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ABSTRACT 

 

This work presents a unified framework for defining a family of noise reduction techniques for 

speech enhancement applications. The proposed approach provides a unique theoretical 

foundation for some widely-applied soft and hard time-frequency masks, which encompasses 

the well-known Wiener filter and the heuristically-designed Binary mask. These techniques can 

now be considered as optimal solutions of the same minimization problem. The proposed cost 

function is defined by two design parameters that not only establish a desired trade-off between 

noise reduction and speech distortion, but also provide an insightful relationship with the mask 

morphology. Such characteristic may be useful for applications that require online adaptation of 

the suppression function according to variations of the acoustic scenario. Simulation examples 

indicate that the derived conformable suppression mask has approximately the same quality and 

intelligibility performance capability of the classical heuristically-defined parametric Wiener 

filter. The proposed approach may be of special interest for real-time embedded speech 

enhancement applications such as hearing aids and cochlear implants. 

 

KEYWORDS: Noise reduction; speech enhancement; time-frequency mask; hearing aids; 

cochlear implant. 
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1. INTRODUCTION 

 Speech enhancement methods have been a subject of great interest by the signal 

processing community for many years. They are a fundamental part of a wide variety of 

applications, ranging from automatic speech recognition systems to speech coding and assistive 

hearing devices. Their main objectives are to increase intelligibility during communication, and 

to improve speech quality and acoustical comfort, avoiding fatigue due to noisy speech [1]. 

These techniques are usually grouped into single or multichannel approaches (according to the 

number of input microphones), and are conceived not only to reduce noise levels but also to 

emphasize some specific speech characteristics. When designed in the light of signal distortion 

and noise suppression requirements they are usually referred to as noise reduction methods. 

 Although it has been demonstrated that multichannel speech enhancement methods may 

improve speech understanding and localization of acoustical sources, there is still great interest 

on single-channel processing due to cost, size and power consumption constraints required by 

many embedded applications. 

 Noise reduction techniques are generally applied in the time-frequency framework, in 

which the decomposition of the input (noisy) signal into multiple frequency bands is processed 

by a point wise multiplication of an attenuation factor (at each frame and bin), also referred to as 

gain. The set of these attenuation factors, which is associated to a certain suppression rule, is 

called mask. After processing, the estimated (clean) speech is obtained by transforming back the 

signal to the time domain. 

 Two main approaches are commonly employed for designing time-frequency masks: 

the heuristic and the formal approaches. In the latter, the minimization of a desired cost 

function, usually associated to a trade-off between noise reduction and speech distortion, is 

performed. The formal approach has the advantage of not only being associated to certain logic, 

but also to a theoretical justification. The most popular time-frequency mask techniques are, 

undoubtedly, the Wiener filter (WF) and the Binary mask (BM) [1] [2] [3] [4]. 

 The Binary mask was proposed by Cooke et al. in 2001 in the context of complex 
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auditory scene analysis (CASA) applications [5]. The idea is to suppress noise-dominant time-

frequency units, keeping information in which the target signal power is dominant over noise 

[3] [6]. Such approach counts on the ability of the human hearing to deal with missing data to 

reconstitute audio cognition. 

 In contrast to the heuristically-defined hard-decision approach related to the BM, the 

Wiener filter is the optimal solution that minimizes the mean square error between the desired 

and estimated signals. It is characterized by a soft-decision mask that provides continuous gains 

from 0 to 1. It has been shown that the WF provides improved speech quality as compared to 

BM, and, for hearing impaired listeners it may outperform the BM in terms of speech 

intelligibility, for both ideal and perturbed gain estimates [3] [7]. Despite being mathematically 

optimal, the Wiener filter is not always the best solution in terms of speech perception, since it 

may introduce undesirable musical noise [8]. In order to improve its psychoacoustic 

performance, heuristically designed versions of the Wiener filter have been proposed [9] [10] in 

which the inclusion of extra parameters allows more flexibility on the morphology of the mask 

[11] [12]. 

 The Parametric Wiener (PW) filter, which was introduced in the context of speech 

enhancement applications in [9], is a generalization of the classical Wiener filter. Two extra 

parameters were included to allow further conformability, making it a benchmark for 

performance analysis of noise reduction techniques [10]. Despite some efforts in trying to 

provide a deeper interpretation for particular situations [13] [14], there is still no theoretical 

support for optimality of its general configuration. In this way, since its proposition in 1979, it is 

still considered an ad-hoc technique [10] [14]. Thereby, the setting of its parameters is 

performed empirically [12] [15] [16] or based on a posteriori rules [17] [18] [19]. 

