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Abstract

Autonomous speech-enabled applications such as speech-to-speech machine trans-

lation, conversational agents, and spoken dialogue systems need to be able to

distinguish system-directed user input from “off-talk” to function appropriately.

“Off-talk” occurs when users speak to themselves or to others, often causing the

system to mistakenly respond to speech that was not directed to it. Automatic

detection of off-talk could help prevent such errors, and make the user’s in-

teraction with the system more natural. It has been observed that speech in

human-human dialogue and in soliloquy is prosodically different from speech

directed at machines, and that the right hemisphere of the human brain is the

locus of control of speech prosody. In this study, we explore human brain activ-

ity prior to speech articulation alone and in combination with prosodic features
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to create models for off-talk prediction. The proposed EEG based models are

a step towards improving response time in detecting system-directed speech

in comparison with audio-based methods of detection, opening new possibili-

ties for the integration of brain-computer interface techniques into interactive

speech systems.

Keywords: multimodal interaction, spoken dialogue systems, speech-to-speech

machine translation, brain computer interface (BCI), electroencephalogram

(EEG)

1. Introduction

Enabling natural human-computer interaction through speech involves en-

dowing the machine with the ability to distinguish between speech that is ad-

dressed to it from speech that is addressed to others [1]. Designers of spoken

dialogue systems [2, 3] refer to speech not addressed to the system as “off-talk”5

[4], and to speech addressed to the system as “on-talk”. The latter exhibits

distinctive linguistic behaviours. Previous studies have shown that the user’s

talking behaviour varies depending on whether the interlocutor is a machine or

a human being [5, 6], and that talking to a computer is similar to talking to

a person who has a hearing impairment [3]. Human-computer communication10

tends to be more “exaggerated” than human-human communication [5].

In applications such as speech-to-speech machine translation, users often

experience communication difficulties due to the errors caused by system misin-

terpretation of off-talk, especially when facial and gestural cues that normally

aid communication are reduced or absent from the system [7]. In such settings,15

the speaker adapts different strategies such as overarticulating and slowing their

speech rate when automatic speech recognition (ASR) fails. However, as mod-

ern ASR systems are trained on normal paced speech, this strategy often results

in worse ASR performance [8, 9]. Self-talk, or soliloquy which is an example

of off-talk, may occur in a dialogue system or speech translation system due20

to a number of factors. Failure of speech recognition or machine translation
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components, for instance, often causes users to talk to themselves in amuse-

ment or frustration. In a speech-to-speech machine translation system, users

might read out loud the system’s textual output, such as feedback or back-

translation displayed to them during interaction with the system. Talking to25

others (“other-talk”) is also quite common in several contexts of use of dialogue

systems, where addressee detection is an active research area [1]. Therefore,

equipping the system with the ability to detect off-talk could enhance system

performance by avoiding the processing of off-talk utterances, and using this in-

formation (i.e. which utterances are off-talk) as a feedback to the ASR module30

and other system components. In an audio conference where participants use a

machine translation system, for instance, off-talk detection could prevent irrele-

vant and potentially confusing utterances from being translated and transmitted

to the remote participants.

This study extends our previous work [10, 11] where the EEG signal is anal-35

ysed in overt speech (during articulation) rather than in covert (prior to articula-

tion) as in the present study. We also analyse overt speech (during articulation)

in combination with a very high dimensional set of acoustic features in previous

studies [10, 11]. This study proposes a new approach for automatic detection of

on- and off-talk which could decrease the response time of an interactive speech40

driven system in accepting or rejecting a speech utterance. This model employs

electroencephalography (EEG) features collected prior to articulation (covert

speech setting). While EEG signals have been employed before in speech-related

brain-computer interaction (BCI), these applications tend to focus on the inter-

pretation of “silent” or covert speech [12], where the user “imagines” the words45

or phonemes to be produced but does not physically articulate them. This focus

on covert speech is due to the fact that muscle activity during speech articu-

lation produces noise that contaminates the EEG signal. By focusing on the

preparatory phase of speech production [13, 14] and processing the EEG signal

before articulation starts, our approach avoids this difficulty. We implemented50

and assessed models that employ pre-articulation EEG features in isolation and

in combination with prosodic features gathered during articulation for on- and
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off-talk detection. The system architecture underlying our method is depicted

in Figure 1, where a Voice Activity Detection (VAD) component detects the

start and end time of a speech utterance from the incoming audio stream and55

then extracts acoustic features from the speech utterance for off-talk detection.

