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Abstract

Distant speech recognition is being revolutionized by deep learning, that has

contributed to significantly outperform previous HMM-GMM systems. A key

aspect behind the rapid rise and success of DNNs is their ability to better

manage large time contexts. With this regard, asymmetric context windows

that embed more past than future frames have been recently used with feed-

forward neural networks. This context configuration turns out to be useful not

only to address low-latency speech recognition, but also to boost the recognition

performance under reverberant conditions.

This paper investigates on the mechanisms occurring inside DNNs, which

lead to an effective application of asymmetric contexts. In particular, we pro-

pose a novel method for automatic context window composition based on a

gradient analysis. The experiments, performed with different acoustic environ-

ments, features, DNN architectures, microphone settings, and recognition tasks

show that our simple and efficient strategy leads to a less redundant frame con-

figuration, which makes DNN training more effective in reverberant scenarios.

Keywords: Distant Speech Recognition, Deep Learning, Context Window,

Reverberation

1. Introduction

Distant Speech Recognition (DSR) represents a fundamental technology to-

wards flexible human-machine interfaces. There are indeed various real-life sit-

uations where DSR is more natural, convenient and attractive than traditional
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close-talking speech recognition [1]. For instance, applications such as meet-

ing transcriptions and smart TVs have been studied over the past decade in

the context of the AMI/AMIDA [2] and the DICIT [3] projects, respectively.

More recently, speech-based domestic control gained a lot of attention [4, 5].

To this end, the EU DIRHA project developed voice-enabled automated home

environments based on distant-speech interaction in different languages [6, 7].

Concerning this application, innovative commercial products, such as Amazon

Echo and Google Home, have recently been introduced in the market. Robotics,

finally, represents another emerging scenario, where users can freely talk with

distant mobile platforms.

Several efforts have been devoted in the last years to improve DSR technol-

ogy, as witnessed by the great success of some international challenges such as

CHiME [8], REVERB [9], and ASpIRE [10]. A major role in improving this

technology is being played by deep learning [11, 12, 13], which has contributed

to significantly outperform HMM-GMM speech recognizers. Deep learning, in

effect, has been rapidly evolving during the last years, progressively offering

more powerful and robust techniques, including effective regularization methods

[14, 15], improved optimization algorithms [16], as well as better architectures

[17, 18, 19, 20].

A key aspect behind the success of deep learning in speech recognition is the

ability of modern DNNs to perform predictions based on a large time context. A

valid architecture able to learn long and short-term dependencies is represented

by Recurrent Neural Networks (RNNs) as Long Short-Term Memory (LSTM)

[21] or Gated Recurrent Units (GRUs) [20, 22]. In order to simultaneously

manage both past and future time contexts, the most suitable solution would

be bidirectional RNNs [23], that turned out to automatically learn (through

their recurrent connections) how to properly exploit the contextual information.

The price to be paid for automatically learning contexts from speech data is

an increased computational complexity. LSTMs, for instance, are based on a

rather complex cell design based on three multiplicative gates, which normally

require much more computations at each time steps if compared to a simpler
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feed-forward NN. Bidirectional RNNs, moreover, can generate a sequence of

posterior probabilities only after processing the entire sentence. Both of these

features often impair their use in real-time/low-latency applications.

To circumvent this drawback, unidirectional RNNs or feed-forward DNNs

can be used. For low-latency applications, feed-forward DNNs still represent

the most preferable choice for many practical applications, as witnessed by the

numerous studies in the recent literature on real-time ASR systems operating

on devices with low computational power [24, 25, 26, 27, 28, 29]. In line with

these recent efforts, this work considers the aforementioned scenario, targeting

standard feed-forward DNNs.

In the case of feed-forward DNNs, the input features are typically gath-

ered into a symmetric context window (SCW), that observes the current frame

along with the same number of surrounding past and future ones. Neverthe-

less, an asymmetric context window (ACW) that integrates more past than

future frames has gained popularity for real-time/low-latency recognition of

close-talking speech [29, 24, 30, 18]. Interestingly, some recent papers have

also evidenced the effectiveness of its application with distant speech recogni-

tion [31, 32], though a deep analysis is missing concerning the conditions under

which this approach becomes convenient with reverberated speech.

The goal of this work is to better understand these aspects, and to pro-

pose a methodology to derive an optimal context window (CW) according to

the characteristics of the DSR task. The proposed AutoCW algorithm, tested

on different tasks, datasets, microphone configurations as well as on different

acoustic environments, exploits a gradient analysis performed at an early stage

of the DNN training. Its application significantly reduces the efforts needed to

find an optimal context, while improving ASR performance provided by the use

of standard SCWs.

