
Text Normalization using Memory Augmented Neural Networks

Subhojeet Pramanika,∗, Aman Hussaina

aVIT University, Vandaloor-Kelambakkam Road, Chennai, Tamil Nadu, India

Abstract

We perform text normalization, i.e. the transformation of words from the written to the spoken form, using a memory augmented

neural network. With the addition of dynamic memory access and storage mechanism, we present a neural architecture that will serve

as a language-agnostic text normalization system while avoiding the kind of unacceptable errors made by the LSTM-based recurrent

neural networks. By successfully reducing the frequency of such mistakes, we show that this novel architecture is indeed a better

alternative. Our proposed system requires significantly lesser amounts of data, training time and compute resources. Additionally,

we perform data up-sampling, circumventing the data sparsity problem in some semiotic classes, to show that sufficient examples in

any particular class can improve the performance of our text normalization system. Although a few occurrences of these errors still

remain in certain semiotic classes, we demonstrate that memory augmented networks with meta-learning capabilities can open many

doors to a superior text normalization system.
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1. Introduction

The field of natural language processing has seen significant

improvements with the application of deep learning. However,

there are many unsolved challenges in NLP yet to be solved by

the prevalent deep neural networks. One of the simple but inter-

esting challenges lies in designing a flawless text normalization

solution for Text to Speech and Automatic Speech Recognition

systems. Unlike many other problems being solved by neural

networks, the tolerance for unacceptable or "silly" errors in text

normalization systems is very low. Prevailing neural architec-

tures in Sproat and Jaitly (2017) produce near perfect overall

accuracy on such a problem. But there is a caveat. Whereas

deciding whether a word needs to be normalized or not turns out

to be an easier problem since it mostly falls back on classifying

the semiotic class of the token, the actual challenge lies in gener-

ating the normalized form of the token. However, such instances
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which require normalization are usually very sparse which might

result in high overall accuracy. Hence, these specific cases must

get the highest attention when evaluating the performance of any

text normalization system. Yet the existing models are prone

to making "silly" mistakes which are extremely non-trivial and

mission-critical to TTS (Text-to-Speech) and ASR (Automatic

Speech Recognition) systems. Finite-state filters, which perform

simple algorithmic steps on the normalized tokens, are then used

to correct such errors and "guide" the model. Although develop-

ing such FST grammars is a lot simpler than constructing a fully

fledged finite-state text normalization system, they do require

some human expertise and domain knowledge of the language

involved.

We, therefore, ask if there is a way to circumvent the require-

ment of human involvement and language expertise, and instead

design a system that is language agnostic and learns on its own

given enough data. Although the most commonly used neural

networks are adept at sequence learning and sensory processing,

they are very limited in their ability to represent data structures
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and learn algorithms on its own. There have been recent ad-

vancements in memory augmented neural network architectures

such as the Differentiable Neural Computer, with dynamic mem-

ory access and storage capacity. Such architectures have shown

the ability to learn algorithmic tasks such as traversing a graph

or finding relations in a family tree. Normalization of semiotic

classes of interest, particularly those containing numbers and

measurement units, can be performed using basic algorithmic

steps. While neural network architectures such as LSTM work

sufficiently well in machine translation tasks, they have shown to

suffer in these semiotic classes which require basic step-by-step

transduction of the input tokens (Sproat and Jaitly, 2017). There

is hope that neural network architectures with memory augmen-

tation will be able to learn the algorithmic steps (meta-learning),

similar to the Finite-state filters, but without any human inter-

vention or the external knowledge about the language and its

grammar. With such memory augmentation, the network should

be able to learn to represent and reason about the sequence of

characters in the context of the text normalization task.

We begin by defining the challenges of text normalization to

try to understand the reason behind these "silly" mistakes. Then,

after a brief overview of the prior work done on this topic, we

describe the dataset released by Sproat and Jaitly (2017) which

has been used in a way so as to allow for an objective compar-

ative analysis. Subsequently, we delve into the theoretical and

implementation details of our proposed system. Thereafter, the

results of our experiments are discussed. Finally, we find that

memory augmented neural networks are indeed able to do a

good job with far lesser amounts of data, time and resources. To

make our work reproducible, open to scrutiny and further devel-

opment, we have open sourced a demonstration of our system

implemented using Tensorflow (Abadi et al., 2015) at https:

//github.com/cognibit/Text-Normalization-Demo.

2. Text Normalization

Text normalization is the canonicalization of text from one or

more possible forms of representation to a ’standard’ or ’canon-

ical’ form. This transformation is used as a preliminary step

in Text-to-Speech (TTS) systems to render the textual data as a

standard representation that can be converted into the audio form.

In Automatic Speech Recognition (ASR) systems, raw textual

data is processed into language models using text normalization

techniques.

For example, a native English speaker would read the fol-

lowing sentence Please forward this mail to 312, Park Street,

Kolkata as Please forward this mail to three one two Park Street

Kolkata. However, The new model is priced at $ 312 would be

read as The new model is priced at three hundred and twelve

dollars. This clearly demonstrates that contextual information is

of particular importance during the conversion of written text to

spoken form.

Further, the instances of actual conversion are few and far

between swathes of words which do not undergo any transforma-

tion at all. On the English dataset used in this paper, 92.5% of

words remain the same. The inherent data sparsity of this prob-

lem makes training machine learning models especially difficult.