The EEG based off-talk detection system is triggered as soon as it detects 10-

ms of speech and processes the EEG features corresponding to a time window

immediately prior to articulation from the memory buffer for off-talk detection.

In summary, the main research contributions of this article are:60

1. the introduction of a novel method for automatic detection of on- and

off-talk utterances;

2. a demonstration of the usefulness of EEG signals recorded up to 2 seconds

prior to articulation for on- and off-talk detection;

3. an analysis of the predictive power of the fusion of audio and EEG features65

with regard to this detection task, and

4. a demonstration of the discriminating power of EEG potential generated

by the right mid-front and right mid-back positions of brain for off-talk

detection.

At a practical level, improvements in response time yielded by the proposed70

method could contribute towards the design of interactive speech systems that

show attentive behaviour to users and, in the specific case of machine-translated

audio conferencing, improve the flow of conversation. In the scope of this study,

we mainly focused on prosodic information. Therefore we have focused on elec-

trical signals from the right brain-hemisphere and on basic prosodic features, as75

it is generally assumed that the right brain-hemisphere preferentially processes

prosody [15, 16, 17, 18, 19, 20, 21]. For instance, Heilman et al. assessed the

brain of a subject with a right medial frontal cerebral infarction and observed

an impairment in expressing emotions using prosody, and in comprehension

and repetition of prosody [16]. The left brain-hemisphere is largely involved in80

speech production aspects other than prosody control [22, 23]. For instance,
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Flinker et al. showed that the Broca area activates prior to articulation and

stays inactive during articulation. The motor cortex, on the other hand, acti-

vates during speech production but remains inactive prior to articulation [22].

Focusing on the right brain-hemisphere also minimises possible confounding85

from brain patterns related to hand control as the user uses the mouse, since

the left brain-hemisphere controls the right hand [17, 24], and the subjects of

this study are right-handed. As regards the analysis of prosody on the speech

signal for distinguishing on-talk from the two types of off-talk (other-talk and

self-talk). It is noted that although other talk and self talk seem to differ prosod-90

ically, talking to a system has a distinctively less natural character, marked by

features such as over-articulation, louder and slower speaking etc. While further

investigation is still needed, these features of off-talk seem to persist across the

different languages recorded in our experiment.

VAD

Speech segment (start time 

and end time) 

Feature 

fusion

Audio

Predicted 

Label

Feature 

extraction

Bio Signal
Feature 

extraction 

and buffering 

Start time On-Off Talk 

detection

Feature selection prior to 

articulation from the buffer 

Figure 1: The system architecture where the system processes the EEG features prior to

articulation as soon as it received 10 ms of audio which is detected through voice activity

detection (VAD) using audio features.

2. Electroencephalography and speech production95

With the introduction of less intrusive wireless EEG headsets e.g. EPOC1,

the use of EEG information is now more convenient in human-machine inter-

actions than before. However as mentioned before, the EEG signal is quite

susceptible to artefacts caused by talk-related muscle activity, including head

1https://www.emotiv.com/epoc/ – Last verified August 2018
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movement and eye blinks. This problem is commonly approached by recording100

signals on several different positions on the scalp, instructing the subjects to

avoid moving and to keep calm during recordings, and subsequently employ-

ing independent component analysis on the EEG data in order to remove the

artefacts [25]. However, in an interactive setting, we cannot restrict user’s move-

ments. When engaged in natural interaction people move their heads, speak,105

display emotions, gesture and laugh. Therefore, preventing EEG artefacts be-

comes even harder if any amount of naturalness in human-computer interaction

is to be preserved.

Muscle activity can introduce noise in EEG signals (e.g. peak frequencies

of masseter muscle movements are in 50–60 Hz range, and frontalis muscles110

movements are between 30–40 Hz) with the noise band limit ranging between

15 to 100 Hz [26]. Goncharova et al. [27] report the noise range for frontalis

muscles as 20–30 Hz and temporal muscles as 40–80 Hz. The discrepancies

in noise range for frontal muscles can be due to the fact that O’Donnell et al

[26] use fewer subjects and electrodes than Goncharova et al. [27]. Posterior115

head muscle movements have a higher peak frequency close to 100 Hz. but this

depends on many factors, such as sex, force and direction of contraction, etc

[28]. Muscle activity may also introduce artefacts in a frequency range (20–300

Hz) where most artefacts are at the lower end [29].