In this work, we propose a new cost function, based on a trade-off between speech 

distortion and noise reduction, for designing time-frequency masks in speech enhancement 

applications. It is shown that the optimal solution for this formal framework results in a 

previous heuristically-defined version of the parametric Wiener filter [14]. Here, it is 

demonstrated that it generates a whole family of suppression rules, which comprises not only 
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the classical BM and WF but also other well-established approaches, allowing not only a 

manifold performance investigation, but also an insightful relationship between the design 

parameters and the shape of the suppression function. Speech quality and intelligibility 

objective measures are applied to illustrate the applicability and performance of the resulting 

conformable mask (CM). 

The novel contributions of this work are: 1) The proposition of a general two-parameter 

cost function for establishing a trade-off between speech distortion and noise reduction in 

speech enhancements applications; 2) The theoretical derivation of the optimal solution for the 

proposed cost function, resulting in a family of suppression rules defined according to the 

choice of the parameter setting; 3) The demonstration that both the Wiener filter and the Binary 

mask are particular solutions of the same optimization problem; 4) The demonstration that the 

Binary mask is the optimal solution of a well-defined minimization problem; and 5) To provide 

an interpretation about the relationship between the parameters and the morphology of the 

proposed suppression function. Simulation examples indicate that the derived suppression mask 

has approximately the same performance capability of the classical heuristically-defined 

parametric Wiener filter [9]. 

 The remainder of this paper is structured as follows: Section 2 contains the problem 

definition and presents some suppression masks widely applied in the literature. The proposed 

cost function and its optimal solution are presented in Section 3. Experimental methods and 

simulation results are presented in Section 4, while discussion is presented in Section 5. Finally, 

concluding remarks are presented in Section 6. 

 

2. PROBLEM DEFINITION 

 Let us consider that noisy speech is defined as y(n) = x(n)+v(n), in which x(n) is the 

desired speech signal, and v(n) is the additive noise. Both x(n) and v(n) are considered not 

individually observable and uncorrelated to each other. Taking the N-bin Short-Time-Fourier-

Transform (STFT) representation for a finite time-window of y(n) results in: 
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 ( , ) ( , ) ( , )Y k X k V kλ λ λ= +  , (1) 

in which k and λ are, respectively, the frequency-band and the time-frame indexes; and Y(k,λ), 

X(k,λ), and V(k,λ) are respectively the STFTs of y(n), x(n), and v(n). 

 The time-frequency speech-enhancement approach consists of (at each time-frame λ) 

multiplying the noisy signal Y(k,λ) by a gain mask M(k,λ), for generating an estimate to the 

target speech X̂(k,λ) (at each k-bin) in a way that 

 ˆ ( , ) ( , ) ( , )X k M k Y kλ λ λ=  . (2) 

The estimated speech signal is reconstructed to the time domain by an overlap-and-add strategy. 

2.1. Classical Suppression Masks 

 There are different approaches for defining the gain mask M(k,λ). They may be defined 

according to a chosen objective criterion or even by a heuristic approach. In general, they are 

based on functions of signal-to-noise-ratio (SNR) estimates of the noisy signal. The most simple 

suppression function is the Binary mask, defined as [4]: 

 
0

0

1 : ( , )
( , ) ( , )

0 : ( , )

k
M k B k

k

ξ λ µ
λ λ

ξ λ µ

≥
= = 

<
 , (3) 

in which ξ(k,λ) = σX
2
(k,λ)/σV

2
(k,λ) is the a priori SNR associated to each frequency-band k and 

time-frame λ; σX
2
(k,λ) = E{|X(k,λ)|

2
} and σV

2
(k,λ) = E{|V(k,λ)|

2
} are the spectral density 

functions of the clean speech and noise; E{⋅} is the expected value; |⋅| is the absolute value; and 

μ0 is the decision threshold, usually set to 0 dB. Due to the discontinuity on their (binary) gains, 

it is classified as a hard mask. 

