Text Normalization using Memory Augmented Neural Networks

Subhojeet Pramanik®*, Aman Hussain®

AVIT University, Vandaloor-Kelambakkam Road, Chennai, Tamil Nadu, India

Abstract

We perform text normalization, i.e. the transformation of words from the written to the spoken form, using a memory augmented
neural network. With the addition of dynamic memory access and storage mechanism, we present a neural architecture that will serve
as a language-agnostic text normalization system while avoiding the kind of unacceptable errors made by the LSTM-based recurrent

neural networks. By successfully reducing the frequency of such mistakes, we show that this novel architecture is indeed a better

019

alternative. Our proposed system requires significantly lesser amounts of data, training time and compute resources. Additionally,

(Q\V

awe perform data up-sampling, circumventing the data sparsity problem in some semiotic classes, to show that sufficient examples in

< any particular class can improve the performance of our text normalization system. Although a few occurrences of these errors still

(¥) remain in certain semiotic classes, we demonstrate that memory augmented networks with meta-learning capabilities can open many

r—doors to a superior text normalization system.

U Keywords: text normalization, differentiable neural computer, deep learning

CS.

1. Introduction

which require normalization are usually very sparse which might

o)) o result in high overall accuracy. Hence, these specific cases must

> The field of natural language processing has seen significant

g improvements with the application of deep learning. However get the highest attention when evaluating the performance of any

=) text normalization system. Yet the existing models are prone
there are many unsolved challenges in NLP yet to be solved by

Q to making "silly" mistakes which are extremely non-trivial and

O the prevalent deep neural networks. One of the simple but inter-

(o' mission-critical to TTS (Text-to-Speech) and ASR (Automatic
esting challenges lies in designing a flawless text normalization

Q Speech Recognition) systems. Finite-state filters, which perform

QO solution for Text to Speech and Automatic Speech Recognition

—i Unlik 0 ol bei Ived b | simple algorithmic steps on the normalized tokens, are then used

< systems. Unlike many other problems being solved by neura

. 2 to correct such errors and "guide" the model. Although develop-
networks, the tolerance for unacceptable or "silly" errors in text

>< ing such FST grammars is a lot simpler than constructing a fully

a normalization systems is very low. Prevailing neural architec-

tures in |Sproat and Jaitly| (2017 produce near perfect overall
accuracy on such a problem. But there is a caveat. Whereas
deciding whether a word needs to be normalized or not turns out
to be an easier problem since it mostly falls back on classifying
the semiotic class of the token, the actual challenge lies in gener-

ating the normalized form of the token. However, such instances

*Corresponding author
Email addresses: subhojeet.pramanik2015@vit.ac.in (Subhojeet

Pramanik), aman .hussain2015@vit.ac.in (Aman Hussain)

Preprint submitted to Speech Communication

fledged finite-state text normalization system, they do require
some human expertise and domain knowledge of the language

involved.

We, therefore, ask if there is a way to circumvent the require-
ment of human involvement and language expertise, and instead
design a system that is language agnostic and learns on its own
given enough data. Although the most commonly used neural
networks are adept at sequence learning and sensory processing,
they are very limited in their ability to represent data structures

April 5, 2019

and learn algorithms on its own. There have been recent ad-
vancements in memory augmented neural network architectures
such as the Differentiable Neural Computer, with dynamic mem-
ory access and storage capacity. Such architectures have shown
the ability to learn algorithmic tasks such as traversing a graph
or finding relations in a family tree. Normalization of semiotic
classes of interest, particularly those containing numbers and
measurement units, can be performed using basic algorithmic
steps. While neural network architectures such as LSTM work
sufficiently well in machine translation tasks, they have shown to
suffer in these semiotic classes which require basic step-by-step
transduction of the input tokens (Sproat and Jaitly, [2017)). There
is hope that neural network architectures with memory augmen-
tation will be able to learn the algorithmic steps (meta-learning),
similar to the Finite-state filters, but without any human inter-
vention or the external knowledge about the language and its
grammar. With such memory augmentation, the network should
be able to learn to represent and reason about the sequence of
characters in the context of the text normalization task.