Muscle artefact noise is the main reason why the EEG signal has been rarely120

used for speech related applications. However, a few studies have employed EEG

signals in both overt and covert speech settings. In covert speech production

settings [14, 30, 31, 32, 12] the subjects are asked to think about a word or

phoneme instead of articulating them. While this minimises noise artefacts on

the EEG signal, a limitation of this methodology is that it is difficult to verify125

with certainty that the subjects actually followed the task instructions. In overt

speech studies [33, 34], the EEG signal is analysed after a stimulus is presented

to the subject up until the start of articulation. Our study adopts a different

approach to overcome the issue of noisy EEG signal due to overlap with speech

production namely it only uses EEG signal from time periods where there is no130
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speech activity. In doing so it differs from the above-mentioned studies as it

is performed in a setting that is closer to natural communication. Our goal is

to detect different speech registers (on- and off-talk) rather than to decode the

EEG counterpart to a specific phonetic production.

The Broca area of the human brain plays a role in speech production [35, 36].135

The seminal research by Broca, Wernicke and others on the relationship between

neural activity and speech production, which highlighted parts of the brain

responsible for speech production has been supported by a number of studies

[23]. It has been observed that the speech signal is preceded by low variation

in the EEG signal up to one second before articulation [37]. The cognitive140

processes that lead to speech articulation (activate the speech production areas

in the brain) are thought to be of three main types [38, 39, 40, 41, 42, 43,

13]: 1. conceptualization – the content and pre-linguistic representation of the

intended speech, 2. formulation – retrieval of the best match between linguistic

representation and conceptual structure, and 3. grammatical and phonological145

encoding – selection of lexical items and intonation pattern [14].

Electro-physiological evidence of phonological encoding that leads to articu-

lation has been observed. M. Van Turennout et al. [14] found such evidence in

the EEG signal from the mid-line frontal (Fz), central (Cz), and parietal (Pz)

sites of the 10-20 system [44] in a picture naming task. Other studies impli-150

cated the right brain-hemisphere in the control of speech prosody [19, 20, 21].

The evidence reviewed in the literature therefore suggests that EEG informa-

tion can be used for modelling the characteristics of speech prior to articulation,

and may help distinguish on- and off-talk by anticipating prosodic differences

in intonation level, speech rate and lexical words [10, 45].155

3. Data Set

A data set was collected which consists of recorded human dialogues medi-

ated through a speech-to-speech machine translation system [46]. The partici-

pants communicated remotely through the system to solve a map task problem,
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where one participant (the instruction giver) has a complete map and the other160

(the instruction follower) has a map with missing information [47]. Three dif-

ferent types of talk were observed in this setting: 1) on-talk, where the speaker

directed speech to the ASR for transmission to the other participant 2) self-

speaking, where participants spoke to themselves (e.g. venting frustration at

system component failure) producing utterances not intended for ASR or trans-165

mission, and 3) other-talk, where participants spoke directly to other people

than their remote task partner (e.g. a colleague that happened to be in the

same room). Both self-speaking and other-talk are regarded as off-talk in this

study. The data used for the research described in this paper includes precisely

synchronised audio and EEG signals, from the Interlingual Map Task (ILMT-170

s2s) corpus [48].

3.1. The ILMT-s2s System

The user of ILMT-s2s system presses a button when they wish to speak

to the remote participant. However, they cannot hear each other directly. A

speech synthesiser (Apple TTS system with voices Kate, for English, and Joana175

for Portuguese) provides the output of the ASR and machine translation (MT)

components to them. Only one of the dialogue participants uses the physio-

logical recording equipment [48] in any particular session. In total, there are

30 participants (15 English and 15 Portuguese speakers), of which there are 15

subjects who are equipped with ‘Mind Media B.V., NeXus-4’ for bio-signal (i.e.180

skin conductance, heart rate and EEG) recording and the duration of dialogues

is between 20 and 74 minutes. In this study, we use the datasets of 13 out

of 15 subjects who were fitted with bio-signal recording equipment (i.e. ‘Mind

Media B.V., NeXus-4’ ) because the EEG data of two subject was not recorded

properly due to improper fitting of the EEG electrodes. The number of on-off185

talks produced by all subjects along with the mean and standard deviation of

duration values (in seconds) are shown in Table 1. The on-talk utterances were

labelled automatically as the speech utterances were sent to the ASR system,

and the remaining labels were added and checked manually by a single expert
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annotator.