The rest of the paper is organized as follows. Sec. 2 analyzes the effects of

ACW on speech signals, input features, and DNN gradients. Sec. 3 describes

the proposed AutoCW algorithm for automatic context window composition.

In Sec. 4, an overview of the adopted experimental setup is provided, while the
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Figure 1: An impulse response measured in a domestic environment with a reverberation time

of about 780 ms.

ASR results are reported in Sec. 5. Finally, Sec. 6 draws our conclusions.

2. Asymmetric Context Window for Counteracting Reverberation

To better introduce the motivations behind the use of the ACW, it is useful

to recall the effect of reverberation on a speech signal. Let us describe a distant

speech signal y[n] by the following equation:

y[n] = x[n] ∗ h[n] + v[n] (1)

where x[n] is the close-talking signal (i.e, the speech signal before its propaga-

tion in the acoustic environment, which is assumed to be a latent variable not

directly observed), h[n] is the acoustic impulse response (IR) between source

and microphone, and v[n] is the additive noise introduced by the environment.

The speech signal x[n] is reflected many times by walls, floor, and ceiling as well

as by objects within the acoustic environment. Such a multi-path propagation,

known as reverberation [33], is summarized by the IR h[n], that can be modeled

as a causal FIR filter (i.e., h[n] = 0 ∀n < 0). Fig. 1a shows an IR measured in

a living-room, whose log-energy decay (reported in Fig. 1b) indicates that the

reverberation time T60 [33] is about 780 ms.
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Figure 2: HMM-DNN pipeline used for hybrid speech recognition with feed-forward neural

networks.

In a DSR system, the distant-talking signal y[n] is processed by a feature

extraction function f(·) that computes a sequence of feature frames f(y[n]) =

{y1, ...,yk, ...,yNfr
}, where each frame yk is a vector consisting of Nfea features,

and Nfr is the total number of frames. Feature extraction is normally carried

out by splitting the signal into small chunks (lasting 20-25 ms with an overlap

of 10 ms), and by applying a transformation to each chunk. To broaden the

time context the DSR system is not only fed with the current frame yk, but

also with some surrounding ones. The set of frames feeding the system, i.e. the

context window, is defined in the following way:

CWk = {yk+p} ∀ −Np ≤ p ≤ Nf (2)

where Np and Nf are the number of past and future frames, respectively. In

standard SCWs Np = Nf , while ACWs correspond to Np 6= Nf . To account for

different balance factors between past and future frames, let us introduce the

coefficient ρcw defined as follows:

ρcw(%) =
Np

Np +Nf
· 100 (3)
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It results that ρcw > 50% for an asymmetric context embedding more past

than future frames, ρcw = 50% for a symmetric context, and ρcw < 50% when

embedding more future frames.

The context window CWk then feeds a DNN, as depicted in Fig. 2. The DNN

processes the input features with several non-linear hidden layers and estimates a

set of posterior probabilities Pk(q | CWk). The cost function C(l̂, Pk(q | CWk))

optimized during training (e.g., cross-entropy) is computed from the reference

labels l̂ and the aforementioned predictions.

2.1. Correlation Analysis

A function that helps study the redundancy introduced by reverberation

is the cross-correlation. In particular, it is interesting to compute the cross-

correlation Rxy between the close-talking speech x[n] and the corresponding

distant-talking sequence y[n]. Let us assume that the additive noise v[n] re-

ported in Eq. 1 is omitted here, to focus on reverberation only. It can be easily

shown that:

Rxy[n] =

M−1∑
m=0

h[m] ·Rxx[n−m] (4)

where M and Rxx[n] denote the finite length of the IR h[n], and the autocorre-

lation of the close-talking signal, respectively.

The autocorrelation Rxx[n] varies significantly according to the particular

phoneme and the signal characteristics that are considered. Fig. 3c, for instance,

shows the autocorrelation Rxx[n] of a vowel /a/, while Fig. 4c illustrates Rxx[n]

for a fricative /f/. One can easily observe that different autocorrelation patterns

are obtained: for the vowel sound /a/, Rxx[n] is based on several peaks due to

pitch and formants, while for /f/ a more impulse-like pattern is observed. The

spread of the autocorrelation function around its center t = 0 also depends on

the specific phoneme. If we consider, for instance, the time instant where the

energy of Rxx[n] decays to 99.9% of its initial value, the autocorrelation length

is 104 ms with the vowel /a/, and about 25 ms with the fricative /f/. In both

cases, however, the duration of the autocorrelation is significantly shorter than
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Figure 3: Cross- and auto-correlation analysis for the vowel /a/.

the IR length (see green dashed line of Fig. 3c and Fig. 4c), except in the case of

a very low reverberation time. This characteristic, together with the causality

of the impulse response (h[n] = 0 ∀n < 0), originates an asymmetric trend in

the cross-correlation Rxy[n], which can be clearly appreciated from both Fig.