The quality requirements of a TTS system is rather high given

the nature of the task at hand. A model will be highly penalized

for making "silly" errors such as when transforming measure-

ments from 100 KG to Hundred Kilobytes or when transforming

dates from 1/10/2017 to first of January twenty seventeen.

2.1. Prior Work

One of the earliest work done on the problem of text nor-

malization was used in the MITalk TTS system (Allen et al.,

1987). Further, a unified weighted finite-state transducers based

approach was proposed by Sproat (1996). The model serves

as the text-analysis module of the multilingual Bell Labs TTS

system. An advancement in this field was made by looking at

it as a language modeling problem by Sproat et al. (2001). For

ASR systems requiring inverse text normalization, data-driven

approaches have been proposed by Pusateri et al. (2017). The

latest development in this problem space has been by Sproat and

Jaitly (2017). Even though a recurrent neural network model

trained on the corpus results in very high overall accuracies, it

remains prone to making misleading predictions such as pre-
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dicting completely inaccurate dates or currencies. Such "silly"

errors are unacceptable in a TTS system deployed in production.

However, a few of these errors were shown to be corrected by a

FST (Finite State Transducer) which employs a weak covering

grammar to filter and correct the misreadings.

2.2. Dataset

For the purposes of a comparative study and quantitative

interpretation, we have used the exact same English and Rus-

sian dataset as used in Sproat and Jaitly (2017). The English

dataset consists of 1.1 billion words extracted from Wikipedia

and run through Google’s TTS system’s Kestrel text normaliza-

tion system to generate the target verbalizations. The dataset

is formatted into ’before’ or unprocessed tokens and ’after’ or

normalized tokens. Each token is labeled with its respective

semiotic class 1 such as PUNCT for punctuations and PLAIN

for ordinary words. The Russian dataset consists of 290 mil-

lion words from Wikipedia and is formatted likewise. These

datasets are available at https://github.com/rwsproat/

text-normalization-data.

Each of these datasets are split into 100 files. The base paper

(Sproat and Jaitly (2017)) uses 90 of these files as the training set,

5 files for the validation set and 5 for the testing set. However,

our proposed system only uses the first two files of the English

dataset (2.2%) and the first four files of the Russian dataset

(4.4%) for the training set. To keep the results consistent and

draw objective conclusions, we have defined the test set to be

precisely the same as the one used by the base paper. Hence,

the first 100,002 and 100,007 lines are extracted from the 100th

file output-00099-of-00100 of the English and Russian dataset

respectively.

1ALL = all cases; PLAIN = ordinary word (<self>); PUNCT = punctuation

(sil); TRANS = transliteration; LETTERS = letter sequence; CARDINAL

= cardinal number; VERBATIM = verbatim reading of character sequence;

ORDINAL = ordinal number; DECIMAL = decimal fraction; ELECTRONIC

= electronic address; DIGIT = digit sequence; MONEY = currency amount;

FRACTION = non-decimal fraction; TIME = time expression

3. Background: Memory Augmented Neural Networks

Traditional deep neural networks are great at fuzzy pattern

matching, however they do not generalize well on complex data

structures such as graphs and trees, and also perform poorly in

learning representations over long sequences. To tackle sequen-

tial forms of data, Recurrent Neural Networks were proposed

which have been known to capture temporal patterns in an input

sequence and also known to be Turing complete if wired prop-

erly (Siegelmann and Sontag, 1995). However, traditional RNNs

suffer from what is known as the vanishing gradients problem

(Bengio et al., 1994). A Long Short-Term Memory architecture

was proposed in (Hochreiter and Schmidhuber, 1997) capable

of learning over long sequences by storing representations of

the input data as a cell state vector. LSTM can be trained on

variable length input-output sequences by training two separate

LSTM’s called the encoder and decoder (Sutskever et al., 2014).

The Encoder LSTM is trained to map the input sequence to a

fixed length vector and Decoder LSTM generates output vectors

from the fixed length vector. This kind of sequence to sequence

learning approach have been known to outperform traditional

DNN models in machine translation and sequence classification

tasks. Extra information can be provided to the decoder by using

attention mechanisms (Bahdanau et al., 2014) and (Luong et al.,

2015), which allows the decoder to concentrate on the parts of

the input that seem relevant at a particular decoding step. Such

models are widely used and have helped to achieve state of the

art accuracy in machine translation systems.

However, LSTM based sequence-to-sequence models are still

not good at representing complex data structures or learning to

perform algorithmic tasks. They also require a lot of training

data to generalize well to long sequences. An interesting ap-

proach by Joulin and Mikolov presents a recurrent architecture

with a differentiable stack, able to perform algorithmic tasks

such as counting and memorization of input sequences. Similar

memory augmented neural network (Grefenstette et al., 2015)

have also shown to benefit in natural language transduction prob-

lems by being able to learn the underlying generating algorithms

required for the transduction process. Further, a memory aug-
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mented neural network architecture called the Neural Turing

Machine was introduced by Graves et al. that uses an external

memory matrix with read and write heads. A Controller net-

work that works like an RNN is able read and write information

from the memory. The read and write heads use content and

location-based attention mechanisms to focus the attention on

specific parts of the memory. NTM has also shown promise

in meta-learning (Santoro et al., 2016) showing that memory

augmented networks are able to generalize well to even lesser

training examples.

