing decisions. A segment with
igher value of the plot is a voiced segment while that with
ower value of the green plot is an unvoiced segment. All the
ode-shapes, whose peaks belong to the unvoiced segments,

re considered to be spurious and discarded (as shown by red
ross in Fig. 4 ). If there are multiple mode-shapes within a
oiced segment corresponding to a syllable nuclei, the mode-
hape with the highest peak strength is labeled with 1 and
he remaining (if any) mode-shapes are labeled with 0 (as
hown in Fig. 4 ). The mode-shape feature vectors (MSV or
MSV or SMSV) thus selected using voicing decision and

he corresponding labels (1 and 0) are used to train the SVM
lassifier which is further used to classify the mode-shapes of
he TCSSBC feature contour of a test utterance. 

. Experiments and results 

.1. Experimental setup 

We consider two separate objective measures for evaluat-
ng the speech rate estimation and the syllable nuclei detec-
ion. The objective measure for the speech rate estimation is
he Pearson correlation coefficient ( ρ) between the estimated
yllable rate and the ground truth syllable rate across all test
entences. The measure for the syllable nuclei detection is the
 -score which is computed following the work by Landsiedel
t al. (2011) . The F -score is computed at two different levels
phone level and syllable level. In the phone level compu-

ation, the vowel segment within a syllable is considered as
he target segment representing the syllable nucleus. However,
n the case of non-availability of phonetic boundaries (like
witchboard), syllable level F -score is computed in which
yllable segments are treated as target segments. In the F -
core computation, the peak locations of the estimated syl-
abic mode-shapes are considered as the estimated syllabic
uclei. It should be noted that the mode-shape labeling pro-
edure used in this work does not affect the F -scores because
he mode-shape labels are not used for computing F -scores.

e compute the F -score by following the steps outlined by
andsiedel et al. (2011) – (a) one to one match between an
stimated nucleus and a target segment is treated as correct
 C i ); (b) target segments missed entirely is treated as deletions
 D i ); (c) all the estimates in non-target segments are consid-
red as insertions, but target segments containing more than
ne estimate are treated neither as correct nor as insertions;
owever, all but one estimates in these segments are evaluated
s insertions ( I i ). The insertions, deletions and corrects at the
hone level are shown in Fig. 5 for an exemplary sentence.
n the figure, target segments of each syllable are shown in
he shaded regions and the estimated peaks are shown in red.

We consider the robust speech rate estimation (RSRE)
echnique ( Wang and Narayanan, 2007 ) and the sylla-
le nuclei detection using perceptually significant features
SNDPSF) technique ( Reddy et al., 2013 ) as baselines for
he speech rate estimation and the syllable nuclei detection
espectively. Unlike Switchboard and TIMIT, we denoised
he CTIMIT audio files using a spectral subtraction tech-
ique with smoothing constants α and β as 0.98 and 0.6,
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Fig. 5. An example illustrating insertions, deletions and corrects required for F -score computation. I i , D i and C i denote the number of insertions, deletions 
and corrects for the i th syllable. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

Fig. 6. Variation of the syllable rate estimation performance for different cut-off frequencies using different features in the MSC method. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 
Average optimal F c (standard deviations in brackets) in Hz across 5-folds for 
the speech rate estimation on the development set using the proposed MSC 

method for different features. 

Proposed MSC method 

MSC (MSV) MSC (FMSV) MSC (SMSV) 

Switch board 19 20 20 
(0.7071) (0.0000) (0.0000) 

TIMIT 13.2 13.4 13.4 
(0.4472) (0.8944) (0.8944) 

CTIMIT 11.6 11.8 12.2 
(1.5166) (2.4900) (1.4832) 

a  

o  

T  

c  

t  

f  

v  

S  

ρ  

g  

d  

s  

s  

g  

s  

o

respectively ( Lu and Loizou, 2008 ). 3 Data from each corpus
is used for the experiments in a five-fold cross validation set
up. We randomly divide the entire dataset into five groups
out of which three are used for training, one for develop-
ment and remaining one for testing. The TCSSBC feature
contour is generated following the steps outlined by Wang
and Narayanan (2005) for each sentence of three corpora.
For smoothing TCSSBC feature contour, the cut-off frequency
( F c ) of the low-pass filter is varied from 4 Hz to 20 Hz in
steps of 1 Hz. We consider N = 7 for generating mode-shape
vectors. For labeling the mode-shapes, the voicing decisions
are obtained from the SFS software ( Huckvale, 2000; Kleijn
and Paliwal, 1995; Secrest and Doddington, 1983 ). The la-
beled set of mode-shapes are provided to the SVM classifier
for training. An RBF kernel is used for SVM classifier with
the complexity parameter ( C ) equal to 1.0. F c for smoothing
and the classifier parameters are optimized such that correla-
tion coefficient ( ρ) is maximum on the development set for
each fold separately. With the optimal F c the speech rate es-
timation and syllable nuclei detection are performed on all
sentence of the test set. The syllable rate is computed by
counting the number of syllabic mode-shapes obtained from
the SVM classifier in each sentence. These mode-shapes are
also used for representing the syllable nuclei. 