 The soft masks are those characterized by suppression functions with smooth transitions 

between extreme values. The most popular soft mask is the Wiener filter [1], whose gain 

function is given by 

 
( , )

( , ) ( , )
( , ) 1

k
M k W k

k

ξ λ
λ λ

ξ λ
= =

+
. (4) 

The Wiener filter is the optimal solution that minimizes the mean square error (MSE) between 

the STFT of the estimated and desired signals: MSE = E{|X̂(k,λ)–X(k,λ)|
2
}, assuming stationary 



7 

 

signals. 

Other examples of well-known soft masks are the constrained Wiener filter [1] 

 
( , )

( , ) ( , )
( , ) 1

c

k
M k W k

k

ξ λ
λ λ

ξ λ
= =

+
 , (5) 

and the parametric Wiener filter [9]: 

 
( , )

( , ) ( , )
( , )

p

k
M k W k

k

β
ξ λ

λ λ
ξ λ η

 
= =  + 

 . (6) 

The parametric Wiener filter is a heuristically defined soft-weighting mask that is used as a 

benchmark performance for comparison of time-frequency masks. For the particular case of 

β = 1 and η = 1 it becomes the Wiener filter [1]. 

 All presented masks require estimates of the a priori SNR that are commonly obtained 

by applying the decision-directed method or its variations [20] [21]. 

 

3. PROPOSED CONFORMABLE MASK 

 In this section, we propose a new optimization framework for deriving time-frequency 

masks. It is defined by a cost function that is based on an arbitrary trade-off between speech 

distortion and noise reduction. Its minimization provides a family of suppression functions that 

keeps intuitive relationships between the mask shape and the design parameters. 

3.1. Cost Function 

 Assuming a linear estimator of the target speech signal, then X̂(k,λ) = H(k,λ)Y(k,λ), in 

which H(k,λ) ∈ ℂ. The estimation error is given by: 

 
ˆ ( , ) ( , )

( , ) ( , ) ( , )

X k X k

H k Y k X k

ε λ λ

λ λ λ

= −

= −
 . (7) 

Using (1) in (7) results in [1] 

 

( , )[ ( , ) ( , )] ( , )

[ ( , ) 1] ( , ) ( , ) ( , )

( , ) ( , )X V

H k X k V k X k

H k X k H k V k

k k

ε λ λ λ λ

λ λ λ λ

ε λ ε λ

= + −

= − +��������� �������  , (8) 

in which εX(k,λ) and εV(k,λ) are, respectively the speech and noise distortions in the frequency 
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domain [1] [22]. Assuming speech and noise are stationary signals in a given time-window, the 

power spectral densities of both εX(k,λ) and εV(k,λ) are defined as [1] 

 
2 2 2( , ) { ( , )} | ( , ) 1| ( , )X X Xd k E k H k kλ ε λ λ σ λ= = −  , (9) 

 
2 2 2( , ) { ( , )} | ( , ) | ( , )V V Vd k E k H k kλ ε λ λ σ λ= =  . (10) 

From (9) and (10), the proposed conformable cost function is defined as 

 ( , ) [ ( , )] [ ( , )]X DJ k d k d k
α αλ λ ρ λ= +  , (11) 

in which ρ is the relative weighting factor between speech distortion (dX) and noise reduction 

(dV); and α is the cost function steepness. 

3.2. Optimal Solution 

 Equations (9) and (10) are both analytic convex functions of H(k,λ). Thus, considering 

ρ ∈ ℝ>0 and α ∈ (½, ∞), equation (11) is also analytic and convex with respect to H(k,λ) [23]. 

This implies on the existence of only one H(k,λ) that globally minimizes J(k,λ). The optimal 

solution for J(k,λ) can be obtained by differentiating (11) with respect to H
*
(k,λ) and equating it 

to zero: 

 
*

( , )
0
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λ

λ

∂
=

∂
 , (12) 

where (⋅)*
 is the complex conjugate. Using (9), (10), and (11) in (12) leads to 
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∂
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Differentiating (13) results in 
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2

*
*
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2
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 , (14) 

and rearranging (14) leads to 
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 Defining 
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1
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( , )
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H k

λ
λ

−≜  , (16) 

considering ρ = µα
, and using ξ(k,λ) = σX

2
(k,λ)/σV

2
(k,λ) in (15) results in 
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Using the polar form of Z(k,λ) = |Z(k,λ)|e
jφz