We begin by defining the challenges of text normalization to
try to understand the reason behind these "silly" mistakes. Then,
after a brief overview of the prior work done on this topic, we
describe the dataset released by [Sproat and Jaitly| (2017) which
has been used in a way so as to allow for an objective compar-
ative analysis. Subsequently, we delve into the theoretical and
implementation details of our proposed system. Thereafter, the
results of our experiments are discussed. Finally, we find that
memory augmented neural networks are indeed able to do a
good job with far lesser amounts of data, time and resources. To
make our work reproducible, open to scrutiny and further devel-
opment, we have open sourced a demonstration of our system
implemented using Tensorflow (Abadi et al.| 2015) at https:

//github.com/cognibit/Text-Normalization-Demo,

2. Text Normalization

Text normalization is the canonicalization of text from one or
more possible forms of representation to a ’standard’ or ’canon-

ical’ form. This transformation is used as a preliminary step

in Text-to-Speech (TTS) systems to render the textual data as a
standard representation that can be converted into the audio form.
In Automatic Speech Recognition (ASR) systems, raw textual
data is processed into language models using text normalization
techniques.

For example, a native English speaker would read the fol-
lowing sentence Please forward this mail to 312, Park Street,
Kolkata as Please forward this mail to three one two Park Street
Kolkata. However, The new model is priced at $ 312 would be
read as The new model is priced at three hundred and twelve
dollars. This clearly demonstrates that contextual information is
of particular importance during the conversion of written text to
spoken form.

Further, the instances of actual conversion are few and far
between swathes of words which do not undergo any transforma-
tion at all. On the English dataset used in this paper, 92.5% of
words remain the same. The inherent data sparsity of this prob-
lem makes training machine learning models especially difficult.
The quality requirements of a TTS system is rather high given
the nature of the task at hand. A model will be highly penalized
for making "silly" errors such as when transforming measure-
ments from /00 KG to Hundred Kilobytes or when transforming

dates from 1/10/2017 to first of January twenty seventeen.

2.1. Prior Work

One of the earliest work done on the problem of text nor-
malization was used in the MITalk TTS system (Allen et al.|
1987). Further, a unified weighted finite-state transducers based
approach was proposed by [Sproat| (1996)). The model serves
as the text-analysis module of the multilingual Bell Labs TTS
system. An advancement in this field was made by looking at
it as a language modeling problem by [Sproat et al.| (2001). For
ASR systems requiring inverse text normalization, data-driven
approaches have been proposed by [Pusateri et al.| (2017)). The
latest development in this problem space has been by |Sproat and
Jaitly| (2017). Even though a recurrent neural network model
trained on the corpus results in very high overall accuracies, it

remains prone to making misleading predictions such as pre-

https://github.com/cognibit/Text-Normalization-Demo
https://github.com/cognibit/Text-Normalization-Demo

dicting completely inaccurate dates or currencies. Such "silly"
errors are unacceptable in a TTS system deployed in production.
However, a few of these errors were shown to be corrected by a
FST (Finite State Transducer) which employs a weak covering

grammar to filter and correct the misreadings.

2.2. Dataset

For the purposes of a comparative study and quantitative
interpretation, we have used the exact same English and Rus-
sian dataset as used in [Sproat and Jaitly| (2017). The English
dataset consists of 1.1 billion words extracted from Wikipedia
and run through Google’s TTS system’s Kestrel text normaliza-
tion system to generate the target verbalizations. The dataset
is formatted into "before’ or unprocessed tokens and "after’ or
normalized tokens. Each token is labeled with its respective
semiotic class|’|such as PUNCT for punctuations and PLAIN
for ordinary words. The Russian dataset consists of 290 mil-
lion words from Wikipedia and is formatted likewise. These
datasets are available at https://github.com/rwsproat/
text-normalization-data.

Each of these datasets are split into 100 files. The base paper
(Sproat and Jaitly|(2017)) uses 90 of these files as the training set,
5 files for the validation set and 5 for the testing set. However,
our proposed system only uses the first two files of the English
dataset (2.2%) and the first four files of the Russian dataset
(4.4%) for the training set. To keep the results consistent and
draw objective conclusions, we have defined the test set to be
precisely the same as the one used by the base paper. Hence,
the first 100,002 and 100,007 lines are extracted from the 100th
file output-00099-0f-00100 of the English and Russian dataset

respectively.