An improvement to this architecture was proposed by Graves

et al. called the Differentiable Neural Computer having even

more memory access mechanisms and dynamic storage capa-

bilities. DNC, when trained in a supervised manner, was able

to store representations of input data as “variables” and then

read those representations from the memory to answer synthetic

questions from the BaBI dataset (Weston et al., 2015). DNC

was also able to solve algorithmic tasks such as traversing a

graph or inferring from a family tree, showing that it is able

to process structured data in a manner that is not possible in

traditional neural networks. Dynamic memory access allows

DNC to process longer sentences and moreover, extra memory

can be added anytime without retraining the whole network.

3.1. Differentiable Neural Computer

A basic DNC architecture consists of a controller network,

which is usually a recurrent network coupled with an exter-

nal memory matrix M ∈ RN×W . At each timestep t, the

controller network takes as input a controller input vector

χt = [xt ; r1
t−1, . . . , r

R
t−1], where xt ∈ RX is the input vector

for the time-step t and r1
t−1, . . . , r

R
t−1 is a set of R read vectors

from the previous time step and outputs an output vector vt and

interface vector εt ∈ R(W×R)+3W+5R+3. The controller network

is essentially a recurrent neural network such as the LSTM. The

recurrent operation of the controller network can be encapsulated

as in Eqn 1:

(vt, εt ) = N([χ1; . . . ; χt ; θ]) (1)

where N is a non-linear function, θ contains the all trainable

parameters in the controller network. The read vector r is used

to perform read operation at every time step. The read vector r

defines a weighted sum over all memory locations for a memory

matrix M by applying a read weighting wr ∈ ∆N over memory

M . ∆N is the non negative orthant of RN with the unit simplex

as a boundary.

r =

N∑
i=1

M[i, ·]wr [i] (2)

where the ‘·’ denotes all j = 1, . . . ,W . The interface vector εt is

used to parameterize memory interactions for the next time step.

A write operation is also performed at each time-step using a

write weighting ww ∈ ∆N which first erases unused information

from the memory using an erase vector e and writes relevant

information to the memory using the write vector vt . The overall

write operation can be formalized as in Eqn 3.

Mt = Mt−1 ◦ (E − ww
t e>t ) + ww

t v
>
t (3)

where ◦ denotes element-wise multiplication and E is an N ×W

matrix of ones. The final output of the controller network yt ∈

RY is obtained by multiplying the concatenation of the current

read vector rt and output vector vt with a RW × Y dimensional

weight matrix Wr .

yt = vt + Wr [r1
t ; . . . ; rRt ] (4)

The system uses a combination of different attention mecha-

nisms to determine where to read and write at every time-step.

The attention mechanisms are all parameterized by the inter-

face vector εt . The write weighting ww , used to perform the

write operation, is defined by a combination of content-based

addressing and dynamic memory allocation. The read weight-

ing wr is defined by a combination of content-based addressing

and temporal memory linkage. The entire system is end-to-end

differentiable and can be trained through backpropagation. For

the purpose of this research, the internal architecture of the Dif-

ferentiable Neural Computer remains the same as specified in
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the original paper (Graves et al., 2016). The open-source im-

plementation of the DNC architecture used here is available at

https://github.com/deepmind/dnc.

3.2. Extreme Gradient Boosting

Boosting is an ensemble machine learning technique which at-

tempts to pool the expertise of several learning models to form a

better learner. Adaptive Boosting, or more commonly known as

"AdaBoost", was the first successful boosting algorithm invented

by Freund and Schapire. (Breiman, 1998) and (Breiman, 1999)

went on to formulate the boosting algorithm of AdaBoost as a

kind of gradient descent with a special loss function. (Friedman

et al., 2000), (Friedman, 2001) further generalized AdaBoost to

gradient boosting in order to handle a variety of loss functions.

Gradient Boosting has proven to be a practical, powerful

and effective machine learning algorithm. Gradient boosting and

deep neural networks are the two learning models that are widely

recognized and used by the competitive machine learning com-

munity at Kaggle and elsewhere. Tree boosting as implemented

by XGBoost (Chen and Guestrin, 2016) gives state-of-the-art

results on a wide range of problems from different domains. The

most defining factor for the success of XGBoost is its scalability.

It has been reported to run more than ten times faster than exist-

ing solutions on a single node. The reason behind using gradient

boosting for classification first and a normalization model later

is two-fold. First, we solve the data sparsity problem by having

the deep neural network train only on the tokens which need

normalization. Second, we turn to the incredible scalability and

efficiency of the XGBoost model to condense huge amounts

of data which makes it more amenable to quick training and

experimental iterations.

Now, we give a brief overview of the gradient boosting al-

gorithm and establish the intuition necessary to understand the

proposed solution for text normalization. Essentially, gradient

boosting adds and fits weak learners in a sequential manner to

rectify the defects of the existing weak learners. In adaptive

boosting, these "defects" are defined by assigning higher penalty

weights to the misclassified data points in order to restrain the

new learner from making the previous mistakes again. Simi-

larly, in gradient boosting, the "defects" are defined by the error

gradients.

The model is initiated with a weak learner F(xi), which is

a decision stump i.e. a shallow decision tree. The subsequent

steps keep adding a new learner, h(x), which is trained to predict

the error residual of the previous learner. Therefore, it aims

to learn a sequence of models which continuously tries to cor-

rect the residuals of the earlier model. The sum of predictions

is increasingly accurate and the ensemble model increasingly

complex.

To elucidate further, we consider a simple regression problem.