, and e
j2π p

 = e
j2π q

 = e
j2π l

 = 1 for {p, q, l} ∈ ℤ in (17) 

leads to 
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Rearranging (18) results in 

 
2 1 2 2( , )
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Zj s lj j

Z
k

e e ek

α
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λ

µ
λ

ξ

−
= −  , (19) 

in which {s = p−q, l} ∈ ℤ. Comparing both modulus and phase of both sides of (19) results in: 

 1Zj
e

φ = −  , (20) 

and 
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ξ

−

=  . (21) 

 Substituting (20) and (21) in Z(k,λ) = |Z(k,λ)|e
jφz

, and finally in (16), leads to 
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Since ξ(k,λ)/µ ∈ ℝ>0, it is possible to drop the modulus operator from (22) resulting in the 

optimal solution for (11): 
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( , )

k
H k

k

γ

γ γ

ξ λ
λ

ξ λ µ
=

+
 . (23) 

in which µ = ρ1/α
, and γ = 1/(2−1/α). Equation (23) was previously described in [14], without 

grounded theoretical foundations or experimental assessment, as a heuristic alternative to the 
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(ad hoc) parametric Wiener filter. 

3.3. Conformability Analysis 

 According to Section 3.2 the design parameter ranges are set to ρ ∈ ℝ>0 and α ∈ (½, ∞), 

resulting in µ ∈ ℝ>0 and γ ∈ (½, ∞). By adjusting these parameters the proposed conformable 

mask H(k,λ) presented in (23) defines a family of sigmoidal masks, which include the classic 

WF mask (µ = γ = 1) and the ideal BM (µ = 1 and γ → ∞), as shown in Table I. 

 

Table I. Relationship among the proposed and some well-established time-frequency masks as a 

function of the design parameters μ and γ. 

γγγγ µµµµ H(k,λλλλ) 

γ → ∞ µ = µo H(k,λ) → BM, eq. (3) 

γ = 1 µ = 1 H(k,λ) ≡ WF, eq. (4) 

γ = 1 µ = µo H(k,λ) → spectrum over-subtraction method [24] 

γ → ½+ µ = 0 H(k,λ) → constrained WF, eq. (5) 

 

 Fig. 1 shows the conformability of the proposed mask for different sets of µ and γ as a 

function of the SNR. It is clearly verified that γ is directly related to the maximum derivative 

(sharpness or slope) of the resulting mask, while µ controls the bias (lateral displacement or 

transition threshold) of the suppression function. Considering the Root Mean Square Error 

(RMSE) between two noise suppression masks, defined by 

 
2

1 2[ ( ) ( )]ξ ξ ξ
∞

−∞
= −RMSE G G d  , (24) 

(where G1 and G2 define two different noise suppression functions) the matching error between 

the proposed mask for µ = 1 and γ = 100 and the ideal binary mask is 10% of the error between 

the WF and the BM, while for µ = 1 and γ = 1000 this error drops approximately to 3%
1
. From 

the obtained results, it is possible to verify that there is an intuitive relationship between the 

                                                      
1
 The RMSE was calculated by approximating the integral presented in (24) via the trapezoidal method 

for −60 dB ≤ SNR ≤ 60 dB in steps of 0.001 dB. 
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shape of the suppression mask and their design parameters. 

 

Fig. 1. Conformability of H(k,λ) for different sets of µ and γ as a function of the SNR. 

Parameter µ controls bias (lateral displacement), while parameter γ is associated to the 

smoothness of the transition (slope). For µ = γ = 1 H(k,λ) turns to the classical Wiener filter 

mask, while for µ = 1 and γ → ∞ it tends to the ideal binary mask. (a) γ = 0.51, µ = 0 dB (blue); 

(b) γ = 1, µ = 0 dB (green); (c) γ = 10, µ = 0 dB (red); (d) γ = 1, µ = −5 dB (cyan); (e) γ = 1, 

µ = 5 dB (magenta). 

 

4. SIMULATION RESULTS 

 In this section, speech quality and intelligibility objective measures are applied for 

performance assessment capability of the proposed suppression function as compared to some 

classic speech enhancement techniques. 