LALL = all cases; PLAIN = ordinary word (<self>); PUNCT = punctuation
(sil); TRANS = transliteration; LETTERS = letter sequence; CARDINAL
= cardinal number; VERBATIM = verbatim reading of character sequence;
ORDINAL = ordinal number; DECIMAL = decimal fraction; ELECTRONIC
= electronic address; DIGIT = digit sequence; MONEY = currency amount;
FRACTION = non-decimal fraction; TIME = time expression

3. Background: Memory Augmented Neural Networks

Traditional deep neural networks are great at fuzzy pattern
matching, however they do not generalize well on complex data
structures such as graphs and trees, and also perform poorly in
learning representations over long sequences. To tackle sequen-
tial forms of data, Recurrent Neural Networks were proposed
which have been known to capture temporal patterns in an input
sequence and also known to be Turing complete if wired prop-
erly (Siegelmann and Sontag,|1995). However, traditional RNNs
suffer from what is known as the vanishing gradients problem
(Bengio et al., [1994). A Long Short-Term Memory architecture
was proposed in (Hochreiter and Schmidhuber, [1997) capable
of learning over long sequences by storing representations of
the input data as a cell state vector. LSTM can be trained on
variable length input-output sequences by training two separate
LSTM’s called the encoder and decoder (Sutskever et al.l [2014).
The Encoder LSTM is trained to map the input sequence to a
fixed length vector and Decoder LSTM generates output vectors
from the fixed length vector. This kind of sequence to sequence
learning approach have been known to outperform traditional
DNN models in machine translation and sequence classification
tasks. Extra information can be provided to the decoder by using
attention mechanisms (Bahdanau et al.l 2014) and (Luong et al.,
2015)), which allows the decoder to concentrate on the parts of
the input that seem relevant at a particular decoding step. Such
models are widely used and have helped to achieve state of the
art accuracy in machine translation systems.

However, LSTM based sequence-to-sequence models are still
not good at representing complex data structures or learning to
perform algorithmic tasks. They also require a lot of training
data to generalize well to long sequences. An interesting ap-
proach by Joulin and Mikolov| presents a recurrent architecture
with a differentiable stack, able to perform algorithmic tasks
such as counting and memorization of input sequences. Similar
memory augmented neural network (Grefenstette et al.,|2015)
have also shown to benefit in natural language transduction prob-
lems by being able to learn the underlying generating algorithms

required for the transduction process. Further, a memory aug-

https://github.com/rwsproat/text-normalization-data
https://github.com/rwsproat/text-normalization-data

mented neural network architecture called the Neural Turing
Machine was introduced by |Graves et al.| that uses an external
memory matrix with read and write heads. A Controller net-
work that works like an RNN is able read and write information
from the memory. The read and write heads use content and
location-based attention mechanisms to focus the attention on
specific parts of the memory. NTM has also shown promise
in meta-learning (Santoro et al., 2016) showing that memory
augmented networks are able to generalize well to even lesser
training examples.

An improvement to this architecture was proposed by |Graves
et al.| called the Differentiable Neural Computer having even
more memory access mechanisms and dynamic storage capa-
bilities. DNC, when trained in a supervised manner, was able
to store representations of input data as “variables” and then
read those representations from the memory to answer synthetic
questions from the BaBI dataset (Weston et al., 2015). DNC
was also able to solve algorithmic tasks such as traversing a
graph or inferring from a family tree, showing that it is able
to process structured data in a manner that is not possible in
traditional neural networks. Dynamic memory access allows
DNC to process longer sentences and moreover, extra memory

can be added anytime without retraining the whole network.

3.1. Differentiable Neural Computer

A basic DNC architecture consists of a controller network,
which is usually a recurrent network coupled with an exter-
nal memory matrix M € RMW_ At each timestep ¢, the
controller network takes as input a controller input vector
Xt = [x,;rtlfl, .. .,rtli]], where x, € RX is the input vector
for the time-step ¢ and 7;1—1’ .. .,rtR_ 1 is a set of R read vectors
from the previous time step and outputs an output vector v, and
interface vector &, € RW*R+3W+5R+3 The controller network
is essentially a recurrent neural network such as the LSTM. The
recurrent operation of the controller network can be encapsulated
as in Eqn[T}

(v, &) =N(xts -5 x50 (D

where N is a non-linear function, § contains the all trainable
parameters in the controller network. The read vector r is used
to perform read operation at every time step. The read vector r
defines a weighted sum over all memory locations for a memory
matrix M by applying a read weighting w” € An over memory
M. Ay is the non negative orthant of R with the unit simplex

as a boundary.