Table 1: Dataset description showing the number of on-talk and off-talk (self-talk and other-

talk) instances for each participant, along with the mean and standard deviation of duration

(in seconds) for these instances.

Subject
Self Talk On Talk Other Talk

Instances mean Std. Instances mean Std. Instances mean Std.

S1 25 (43.10%) 0.65 0.26 33 (56.90%) 0.87 0.88 0 - - -

S2 55 (34.59%) 0.77 0.70 100 (62.89%) 2.1 7.8 4 (2.52%) 0.81 0.54

S3 10 (6.25%) 0.65 0.31 120 (75.00%) 1.87 7.13 30 (18.75%) 0.83 0.90

S4 5 (4.85%) 0.74 0.24 98 (95.15%) 1.65 7.83 0 - - -

S5 46 (27.06%) 0.73 0.53 92 (54.12%) 2.2 8.12 32 (18.82%) 0.84 0.74

S6 60 (27.27%) 2.35 10.01 103 (46.82%) 1.21 1.32 57 (25.91%) 0.89 0.80

S7 40 (33.61%) 0.77 0.81 73 (61.34%) 2.27 9.08 6 (5.05%) 0.79 0.25

S8 2 (0.99%) 0.89 0.26 201 (99.01%) 1.52 5.56 0 - - -

S9 106 (68.39%) 1.61 7.53 49 (31.61%) 1.66 1.8 0 - - -

S10 10 (14.93%) 0.83 0.28 57 (85.07%) 0.76 0.70 0 - - -

S11 44 (36.07%) 0.75 0.72 78 (63.93%) 2.2 8.79 0 - - -

S12 13 (26.53%) 0.72 0.29 34 (69.39%) 0.79 0.86 2 (4.08%) 0.75 0.38

S13 6 (6.25%) 0.84 0.31 89 (92.71%) 1.63 8.20 1 (1.04%) 0.93 0

Total 422 1127 132

190

3.2. Audio Recordings

Two audio and five video streams form part of the ILMT-s2s corpus. For

the participants fitted with the EEG sensors audio was recorded from three

different sources: a) a Sony HDR-XR500 handy-cam per subject, recording at

1080i, 29.97 fps, b) SMI Eye Tracking Glasses 1.1 recording at 960p, 30 fps, and195

a push-to-talk microphone, sampled at 96 KHz, 24 bit PCM format. In this

study, we used the audio recorded by the two Sony HDR-XR500 handy-cams

(sampled at 48 KHz, 16 bit PCM format) rather than the audio captured by

the push-to-talk (using the computer’s mouse) microphone because the latter

records only on-talk.200
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3.3. EEG Recording

The EEG is recorded using the Mind Media B.V., NeXus-4 with a head

fixture EEG cap2. The EEG sensors were placed on the F4, C4, P4 sites (located

on the right hemisphere of the brain, which is responsible for the control of

speech prosody [19, 20]) with a ground channel placed at position A1 (left ear205

lobe) of the 10-20 location system. The sampling frequency was 1,024 Hz.

Henceforth, we refer to the input gathered from the F4-C4 channel as sensor A:

right mid-front and to the C4-P4 channel input as sensor B: right mid-back.

4. Feature Processing and Classification method

4.1. EEG Power Spectrum Features210

Feature extraction was performed on the EEG signal two seconds before

articulation. A frame length of 250 ms (no overlap with neighbouring frames

using a rectangular window) was used for feature extraction which resulted in

a total of eight frames (2 seconds) collected prior to articulation. First we

took the Fourier transform of the EEG frame and calculate its power spectrum.215

Then we set a frequency bin resolution of 5 Hz (from 0-40 Hz) that resulted in

8 frequency bins for each EEG frame. We ignored frequencies above 40Hz in

this study, in line with accepted clinical EEG standards where it is normally

assumed that the higher frequencies (> 40Hz) do not contain clinically relevant

neural activity. We also note in passing that, while contrary to a common220

misconception the human skull does not filter out higher frequencies [49], neural

activity at such frequencies are harder to detect due to attenuation caused by

the skull’s resistivity [50]. For this reason in the current study we only process

frequency bins bellow 40Hz, computing the ratio and range of power between

these eight frequency bins, which results in 64 features per frame for each EEG225

sensor. The processing of EEG features in this study is summarised in Figure 2.

