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Abstract

We consider the problem of scheduling on a single processor a given set of n jobs.
Each job j has a workload wj and a release time rj . The processor can vary its speed
and hibernate to reduce energy consumption. In a schedule minimizing overall consumed
energy, it might be that some jobs complete arbitrarily far from their release time. So in
order to guarantee some quality of service, we would like to impose a deadline dj = rj +F
for every job j, where F is a guarantee on the flow time. We provide anO(n3) algorithm for
the more general case of agreeable deadlines, where jobs have release times and deadlines
and can be ordered such that for every i < j, both ri ≤ rj and di ≤ dj .

1 Introduction

Recent research addresses the issue of reducing the amount of energy consumed by computer
systems while maintaining satisfactory level of performance. This can be done at different
levels of a computer system. One possibility is to specify a good scheduling mechanism in
the operating system level. Here we have two mechanisms at hand. One common method for
saving energy is the power-down mechanism, which is to simply suspend the system during
long enough idle times. Another common method is speed scaling, which is to adjust the
processor speed low enough to meet the jobs requirements. In this paper we study the
problem of designing scheduling algorithms for minimizing the consumed energy using both
mechanisms.

The question whether this problem can be solved in polynomial time was posed by Irani
and Pruhs [1], who called it speed scaling with power down scheduling problem. We provide
an O(n3) algorithm in this paper for the special case of agreeable deadlines. Jobs may be
released at different time moments, and may have distinct deadlines. The agreeable deadline
property just means that later released jobs also have later deadlines. This holds, for example,
when the deadline of each job is exactly F units after its release time, which arises when one
wants to maintain a guarantee of service for the flow time of the jobs.
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2 Problem definition

An instance of our scheduling problem consists of n jobs, 1, 2, . . . , n, where each job j, 1 ≤ j ≤
n, is specified by a release time/deadline interval1 [rj , dj) in which it must be scheduled and a
workload wj . An instance has the agreeable deadlines property if the jobs can be renumbered
such that both their release times and deadlines are in non-decreasing order, i.e. i < j implies
ri 6 rj and di 6 dj .

A schedule is defined by three functions

mode : R→ {on, off}
speed : R→ R+

job : R→ {none, 1, . . . , n},

with the following properties

1. ∀t : speed(t) > 0⇒ mode(t) = on

2. ∀t : speed(t) = 0⇔ job(t) = none

3. ∀t : job(t) = j, j 6= none⇒ t ∈ [rj , dj)

4. ∀j 6= none :
∫

speed(t)dt = wj where the integral is over all times t such that job(t) = j

5. for every time t, there is a positive length interval I 3 t on which the schedule is
constant. Moreover I is of the form (−∞, u), [t′, u) or [t′,+∞) for some time points
t′, u.

The last property is in fact a simplifying assumption to avoid degenerate schedules. The
interpretation is that at a time t where job(t) = none, the machine is idle but switched on
when mode(t) = on and is shut down when mode(t) = off. There is a non-negligible energy
consumption during the idle time periods, but one avoids the cost of shutting down and
rebooting the machine.

The cost (i.e., the consumed energy) of a schedule is specified by three parameters: an
exponent α ∈ [2, 3], a wake-up cost L > 0 and a ground dissipation energy g > 0, and it has
two components:

1. The speed cost, that is the energy consumed in all times t such that job(t) = j 6= none.
This cost is defined as cspeed =

∫
speed(t)αdt.

2. The mode cost, that is the cost of the ground dissipation energy plus the wake-up energy.

A schedule with property (5) partitions the time into a sequence S of disjoint, inclusion-wise
maximal intervals, such that mode(t) = on if and only if t ∈ ∪S = ∪Ik∈SI. The sequence S
is called the support of the schedule, and the energy consumption generated by this support
constitutes its mode cost which is defined as cmode = L · (|S| + 1) + g · | ∪ S|. Note that we
count a wake-up cost L for the two half-infinite intervals surrounding S.

Hence, the total cost is just the sum cspeed + cmode and the problem studied in this paper
consists in finding a minimum cost schedule for an agreeable deadline instance.