N
r= M, Wil)

where the ‘-” denotes all j = 1, ..., W. The interface vector &; is
used to parameterize memory interactions for the next time step.
A write operation is also performed at each time-step using a
write weighting w" € Ay which first erases unused information
from the memory using an erase vector e and writes relevant
information to the memory using the write vector v;. The overall

write operation can be formalized as in Eqn|[3]

My =M, o (E—wle)+w/v/, 3)

where o denotes element-wise multiplication and E is an N x W
matrix of ones. The final output of the controller network y, €
RY is obtained by multiplying the concatenation of the current
read vector r, and output vector v, with a RW X Y dimensional

weight matrix W,..

y,:vt+Wr[r,1;...;r,R] @)

The system uses a combination of different attention mecha-
nisms to determine where to read and write at every time-step.
The attention mechanisms are all parameterized by the inter-
face vector &,. The write weighting w", used to perform the
write operation, is defined by a combination of content-based
addressing and dynamic memory allocation. The read weight-
ing w” is defined by a combination of content-based addressing
and temporal memory linkage. The entire system is end-to-end
differentiable and can be trained through backpropagation. For
the purpose of this research, the internal architecture of the Dif-

ferentiable Neural Computer remains the same as specified in

the original paper (Graves et al., |2016). The open-source im-
plementation of the DNC architecture used here is available at

https://github.com/deepmind/dnc,

3.2. Extreme Gradient Boosting

Boosting is an ensemble machine learning technique which at-
tempts to pool the expertise of several learning models to form a
better learner. Adaptive Boosting, or more commonly known as
"AdaBoost", was the first successful boosting algorithm invented
by Freund and Schapire! (Breiman, |[1998)) and (Breimanl [1999))
went on to formulate the boosting algorithm of AdaBoost as a
kind of gradient descent with a special loss function. (Friedman
et al.,[2000), (Friedman, 2001)) further generalized AdaBoost to
gradient boosting in order to handle a variety of loss functions.

Gradient Boosting has proven to be a practical, powerful
and effective machine learning algorithm. Gradient boosting and
deep neural networks are the two learning models that are widely
recognized and used by the competitive machine learning com-
munity at Kaggle and elsewhere. Tree boosting as implemented
by XGBoost (Chen and Guestrin, 2016) gives state-of-the-art
results on a wide range of problems from different domains. The
most defining factor for the success of XGBoost is its scalability.
It has been reported to run more than ten times faster than exist-
ing solutions on a single node. The reason behind using gradient
boosting for classification first and a normalization model later
is two-fold. First, we solve the data sparsity problem by having
the deep neural network train only on the tokens which need
normalization. Second, we turn to the incredible scalability and
efficiency of the XGBoost model to condense huge amounts
of data which makes it more amenable to quick training and
experimental iterations.

Now, we give a brief overview of the gradient boosting al-
gorithm and establish the intuition necessary to understand the
proposed solution for text normalization. Essentially, gradient
boosting adds and fits weak learners in a sequential manner to
rectify the defects of the existing weak learners. In adaptive
boosting, these "defects" are defined by assigning higher penalty

weights to the misclassified data points in order to restrain the

new learner from making the previous mistakes again. Simi-
larly, in gradient boosting, the "defects" are defined by the error
gradients.

The model is initiated with a weak learner F(x;), which is
a decision stump i.e. a shallow decision tree. The subsequent
steps keep adding a new learner, i(x), which is trained to predict
the error residual of the previous learner. Therefore, it aims
to learn a sequence of models which continuously tries to cor-
rect the residuals of the earlier model. The sum of predictions
is increasingly accurate and the ensemble model increasingly
complex.

To elucidate further, we consider a simple regression problem.
Initially a regression model F(x;) is fitted to the original data
points: (x, y1), (x2, ¥2), - - -, (X, yu). The error in the model
prediction y; — F(x;) is called the error residual. Now, we fit a
new regression model A(x) to data : (xy, y; — F(x1)), (x2, y2 —
F(x2)), ..., (xp, yn — F(x,)) where F(x) is the earlier model and
h is the new model to be added to F(x) such that it corrects the

error residuals y; — F(x;).