4.2. Results and discussions 

4.2.1. Optimal cut-off frequency 
We compute ρ on the development set for each fold of

three corpora. Fig. 6 shows the variations of ρ (averaged
3 The performance on the CTIMIT is found to be worse by all algorithms 
compared to TIMIT and Switchboard. The denoising improves the perfor- 
mance. 

4
 

p  

w  
cross all folds’ development sets) with F c for different types
f feature vectors in the proposed MSC method separately.
he optimal F c values corresponding to the highest average
orrelation measures are indicated by vertical lines for all
hree corpora (blue for Switchboard, red for TIMIT and cyan
or CTIMIT). For the MSV feature, these optimal F c values
ary across three corpora and this is also true for FMSV and
MSV. However, the F c values corresponding to the highest

are similar across feature types for a corpus, which sug-
ests that F c in the proposed MSC method is more corpus
ependent and less feature type dependent. The average and
tandard deviations of optimal F c values across 5-folds are
hown in Table 1 . The standard deviations in Table 1 sug-
ests that the optimal F c is consistent across all folds. High
tandard deviation for the case of CIMIT suggests that the
ptimal F c varies across folds. 

.2.2. Speech rate estimation 

We compute ρ on the test set for each fold of three cor-
ora using RSRE as well as the proposed MSC approach
ith three types of feature vectors namely, MSV, FMSV and
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Fig. 7. Illustrative example for comparing the MSC and RSRE techniques for syllable nuclei detection. The word corresponding to the illustrated portion is 
‘ roles ’ . (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

Table 2 
Average Pearson correlation coefficients (standard deviations in brackets) 
across 5-folds for the speech rate estimation using RSRE and the proposed 
MSC method using different features. 

RSRE Proposed MSC method 

MSC (MSV) MSC (FMSV) MSC (SMSV) 

Switch board 0.6608 0.6371 0.6761 0.6701 
(0.0112) (0.0179) (0.0205) (0.0171) 

TIMIT 0.6909 0.6768 0.6928 0.6911 
(0.0191) (0.0157) (0.0102) (0.0098) 

CTIMIT 0.3546 0.3588 0.3604 0.3519 
(0.0409) (0.0347) (0.0284) (0.0386) 
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Table 3 
Average F -scores (standard deviations in brackets) across 5-folds for syllable 
nuclei detection using RSRE, SNDPSF and the proposed MSC using different 
features. 

Scheme TIMIT CTIMIT Switchboard 

Phone level SNDPSF 0.6137 0.5261 
(0.0023) (0.0056) 

RSRE 0.8321 0.7113 
(0.0052) (0.0047) 

MSC (MSV) 0.8387 0.7238 
(0.0037) (0.0059) 

MSC (FMSV) 0.8416 0.7237 
(0.0034) (0.0054) 

MSC (SMSV) 0.8405 0.7232 
(0.0030) (0.0069) 

Syllable level SNDPSF 0.6606 0.5530 0.0302 
(0.0020) (0.0057) (0.0025) 

RSRE 0.8246 0.7394 0.8907 
(0.0018) (0.0024) (0.0024) 

MSC (MSV) 0.8170 0.7637 0.8868 
(0.0031) (0.0052) (0.0024) 

MSC (FMSV) 0.8200 0.7608 0.8917 
(0.0040) (0.0086) (0.0053) 

MSC (SMSV) 0.8189 0.7620 0.8885 
(0.0045) (0.0079) (0.0060) 
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n  
MSV. The averages and standard deviations (shown in brack-
ts) of ρ across all 5 folds are shown in Table 2 . The highest
veraged ρ value for each corpus is indicated in bold. The

values obtained with the proposed MSC method using the
MSV feature is significantly ( p < 0.01, t -test) better than the
aseline scheme for Switchboard corpus. ρ using the SMSV
eature is also significantly ( p < 0.01, t -test) better than the
aseline scheme for Switchboard corpus. This implies that
eature vector that represents the shape of a mode in relation
o the neighboring mode-shapes improves the speech rate es-
imation compared to the shape of a mode in isolation. 