2https://www.mindmedia.com/en/products/accessories/minicap/ – Last verified Novem-

ber 2018
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Figure 2: Frame (250 ms) level feature extraction from the EEG Signal

4.2. Prosodic Features

For the analysis of possible differences in phonetic characteristics during

articulation of on- and off-talk utterances we extracted functionals of prosodic

features of the participant’s speech. The mean and standard deviation values230

of sound intensity, loudness (normalised intensity raised to a power of 0.3) and

fundamental frequency were extracted from each speech utterance of on- and

off-talk using the openSMILE toolkit [51, 52]. Although prosodic differences in

the broad sense includes speaking pace and pauses, are distinguishing features

of off-talk from a listener perspective, many off-talk utterances are too short (see235

Table 1) for the feature to be useful in the machine learning approach adopted

in this study, which is applied at the utterance level. The duration of speech

utterance is not constant and the duration statistic of speech utterances are

shown in Table 1. While in previous studies [10, 11] we evaluated the acoustic

feature sets of the Compare challenge (6373 features) [52] and Emobase (988240

features) [51], in this study we limited acoustic features to fewer basic prosodic

features (4 features). The motivation for this is to compare prosodic features

of speech, which can be more easily interpreted than those large feature sets,
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to EEG features extracted from right brain-hemisphere, which controls speech

prosody.245

4.3. Classification Methods

In this study, we used the Scikit-learn [53] implementation of the Random

Forest (RF) classifier [54, 55] for model training and testing in a 10-fold cross

validation setting using 50 trees in the forest. The RF classifier was chosen be-

cause this classification method has been shown to be robust in tasks where the250

number of features approaches the number of training instances, as compared

to other methods such as discriminant analysis, support vector machines and

neural networks [55]. For comparison we also employed a K-nearest neighbour

classifier (KNN, with K=3). The results were evaluated using the A-weighted

F1-score statistic which is the average of F1-score of both classes (on- and off-255

talk). The baseline of A-weighted F1-score is 50%.

5. Results and Discussion

We have evaluated the discrimination power of EEG signals two seconds

prior to articulation with a frame length of 0.25 seconds on 0-40Hz frequency

bands by conducting the following three different experiments:260

Experiment 1: In this setting, we evaluated the discriminative power of

eight frames (250 ms) of EEG (2 seconds before articulation) for on-off talk

classification using the KNN and the RF classifiers. The EEG signals from

both sensors are used in this experiment. The predictive power of each sensor is

evaluated individually and in combination. The fusion of Sensor A and Sensor B265

features was evaluated for EEG signals one second before articulation (1s) and

one second before 1s (2s), separately. We then fused the features of all frames

for classification. The results are presented in Table 2. The best result (80.25%)

was obtained using the frame level features of both EEG sensors extracted two

seconds prior to articulation.270

Experiment 2: The prosodic features (during articulation) were used for this

classification task. The results for these features are shown in Table 3. The
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Table 2: Results of the 10-fold cross validation experiment 1 (A-Weighted F-Score %) for

each frame before articulation, and feature fusion of one second (4 frames) and two seconds

(8 frames) before articulation. Bold face indicates the best results.