F(x;) == F(x;) + h(x;))
F(x;) = F(x;) +y; — F(x;) (6)
oJ

F(X,’) = F(x,-) -1 (7)

0F(x;)
This is quite similar to the method of gradient descent which
tries to minimize a function by moving in the opposite direction

of the gradient:

oJ

Oi:=0i —ps-

®)

where p is the learning rate. However from a more applied per-
spective, the model of choice for implementing the weak learners
in the XGBoost library (Chen and Guestrinl, |2016)) are decision
tree ensembles which consist of a set of classification and regres-
sion trees. Further implementation details are discussed in the

following section.

https://github.com/deepmind/dnc

4. Proposed Architecture

We propose a two-step architecture for text normalization.
For a given token w; which is to be normalized, the token w;
and some context words w;_ to w;4; are first fed as characters
into an XGBoost classification model, where k is the number of
context words. The XGBoost classification model is trained to
predict whether a particular word is to be normalized or not.

For those words which require normalization, a second model
is used. We propose a novel sequence-to-sequence architecture
based on Differentiable Neural Computer. This second model
uses the Encoder Decoder architecture (Sutskever et al., 2014)
combined with Badhanau attention mechanism (Bahdanau et al.}
2014). The model tries to maximize the conditional probability
P(y | x) where y is the target sentence and x is a sequence of
characters formed by the concatenation of the to-be-normalized
token w and context words w;_j to w;,k surrounding the token.

The major intuition behind using two different models is that
the instances of actual conversion are few and far between. Train-
ing a single deep neural network with such a heavily skewed
dataset is incredibly difficult. Separating the task of predicting
whether a word needs to be normalized or not and predicting
the normalized sequence of words helps us increase the overall
accuracy of the normalization pipeline. Both models being inde-
pendent of each other are trained separately. The first model tries
to maximize the classification accuracy of predicting whether
a word requires normalization. The second model tries to min-
imize the softmax cross-entropy of the sequence of predicted

words averaged over all the time-steps.

4.1. XGBoost Classifier

An extreme gradient boosting machine (XGBoost) model is
trained to classify tokens into the following two classes: Re-
mainSame and ToBeNormalized, to be used in the later stage of
the pipeline. Tokenization of the training data has already been
performed. Additional preprocessing of the tokens or words
needs to be done before the XGBoost model can be trained on
it. Specifically, we transform the individual tokens into numer-

ical feature vectors to be fed into the model. Each token is

encoded as a vector comprised of the Unicode (UTF-8) values
of its individual characters. We limit the length of the vector
at 30; all characters beyond this are left out. In case of shorter
words, the remaining vector is filled or padded with 0. Contex-
tual information is incorporated into the input feature vector by
prepending the preceding token and appending the succeeding
token to the target input token. To demarcate the boundaries
between the consecutive tokens, we use the —1 integer value.
Since the starting position of the target input token can vary,
this value serves as the ’start of token’ identifier. An example
can better elucidate the process. For instance, the input vector
for ’genus’ in the sentence : Brillantaisia is a genus of plant in
Sfamily Acanthaceae will be: [-1, 97,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 103, 101, 110,
117, 115,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,
0,0,0,-1,111,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,
0,0,0,0,0,0,0,0,0,0,0, -1].

After the data is preprocessed and ready, we perform a train-
validation split to help us tune the model. The performance
metric we have used is AUC or area under the curve. A top-down
approach to hyperparameter tuning is employed. We begin with
a high learning rate and determine the best number of estimators
or trees which is the most important hyperparameter for the
model along with the learning rate. We find the best number of
estimators to be 361. Then we go on to tune the tree-specific
parameters such as the maximum depth of the decision stumps,
the minimum child weight and the gamma value. Once we
have a decent model at hand, we start tuning the regularization
parameters to get better or similar performance at a reduced
model complexity. Finally, we have an AUC score of 0.999875

in the training set and a score of 0.998830 on the validation set.

The XGBoost package by (Chen and Guestrin, 2016) allows
us to rank the relative importance of the features for the clas-
sification task by looking at the improvement in the accuracy
brought about by any particular feature. On generating the fea-
ture importance plot of the trained English XGBoost model in
Figure [T} we find out that the first six characters of the target
token, i.e. feature at the 32nd, 33rd, 34th, 35th, 36th and 37th

Top 10 important features for English XGBoost Model

B8

Index position of Feature

8 - 8 3 9 8

a 50 500 750 1000 1250 1500 1750 2000
Feature Importance Score

Figure 1: Top 10 important features for the English XGBoost model

position of the feature vector, had the highest score. For a human
classifying these tokens, the first few characters of the word or
token are indeed the best indicators to decide whether it needs
to be normalized or not. This assures us that the trained model
has in fact learned the right features for the task at hand. After
these first few features, the model also places high importance
on other characters belonging to the preceding and succeeding
token. The high F1-score of the model as reported in Table [3]
confirms the overall effectiveness of the model.