Initially a regression model F(x1) is fitted to the original data

points: (x1, y1), (x2, y2), · · · , (xn, yn). The error in the model

prediction yi − F(xi) is called the error residual. Now, we fit a

new regression model h(x) to data : (x1, y1 − F(x1)), (x2, y2 −

F(x2)), ..., (xn, yn − F(xn)) where F(x) is the earlier model and

h is the new model to be added to F(x) such that it corrects the

error residuals yi − F(xi).

F(xi) := F(xi) + h(xi) (5)

F(xi) := F(xi) + yi − F(xi) (6)

F(xi) := F(xi) − 1
δJ

δF(xi)
(7)

This is quite similar to the method of gradient descent which

tries to minimize a function by moving in the opposite direction

of the gradient:

θi := θi − ρ
δJ
δθi

(8)

where ρ is the learning rate. However from a more applied per-

spective, the model of choice for implementing the weak learners

in the XGBoost library (Chen and Guestrin, 2016) are decision

tree ensembles which consist of a set of classification and regres-

sion trees. Further implementation details are discussed in the

following section.
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4. Proposed Architecture

We propose a two-step architecture for text normalization.

For a given token wi which is to be normalized, the token wi

and some context words wi−k to wi+k are first fed as characters

into an XGBoost classification model, where k is the number of

context words. The XGBoost classification model is trained to

predict whether a particular word is to be normalized or not.

For those words which require normalization, a second model

is used. We propose a novel sequence-to-sequence architecture

based on Differentiable Neural Computer. This second model

uses the Encoder Decoder architecture (Sutskever et al., 2014)

combined with Badhanau attention mechanism (Bahdanau et al.,

2014). The model tries to maximize the conditional probability

P(y | x) where y is the target sentence and x is a sequence of

characters formed by the concatenation of the to-be-normalized

token w and context words wi−k to wi+k surrounding the token.

The major intuition behind using two different models is that

the instances of actual conversion are few and far between. Train-

ing a single deep neural network with such a heavily skewed

dataset is incredibly difficult. Separating the task of predicting

whether a word needs to be normalized or not and predicting

the normalized sequence of words helps us increase the overall

accuracy of the normalization pipeline. Both models being inde-

pendent of each other are trained separately. The first model tries

to maximize the classification accuracy of predicting whether

a word requires normalization. The second model tries to min-

imize the softmax cross-entropy of the sequence of predicted

words averaged over all the time-steps.

4.1. XGBoost Classifier

An extreme gradient boosting machine (XGBoost) model is

trained to classify tokens into the following two classes: Re-

mainSame and ToBeNormalized, to be used in the later stage of

the pipeline. Tokenization of the training data has already been

performed. Additional preprocessing of the tokens or words

needs to be done before the XGBoost model can be trained on

it. Specifically, we transform the individual tokens into numer-

ical feature vectors to be fed into the model. Each token is

encoded as a vector comprised of the Unicode (UTF-8) values

of its individual characters. We limit the length of the vector

at 30; all characters beyond this are left out. In case of shorter

words, the remaining vector is filled or padded with 0. Contex-

tual information is incorporated into the input feature vector by

prepending the preceding token and appending the succeeding

token to the target input token. To demarcate the boundaries

between the consecutive tokens, we use the −1 integer value.

Since the starting position of the target input token can vary,

this value serves as the ’start of token’ identifier. An example

can better elucidate the process. For instance, the input vector

for ’genus’ in the sentence : Brillantaisia is a genus of plant in

family Acanthaceae will be: [ -1, 97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 103, 101, 110,

117, 115, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, -1, 111, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1].

After the data is preprocessed and ready, we perform a train-

validation split to help us tune the model. The performance

metric we have used is AUC or area under the curve. A top-down

approach to hyperparameter tuning is employed. We begin with

a high learning rate and determine the best number of estimators

or trees which is the most important hyperparameter for the

model along with the learning rate. We find the best number of

estimators to be 361. Then we go on to tune the tree-specific

parameters such as the maximum depth of the decision stumps,

the minimum child weight and the gamma value. Once we

have a decent model at hand, we start tuning the regularization

parameters to get better or similar performance at a reduced

model complexity. Finally, we have an AUC score of 0.999875

in the training set and a score of 0.998830 on the validation set.

The XGBoost package by (Chen and Guestrin, 2016) allows

us to rank the relative importance of the features for the clas-

sification task by looking at the improvement in the accuracy

brought about by any particular feature. On generating the fea-

ture importance plot of the trained English XGBoost model in

Figure 1, we find out that the first six characters of the target

token, i.e. feature at the 32nd, 33rd, 34th, 35th, 36th and 37th
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Figure 1: Top 10 important features for the English XGBoost model

position of the feature vector, had the highest score. For a human

classifying these tokens, the first few characters of the word or

token are indeed the best indicators to decide whether it needs

to be normalized or not. This assures us that the trained model

has in fact learned the right features for the task at hand. After

these first few features, the model also places high importance

on other characters belonging to the preceding and succeeding

token. The high F1-score of the model as reported in Table 3

confirms the overall effectiveness of the model.

The model could also be trained to classify the tokens into

semiotic classes. The semiotic classes which most confuses the

DNC translator could be fed to a separate sequence-to-sequence

model which is exclusively trained on those error-prone classes.

Another direction to go from here would be to increase the size

of the context window during the data preprocessing stage to

feed even more contextual information into the model.