.2.3. Syllable nuclei detection 

We compute the F -scores for the syllable nuclei detection
t phone and syllable levels for each corpus. The F -scores av-
raged over all folds using the proposed MSC method along
ith RSRE and SNDPSF are shown in Table 3 . As no pho-
etic transcription is available in the Switchboard corpus, we
o not report F -score on the Switchboard in the phone level.
e indicate the best F -score in bold for each level for all

hree corpora. The proposed MSC method significantly out-
erforms the SNDPSF ( p < 0.01, t -test) at both the phone
evel as well as the syllable level for all three corpora. How-
ver it significantly ( p < 0.01, t -test) outperforms RSRE only
or CTIMIT at both phone and syllable level. The F -scores
btained by the proposed MSC method are not significantly
ifferent from those obtained by the RSRE method for the
IMIT and Switchboard corpora. 

.2.4. Discussions 
Fig. 7 illustrates a portion of the TCSSBC contour for a

entence from the Switchboard corpus where the proposed
SC method performs better than the RSRE scheme. The
llustrated portion contains only one word, namely ‘roles’,
hich has only one syllable. In the figure, we indicate the
round truth syllable nuclei at the phone level by marking the
owel boundary (black lines) and the syllable nuclei locations
stimated by the RSRE (red line) as well as the MSV (cyan
ine) and the FMSV (blue line) of the proposed MSC method.
he estimated nuclei locations using the FMSV and SMSV
re identical for the illustrated segment; hence the nuclei lo-
ation from the SMSV is not indicated in the figure. It is
lear from Fig. 7 that the syllable nuclei location detected by
MSV correctly falls within the ground truth syllable nuclei
oundaries. However, both MSV and RSRE detect an extra
yllable nucleus which falls outside the ground truth syllable
uclei boundaries. This example indicates that a feature vec-
or that captures the mode-shape along with the neighboring
ode-shapes results in a better performance for the syllable

uclei detection task compared to a feature vector that only
aptures the shape of the target mode. This observation is con-
istent with that from the speech rate estimation performance
 Table 2 ). 

The performance of speech rate estimation and syllable
uclei detection are worse for CTIMIT compared to that for
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Fig. 8. Comparison of the syllable nuclei detection for an identical sentence 
from (a) CTIMIT and (b) TIMIT using different schemes. The sentence is 
“and possessed himself how ”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

l  

v  

t  

t  

o  

c  

s  

b

R

B  

 

B  

 

 

C  

 

C  

 

C  

 

D  

 

D  

 

D  

F  

 

 

G  

 

 

H  

H  

H  

 

 

H  

H  

J  

 

K  

L  

 

 

TIMIT using all three feature vectors considered in this work.
Although CTIMIT contains a subset of the TIMIT audio sam-
ples, they are played at the transmitter side under noisy condi-
tions and rerecorded the same at the receiver end of a cellular
channel. In order to investigate the influence of this acous-
tic difference on the speech rate and syllable nuclei detec-
tion in detail, we consider an identical sentence (as shown
in Fig. 8 ) from both TIMIT and CTIMIT and compare the
detected syllabic nuclei for both the cases using the RSRE
and the proposed MSC method using MSV and FMSV fea-
tures. From Fig. 8 , it is clear that the peak strengths in the
TCSSBC feature contour of the CTIMIT sentence are equal
or lower compared to the corresponding peak strengths in the
TCSSBC feature contour of the TIMIT sentence. In the cases
of and syllables the peak strengths of the
TCSSBC feature contour are not significant for the CTIMIT
sentence. This could be a potential reason for the drop in
speech rate estimation and syllable nuclei detection perfor-
mance. It is clear that neither RSRE nor the proposed MSC
method detect the fourth syllable indicating that
the detection of the respective syllable is equally challenging
in both CTIMIT and TIMIT. In the FMSV case the missing
syllable is compensated by the extra syllables estimated at
other locations ( in CTIMIT and in TIMIT case)
in the speech rate estimation, which indicates that the false
positives sometimes would improve ρ but cause F -score to
degrade. However in the CTIMIT case, the proposed MSC
method detects all the syllable peaks which are detected by
all the methods in TIMIT case. On the other hand, RSRE
misses one syllabic peak in CIMIT compared to that
in TIMIT resulting in worse speech rate as well as syllable
nuclei detection in CTIMIT compared to TIMIT. This could
be because of heuristic approach of the peak detection in the
RSRE method. 

5. Conclusions 

We propose a mode-shape classification technique for both
speech rate estimation and syllable nuclei detection problems.
Each mode-shape of the TCSSBC feature contour is repre-
sented by a feature vector capturing the shape of the mode in
relation to the neighboring mode-shapes. Using this proposed
feature vectors, each mode-shape is classified as either a
yllabic or a non-syllabic mode-shape. Experiments with three
arge corpora namely, Switchboard, TIMIT and CTIMIT re-
eal that the proposed MSC technique performs better than
he best of the existing methods for both speech rate estima-
ion and syllable nuclei detection task. The hyper-parameters
f the classifier are found to vary depending on the chosen
orpus. Further investigation is required to develop a mode-
hape feature vector that could result in a high accuracy for
oth the tasks in a corpus-independent manner. 
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