3d and Fig. 4d. As shown by the latter examples, corresponding to a medium-

high T60 of 780 ms, the right side of this function is influenced by the IR decay.

The future samples (n > 0) are thus, on average, more redundant than previous

ones (n < 0), and this effect is amplified when reverberation increases, and in

correspondence of high-energy portions of speech signals (e.g., the central part

of a stressed vowel).
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Figure 4: Cross- and auto-correlation correlation analysis for the fricative /f/.

ACWs are therefore more appropriate than traditional symmetric ones, since

they lead to a frame configuration less affected by the aforementioned forward

correlation effects of reverberation. In other words, with an asymmetric context

we can feed the DSR system with information which is, on average, more com-

plementary than that considered in a standard symmetric frame configuration,

allowing the DNN to perform more robust predictions.

As emerged from Fig. 3 and 4, the best asymmetric context window would

depend on the specific phoneme. However, this is also tightly related to the

degree of distortion introduced by reverberation in the related phonetic context,

which can also depend on other factors (e.g., the ratio between the energies of
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Figure 5: Envelope of the cross-correlation Rxy [n] computed between clean and reverberated

speech sentences using symmetric windows of 200 ms. The envelope |Rxy [n]| is averaged over

all the utterances of the TIMIT dataset.

the direct input speech and of the reverberation component). As a matter of

fact, a simple and practical solution, as outlined in the following of this work,

consists in feeding the DNN with a fixed asymmetric context configuration that,

on average, works reasonably well for any phonetic contexts in the input speech

signal, and for different environmental conditions.

This approach is often adopted within standard DNN-HMM speech recog-

nizers, where the speech signal is progressively processed using a fixed context

window that might contain different sounds. To extend our cross-correlation

analysis to a more realistic setting, Fig. 5 shows the envelope |Rx,y| of the

cross-correlation function averaged over all the sentences of the TIMIT dataset

[34]. In particular, this result is obtained considering context windows of 200

ms and 10 ms of time shift, which resembles the typical configuration used to

feed DNNs under reverberated acoustic conditions, as shown in the following of

the paper. Consistently with what emerged from previous experiments, Fig. 5

confirms the high redundancy introduced by reverberation on the future sam-

ples.
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Figure 6: Gradient norm of the various frames in a close-talking scenario over various training

epochs.
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Figure 7: Gradient norm of the various frames in a distant-talking reverberated scenario over

various training epochs.

A similar experimental evidence can be reproduced using other methods to

analyze the correlation that holds among frames inside the CW. For instance,

the Pearson correlation coefficient [35, 36] could be used to highlight the redun-

dancy inside sequences of mel-frequency cepstral coefficients (MFCC) vectors

that represent reverberated speech signals.
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2.2. Gradient Analysis

As far as DNN processing is concerned, it is also of great interest to un-

derstand if the network is able to automatically assign different importance to

the different frames of the CW. Useful insights can be gained by analyzing the

gradient norm over the various inputs of the CW, which can be defined in this

way:

‖gp‖ =

∥∥∥∥ ∂C∂yp
∥∥∥∥ ∀p ∈ {−Np, ..., 0, ..., Nf} (5)

where C is the cost function used for DNN training and yp is the p-th feature

frame embedded in the CW. In the case of cross-entropy cost, the gradient norm

can be written as:

‖gp‖ =
1

Ntr

Ntr∑
i=1

∥∥∥∥∥∥
∂
∑Ne

k=1

∑No

j=1 l̂i,k,j · log
(
Pi,k,j(qj |{yi,k,p})

)
∂yp

∥∥∥∥∥∥ (6)

where Ntr is the number of training mini-batches, Ne is the number of train-

ing samples in each mini-batch, No is the number of phone-states, while l̂i,k,j

and Pi,k,j are the label and the DNN output of each training example, respec-

tively. The DNN output Pi,k,j depends on the context windows CWi,k that is

written here as {yi,k,p} to highlight its dependency on the p-th frame. Note also

that the gradient norm is averaged over all the training mini-batches in order

to provide a more reliable estimation

Fig. 6 and 7 shows ‖gp‖ for a close-talking and a distant-talking case, re-

spectively, which was computed by considering the first and the last training

epochs. The results are derived from sequences of MFCC feature vectors, and

using the DIRHA-WSJ dataset [7] with the DNN setup that will be described

in Sec. 5.

The two figures highlight that the network is able to automatically assign

more importance to the current frame (p=0). In both cases, the gradient norm

‖gp‖ clearly decreases when progressively moving far away from the current

frame. However, a symmetric behavior is observed in the close-talking case only,
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Algorithm 1 Automatic context window composition using gradient analysis.

1: Train a DNN with a large symmetric context window CWmax for one epoch.