 A set of 720 sentences from the balanced IEEE corpus [25] was artificially 

contaminated with either noise recorded inside a train wagon (Fig. 2a) or cafeteria babble noise 

(Fig. 2b) [1], for three levels of SNR: −10 dB, 0 dB, and 5 dB. This resulted in 4320 noisy 

signals. A total of 3720 of which were applied for assessment and performance comparison of 

the Wiener filter, the ideal Binary mask (μ0 = 0 dB), the proposed mask, and the parametric 

Wiener filter. 
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Fig. 2. Spectrogram of: (a) noise recorded inside a train wagon, and (b) cafeteria babble noise. 

 

 All signals were sampled at 16 kHz and were transformed to the frequency domain by a 

512 point STFT using a 20 ms Hanning window with zero padding and 50% of overlap. After 

processed by each mask, the transformed signals in the STFT domain were reconstructed by the 

weighted overlap-and-add method [26]. The clean and noise signals were processed separately 

in order to calculate the ideal value of the masks on each frame. 

 The performance of each mask was assessed in terms of speech quality and 

intelligibility by using, respectively, the wideband Perceptual Evaluation of Speech Quality 

(PESQ) measure [27], and the Normalized Covariance Metric (NCM) [28]. Results were 
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statistically compared through analysis of variance (ANOVA), with p < 0.05, followed by 

multiple comparison analysis using Tukey’s test [29]. 

 The noisy signals were divided in two groups: the training set, and the testing set. The 

training set was comprised by six subgroups, one for each SNR and type of noise, containing 

100 speech files each. The testing set had also six subgroups, with a total of 620 speech files in 

each one. 

 The training set was applied for obtaining (by exhaustive search) the best sets of 

parameters for both CM and PW masks according to a proper objective quality criterion (PESQ, 

NCM, or a combination of both). Initially, the best parameter set was obtained for each one of 

the 600 training noisy signals according to an arbitrary grid of possibilities. For the CM, this 

grid was comprised by all combinations of µ , varying from −60 dB to 60 dB in steps of 5 dB, 

and γ, varying from 0.5 to 1 as well as from 1.25 to 100, in 6 equally log-spaced steps, resulting 

in 300 different masks. The obtained sets of parameters include the WF (µ = γ = 1) and a close 

approximation to the BM (µ = 1, γ = 100). The same procedure was performed for the 

parametric Wiener filter, with β varying from 0.2 to 1, and from 1.25 to 40 in, respectively, 6 

and 4 logarithmically spaced steps, while η was varied from −35 dB to 25 dB in 2.5 dB steps 

(totalizing 250 masks). After obtaining these 600 best sets, the median of the 100 results for 

each subgroup was calculated. This median set was then mapped to the nearest value in the 

arbitrary grid. The resulting mapped parameter sets, for each SNR and type of noise, were 

applied to the testing group. 

4.1. Quality Maximization 

 In this first experiment, the method previously described for finding the best set of 

parameters, for each type of noise and SNR and for both CM and PW, was applied to maximize 

quality according to the PESQ criteria. The best sets of parameters obtained for each type of 

noise and SNR, using the training group, are shown in Table II. Table III shows the mean PESQ 

obtained for the testing group for each assessed mask, SNR, and type of noise. 
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Table II. Optimal parameter settings for the CM and PW mask. Maximization of the PESQ 

criteria in the training set. 

Noise Babble Train 

SNR [dB] −−−−10 dB 0 dB 5 dB −−−−10 dB 0 dB 5 dB 

CM 
γγγγ 0.66 0.66 0.66 0.57 0.5 0.57 

µµµµ [dB] 10 5 5 25 20 15 

PW 
ββββ 0.72 0.53 0.53 0.53 0.53 0.53 

ηηηη [dB] 7.5 5 5 15 12.5 10 

 

Table III. PESQ results for WF, BM, CM, and PW, calculated from the testing set. Masks CM 

and PW were optimized for highest quality. For each column (same type of noise and SNR) the 

highest PESQ is bolded, while symbol § indicates results without statistical difference 

(p < 0.05). 