1Notation: [t0, t1) stands for the half open interval {t : t0 ≤ t < t1}.
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The outline of the paper is as follows. After a brief survey over related work, we start
showing structural properties of optimal schedules, in particular we introduce the notion of
prefix and suffix of a block. Finally we define the dynamic program, prove its optimality
and analyse its complexity, while mentioning implementation issues. The algorithm has been
implemented in Python and can handle instance of 300 jobs within a second.

3 Previous work

Our scheduling problem for general instances (with non-agreeable deadlines) was raised in [1].
No polynomial time algorithm is known for this problem, nor has it been shown to be NP-
hard. The current best positive result is a 137/117-approximation provided in [2]. The same
paper also gives an NP-hardness proof, however for a different energy mode, when cspeed is
defined as

∫
f(speed(t))dt for some piecewise linear monotone function f .

The general problem contains two subproblems, which have been studied and solved in-
dividually. The first one does not consider speed scaling, and restricts to speeds 0 or 1,
depending on the mode. Here essentially the goal is to minimize cmode only. This subprob-
lem has been solved in O(n5) time by dynamic programming [3]. For agreeable instances
the complexity has been improved to O(n2) [4]. The second subproblem does not consider
the power down mechanism, and restricts to the single mode ’on’ and to ground dissipation
energy g = 0. Here the problem is to minimize cspeed only. This problem has been solved
by a widely celebrated greedy algorithm due to Yao, Demers and Shenker [5] in O(n3) time.
The complexity of this algorithm, known as YDS, has been improved to O(n2 log n) in [6] and
even to O(n2) for agreeable instances [7].

Different variants of this problem have been studied in the past years, which include the
online setting, as well as different objective values, like minimizing throughput or flowtime.
We refer to [8] for an overview.

An important ingredient for the algorithm presented in this work, is the aforementioned
YDS algorithm. For completeness we roughly sketch it now. At each step of the algorithm,
the interval I? of maximum density is selected among all O(n2) intervals of the form [ri, dj ].
The density of an interval is defined as the ratio s = W/(dj − ri), where W denotes the total
workload of all jobs k with [rk, dk] ⊆ [ri, dj ]. The key idea is that any feasible schedule must
have for [ri, dj ] an average speed at least s. Then all those jobs are scheduled in I? at speed
s using the EDF (Earliest-Deadline-First) policy. No job will miss its deadline by maximal
density of I?. For the sequel of the algorithm the time interval I? is blacked out. This means
that when computing densities of candidate intervals for subsequent iterations, the blacked
out intervals are excluded, and the schedule for the remaining jobs must exclude them as well.
The algorithm ends when all jobs are scheduled.

4 Structure of an optimal schedule

When a job j is running at speed s its execution takes wj/s time units and the consumed
energy is (sα + g)wj/s. This amount of energy is minimum for speed s? := (g/(α − 1))1/α,
which we call the critical speed. Note that s? is job independent. The density of an interval
I is defined as

∑
wj/|I| over all jobs j with [rj , dj) ⊆ I. An interval is called dense, if its

density is at least s?, and sparse, otherwise.
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Lemma 1. [9] Given an instance of the speed scaling with power down scheduling problem,
there is an optimal schedule (mode, speed, job) with the following properties.

job span for every time t, if job(t) = j 6= none then for all times u ∈ [rj , dj) with mode(u) =
on, we have speed(u) > speed(t)

earliest deadline first for every time pair t < u if job(t) 6= none 6= job(u), then job(t) 6
job(u).

dense intervals dense intervals I are scheduled according to the YDS rule.

domination for any other optimal schedule (mode’, speed’, job’), and a smallest time t such
that mode(t) 6= mode’(t) we have mode(t) = on and mode’(t) = off.

In particular the first property implies that whenever j is scheduled, the speed is the
same. The next two properties imply that dense intervals divide the problem into independent
subproblems, as we describe now.