EEG Features Window (sec)
Sensor A (F4-C4) Sensor B (C4-P4) Fusion

KNN RF KNN RF KNN RF

EEG Frame 1 0.00-0.25 53.90 72.09 52.26 63.27 53.12 79.40

EEG Frame 2 0.25-0.50 54.33 73.00 55.68 64.92 53.94 79.08

EEG Frame 3 0.50-0.75 51.24 70.99 52.61 63.86 56.17 79.21

EEG Frame 4 0.75-1.00 54.88 72.20 51.99 62.08 56.45 78.70

EEG Frame 5 1.00-1.25 53.65 71.24 54.23 64.67 54.20 79.05

EEG Frame 6 1.25-1.50 55.38 71.86 52.99 64.57 55.49 79.38

EEG Frame 7 1.50-1.75 55.66 72.75 55.52 66.36 57.57 79.21

EEG Frame 8 1.75-2.00 55.98 71.66 54.65 64.75 56.22 78.08

EEG Frame 1S 0.00-1.00 57.52 73.75 52.96 64.01 55.75 79.50

EEG Frame 2S 1.00-2.00 51.80 72.65 53.84 66.82 56.21 79.46

EEG Frame (1S+2S) 0.00-2.00 54.12 74.04 52.79 64.93 54.97 80.25

best result (81.83%) for audio modality was obtained using the fusion of all

prosodic functionals (mean and standard deviation of loudness, intensity and

fundamental frequency).275

Table 3: Result of 10-fold cross validation experiment 2 (A-Weighted F-Score %). Bold face

indicates the best results.

Features KNN RF

Intensity 74.37 NaN

Loudness 75.89 75.24

Fundamental Frequency (fo) 67.49 68.63

Audio Fusion 68.29 81.83

Audio + EEG Frame 1 53.44 86.38

Audio + EEG Frame 2 54.87 86.72

Audio + EEG Frame 3 56.56 86.76

Audio + EEG Frame 4 56.48 86.39

Audio + EEG Frame (1S+2S) 54.93 85.95
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Experiment 3: The results of experiments 1 and 2 suggest that the EEG

signal of all eight frames and their combinations is predictive of on- and off-talk

utterances, scoring well above the 50% baseline. It was also observed that the

fusion EEG signals from both sensors improves accuracy. Therefore, we fused

the acoustic information with the EEG features of both sensors (the latter 2s280

before articulation, as in Experiment 1), and trained a new model. The fusion

of EEG and prosodic features improved the results as expected, by about 5%

with respect to the best performing model of experiments 1 and 2. A summary

of results is shown in Table 3.

Table 4: Confusion Matrix of the best results obtained in the three experiments

Fusion Audio EEG

Off-Talk On- Talk Off-Talk On- Talk Off-Talk On- Talk

Off-Talk 407 146 378 175 391 162

On- Talk 40 1086 82 1044 126 1000

5.1. Discussion285

The classification results show that EEG features prior to articulation can

effectively classify on- and off-talk. In our previous study [11], the EEG fea-

tures during articulation (overt seech) provides a result of 74.80% using discrete

wavelet transform and this study (covert speech) improves the results up to

80.25%. While our current method would still require 10 ms of speech detection290

for the analysis of (buffered) pre-articulation EEG to be triggered (see Figure 1),

it still represents a substantial time improvement in comparison to audio-only

off-talk detection and our previous study [11], as shown in Figure 3. In terms

of brain location sources, the EEG signal from the F4-C4 channel (sensor A)

provides better results (74.04%) than the signal from the C4-P4 channel (sensor295

B, 66.82%). We tested these differences in predictive accuracy using the mid-

p-value McNemar test with a null hypothesis that sensor A and sensor B have

equal accuracy for predicting the target (on- and off-talk). The statistical test

rejects the null hypothesis (p = 0.01).
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The RF classifier provides better results than KNN using EEG features. We300

also compared these methods using the mid-p-value McNemar test with a null

hypothesis that the KNN classifier and the RF classifier have equal predictive

accuracy. The statistical test rejects the null hypothesis (p = 3.27 × 10−39).

To gain further insight into timings, we have investigated different inter-

vals of the EEG signal within the 2-second window prior to articulation. The305

most discriminative time period in the EEG signal for classification is frame

1 (0.00–0.25 seconds before utterance), and the fusion of 8 frames (2 seconds

prior to articulation) yields an increase in performance. Fusing both sensor

features improves the performance even further. The confusion matrices of the

best results obtained in these three experiments are shown in the Table 4. We310

compared the best results of the three experiments under a null hypothesis that

audio, EEG and fusion features have equal accuracy for predicting on- and off-

talk. The mid-p-value McNemar test rejected this null hypothesis for ‘EEG and

fusion’ (pExp.1−Exp3 = 2.73 × 10−12), and ‘audio and fusion’ (pExp2−Exp3 =

4.48 × 10−7) but was unable to reject the null hypothesis for ‘EEG and audio’315

(pExp2−Exp1 = 0.11).