2: Compute the gradient norm ||gp||, ∀p ∈ [−(CWmax−1)/2, (CWmax−1)/2].

3: for CWlen in range (CWmin,CWmax) do

4: Np = 0, Nf = 0

5: for i in range (CWlen-1) do

6: if ||g−Np−1|| > ||gNf+1|| then Np = Np + 1

7: else Nf = Nf + 1

8: Train the DNN with Np past frames and Nf future frames.

9: Evaluate the WER performance on the dev-set.

10: Store {Np,Nf ,WER} for the given CWlen.

11: Choose the context window with the best performance

which means that the network has no preference for past or future information.

On the other hand, the network learns to place more importance to past (p < 0)

rather than to future frames (p > 0) for reverberated speech. This can be readily

appreciated from the asymmetric trend achieved in Fig. 7, which is a further

indication of the possible benefits deriving from the use of ACWs.

Interestingly, the network learns which frames are more important since the

first training epoch, as evidenced by the similar trends reported in Fig. 6a

and 7a. This is an important experimental evidence, which suggested us to

develop the algorithm introduced in the next section, to effectively optimize the

hyperparameters of the ACW.

3. Automatic context window composition

The characteristics of the context window are of paramount importance to

improve the ASR performance. Particular attention should thus be devoted to

derive a proper frame configuration, carefully optimizing (on the development

set) the main features of the context window (i.e., Np, Nf ).

A major limitation of the ACW is that it introduces two hyperparameters
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(i.e., Np and Nf ), while only one (i.e, the total length of the context CWlen)

is needed for standard symmetric contexts. The introduction of an additional

hyperparameter has a dramatic impact on the number of combinations to test

during the optimization step. A grid search over a single hyperparameter, in

fact, has a linear complexity O(CWlen), while the joint optimization of both Np

and Nf has a quadratic complexity O(CW 2
len). For instance, if we consider a

SCW, with a total length CWlen that varies from 11 to 25 frames, only 15 DNN

training experiments are necessary, against the 270 required with an exhaustive

grid search. It is thus of great interest to develop a methodology to optimize

more efficiently the hyperparameters of the ACW.

The approach proposed in this paper is based on the gradient norm analysis

introduced in the previous section. The norm of the gradient over the various

frames, in fact, gives quickly an idea about what frames are considered im-

portant by the network. Based on this observation, we propose the algorithm

referred to as AutoCW (Alg. 1), to automatically compose the CW. The idea

is to first train a DNN with a very large SCW (e.g. 25 frames) for a single

epoch. After the first epoch, the gradient norm ‖gp‖ over the various input

frames is computed. The CW is composed by progressively embedding, at each

iteration, the past or future frame that maximizes the gradient norm. The cy-

cle is stopped when the predefined number of context frames CWlen has been

reached. A new DNN can then be trained with the CW {Np, Nf} determined by

the proposed procedure, and the corresponding ASR performance is evaluated

on a development data set. This operation is repeated for all the CW lengths

within a predefined range (CWmin ≤ CWlen ≤ CWmax), and, after that, the

frame configuration {Np, Nf} providing the best ASR performance is selected.

Note that this algorithm allows one to optimize the frame configuration of

the asymmetric context window with a linear computational complexity, that is

comparable to that required for standard symmetric windows. For each context

window length CWlen, in fact, the optimal configuration {Np, Nf} is automat-

ically inferred from the gradient norm profile, allowing one to avoid exploring

the full set of context configurations. Similarly to SCW, if we consider a context

13



Acoustic Condition Training Test

Close-talking (Clean) WSJ-clean DIRHA-WSJ-clean

Close-talking (Clean) LibriSpeech LibriSpeech

Distant-talking (Rev) WSJ-rev DIRHA-WSJ-rev

Distant-talking (Rev) Rev-LibriSpeech Rev-LibriSpeech

Distant-talking (Rev&Noise) WSJ-rev DIRHA-WSJ-rev&noise

Table 1: List of the experimental tasks considered in this work with the related training and

test datasets.

window length ranging from CWmin=11 to CWmax=25 frames, only 15 DNN

training experiments are necessary to find a proper context window.

4. Experimental Setup

The experimental framework developed in this work is based on the use of

both WSJ-5k and LibriSpeech tasks. To provide an accurate analysis of the

proposed approach, the experiments are performed under three different acous-

tic conditions of increasing complexity: close-talking (Clean), distant-talking

with reverberation (Rev), and distant-talking with both noise and reverberation

(Rev&Noise). The corpora used for each experimental condition are summa-

rized in Table 1 and described in the two following sections. The adopted ASR

setup will be described in Sec. 4.3.