Definition 1. A subinstance of our problem is specified by a pair (i, j) with i ∈ {1, . . . , n},
j ∈ {i−1, . . . , n}. For convenience we denote d0 = r1−L/g and rn+1 = dn+L/g. It consists
of the interval I = [di−1, rj+1) and a job set J . If i = j + 1, then J = ∅, else J = {i, . . . , j}.
The release time/deadline intervals of these jobs are restricted by intersection to I.

w1=1
w2=1
w3=1

w4=2
w5=2

w6=3
w7=3

w8=2
w9=3
w10=3

w11=3

1 2 3
4

5 6 7
8

9 10 11

Figure 1: Structure of an optimal schedule for an instance of 11 jobs. The boxes represent
job executions where the height equals speed and the area equals the workload of the job.
The different colors of the boxes distinguish critical speed, less than critical speed and more
than critical speed. The thick line below represents the mode. Finally the intervals at the
bottom represent the release time/deadline intervals of each job j, labeled by its workload
wj . Here the schedule consists of 2 blocks separated by a shutdown interval. Jobs 1,5,6,7,11
are scheduled at critical speed s?, while job 9 is scheduled with higher speed, as [r9, d9) is a
dense interval. Note that the schedule is idle but not shutdown between jobs 1 and 2.

Note that in case di−1 < rj+1 or di−1 < di or rj < rj+1, the subinstance (i, j) is infeasible
as the release time/deadline interval of i or j is restricted to the empty interval.
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We extend also the definition of the cost function for subinstances. The schedule of a
subinstance (i, j), consisting of job set J and interval I, is defined by the functions speed :
I → R+,mode : I → {on, off} and job : I → {none} ∪ J . For the mode cost, let S := {t ∈ I :
mode(t) = on} be the support of the schedule, and k be the number of intervals in I\ ∪ S.
Then, cmode := kL+ g| ∪ S|. The interpretation is that if immediately before and after I the
machine is on, then shutdown intervals at the borders of I also do generate a wake-up cost.

We choose d0 far enough from r1 such that w.l.o.g. an optimal schedule for the subinstance
(1, k) will start with a shutdown interval. A symmetric property is true for subinstances of the
form (k, n). Therefore the cost of the subinstance (1, n) is consistent with the cost definition
for the complete instance. Note that the optimum for a subinstance of the form (i, i − 1)
equals min{L, g(ri − di−1)}.

Now consider all inclusion-wise maximal dense intervals. They partition the time line into
a sequence of alternating dense and sparse intervals.

The following lemma follows directly from the definitions. We stress here that indepen-
dence of the subschedules is implied by the agreeable deadline assumption. Lemma 1 states
that there is an optimal schedule, satisfying the earliest deadline first property, which means
that whenever job j is scheduled, all jobs i < j already completed. So the agreeable dead-
line assumption happens to be quite strong, which permits a dynamic programming approach.
However the problem does not become trivial, since one still needs to decide when the machine
is to be shutdown and when to be idle.

Lemma 2. Sparse intervals I are associated to pairs (i, j), such that the portion of an optimal
schedule for the original instance restricted to I, is also an optimal schedule for the subinstance
(i, j). Moreover none of these subinstances contain dense intervals.

5 Suffixes and prefixes

In this section, we consider an optimal schedule of an arbitrary subinstance consisting of a job
set J and an interval I such that all subintervals of I are sparse. Whenever, in this section,
we refer to release times/deadlines rk, d`, they are restricted to I.

Lemma 3. For all times t ∈ I, speed(t) 6 s?.

Proof. Let t be a time that maximizes speed(t), and assume speed(t) > s? for the sake of
contradiction. We consider an inclusion-wise maximal interval A 3 t on which the speed is
constantly speed(t). Let i, . . . , k, i 6 job(t) 6 k, be the jobs scheduled in this interval. If
A = [ri, dk), then A is a dense interval, a contradiction to Lemma 2. Thus, the inclusion
A ⊆ [ri, dk) is strict. Assume dk > u for u = maxA (the other case is symmetric). By
Lemma 1, we have mode(u) = off, and there is a time t′ such that job k is scheduled in [t′, u).
For a small enough δ > 1, the execution of job k can be extended to [t′, u′) for u′ = t′+δ(u−t′)
and lower its speed to speed(t)/δ. This strictly decreases the overall cost, a contradiction to
the optimality of the schedule.