4.2. Sequence to Sequence DNC

The ToBeNormalized tokens, as classified by the XGBoost

model, are then fed to a recurrent model. For this end, we present

an architecture called sequence-to-sequence DNC that allows the

DNC model to be adapted for sequence-to-sequence translation

purposes. Our underlying framework uses the RNN Encoder-

Decoder architecture (Sutskever et al., 2014). We have also used

attention mechanisms to allow the decoder to concentrate on

the various different output states generated during the encoding

phase. One major contribution of this paper is to replace bidirec-

tional LSTM used in a Neural Machine Translation system with a

single unidirectional DNC. During the encoding phase, the DNC

reads an input sequence of vectors x = (x1, . . . , xTx ); xt ∈ RKx ,

and outputs a sequence of annotation vectors h = (h1, . . . , hTx );

ht ∈ Rn, where Kx is the input vocabulary size and Tx is the

number of input tokens.

ht = ge(xt, ht−1, st ) (9)

where function ge gives the output of the DNC network during

the encoding phase, and st is the hidden state of the DNC. Dur-

ing the decoding phase the DNC is trained to generate an output

word yt ∈ RKy , given a context vector ct ∈ Rn, where Ky is

the output vocabulary size. The decoding phase uses Bahdanau

attention mechanism (Bahdanau et al., 2014) to generate a con-

text vector ct by performing soft attention over the annotation

vectors h.

The Decoder defines a conditional probability P of an output

word yt at time step t given sequence of input vectors x and

previous predictions y1, . . . , yt−1.

P(yt | y1, . . . , yt−1, x) = gd(yt−1, st, ct ) (10)

where gd gives the output of the DNC network during the de-

coding phase, and st is the hidden state of the of the DNC at

timestep t computed by

st = f (st−1, yt−1, ct ) (11)

where f calculates the new state of the DNC network based on

the previous controller and memory states. During the decoding

phase, the output of the DNC is fed into a dense layer followed

by a soft-max layer to generate word-by-word predictions. We

also used embedding layers to encode the input and output tokens

into fixed dimensional vectors during the encoding and decoding

phases.

A DNC uses a N ×W dimensional memory matrix for storing

state information compared to a single cell state in an LSTM.

The presence of an external memory allows the DNC to store

representations of the input data in its memory matrix using write

7



Figure 2: Sequence to sequence DNC, encoding phase.

Figure 3: Sequence to sequence DNC, decoding phase.

heads and then read the representations from the memory using

read heads. Dynamic memory allocation helps the network

to encode large input sequences while retaining the inherent

structure in those sequences. The content and location based

attention mechanisms give the network more information about

the input data during decoding. The ability to read and write

from memory helps the network in meta-learning to store richer

representations of the input data. We found out that network was

able to generalize faster compared to LSTM with a low number

of training examples. This is probably due to the fact that DNC

is able to store complex quasi-regular structure embedded in the

input data sequences in its memory and then later, it is able to

infer from these representations.

We also found that feeding the context vector c during the

decoding stage was necessary for convergence. Probably, the

context vector provides the network with more information about

which locations to focus during each decoding step. The annota-

tions used for generating the context vector stores information

about the states of the DNC during the entire encoding phase.

For the purpose of text normalization, we feed the ToBeNor-

malized tokens in a manner specified in Experiment 2 of (Sproat

and Jaitly, 2017). The ToBeNormalized token is placed in be-

tween 3 context words to the left and right, with a distinctive

tag marking the to-be-normalized word. This is then fed as a

sequence of characters into the input embedding layer during the

Encoding stage. For the sentence The city is 15kms away from

here, in order to normalize the token 15km the input becomes

city is <norm> 15km </norm> away from

where <norm> and </norm> are tags that mark the beginning

and end of the to-be-normalized token. The output is always a

sequence of words. During decoding phase output tokens are

first fed into an output embedding layer before feeding it to the

decoder. For the above example, the output becomes

fifteen kilometers

5. Experimental Results

The initial XGBoost classification layer gives an F1-score

of 0.96 in for English and 1.00 for Russian. The classifiers’

performance in terms of precision and recall of the two classes

is reported in Table 2 and 3. The DNC model in the second

layer was trained for 200k steps on a single GPU system with a

batch-size of 16 until the perplexity reached 1.02. The parameter

values used for training the second layer are given in Table 1 The

overall results of entire system are reported in Table 4 & 5. It can

be seen that the overall performance of the model in terms of the

F1-score is quite good. The Russian model reported an accuracy

of 99.3% whereas the English reported an accuracy of 99.4%.

As mentioned before the instances of actual conversion are quite

a few, which is the reason for the high overall accuracy. However,

when analyzing a text normalization system, it is more important
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to look into the kind of errors it makes. A single metric such as

accuracy or BLEU (Bilingual Evaluation Understudy) score is

not sufficient for comparison. It is not much of a problem if a

token from the DATE class: 2012 is normalized as two thousand

twelve, instead of twenty twelve. However, we certainly would

not want it to be translated to something like twenty thirteen.

These ’silly’ errors are subjective by their very nature and thus,

rely on a human reader. This makes the analysis of these kinds

of errors difficult but important. One has to take a look at all

the cases where the model produces completely unacceptable

predictions.

It can be seen that the class-wise accuracies of the model

are quite similar to the base LSTM model. Upon analyzing

the nature of error made in each class, it was identified that the

model performs quite well in classes: DIGIT, DATE, ORDINAL

and TIME. The errors reported in these classes are shown in

Table 6. Most of the errors in these classes are due to the fact

that the DNC is confused with the true context of the token.