The prosodic features produce only slightly better results than the EEG fea-

tures, while the fusion of EEG and acoustic features improves the accuracy with

respect to both. However, it should be noted that the EEG system has a much

quicker response time (RTEEG) compared to the prosodic system (RTAudio),320

as depicted in Figure 3. If we assume that the processing time (as depicted in

Figure 3) is 0 ms then the RTEEG = 10 ms (first 10 ms of speech articulation)

and RTAudio = duration of speech utterance, and duration of speech utterances

is not constant as shown in Table 1. This advantage of EEG is particularly rel-

evant in ASR applications to natural speech, where fast response is essential to325

the correct processing of speech input. There may be other factors than off-talk

detection that affect response time of a speech driven system. The improvement

potential of the proposed method lies in the difference between off-talk detection

in EEG verses in speech (where the system needs to record an entire utterance

in order to make a decision).330
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Speech Segment Processing time

Prior to articulation information Processing time output

output

Start time End time

RTEEG

RTAudio

Improvement

Figure 3: The baseline of the response time (RTAudio) and the proposed system response

time (RTEEG). The output is the predicted label and processing time is the time taken by a

machine’s processor for classification purpose.

To further explore the relations among the best results of each experiment,

we drew the Venn diagram shown in Figure 4. The blue (‘Target’) circle repre-

sents the labels (target), yellow (‘Audio’) circle represents the predicted labels

using audio, green (‘EEG’) circle represents the predicted labels using EEG and

the red (‘Fusion’) circle represents the predicted labels using fusion of audio335

and EEG. From this Venn diagram, it can be seen that there are 1207 instances

which are correctly recognised by all three experiments (EEG, Audio and fusion

of ‘EEG and Audio’). However there are 75 instances (70 off-talk instances and

5 on-talk instances) which have not been recognised. These instances belong to

S1 (7 off-talk), S2 (2 on-talk), S3 (20 off-talk), S4 (1 on talk), S5 (25 off-talk),340

S6 (3 off-talk and 2 on-talk), S8 (2 off-talk), S9 (1 off-talk), S10 (6 off-talk)

and S13 (6 off-talk). The fusion is able to recognise 11 instances (7 on-talk and

4 off-talk) correctly which have not been recognised by EEG or audio alone.

These belong to S4 (1 off-talk), S5 (2 off-talk and 1 on-talk), S8 (1 off-talk and

2 on-talk), S10 (1 on-talk) and S11 (3 on-talk). It is observed that off-talk (70345

instances) is misclassified more frequently than on-talk (5 instances), but this

is not true for all subjects as S2, S4, S7, S11 and S12 off-talk instances are cor-

rectly captured by the model. There are two subjects whose off-talk behaviour

is difficult to capture using any modality (EEG, audio and fusion). They are S3

(20 out of 40 instances misclassified) and S5 (25 out of 78 instances are misclas-350
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sified). We note that contrary to the majority of participants, who produced

no instances of other-talk at all, S3 and S5 produced a substantial amount of

other-talk (75% and 42%, respectively). Further research and data collection

are needed to investigate the question of whether other-talk is fundamentally

distinct from self-talk, as these differences of model performance on S3 and S5355

seem to indicate.

Figure 4: Venn Diagram displaying the shared relationship between the best results of the

three experiments.

As regards speech features alone, the loudness feature provides better results

(75.24%) than other prosodic features, highlighting the importance of speech

volume variations in distinguishing between on- and off-talk. This is consistent

with the observation by Batliner et al. that users tend to interact with an360

ASR system as they would with a person who has a hearing impairment [3].

However, it should be noted that we collected the data in a controlled acoustic

environment, and therefore prosodic models may perform less well in a more

realistic, noisy environment.
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As with most studies involving the use of EEG in interactive situations, our365

study has limitations. The number of participants is relatively small (though

not unusually so for an EEG study) and drawn from a narrow group (university

students and researchers). Nevertheless, it should be noted that the number

of labelled talk events (1682) is sufficient to enable inductive learning of these