4.1. Close-talking experiments

For close-talking experiments, we consider the standard WSJ dataset (i.e.,

WSJ-clean) for training, and the close-talking portion of the DIRHA English

WSJ Dataset (i.e., DIRHA-WSJ-clean) for test purposes. The latter dataset

was acquired during the DIRHA project in a recording studio of FBK, using

professional equipment to obtain high-quality speech material [7]. In this work,

we used a subset of the corpus, consisting of 409 WSJ sentences (with the same
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text used for the CHiME [8] challenge) uttered by six US speakers (three males

and three females).

To evaluate the proposed method on a larger scale ASR task, additional

experiments were performed with the LibriSpeech dataset [37], that is based

on speech material derived from read audio-books. In particular, we used a

training subset consisting of 460 hours of speech uttered by 1172 speakers.

4.2. Distant-talking experiments

The reference environment for several experiments conducted in this study

is the living-room of a real apartment (available under the DIRHA project) with

a reverberation time T60 of about 780 ms. The living-room was equipped with a

microphone network composed of 40 microphones. An IR measurement session,

exploring a large number of positions and orientations of the sound source,

was conducted in the aforementioned targeted environment with the purpose

of generating realistic simulated data. More information on the adopted IR

estimation procedure can be found in [38, 39].

A set of experiments is carried out to study distant-talking conditions where

only reverberation acts as a source of disturbance (Rev). In this case, training is

performed using a contaminated dataset (i.e., WSJ-rev), which is generated by

convolving the original WSJ-clean data set with a set of three IRs chosen from

the aforementioned collection. The corresponding test data set, i.e. DIRHA-

WSJ-rev, is based on a contaminated version of DIRHA-WSJ-clean. In order

to simulate several speaker positions and orientations, a set of 36 IRs (different

from those used for training) is used for the latter dataset.

To explore more challenging conditions characterized by both noise and re-

verberation (Rev&Noise), real recordings have also been performed. The real

recordings, referred to as DIRHA-WSJ-rev&noise, are part of the recently-

released DIRHA English WSJ corpus [7] and are composed of 409 WSJ sen-

tences (with the same texts used to record DIRHA-WSJ-clean) uttered by six

US speakers. Each subject reads a set of WSJ sentences from a tablet, standing

still or sitting on a chair. Every 11-12 sentences, he/she was asked to move

15



to a new position and take another orientation. Different typologies of non-

stationary domestic noises affect the signals (e.g., vacuum cleaner, microwave

noise, interfering speakers talking in other rooms, kitchen tools, open window

noises,etc.), resulting in an average SNR of about 10 dB (for more details see

[7]1).

To test our approach in different contexts, other contaminated versions of

the training and test data are generated with different IRs (either measured in

other real environments, or computed with the image method [40]), as discussed

in Sec. 5.2 and Sec. 5.3.

Other experiments are performed with a reverberated version of the Lib-

riSpeech dataset [37]. The original close-talking sentences are convolved with

2145 IRs, that are measured in various positions and with different microphone

configuration of the aforementioned living-room. The two test sets (here denoted

as Test1 and Test2 ), are composed of 2620 sentences uttered by 40 speakers,

and 2939 sentences uttered by 33 speakers, respectively. The test sentences

are convolved with about 2000 IRs, corresponding to speaker positions and mi-

crophones different from those used for training. Note that the test data of

the Librispeech corpus are originally clustered so that lower-WER speakers are

gathered into Test1, while the others are in Test2.

4.3. DNN and ASR setup

In this work, we use a context-dependent DNN-HMM speech recognizer,

where every unit is modeled by a three state left-to-right HMM, and the tied-

state observation probabilities are estimated through a DNN.

Feature extraction is based on splitting the signal into frames of 25 ms

with an overlap of 10 ms. The experimental activity is conducted considering

different acoustic features, i.e., 39 MFCCs (13 static+∆+∆∆), 40 log-mel filter-

bank features (FBANKS), as well as 40 fMLLR features (extracted as reported

in the s5 recipe of Kaldi [41]). Features of consecutive frames are gathered into

1This dataset is distributed by the Linguistic Data Consortium (LDC).
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both symmetric and asymmetric observation windows. As for MFCCs, it is

worth mentioning that one could conduct this study without using derivatives.

In the latter case, the experimental results would be quite similar at qualitative

level. In other words, we would obtain a trend that reflects what reported

in the following section, though with a more prominent relative decrease of

performance when adopting a non-optimal context length settings, because of

a less effective way the contextual information is exploited. For this reason,

here we prefer to report results related to the use of the first and second order

derivatives.