For example, the token 1968 in DATE context is predicted as

if in CARDINAL context. However, the DNC never makes a

completely unacceptable prediction in these classes for both

English and Russian data-sets as can be observed in Table 6.

For readers unfamiliar with the Russian language, we look at

the issue with 22 июля. This error stems from confusion in

grammatical cases which do not exist in the English language

and are replaced with prepositions. However in the Russian lan-

guage prepositions are used along with grammatical cases, but

may also be omitted in many situations. Now, the 22nd is trans-

formed to двадцать второго (transliterated into Latin script as

"dvadtsat vtorOGO") whereas when used with the preposition

of, such as of the 22nd, it is transformed to двадцать второе

(transliterated into Latin script as "dvadtsat vtorOE"). The base-

line LSTM based sequence-to-sequence architecture proposed

in Experiment 2 of Sproat and Jaitly (2017) showed completely

unacceptable errors such as a DATE 11/10/2008 normalized as

the tenth of october two thousand eight. On the other hand the

DNC network never makes these kind of ’silly’ errors in these

classes. This suggests that the DNC network can, in fact, be

used as a text normalization solution for these classes. This is

an improvement over the baseline LSTM model in terms of the

quality of prediction.

The DNC network, however, suffers in some classes: MEA-

SURE, FRACTION, MONEY and CARDINAL, similar to the

baseline LSTM network. The errors reported in these classes

are shown in Table 7. All the unacceptable mistakes in cardi-

nals occur in large numbers greater than a million. The DNC

sometimes also struggles with getting the measurement units

and denominations right. For non-Russian readers, we illus-

trate this with the MONEY token $ 1m where the prediction is

completely off; since одиннадцать долларов сэ ш а means

"eleven US dollars" but один миллион долларов сэ шэ а

means "1 million US dollars". In terms of overall accuracy,

the DNC performs slightly better in MEASURE, MONEY and

CARDINAL. The model, however, performs much worse in

FRACTION compared to the baseline model. The DNC network

still makes unacceptable ’silly’ mistakes in these classes such as

predicting completely inaccurate digits and units, which is not

enough to make it a trustworthy system for these classes.

In order to understand why the model performs so well in

some classes but suffers in others, we proceeded to find the fre-

quency of these specific tokens in the English training dataset.

The training set has 17,712 instances of dates of the form

xx/yy/zzzz. As reported in the earlier section, the model made

zero unacceptable mistakes in these DATE tokens. The baseline

LSTM, however, still reported unacceptable errors for dates of

the similar form. On the other hand, measurement units such

as mA, g/cm3 and ch occur less than ten times in the train-

ing set. Compared to other measurement units, kg and cm are

present more than 200 times in the training set. CARDINAL has

273, 111 tokens out of which only 1,941 are numbers which are

larger than a million. Besides, the error in MONEY for the En-

glish data-set was for the denomination that occurred only once

in the training set. The results in Table 7 clearly demonstrate

that the model suffers only in the tokens for which a sufficient

number of examples are not available in the training set. The

DNC network never made any unacceptable prediction for ex-
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Table 1: sequence-to-sequence DNC experimental settings. Kx : input vocabulary size, Ky : output vocabulary size, R: number of read heads

Kx Ky Memory size (N ×W) R Controller hidden units Embedding size

English 168 1781 256 × 64 5 1024 32

Russian 222 2578 256 × 64 5 1024 32

Table 2: Classification Report for XGBoost Russian model

Precision Recall F1 score

RemainSelf 1.00 1.00 1.00

ToBeNormalized 0.99 1.00 1.00

Table 3: Classification Report for XGBoost English model

Precision Recall F1 score

RemainSelf 1.00 1.00 1.00

ToBeNormalized 0.94 0.99 0.96

amples that were sufficiently present. This hints at the notion

that the model performs poorly particularly for units, cardinals

and denominations which occur a lesser number of times in the

training set. Unlike the baseline LSTM, the model is reasonable

and durable to examples which are sufficiently present.

5.1. Ablation Study

To make the case for memory augmentation in neural net-

works to perform text normalization, we conducted an ablation

experiment to factor out its contribution if any. We know that

the DNC model consists of a controller network, equipped with

various memory access mechanisms to read and write from a

memory matrix. During the process of training, the controller

network is intended to learn to use the provided memory ac-

cess mechanisms instead of just relying on its internal LSTM

state. This is important to make the most out of the benefits

that come from memory augmentation. The DNC controller

network at each time-step receives a set of R read vectors as

input. These read vectors or memory activations are obtained by

performing a read operation on the memory matrix. Our ablation

experiment intends to verify the contributions of these memory

activations for prediction. We use an existing model pre-trained

in the previous section and perform inference on the test data on

two conditions, with memory activations and without memory

activations. The first condition is just inference on the test data

without any modification to the DNC activations. For the second

condition, we zero out the read vectors from the memory at each

time-step before providing it as input to the controller network.