The model could also be trained to classify the tokens into
semiotic classes. The semiotic classes which most confuses the
DNC translator could be fed to a separate sequence-to-sequence
model which is exclusively trained on those error-prone classes.
Another direction to go from here would be to increase the size
of the context window during the data preprocessing stage to

feed even more contextual information into the model.

4.2. Sequence to Sequence DNC

The ToBeNormalized tokens, as classified by the XGBoost
model, are then fed to a recurrent model. For this end, we present
an architecture called sequence-to-sequence DNC that allows the
DNC model to be adapted for sequence-to-sequence translation
purposes. Our underlying framework uses the RNN Encoder-
Decoder architecture (Sutskever et al.,|2014). We have also used
attention mechanisms to allow the decoder to concentrate on

the various different output states generated during the encoding

phase. One major contribution of this paper is to replace bidirec-
tional LSTM used in a Neural Machine Translation system with a
single unidirectional DNC. During the encoding phase, the DNC
X1,); X € REx,
hr);

h; € R", where K, is the input vocabulary size and Ty is the

reads an input sequence of vectors x = (xj, . .

and outputs a sequence of annotation vectors i = (hy, . .

number of input tokens.

hy = 8e(X1, hy—1, 51) 9

where function g, gives the output of the DNC network during
the encoding phase, and s, is the hidden state of the DNC. Dur-
ing the decoding phase the DNC is trained to generate an output
word y, € REy, given a context vector ¢; € R", where K|, is
the output vocabulary size. The decoding phase uses Bahdanau
attention mechanism (Bahdanau et al., [2014) to generate a con-
text vector ¢; by performing soft attention over the annotation
vectors h.

The Decoder defines a conditional probability P of an output
word y, at time step ¢ given sequence of input vectors x and
previous predictions yy, . .

< Vt-1-

P(y: |yt yi-1, %) = 8a(Yi-1, 81, ¢1) (10)

where gg gives the output of the DNC network during the de-
coding phase, and s, is the hidden state of the of the DNC at

timestep ¢ computed by

Sy = f(Si=1, Yi-1,¢1) (1D

where f calculates the new state of the DNC network based on
the previous controller and memory states. During the decoding
phase, the output of the DNC is fed into a dense layer followed
by a soft-max layer to generate word-by-word predictions. We
also used embedding layers to encode the input and output tokens
into fixed dimensional vectors during the encoding and decoding
phases.

A DNC uses a N x W dimensional memory matrix for storing
state information compared to a single cell state in an LSTM.
The presence of an external memory allows the DNC to store

representations of the input data in its memory matrix using write

hg hy hz hie

t t t t

DNC Cell | DNC Cell | DNC Cell e —p DNC Cell
Sp Sq Sz 5t
‘ Dense layer Dense layer ‘ Dense layer | Dense layer

t t t)

‘ Input embedding layer |

I I I I
1)) e X3 Xt

Figure 2: Sequence to sequence DNC, encoding phase.

Yo N ¥z ¥t
Softmax Softmax Softmax Softmax
layer layer layer layer
‘ Densé layer ‘ ‘ Dense layer ‘ ‘ Dense layer ‘ | Dense layer |

+ + L
DNC Cell | DNC Cell | DNC Cell e DNC Cell
Sp Sy sz 5t
‘ Dense layer ‘ Dense layer Dense layer Dense layer

S A a |
g o]) Ct

‘ Output Embedding Layer |

T T T T
<G0> Yo ¥1 ¥t

Figure 3: Sequence to sequence DNC, decoding phase.

heads and then read the representations from the memory using
read heads. Dynamic memory allocation helps the network
to encode large input sequences while retaining the inherent
structure in those sequences. The content and location based
attention mechanisms give the network more information about
the input data during decoding. The ability to read and write
from memory helps the network in meta-learning to store richer
representations of the input data. We found out that network was
able to generalize faster compared to LSTM with a low number
of training examples. This is probably due to the fact that DNC
is able to store complex quasi-regular structure embedded in the
input data sequences in its memory and then later, it is able to

infer from these representations.