WSJ experiments are based on DNNs composed of six sigmoid-based hid-

den layers of 2048 neurons, that are trained with the Kaldi toolkit [41] (Karel’s

recipe). Weights are initialized with the standard Glorot initialization [42], while

biases are initialized to zero. Training is performed with Stochastic Gradient

Descend (SGD) that optimizes the cross-entropy loss function. The training

evolution is monitored using a small validation set (10% of the training data)

that is randomly extracted from the training corpus. The performance on the

validation set is monitored after each epoch to perform learning rate annealing

as well as for checking the stopping condition. In particular, the initial learn-

ing rate is kept fixed at 0.008 as long as the increment of the frame accuracy

on the validation is higher than 0.5%. For the following epochs, the learning

rate is halved until the increment of frame accuracy is less than the stopping

threshold of 0.1%. The labels for DNN training are derived from an alignment

on the tied states, which is performed with a previously-trained HMM-GMM

acoustic model [41]. For Convolutional Neural Network (CNNs) experiments,

we replace the first two fully-connected layers of the above-mentioned DNN with

two convolutional layers based on 128 and 256 filters, respectively.

Librispeech experiments rely on the standard nnet2 implementation of Kaldi,

which employs a generalized maxout network (p-norm). In particular, our ex-

periments are based on a four hidden layer p-norm architecture trained for 10

epochs with minibatches of size 128. The initial learning rate is set to 0.01,

while the final one is 0.001. See [43] and the kaldi recipe in Librispeech/s5 for

17



more details.

5. ASR Results

In the following, we report the experimental results obtained on the ad-

dressed ASR tasks. In Sec. 5.1, a comparison between SCWs and ACWs is

conducted considering different context configurations, input features as well

as DNN architectures. In Sec. 5.2, we test the performance of the proposed

AutoCW algorithm with different recognition tasks and real acoustic environ-

ments, while in Sec. 5.3 we extend the speech recognition validation by simu-

lating different reverberation times.

5.1. Reverberant speech recognition with asymmetric context windows

From the preliminary study on ACWs, carried out in the previous sections,

we found that the training of distant-talking DNNs tends to naturally attribute

more importance to past rather than future frames. In this section, we take a

step forward by verifying whether this fact is also observed in terms of recog-

nition performance. With this purpose, Fig. 8 shows the Word Error Rate

(WER) results obtained in close-talking (Clean) and reverberant (Rev) condi-

tions, when using fully asymmetric (i.e., single side) context windows of differ-

ent lengths. Negative x-axis refers to the progressive integration of past frames

only (ρcw=100%), while positive x-axis refers to future frames (ρcw=0%). In

this set of experiments, fMLLR features were used as input to the DNN, for

both DIRHA-WSJ-clean and DIRHA-WSJ-rev tasks. Note that similar trends

have been obtained with both MFCCs and FBANK features.

Results highlight that a rather symmetric behavior is attained in the close-

talking case (Fig. 8a), reiterating that in such contexts past and future in-

formation provides a similar contribution to improve the system performance.

Differently, the role of past information is significantly more important in the

distant-talking case, since a faster decrease of the WER(%) is observed when

past frames are progressively concatenated (Fig. 8b). This result is in line with
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Figure 8: WER(%) obtained with DNN context windows that progressively integrate only

past or future frames (using fMLLR features). Results refer to the use of DIRHA-WSJ-clean

(a), and DIRHA-WSJ-rev (b), tasks.

the findings emerged in the previous sections, and it confirms that an ACW is

more suitable than a traditional symmetric one when reverberation arises.

In the previous experiment, we tested only fully asymmetric windows with

ρcw=0% (future frames) or ρcw = 100% (past frames). However, it is worth

addressing hybrid configurations, where both past and future frames are con-

sidered. With this purpose, Fig. 9 compares this kind of asymmetric window

under both close-talking and distant-talking conditions, using contexts of differ-

ent durations. For each CW length, the asymmetric CW curve represents the

best ASR performance among all the configurations that derive from varying

the balance factor ρcw. Fig. 10 shows the results obtained with the Librispeech

task, by adopting the CW lengths that turned to be optimal in the case of

DIRHA-WSJ task (i.e., 11 in the close-talking condition and 19 for the rever-

berated case).

From the close-talking experiments, it emerges that the standard SCW

slightly outperforms the best asymmetric one, as clearly highlighted by Fig.

9a. This trend is also confirmed in Fig. 10a, where different context windows

of length 11 have been tested on the close-talking version of Librispeech. In
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Figure 9: Comparison between SCW and ACW under both a close-talking and distant-talking

reverberated conditions (using fMLLR features). Results refer to the used of DIRHA-WSJ-

clean (a), and DIRHA-WSJ-rev (b) tasks.
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Figure 10: WER(%) obtained with different context configurations for the close-talking and

reverberated version of Librispeech (Test1, fmllr features).

both cases, the gap between symmetric and asymmetric contexts is not so large

(on average less than 2% relative decrease), but it suggests to use an ACW in

close-talking scenarios only when real-time/low-latency constraints arise.