Noise Babble Train 

SNR [dB] −−−−10 dB 0 dB 5 dB −−−−10 dB 0 dB 5 dB 

WF 1.364
§
 1.998 2.565 1.417 1.984 2.487 

BM 1.141 1.578 2.068 1.178 1.557 2.041 

CM 1.411 2.078
§
 2.650

§
 1.560

§
 2.140

§
 2.624 

PW 1.375
§
 2.058

§
 2.629

§
 1.552

§
 2.115

§
 2.588 

 

 Fig. 3 shows bi-dimensional boxplots relating speech quality (PESQ) and intelligibility 

(NCM) scores for the unprocessed noisy-speech, speech processed by the WF, BM, CM, and 

PW for SNR = −10dB and babble noise. The horizontal axis presents the speech quality in 

PESQ units; while the vertical axis scores the intelligibility (unity corresponds to 100%). In this 

presentation form, the overall performance increases with the distance from the origin. Each 

square represents the limits of the first and third quartiles for the 620 sentences of the testing 

group. The outliers are omitted for clarity. The inset shows a zoom around the CM and PW 

medians, represented by plus signs (+). For other SNRs and the inside train noise, the boxplots 

are similar and are not presented. 
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Fig. 3. Intelligibility and quality bi-dimensional boxplots for the testing set and inside train 

noise at SNR = −10 dB. Parameters for the CM and PW were optimized for quality. (a) Wiener 

(black); (b) BM (green); (c) CM (blue); (d) PW (red); (e) noisy (magenta). 

 

Table IV. Optimal parameter settings for the CM and PW mask. Maximization of the NCM 

criteria in the training set. 

Noise babble train 

SNR [dB] −−−−10 dB 0 dB 5 dB −−−−10 dB 0 dB 5 dB 

CM 
γγγγ 0.66 0.76 0.76 0.76 0.87 0.87 

µµµµ [dB] −5 −5 −5 −5 −10 −10 

WP 
ββββ 0.53 0.53 0.72 0.53 0.72 1.25 

ηηηη [dB] 0 0 −2.5 2.5 −2.5 −5 

 

4.2. Intelligibility Maximization 

 In this second experiment, the same procedure for finding the best set of parameters 

were applied to the CM and PW, but with the aim of maximizing intelligibility according to the 

NCM criteria. Table IV shows the best sets of parameters obtained for each type of noise and 

SNR (using the training group), while Table V presents the mean NCM obtained for the testing 

group (for each assessed mask, SNR and type of noise). Fig. 4 shows bi-dimensional boxplots 
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relating speech quality (PESQ) and intelligibility (NCM) scores for the unprocessed noisy-

speech, speech processed by the WF, BM, CM, and PW, for SNR = −10dB and inside train 

noise. The inset shows a zoom around the CM and PW medians (plus signs). Boxplots for other 

SNRs and babble noise are similar and not presented. 

 

Table V. NCM values for WF, BM, CM, and PW calculated from the testing set. Masks CM 

and PW were optimized for highest intelligibility. For each column (same type of noise and 

SNR) the highest NCM is bolded, while symbol § indicates results without statistical difference 

(p < 0.05). 

Noise babble train 

SNR [dB] −−−−10 dB 0 dB 5 dB −−−−10 dB 0 dB 5 dB 

WF 0.832 0.948 0.984 0.897 0.963 0.989 

BM 0.733 0.908 0.967 0.858 0.950 0.984 

CM 0.881
§
 0.967

§
 0.992

§
 0.911

§
 0.971

§
 0.992

§
 

PW 0.879
§
 0.966

§
 0.992

§
 0.910

§
 0.971

§
 0.992

§
 

 

 

Fig. 4. Intelligibility and quality bi-dimensional boxplots for the testing set and inside train 

noise at SNR = −10 dB. Parameters of the CM and PW were optimized for intelligibility. (a) 

Wiener (black); (b) BM (green); (c) CM (blue); (d) PW (red); (e) noisy (magenta). 
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4.3. Quality and Intelligibility Maximization 

 In this experiment, the CM and PW parameters were optimized for providing the best 

overall performance in terms of both quality and intelligibility. The overall performance was 

calculated as a quadratic distance given by: 

 

2

2 PESQ
NCM

5

 
+ 


=


pd  , (25) 

since 0 ≤ NCM ≤ 1 and 0 ≤ PESQ ≤ 5. The optimum parameter sets that lead to maximization of 

(25) are shown in Table VI. Tables VII and VIII show NCM and PESQ results for, respectively,  

babble and inside train noise. Fig. 5 shows the boxplot for the joint optimization of both 

intelligibility and quality measures. 