We also found that feeding the context vector ¢ during the

decoding stage was necessary for convergence. Probably, the
context vector provides the network with more information about
which locations to focus during each decoding step. The annota-
tions used for generating the context vector stores information
about the states of the DNC during the entire encoding phase.
For the purpose of text normalization, we feed the ToBeNor-
malized tokens in a manner specified in Experiment 2 of (Sproat
and Jaitly| 2017). The ToBeNormalized token is placed in be-
tween 3 context words to the left and right, with a distinctive
tag marking the to-be-normalized word. This is then fed as a
sequence of characters into the input embedding layer during the
Encoding stage. For the sentence The city is 15kms away from

here, in order to normalize the token /5km the input becomes
city is <norm> 15km </norm> away from

where <norm> and </norm> are tags that mark the beginning
and end of the to-be-normalized token. The output is always a
sequence of words. During decoding phase output tokens are
first fed into an output embedding layer before feeding it to the

decoder. For the above example, the output becomes

fifteen kilometers

5. Experimental Results

The initial XGBoost classification layer gives an Fl-score
of 0.96 in for English and 1.00 for Russian. The classifiers’
performance in terms of precision and recall of the two classes
is reported in Table 2] and 3] The DNC model in the second
layer was trained for 200k steps on a single GPU system with a
batch-size of 16 until the perplexity reached 1.02. The parameter
values used for training the second layer are given in Table[T] The
overall results of entire system are reported in Table[d] &[5] It can
be seen that the overall performance of the model in terms of the
F1-score is quite good. The Russian model reported an accuracy
of 99.3% whereas the English reported an accuracy of 99.4%.
As mentioned before the instances of actual conversion are quite
a few, which is the reason for the high overall accuracy. However,

when analyzing a text normalization system, it is more important

to look into the kind of errors it makes. A single metric such as
accuracy or BLEU (Bilingual Evaluation Understudy) score is
not sufficient for comparison. It is not much of a problem if a
token from the DATE class: 2012 is normalized as two thousand
twelve, instead of twenty twelve. However, we certainly would
not want it to be translated to something like twenty thirteen.
These ’silly’ errors are subjective by their very nature and thus,
rely on a human reader. This makes the analysis of these kinds
of errors difficult but important. One has to take a look at all
the cases where the model produces completely unacceptable

predictions.

It can be seen that the class-wise accuracies of the model
are quite similar to the base LSTM model. Upon analyzing
the nature of error made in each class, it was identified that the
model performs quite well in classes: DIGIT, DATE, ORDINAL
and TIME. The errors reported in these classes are shown in
Table |6l Most of the errors in these classes are due to the fact
that the DNC is confused with the true context of the token.
For example, the token /968 in DATE context is predicted as
if in CARDINAL context. However, the DNC never makes a
completely unacceptable prediction in these classes for both
English and Russian data-sets as can be observed in Table [6]
For readers unfamiliar with the Russian language, we look at
the issue with 22 wurona. This error stems from confusion in
grammatical cases which do not exist in the English language
and are replaced with prepositions. However in the Russian lan-
guage prepositions are used along with grammatical cases, but
may also be omitted in many situations. Now, the 22nd is trans-
formed to nBaamaTsL BTOporo (transliterated into Latin script as
"dvadtsat vtorOGO") whereas when used with the preposition
of, such as of the 22nd, it is transformed to 1Ba/IIATL BTOpPOE
(transliterated into Latin script as "dvadtsat vtorOE"). The base-
line LSTM based sequence-to-sequence architecture proposed
in Experiment 2 of |Sproat and Jaitly| (2017) showed completely
unacceptable errors such as a DATE 11/10/2008 normalized as
the tenth of october two thousand eight. On the other hand the
DNC network never makes these kind of ’silly’ errors in these

classes. This suggests that the DNC network can, in fact, be

used as a text normalization solution for these classes. This is
an improvement over the baseline LSTM model in terms of the

quality of prediction.

The DNC network, however, suffers in some classes: MEA-
SURE, FRACTION, MONEY and CARDINAL, similar to the
baseline LSTM network. The errors reported in these classes
are shown in Table [/l All the unacceptable mistakes in cardi-
nals occur in large numbers greater than a million. The DNC
sometimes also struggles with getting the measurement units
and denominations right. For non-Russian readers, we illus-
trate this with the MONEY token $ 7m where the prediction is
completely off; since opuaHAIIIATE JO/LTAPOB C3 1T & means
"eleven US dollars" but oiuH MULJIUOH JIOJLJIAPOB €3 I a
means "I million US dollars". In terms of overall accuracy,
the DNC performs slightly better in MEASURE, MONEY and
CARDINAL. The model, however, performs much worse in
FRACTION compared to the baseline model. The DNC network
still makes unacceptable ’silly’ mistakes in these classes such as
predicting completely inaccurate digits and units, which is not

enough to make it a trustworthy system for these classes.