If the DNC learns to use the provided memory access mecha-

nisms during the training process (i,e, the prediction is largely

dependent on the value of the read and write vectors), zeroing

out the read vectors during inference should have a significant

impact in the performance of the model. However, if the model

is just learning to predict based on its internal LSTM controller

state, zeroing out the read vectors during inference should have

a minute impact in performance. As can be seen from the com-

parison in Table 8, there is a significant drop in accuracy for

most semiotic classes when memory structures are inaccessible

to the controller network. Particularly, semiotic classes which

require structured processing of the input tokens such as, DATE,

TIME, DIGIT, MEASURE, MONEY, and TELEPHONE, show

a significant reduction in performance. Upon analyzing the kind

of errors that the DNC network makes when memory structures

are removed, it was found that the DNC network gets the trans-

lation context correct in most cases. For example, for the token

1984, the prediction of the DNC network without memory is

nineteen thousand two hundred eighty one. The model starts

the translation correctly, but however, it fails mid-way by pre-

dicting a completely incorrect digit. This is indicative of our

prior assumption that the model learns to write the input tokens

in its memory matrix during the encoding stage and later reads

from the memory during the decoding stage. If the memory

structures would not have been used by the network for transla-

tion, we should have seen, essentially, no drop in performance
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Table 4: Comparison of accuracies over the various semiotic classes of interest on the English data-set. base accuracy: accuracy of the LSTM based sequence-to-

sequence model proposed in (Sproat and Jaitly, 2017). accuracy: accuracy of the proposed, XGBoost + sequence-to-sequence DNC model.

semiotic-class base count count base accuracy accuracy

0 ALL 92416 92451 0.997 0.994

1 PLAIN 68029 67894 0.998 0.994

2 PUNCT 17726 17746 1.000 0.999

3 DATE 2808 2832 0.999 0.997

4 LETTERS 1404 1409 0.971 0.971

5 CARDINAL 1067 1037 0.989 0.994

6 VERBATIM 894 1001 0.980 0.994

7 MEASURE 142 142 0.986 0.971

8 ORDINAL 103 103 0.971 0.980

9 DECIMAL 89 92 1.000 0.989

10 DIGIT 37 44 0.865 0.795

11 MONEY 36 37 0.972 0.973

12 FRACTION 13 16 0.923 0.688

13 TIME 8 8 0.750 0.750

Table 5: Comparison of accuracies over the various semiotic classes of interest on the Russian data-set. The headings are same as in Table 4.

semiotic-class base count count base accuracy accuracy

0 ALL 93184 93196 0.993 0.993

1 PLAIN 60747 64764 0.999 0.995

2 PUNCT 20263 20264 1.000 0.999

3 DATE 1495 1495 0.976 0.973

4 LETTERS 1839 1840 0.991 0.991

5 CARDINAL 2387 2388 0.940 0.942

6 VERBATIM 1298 1344 1.000 0.999

7 MEASURE 409 411 0.883 0.898

8 ORDINAL 427 427 0.956 0.946

9 DECIMAL 60 60 0.867 0.900

10 DIGIT 16 16 1.000 1.000

11 MONEY 19 19 0.842 0.894

12 FRACTION 23 23 0.826 0.609

13 TIME 8 8 0.750 0.750
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Table 6: Errors in which the DNC network is confused with the context of the token.

input semiotic-class prediction truth

0 2007 DIGIT two thousand seven two o o seven

1 1968 DATE one thousand nine hundred sixty eight nineteen sixty eight

2 0:02:01 TIME zero hours two minutes and one seconds zero hours two minutes and one second

3 22 июля DATE двадцать второго июля двадцать второе июля

4 II ORDINAL два второй

Table 7: Errors in which the DNC network makes completely unacceptable predictions.

input semiotic-class prediction truth

0 14356007 CARNINAL one million four hundred thirty five

thousand six hundred seven

fourteen million three hundred fifty six

thousand seven

1 0.001251 g/cm3 MEASURE zero point o o one two five one sil g per

hour

zero point o o one two five one grams

per c c

2 88.5 million HRK MONEY eighty eight point five million yen eighty eight point five million croatian

kunas

3 10/618,543 FRACTION ten sixteenth sixty one thousand five

hundred forty three

ten six hundred eighteen thousand five

hundred forty thirds

4 15 м/с MEASURE пятнадцать сантиметров в секунду пятнадцати метров в секунду

5 $1m MONEY одиннадцать долларов сэ ш а один миллион долларов сэ ш а

Table 8: Class-wise accuracy comparison with and without DNC memory

semiotic-class accuracy without memory accuracy with memory

0 ALL 0.940704 0.994181

1 CARDINAL 0.345227 0.991321

2 DATE 0.186794 0.996469

3 DECIMAL 0.021739 1.000000

4 DIGIT 0.068182 0.818182

5 FRACTION 0.000000 0.687500

6 LETTERS 0.101490 0.971611

7 MEASURE 0.021127 0.985915

8 MONEY 0.054054 0.972973

9 ORDINAL 0.077670 0.980583

10 PLAIN 0.992444 0.993858

11 PUNCT 0.998873 0.998873

12 TIME 0.125000 0.750000

13 VERBATIM 0.812188 0.995005
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on removing them. Apparently, the read vectors have high fea-

ture importance in performing a successful prediction during

inference.