classes through the EEG features and learning method used. Another limita-370

tion is the use of a push-to-talk button to activate the ASR. While the actual

act of pushing the button could not have confounded the analysis by generating

mechanical EEG noise (as the classifier input signal was collected prior to the

pushing of the button) it remains possible that the EEG signal reflected motor-

control neural activity related to preparation for pushing the button, rather375

than preparation for on-talk. Confounding due to the latter is unlikely since

EEG signals relating to limb movements seem to be restricted to channels C3

and CZ [24], none of which were used in the present study. In hindsight, if

we had used more EEG channels we might have been able to resolve this is-

sue. However, a different experimental design or further experiments may be380

necessary to minimise the possibility of confounding in future studies. An al-

ternative design might involve the use of a voice activation prompt rather than

push-to-talk. This, however, would introduce preparation for uttering the ASR

activation prompt as a potential confounder. An additional experiment could

involve participants communicating with a push-to-talk interface under two con-385

ditions: with ASR (as in our study) or directly. Capturing EEG in interactive

speech communication remains challenging, and further research is needed.

Despite these limitation, the fact that the results of models created from

pre-articulator EEG data practically match those based on speech features of

the actual utterances (81.83% and 80.25%, respectively) suggest interesting pos-390

sibilities for further experimental exploration. It is possible that the results ob-

tained from the EEG signal reflect prosodic information processing in the brain,

as the right hemisphere is thought to be responsible for the control of speech

prosody. If this is the case, our results would be consistent with the hypothesis

that the intonation pattern of produced speech is defined before articulation, as395
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suggested by previous studies [38, 39, 40, 41, 42, 43, 13]. While more research is

needed in this area, by providing for the first time (to the best of our knowledge)

evidence of consistent and distinguishable EEG activity prior to the articulation

of prosodically distinct utterance types, our study may provide useful methods

and models for future studies in this area.400

In terms of practical applications (for instance, in BCI-enhanced interactive

speech systems), the fact that models based on EEG signal features predict off-

talk instances more accurately than prosodic features (Table 4) makes the EEG

signal a better candidate than audio signal for situations where the misclassifi-

cation cost for off-talk is higher than on-talk.405

The failure of system components (e.g. ASR) results in a kind of be-

haviour that is not common in human-human communication, as discussed

above. Therefore, we may assume that a brain-computer interface (where there

is no overt speech) might experience the same situations (the brain signal read-

ing components fails) that results in a neural activity (we might call such activity410

“off-thoughts”) which should not be processed by the system. While the pro-

posed models may also work in a covert speech situation (on- and off-thoughts),

the brain has different activity patterns for overt and covert speech [56, 57],

which may cause a decrease in accuracy of the proposed models for those kinds

of brain-computer interfaces.415

6. Conclusion

The EEG signal from the right hemisphere of the brain is able to classify

‘on- and off-talk’ at an accuracy of 80.25%; with the F4-C4 channel of the 10-20

system providing better results than the C4-P4 channel. For on- and off-talk

detection, accuracy based on EEG alone is practically as high as detection based420

on prosodic features. This result could have interesting practical implication,

given that the EEG signal in our data is captured in a fairly unconstrained inter-

action setting, suggesting the possibility that this technology could be deployed

“in the wild” in speech-based interactive systems. Also interesting is the fact
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that the fusion of prosodic and EEG information resulted in an improvement425

of performance. This indicates that whatever information is contributed by the

EEG features regarding brain activity during the preparatory phase of speech

production, this information is partially complementary to the produced speech

itself.

Prosodic features extracted from the whole utterance add latency because430

the system needs to wait until the utterance is finished, while EEG features

extracted prior to articulation do not have this problem. However, the current

system still relies on detection of 10 ms of audio to trigger the start of processing

of buffered EEG information corresponding to the pre-articulation period. A

possible topic for further investigation is the use of EEG in settings that do not435

rely on this short audio detection interval.

Although the results presented in this paper point to promising directions in

the use of BCI in interactive speech-based systems, more data and research are

needed to elucidate the possible mechanisms behind these results. As the setting

we used for data collection is fairly unconstrained, it is possible that factors440

other than brain activity related to speech articulation, such as visual or haptic

feedback, might have confounded the EEG signal. Further investigation, with

data collected in more constrained settings, is necessary for a closer examination

of such factors. In future work we also plan to investigate the use of higher EEG

frequency bands, the detection of on-talk using mid-line and left hemisphere445

signals which encode activation information from the phonological and motor

area, and the task of distinguishing self-talk from other-talk.
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