Differently, Fig. 9b shows that the asymmetric window consistently out-

performs the standard symmetric one in the distant-talking case, for all the

considered context durations. On average, about 5% relative WER decrease is
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Architecture Features SCW (9-1-9) ACW (11-1-7)

DNN fMLLR 15.2 14.8

DNN MFCC 21.8 20.8

DNN FBANK 20.7 20.2

CNN FBANK 18.5 18.1

Table 2: Comparison between the WERs(%) achieved with SCWs and ACWs, when different

features and DNN architectures are used.

obtained with, essentially, no additional computational cost. This result is also

confirmed by Fig. 10b, that reports the performance obtained on the rever-

berated Librispeech for various CW settings. This figure not only shows that

an asymmetric window that embeds more past than future frames is a proper

choice when reverberation arises, but it also highlights that the opposite setting

(i.e., embedding more future than past frames) leads to a rather significant loss

of performance.

Previous experiments were based on fMLLR features. In Table 2 we ex-

tend the experimental validation to other acoustic features, such as FBANK

and MFCC coefficients. We also consider CNNs as an alternative to the fully-

connected DNNs used so far. Results confirm that the ACW outperforms the

symmetric one in all the considered settings. The last row of Table 2 also high-

lights an interesting performance improvement achieved with CNNs. CNNs are

based on local connectivity, weight sharing, and pooling operations that allow

them to exhibit some invariance to small feature shifts along the frequency

axis, with well-known benefits against speaker and environment variations [17].

Hence, they represent a valid alternative to fully-connected DNNs, also jointly

used with ACW under reverberant conditions.

To study the effectiveness of asymmetric contexts under mismatching condi-

tions (that often arise in real applications), we now train the DSR system with

reverberated data (Rev) and test it on real signals (DIRHA-WSJ-rev&noise)

affected by both noise and reverberation. Fig. 11a shows the results obtained
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Figure 11: Comparison between SCW and ACW under mismatched conditions. Training

is performed using reverberated data (using WSJ-rev), while test material is corrupted by

both noise and reverberation (DIRHA-WSJ-rev&noise). fMLLR features are used in this

experiment.

when fully ACWs are adopted. Fig. 11b, instead, compares symmetric and

optimal asymmetric windows, with different CW lengths. Due to the more

challenging conditions characterizing this test, WER(%) is significantly worse

than that highlighted in Fig. 8b and Fig. 9. However, it is worth noting that

the benefits deriving from the use of ACWs are maintained even under the

addressed mismatching case.

5.2. ASR experiments with automatic context window composition

As discussed in Sec. 3, the hyperparameters Np and Nf of the ACW can be

derived by applying AutoCW (Alg. 1). In this section, we conduct a set of ex-

periments to evaluate the loss of performance introduced by it, when compared

to the ideal (and computational expensive) conditions under which previous ex-

periments (in Fig. 11b) were performed. Let us recall that, in the latter cases,

a grid optimization was done over all the possible CW combinations.

The first row of Table 3 shows the results obtained with the aforementioned

mismatching condition. The best performance, 27.2 % WER, is obtained using

an optimal CW 11-1-7, that is an overall length of 19 frames. It is however

22



T60(ms) SCW ACW (opt) AutoCW

DIRHA-WSJ-rev&noise
CW 8-1-8 11-1-7 12-1-6

WER 27.9 27.2 27.3

Rev-LibriSpeech (Test1)
CW 9-1-9 11-1-7 11-1-7

WER 22.1 21.4 21.4

Rev-LibriSpeech (Test2)
CW 9-1-9 11-1-7 11-1-7

WER 51.3 50.1 50.1

Table 3: Comparison between WER(%) obtained with SCW, the optimal asymmetric one

(ACW opt), and with the context configuration derived by our algorithm (AutoCW ). The

experiments are performed with fMLLR features.

worth noting that applying AutoCW leads to a very similar combination, i.e.,

12-1-6, is obtained, which corresponds to a comparable recognition performance,

i.e., 27.3% WER. The last two rows, instead, report the results achieved with

the reverberated version of Librispeech. In this case, the proposed AutoCW

algorithm provides a CW setting that corresponds to the optimal choice. For

both recognition tasks, we can also observe that applying AutoCW leads to

2-3% relative reduction of WER provided by the SCW.

Another set of experiments concerns a different kind of mismatch that occurs

when training and test are performed in different acoustic environments. As re-

ported in Table 4, training was carried out in the DIRHA living-room, using the

WSJ-rev corpus, while test is performed in three different contexts, i.e., an of-

fice, a surgery room, as well as a room of another apartment. The test data were

generated following the approach described in Sec. 4.2 for DIRHA-WSJ-rev, but

using real IRs that were measured in the aforementioned environments. Results

show that the use of ACW introduces advantages in terms of ASR performance

under all the tested conditions, even when training and test are performed in

different acoustic environments. Moreover, the application of AutoCW provides

a CW composition 12-1-6, very similar to the optimal one, which corresponds

to a 2-3% relative WER reduction, if compared to the performance obtained
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XXXXXXXXXXXXXXX
Env.