The support of the schedule consists of blocks separated by shutdown intervals. We shall
show now that the boundaries of these blocks have a particular structure (see Figure 2).

Definition 2. A suffix is a job pair (a, b) such that all jobs a, . . . , b are scheduled at critical
speed between ra and u with u = ra + (wa + . . .+ wb)/s

?, and mode(u) = off. The definition
of a prefix is just symmetric.
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rb

a

ra da

ra+1 da+1

rb+1 db+1

rc dc

c...b+1b...a+1

db

Figure 2: Illustration of a suffix (a, b) and a prefix (b + 1, c) in a schedule. Note that job a
starts at its release time and job c ends at its deadline.

Lemma 4. Let [t, u) be an inclusion-wise maximal shutdown interval in I, that is mode(t′) =
off for all t′ ∈ [t, u). If t is not the start of I, then there is a suffix (a, b) ending at t =
ra + (wa + . . . + wb)/s

?. If u is not the end of I, then there is a prefix (b + 1, c) starting at
u = dc − (wb+1 + . . . + wc)/s

?. Moreover, if both cases hold (inf I < t < u < sup I) then
without loss of generality rb+1 > t.

Proof. Suppose that there is an execution interval [t0, t) where some job b = job(t0) is sched-
uled at speed(t0) < s?. For a small enough δ > 1 let t′ := t0 + (t − t0)/δ. Consider a new
schedule where the execution interval is compressed to [t0, t

′), the speed in there is multiplied
δ, and the shutdown interval is extended to [t′, u). This new schedule has a strictly decreased
cost, contradicting optimality.

This shows that if t is not the start of I, then some job b is scheduled right before t, say
in some interval [t0, t), at critical speed. We will now show that there is a job a such that
between ra and t, jobs a, . . . , b are all scheduled at critical speed. If t0 = rb, we simply set
a = b. Otherwise assume that rb < t0. If right before t0 the schedule mode is off, then we can
slightly shift the execution interval of b to [t0− ε, t− ε), to obtain a schedule of the same cost
but with dominating work towards the beginning. W.l.o.g. we can assume that right before
t0 a job b− 1 is scheduled in some interval [t1, t0). By the job span property of Lemma 1 and
Lemma 3 it is scheduled at speed s?. We iterate the arguments on t1 and b − 1, eventually
reaching a job a with the required property.

The same argument applied symmetrically shows the existence of a prefix (b + 1, c) if u
is not the end of I. Now if both suffix and prefix exist, and rb+1 6 t, then we could shift
the execution of b + 1 from [u,wb+1/s

?) to [t, wb+1/s
?), yielding a schedule with more work

dominating towards the beginning. The cost of the new schedule remains either the same or
it is reduced by L, if b + 1 were alone in its block. Therefore we can assume w.l.o.g. that
t < rb+1.

To proceed to our dynamic programming algorithm we need one more property of suffixes
and prefixes implied by the following definition.

Definition 3. For a given subinstance (i, j) we define two functions f, h : {i, . . . , j} →
{i, . . . , j} as follows: f(a) is the highest index job b ≤ j such that for all a ≤ k < b,
ra + (wa + . . . + wk)/s

? > rk+1, while h(k) is the highest index job c ≤ j such that for all
k < ` ≤ c}, dc − (w` + . . .+ wc)/s

? 6 d`−1.

Lemma 5. Any suffix (a, b) satisfies b = f(a) and any prefix (k, c) satisfies c = h(k).
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The function f requires a little more attention. Since by Lemma 3, the job a− 1 cannot
be scheduled with higher than critical speed, we can assume that a suffix (a, b) is such that a
is the smallest index job with f(a) = b. So from now on we restrict the domain of f to those
jobs. This allows f to be invertible, i.e. a = f−1(b). Note that by definition of f , the job j
is in the co-domain of f , meaning that f−1(j) is defined.