In order to understand why the model performs so well in
some classes but suffers in others, we proceeded to find the fre-
quency of these specific tokens in the English training dataset.
The training set has 17,712 instances of dates of the form
xx/yy/zzzz. As reported in the earlier section, the model made
zero unacceptable mistakes in these DATE tokens. The baseline
LSTM, however, still reported unacceptable errors for dates of
the similar form. On the other hand, measurement units such
as mA, g/cm3 and ch occur less than ten times in the train-
ing set. Compared to other measurement units, kg and cm are
present more than 200 times in the training set. CARDINAL has
273,111 tokens out of which only 1,941 are numbers which are
larger than a million. Besides, the error in MONEY for the En-
glish data-set was for the denomination that occurred only once
in the training set. The results in Table [7] clearly demonstrate
that the model suffers only in the tokens for which a sufficient
number of examples are not available in the training set. The

DNC network never made any unacceptable prediction for ex-

Table 1: sequence-to-sequence DNC experimental settings. K : input vocabulary size, Ky : output vocabulary size, R: number of read heads

K. K, Memory size (N X W) R Controller hidden units Embedding size
English 168 1781 256 x 64 5 1024 32
Russian 222 2578 256 x 64 5 1024 32

Table 2: Classification Report for XGBoost Russian model

Precision Recall F1 score
RemainSelf 1.00 1.00 1.00
ToBeNormalized 0.99 1.00 1.00

Table 3: Classification Report for XGBoost English model

Precision Recall F1 score
RemainSelf 1.00 1.00 1.00
ToBeNormalized 0.94 0.99 0.96

amples that were sufficiently present. This hints at the notion
that the model performs poorly particularly for units, cardinals
and denominations which occur a lesser number of times in the
training set. Unlike the baseline LSTM, the model is reasonable

and durable to examples which are sufficiently present.

5.1. Ablation Study

To make the case for memory augmentation in neural net-
works to perform text normalization, we conducted an ablation
experiment to factor out its contribution if any. We know that
the DNC model consists of a controller network, equipped with
various memory access mechanisms to read and write from a
memory matrix. During the process of training, the controller
network is intended to learn to use the provided memory ac-
cess mechanisms instead of just relying on its internal LSTM
state. This is important to make the most out of the benefits
that come from memory augmentation. The DNC controller
network at each time-step receives a set of R read vectors as
input. These read vectors or memory activations are obtained by
performing a read operation on the memory matrix. Our ablation
experiment intends to verify the contributions of these memory

activations for prediction. We use an existing model pre-trained

10

in the previous section and perform inference on the test data on
two conditions, with memory activations and without memory
activations. The first condition is just inference on the test data
without any modification to the DNC activations. For the second
condition, we zero out the read vectors from the memory at each
time-step before providing it as input to the controller network.
If the DNC learns to use the provided memory access mecha-
nisms during the training process (i,e, the prediction is largely
dependent on the value of the read and write vectors), zeroing
out the read vectors during inference should have a significant
impact in the performance of the model. However, if the model
is just learning to predict based on its internal LSTM controller
state, zeroing out the read vectors during inference should have
a minute impact in performance. As can be seen from the com-
parison in Table [§] there is a significant drop in accuracy for
most semiotic classes when memory structures are inaccessible
to the controller network. Particularly, semiotic classes which
require structured processing of the input tokens such as, DATE,
TIME, DIGIT, MEASURE, MONEY, and TELEPHONE, show
a significant reduction in performance. Upon analyzing the kind
of errors that the DNC network makes when memory structures
are removed, it was found that the DNC network gets the trans-
lation context correct in most cases. For example, for the token
1984, the prediction of the DNC network without memory is
nineteen thousand two hundred eighty one. The model starts
the translation correctly, but however, it fails mid-way by pre-
dicting a completely incorrect digit. This is indicative of our
prior assumption that the model learns to write the input tokens
in its memory matrix during the encoding stage and later reads
from the memory during the decoding stage. If the memory
stru