Context Wind. SCW (opt) ACW (opt) AutoCW

9-1-9 11-1-7 12-1-6

Office (T60 = 650 ms) 16.6 16.2 16.2

Home (T60 = 700 ms) 19.5 19.1 19.3

Surgery Room (T60 = 850 ms) 21.4 20.3 20.5

Table 4: WER(%) obtained with SCWs and ACWs, in different acoustic environments and

under mismatched conditions. Training is performed in the DIRHA livingroom (T60=750ms)

using WSJ-rev, while test is performed in different acoustic environments with different re-

verberation times.

using SCW.

5.3. Performance analysis with different reverberation times

As pointed out above, the application of AutoCW can have a different im-

pact according to the reverberant conditions under which training and test are

performed. Concerning this, we further extended our validation by simulating

acoustic environments with increasing reverberation times T60. For this study,

a set of IRs simulated with the image method [40] were used to contaminate

both training (WSJ-clean) and testing corpora (DIRHA-WSJ-clean). Table 5

summarizes the results obtained with T60 ranging from 250 ms to 1000 ms.

As expected, results show that the performance progressively degrades as T60

increases. More interestingly, the asymmetric window is able to overtake stan-

dard symmetric ones in all the explored reverberant conditions. It is also worth

noting that larger contexts are needed when increasing the reverberation time,

as highlighted in Fig. 12a. For instance, when T60=250 ms the optimal window

integrates only 11 frames, while 25 frames are necessary when T60=1000 ms.

Interestingly enough, the coefficient ρcw, that measures the amount of asym-

metricity in the CW, increases as the reverberation time increases (see Fig.

12b). This means that the reverberation effects significantly reduce the use-

fulness of future frames in the case of large T60s, which makes convenient the

use of more asymmetric context windows. It is worth noting that the proposed
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T60(ms) SCW ACW (opt) AutoCW

0 ms
CW 5-1-5 6-1-4 5-1-5

WER 3.6 3.7 3.6

250 ms
CW 5-1-5 6-1-4 6-1-4

WER 5.5 5.1 5.1

500 ms
CW 6-1-6 7-1-5 8-1-4

WER 9.1 8.5 8.7

750 ms
CW 9-1-9 12-1-6 11-1-7

WER 15.2 14.8 14.9

1000 ms
CW 12-1-12 18-1-6 19-1-5

WER 20.5 20.1 20.1

Table 5: Comparison between WER(%) obtained with SCW and ACW under different rever-

beration conditions. The last column reports the results obtained with the proposed AutoCW

algorithm.

AutoCW algorithm provides nearly optimal contexts, that lead to a negligible

performance reduction over the best CW for all the considered reverberation

times. Under close-talking conditions (T60=0 ms), AutoCW correctly derives a

symmetric context window of 11 frames. Similarly to the optimal case, the pro-

posed method correctly provides longer and more asymmetric context windows

when reverberation increases.

6. Conclusions

In this paper, we extensively studied the role played by ACWs to counteract

the adverse effects of reverberation in a distant speech recognizer. Under these

environmental conditions, this windowing mechanism has proven to be a viable

alternative to a more standard symmetric context. The asymmetric window, in

fact, feeds the DNN with a more convenient frame configuration which carries,

on average, information that is less redundant and less affected by the correlation

effects introduced by reverberation.
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Figure 12: Main features of the optimal context window for different reverberation times.

To optimize the characteristics of the asymmetric context window, this work

proposed a novel algorithm that analyzes the norm of the DNN gradients over

the various input frames. The AutoCW algorithm, tested on different tasks,

datasets, and environments turned out to derive nearly optimal windows under

different acoustic conditions. Our method, that is characterized by a linear

computational complexity, is significantly more efficient than the traditional

grid search optimization over all the possible frame configurations, which has a

quadratic complexity.

As previously mentioned, an open issue is represented by the flexibility of

the proposed approach to tackle possible changes of the reverberant conditions.

This issue can be addressed in several possible ways, for instance by combining

the current solution with a pre-processing step that realizes a preliminary envi-

ronmental classification, which aims at selecting in real-time the most suitable

asymmetric context as well as the related neural network.

Overall, the use of ACW and of AutoCW turns out to represent a simple and

effective approach to improve DSR performance under noisy and reverberant

conditions, in particular with medium-high reverberation times, and for the

development of real-time low-complexity applications.
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