6 The dynamic program

For every subinstance (i, j), we denote by Yi,j the minimum cspeed cost plus g(rj+1 − di−1),
and by Oi,j the minimum cspeed + cmode cost. If subinstance (i, j) is infeasible we set Yi,j , Oi,j
to +∞. For convenience we denote g? := (g + (s?)α)/s?.

j

j

j

di−1

b+1b=f(a)a

k j...

...

i

h(i)...i

i

i c=h(b+1)

rj+1

Figure 3: The four cases in (1) of the dynamic program.

Theorem 1. The value Oi,j satisfies the following recursion. If j = i − 1, then Oi,j =
min{L, g(rj+1 − di−1)}, otherwise, let k = f−1(j).

Oi,j = min


Yi,j
L+ g?(wi + . . .+ wh(i)) +Oh(i)+1,j

Yi,k−1 + g?(wk + . . .+ wj) + L
minYi,a−1 + g?(wa + . . .+ wb) + L+ g?(wb+1 + . . .+ wc) +Oc+1,j ,

(1)

where the inner minimization is over all jobs a ∈ {i + 1, . . . j} ∪ {b, c} with b = f(a), b < j
and c = h(b+ 1). As usual if there are no such jobs, the value of this inner minimization is
+∞.

Proof. The case j = i−1 is simple, since the optimal empty schedule is either idle or shutdown
depending on the span of [rj+1, di−1).
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Now for some i ≤ j, consider the subinstance (i, j). By induction on j − i, we can show
that for each of the four cases in (1) there is a feasible schedule with the corresponding cost.
For the remainder of the proof, we consider a schedule S minimizing cspeed + cmode for this
subinstance, and we show that one of the four cases yields its cost.

If S is never power down, then the contribution of cmode is exactly g(rj+1−di−1), and the
contribution of cspeed is minimal. So the first case applies.

Now suppose that there is some interval [t, u) where the schedule is power down, [t, u) is
inclusion-wise maximal and it is the first interval. There are several cases now, depending on
the conditions t = min I, u = max I, where I is the interval associated to the sub-instance
(i, j).

It cannot be that both conditions are true, since this means that the schedule is empty,
which contradicts the case assumption i ≤ j.

If t = min I and u < max I, then by Lemma 4 there is a prefix (i, c) of the form c = h(i).
The portion up to dc of this schedule has a contribution to cost equal to L+g?(wi+ . . .+wc),
and by the composition of schedules, its remainder has a contribution of Oc+1,j . Hence, the
second case of (1) applies.

If t > min I and u = max I, similarly there is a suffix (k, j) and the cost of the schedule
up to rk is Yi,k−1, since there are no power down states, while the remainder contributes a
cost of g?(wk + . . .+ wj) + L. This time it is the third case of (1) which applies.

If t > min I and u < max I, again by Lemma 4, there is a suffix (a, b) and a prefix (b+1, c)
around a power down interval [t, u), and by Lemma 5 we have b = f(a), c = h(b+ 1). Then,
the cost of the schedule decomposes into the cost Yi,a−1 for the part before ra, since it does
not contain power down states, the cost g?(wa + . . . + wc) + L for the part in [ra, dc), and
the cost Oc+1,j for the remainder, by the composition of schedules. In this final case, the last
case of (1) applies.

7 Complexity analysis

The dynamic program uses O(n2) variables, and for each one of them a minimization over
O(n) values is required. Therefore, it can be run in O(n3) time.

For a fixed subinstance (i, j) the functions f, h can be computed by simple scanning
procedures in linear time as following (we omit their proof of correctness).

• Initially ` := i and t := ri. For all k = i, i + 1, . . . , j, if t < rk, then ` := k, t := rk. In
any case f(`) := k, t := t+ wk/s

?.

• Initially ` := j and t := dj . For all k = j, j − 1, . . . , i, if t > dk, then ` := k, t := dk. In
any case h(k) = `, t := t− wk/s?.