 

Table VI. Optimal parameter settings for the CM and PW mask. Maximization of (25) in the 

training set. 

Noise babble train 

SNR [dB] −−−−10 dB 0 dB 5 dB −−−−10 dB 0 dB 5 dB 

CM 
γγγγ 0.66 0.66 0.76 0.66 0.66 0.66 

µµµµ [dB] −5 −5 0 0 0 0 

WP 
ββββ 0.53 0.72 0.72 0.53 0.53 0.53 

ηηηη [dB] 0 0 0 0 5 5 

 

Table VII. NCM and PESQ for maximizing (25) and babble noise. For each column (same type 

of noise and SNR) the highest NCM and PESQ are bolded, while symbol § indicates results 

without statistical difference (p < 0.05). 

 
NCM PESQ 

 
−−−−10 dB 0 dB 5 dB −−−−10 dB 0 dB 5 dB 

WF 0.832 0.948 0.984 1.364
§
 1.998

§
 2.565 

BM 0.733 0.908 0.967 1.141 1.578 2.068 

CM 0.881 0.967 0.989 1.376
§
 1.999

§
 2.633

§
 

PW 0.867 0.955 0.987 1.400 2.043 2.611
§
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Table VIII. NCM and PESQ for maximizing (25) and inside noise train. For each column (same 

type of noise and SNR) the highest NCM and PESQ are bolded, while symbols § and * indicate 

pair of results without statistical difference (p < 0.05). 

 
NCM PESQ 

 
−−−−10 dB 0 dB 5 dB −−−−10 dB 0 dB 5 dB 

WF 0.897 0.963 0.989
§
 1.417

§
 1.984

§
 2.487

§
 

BM 0.858 0.950 0.984* 1.178 1.557 2.041 

CM 0.910
§
 0.968 0.990

§
 1.409

§
 2.010

§
 2.518

§
 

WP 0.908
§
 0.959 0.984* 1.427

§
 2.068 2.564 

 

 

Fig. 5. Intelligibility and quality bi-dimensional boxplots for the testing set and babble noise at 

SNR = −10dB. Parameters of the CM and PW were optimized for maximizing (25). (a) Wiener 

(black); (b) BM (green); (c) CM (blue); (d) PW (red); (e) noisy (magenta). 

 

5. DISCUSSION 

 The proposed noise suppression mask, equation (23), was obtained from a meaningful 

cost function that establishes a trade-off between noise reduction and speech distortion. Its 

convexity was demonstrated and thus proved that there is a global minimum. Its parameters 

provide two degrees of freedom. The parameter µ is associated to the decision threshold, while γ 
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controls the slope with relation to the local SNR. Differently from the widely-used parametric 

Wiener filter presented in (6), in which those both characteristics are simultaneously affected by 

β (see Fig. 6), each parameter of the proposed mask independently controls a given feature. This 

property is especially interesting for those applications that support online adaptation of the 

suppression rule due to variations of the acoustic scenario [30]. This is the case of speech 

enhancement systems for real-time embedded applications such as hearing aids and cochlear 

implants. 

 

Fig. 6. Suppression function of the parametric Wiener filter (equation (6)) for η = 0 dB and: (a) 

β = 0.51 (blue); (b) β = 1 (red); (c) β = 10 (green).  

 

 Another important finding with relation to the conformability of the proposed mask is 

that, despite the apparent similarity between both generation functions (equations (6) and (23)), 

the CM and the PW filter do not match perfectly. In fact, CM may provide accurate 

approximations to the PW for a large range of pairs (β,η), while the inverse is not true. 

 Fig. 7 exemplifies the conformability limits of PW for approximating the CM in two 

different situations: (a) CM as a soft-mask (γ < 1); and (b) CM as a hard-mask (γ >> 1). The PW 

parameter pairs (β,η) were optimized by minimization of the RMSE criteria, defined in (24), 

using the Nelder-Mead simplex algorithm [31], for obtaining the best approximation to a given 
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setting of the CM parameters (γ, μ)
2
. The RMSE for the curves depicted on Fig. 7a and Fig. 7b 

are, respectively, 0.79 and 1.07. Fig. 7b indicates that the PW filter cannot precisely 

approximate the morphology of the CM for very large slopes (γ >> 1). On the other hand, 

additional simulations showed that CM provides accurate values for approximating PW, 

resulting in a maximum RMSE of 0.14 for all studied situations. 