5.2. Results on up-sampled training set

The initial results lead us to a follow-up question. Can our

system perform better given better quality data? Will a simple

up-sampling procedure on the rare kinds of tokens improve the

model? To test our hypothesis of whether sufficient examples

can improve the performance in certain semiotic classes, we up-

sampled the distribution of those specific tokens which occurred

less than a particular threshold frequency. The up-sampling was

done with duplication only for MEASURE and CARDINAL on

the English dataset. Sentences which had measurement units

which occurred less than 100 times were up-sampled to have

100 instances each in the training set. Out of 253 measurement

units, 229 of them occurred less than a 100 times in the en-

tire training set. Similarly, sentences with Cardinals with value

larger than a million were up-sampled to 10,000 instances. The

final distribution of the training set was 59,439 for MEASURE

and 299,694 for CARDINAL. The model was then retrained

for the same number of training iterations with the up-sampled

data. The overall accuracies and number of unacceptable errors

for MEASURE & CARDINAL after up-sampling are shown in

Table 10. The comparison of the predictions is shown in Table

9. Overall, it is very interesting to see that using simple data

augmentation techniques like up-sampling helped remove all

the unacceptable errors in MEASURE and reduced the number

of unacceptable errors from three to two in CARDINAL. Such

an elementary technique even removed errors in rare measure-

ment units such as ch and g/cc. However, the improvement

observed in CARDINAL was rather modest. And as expected,

the number of unacceptable errors in other classes were unaf-

fected. This clearly provides evidence to the initial assumption

that our system improves, even if marginally, when a sufficient

number of examples are produced for any particular instance

type. Nonetheless, we can safely say that this system looks

promising and worthy of widespread adoption.

6. Discussion

Given the reduced number of unacceptable predictions in

most semiotic classes we can say that the quality of the pre-

dictions produced by DNC are much better than the baseline

LSTM model. The reason why DNC works better than LSTM

might be due to the presence of a memory matrix and read-write

heads. The read-write heads allows the DNC to store richer

representations of the data in its dynamic memory matrix. Re-

search done by Santoro et al., shows memory augmented neural

networks have the ability to generalize well to less number of

training examples. The model never made any unacceptable pre-

diction in some classes (DIGIT, DATE, ORDINAL and TIME)

for the same test set used by Sproat and Jaitly. With a basic

augmentation technique and minimal human requirement the

number of unacceptable errors in MEASURE was reduced to

zero. The LSTM model reported in (Sproat and Jaitly, 2017)

reported unacceptable errors even when sufficient examples are

present. On the other hand, DNC is quite resistant to errors

when sufficient examples are present. However, the DNC is

still prone to making unacceptable predictions in some classes

(FRACTION, MONEY and CARDINAL) which makes it still

risky as a standalone text normalization system. There is still

a lot of work to be done before a purely deep learning based

algorithm can be used a standalone component of a TTS system.

We believe the performance the model can be further improved

by designing a more balanced training set.

Apart from the domain of text normalization, we also provide

evidence that a sequence-to-sequence architecture made with

DNC can be successfully trained for tasks similar to machine

translation systems. Until now DNC has only been used for

solving simple algorithmic tasks and have not been applied to

real-time production environments. The quality of the results

produced by DNC in text normalization demonstrates it is, in

fact, a viable alternative to LSTM based models. LSTM based

architectures usually require large amounts of training data. The

results in Sproat and Jaitly (2017) show that the LSTM based seq-

to-seq models can sometimes produce a weird output even when

sufficient examples are present. For instance, LSTM’s did not
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Table 9: Predictions corrected after up-sampling for the English data-set.

token semiotic-class prediction before up-sampling prediction after up-sampling

0 295 ch MEASURE two hundred ninety five hours two hundred ninety five chains

1 2 mA MEASURE two a m two milli amperes

2 0.001251g/cm3 MEASURE zero point o o one two five one sil g per

hour

zero point o o one two five one sil g per c

c

3 1/2 cc MEASURE one _letter d_letter a_letter s_letter

h_letter _letter t_letter w_letter o_letter

_letter o_letter

one half c c

4 14356007 CARDINAL one million four hundred thirty five

thousand six hundred seven

fourteen million three hundred fifty six

thousand seven

Table 10: Accuracies and no. of unacceptable errors before and after up-sampling

for the English data-set. a1: accuracy before up-sampling, a2: accuracy after

up-sampling, e1: no. of unacceptable errors before up-sampling, e2: no. of

unacceptable errors after up-sampling.

semiotic-class a1 a2 e1 e2

0 MEASURE 0.971 0.986 4 0

1 CARDINAL 0.994 0.991 3 2

work well in predicting DATE, TIME and DIGIT, even though

the training set had a lot of examples from the category. DNC,

on the other hand, is able to generalize well and avoids these

kinds of errors. We believe that the DNC architecture should

give good results in designing NMT models for languages which

do not have a lot of training data available. It is also important

to note that a single unidirectional DNC provides much better

generalization compared to the stacked bidirectional LSTM used

by Sproat and Jaitly, proving that memory augmented neural net-

works can provide much better results with significantly reduced

training times and fewer data points. The LSTM model reported

in their paper was trained on 8 parallel GPUs for about five and

half days (460k steps). On the contrary, our model was trained

on a single GPU system for two days (200k steps). Furthermore,

our model used only 2.2% of the English data and 4.4% of the

Russian data for training.

7. Conclusion

Therefore, we can safely arrive at the conclusion that mem-

ory augmented neural networks such as the DNC are in fact a

promising alternative to LSTM based models for a language

agnostic text normalization system. Additionally, the proposed

system requires significantly lesser amounts of data, training

duration and compute resources. Our DNC model has reduced

the number of unacceptable errors to zero for some classes with

basic up-sampling of rare data points. However, there are still

classes where the performance needs to be improved before

an exclusively deep learning based model can become the text

normalization component of a TTS system. Besides, we have

also demonstrated a system that can be used to train sequence-

to-sequence models using a DNC cell as the recurrent unit.
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