The computation of the values Yi,j however is crucial, there are O(n2) of them and the
best known algorithm to compute the optimal schedule for each of them runs in time O(n2)
[6], which would lead to a total running time of O(n4). We now describe a procedure which
permits to compute Yi,j iteratively from Yi−1,j in total time O(n2). Therefore we can compute
all optimal cspeed subschedules in total time O(n3).
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7.1 Computing Yi,j

The general outline is as follows. We first compute Y1,n in time O(n2) using the algorithm
from [6]. Then in a first right to left scan we compute all values Y1,j for j = n − 1, . . . , 1.
After that for every j, we apply a left to right scan to compute all values Yi,j for i = 2, . . . , j.
This left to right scan works as follows.

It receives as input the cspeed-optimal schedule S for the subinstance (1, j), and applies
the following squeezing procedure to S. The schedule S consists of a sequence of blocks, every
block spans some time interval [t, u) and contains a sequence of jobs running at some constant,
but block dependent speed.

During the procedure we keep track of the first block which spans time interval [t, u) and
schedules the jobs i, . . . , b at speed s. Initially i = 1. We consider the action of squeezing the
block to the interval [u− `, u) by increasing the speed s, where ` := u− (wi + . . .+ wb)/s.

While i ≤ j, we decide which of the following events happens first, and execute the
corresponding actions.

unfeasibility event: It happens when di−1 = di or rj = rj−1. Since in the subinstance (i, j)
all jobs are restricted to the interval [di−1, rj+1], it follows that one of the jobs i, j is
restricted to an empty interval, and cannot be scheduled with finite speed. In this case,
we announce that subinstance (i, j) is unfeasible, we remove job i from S, and increase
i.

merge event: It happens when the current speed s equals speed(u). In this case we merge
the first two blocks. (Note that if u = db, then this event will immediately be followed
by the next split event for the merged block.)

split event: At some moment, a job i ≤ k < b from the first block might complete at its
deadline. This happens when the speed s reaches ŝ(k, b, u) := (wk+1+ . . .+wb)/(u−dk).
In this case the block splits into two new blocks with the first of them restricted to the
interval [t, dk) and to the jobs i, . . . , k.

deadline event: When s = (wi + . . .+wb)/(u− di−1), the current schedule S is the optimal
cspeed-schedule for the subinstance (i, j). In this case we output S as Yi,j , we remove
job i from S, and increase i.

At any moment the algorithm maintains a schedule S for the subinstance consisting of all
jobs i, . . . , j with release times and deadlines restricted to the interval [u− `, rj+1]. We omit
the proof of optimality of S which should be straightforward.

It remains to specify how the next event can be determined in constant time. The merge
and deadline events, are both specified by a single expression determining the value ` at which
they occur. For the split event the situation is more subtle, since there are b − i candidates
ŝ(k, b, u), one for each job i ≤ k < b. We handle this by precomputing ŝ. Note that for a
given job b, there are only O(n) different times u to be considered, and they are of the form
db, rb+1 and rj+1 for all 1 ≤ j ≤ n. This is because every block of an optimal schedule ends
either at the end of the interval I if it is the last block, or at one of db, rb+1, depending on
whether the next block has lower or higher speed.

This means that there are O(n3) values of the form ŝ(k, b, u) to compute, and this can be
done for each pair b, u in linear time, by iterating k from b− 1 to 1. In the procedure above
we need to determine the job k, i ≤ k < b minimizing ŝ(k, b, u). Clearly, such a job k can
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Figure 4: Different events during the squeeze procedure

be computed in constant time for each triplet (i, b, u), again by iterating i from b− 1 to 1 for
each pair b, u.

In the event loop described above every job is responsible for at most three events. There-
fore its complexity is O(n) for fixed j, which yields to a total running time of O(n3).

8 Conclusion

We provided a polynomial time algorithm for the speed scaling with power down schedul-
ing problem, for the special case of agreeable deadlines. This assumption leads to strong
structural properties of optimal schedules, which are non-preempted and, moreover, permit
a partitioning leading to a dynamic programming algorithm. So the proposed algorithm
could not be generalized to instances with arbitrary deadlines. However, we believe that the
squeezing procedure could be of independent interest.
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