 

 

Fig. 7. Approximation of PW (red) to CM (blue). (a) η = 15.9 dB, β = 0.305, μ = 5 dB, and 

γ = 0.5; (b) η = −42.6 dB, β = 1.25×10
3
, μ = −10 dB, γ = 100. Parameters of PW were chosen to 

minimize the RMSE with respect to CM. 

 

 When maximized for quality (Section 4.1), CM overcomes or, at least, achieves the 

same performance of all assessed techniques (WF, BM, and PW). For maximizing intelligibility 

(Section 4.2) both CM and PW show the same performance (p < 0.05), overcoming results 

obtained by both WF and BM. By changing the parameter settings of both CM and PW, it is 

possible to change the trade-off between quality and intelligibility performance. This 

demonstrates the versatility of these masks and their potential for adjusting to the individual 

preferences of the listener. 

                                                      
2
 In this experiment the values of (β,η) are not constrained to the arbitrary grid defined in Section 4. 
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 In all experiments the BM performance was significantly worse as compared to WF, 

CM and PW soft masks. This corroborates the experimental results reported by [3] [7]. 

 In general, for both types of noise and SNRs, CM has the best intelligibility 

performance, while the PW leads to the best quality (PESQ) results. Nevertheless, these two 

masks perform perceptually in a similar way, considering the minimum noticeable PESQ 

difference is around 0.2 [32] [33]. 

 Simulation results showed that, for all optimal (quality and/or intelligibility) cases 

analyzed, the value of parameter γ is smaller than 1, which corresponds to softer masks when 

compared to the Wiener filter. It can also be observed that for increased quality µ should be 

greater or equal to 0 dB, whilst for increased intelligibility µ < 0 dB. 

 Despite a general preference for soft masks by normal hearing subjects, the Binary 

mask is also of significant relevance, as experiments with hearing-impaired listeners revealed 

great variability of inter-subject performance [6] [7], and for certain scenarios there may be 

individual preferences in favor of a hard mask approach. Thus, a more versatile mask such as 

the CM may be desirable for hearing aid and cochlear implant users. 

 Considering γ → ∞ (see Table I), thus α → ½+, and the proposed cost function 

presented in (11) can be interpreted as the weighted sum of the square root of both speech and 

noise distortions. This observation supports the theoretical optimality of the Binary mask under 

such context. The optimality of the BM has been addressed before. Arguments for supporting 

global optimality of the ideal binary mask (μ0 = 1), as compared to all binary masks, were 

provided in [34]. In [35], it was demonstrated that, assuming that the magnitude-squared 

spectrum of the noisy speech signal can be approximated by the sum of the clean signal and 

noise magnitude-squared spectrum, the BM is the Maximum a Posteriori estimator of the 

magnitude-squared spectrum. Nevertheless, a theoretical proof of the optimality of the BM, in 

the context of a cost function minimization problem, had never been demonstrated before. 
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6. CONCLUSION 

 This work shows that a previously heuristically designed version of the parametric 

Wiener filter is, in fact, the optimal time-frequency mask that minimizes a trade-off between 

noise and speech distortions. The associated cost-function is defined by a weighted sum of 

powers of speech and noise magnitude distortions. 

 The resulting mask allows, by the setting of its parameters, the independent adjustment 

of the slope and bias of the suppression function with respect to the local SNR. This may be a 

desired characteristic for applications that require online adaptation of the suppression function 

according to variations of the acoustic scenario. This is the case of speech enhancement systems 

for real-time applications such as hearing aids and cochlear implants 

 Simulation results indicate that the proposed time-frequency mask, called Conformable 

Wiener filter, has similar psychoacoustic performance as compared to the well-known 

heuristically-designed Parametric Wiener filter in terms of quality (PESQ). For specific 

situations, it may present higher intelligibility as compared to the parametric Wiener filter. 

 A relevant characteristic of the Conformable mask is that it can approximate time-

frequency hard-masks with higher accuracy than the classical parametric Wiener. This 

characteristic has shown to be important in experiments with hearing impaired listeners in 

certain acoustic scenarios. 

 As a result, this work provided a unified framework for deriving and interpreting the 

optimality of a family of time-frequency masks that encompasses the well-known Wiener filter 

and the Binary mask, as well as some of their variations. 
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