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Abstract

As energy consumption is becoming critical in Cloud data centers, Cloud
providers are adopting energy-efficient virtual machines management systems.
These systems essentially rely on “what-if” analysis to determine what the con-
sequence of their actions would be and to choose the best one according to a
number of metrics. However, modeling energy consumption of simple opera-
tions such as starting a new VM or live-migrating is complicated by the fact
that multiple phenomena occur. It is therefore important to identify which fac-
tors influence energy consumption before proposing any new model. We claim
in this paper that one critical parameter is the host configuration, characterized
by the number of VMs it is currently executing. Based on this observation,
we present an energy model that provides energy estimation associated with
VM management operations, such as VMs placement, VM start up and VM
migration. The average relative estimation error is lower than 10% using the
transactional web benchmark TPC-W, making it a good candidate for driving
the actions of future energy-aware cloud management systems.

Keywords: Green computing, Cloud computing, Virtual Machine
Management, Energy model, Virtual Machine migration.

1. Introduction

Advances in distributed systems have historically been related to improving
their performance, scalability and quality of service. However, the energy con-
sumption of these systems is becoming more and more concerning. Although
the emergence of Cloud Computing has led to a massive virtualization of the
resources, their energy cost is still real and rapidly increasing due to a grow-
ing demand for Cloud services. As an example, for 2010, Google used 900,000
servers which consumed 1.9 billion kWh of electricity [1]. This ever-increasing
electricity bill puts a strain on operating expanses, and has thus led researchers
to look for more energy-efficient frameworks.
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The most common approach to save energy in Cloud infrastructures con-
sists in consolidating the load on the smallest possible number of physical re-
sources [2], thus making it possible to switch idle machines to sleep modes [3].
To this end, scheduling heuristics are used for allocating new virtual machines
(VMs) or for re-allocating running VMs in conjunction with live-migration tech-
niques for dynamic consolidation, with a close-to-zero downtime.

In this paper, we propose and evaluate an experiment-driven model to esti-
mate the energy consumption associated to VM management operations, such
as VM placement, VM start up and VM migration. This model provides reliable
and accurate energy consumption values, which are required by energy-aware
VM management frameworks in order to take efficient decisions.

1.1. Motivating example

Cloud providers offer on-demand computational resources in the form of vir-
tual machines, disks and network functions. These resources can be used freely
by the tenants. Meanwhile, the provider may perform VM management opera-
tions, such as create/delete, suspend/resume, shut down/restart and migrate in
order to reduce the energy consumption of the platform or simply for mainte-
nance purposes or to redistribute the load. These operations can be performed
in different ways leading to different energy consumption.

A scenario based on consolidation illustrates the variability in energy con-
sumption of two typical algorithms in Figure 1. The consolidation goal is to re-
duce the number of physical hosts where VMs are allocated. The example starts
with four identical hosts (same hardware) and eleven identical VMs uniformly
distributed among the hosts (left-side of Figure 1). The final configuration in
both cases has only two provisioned hosts – allowing to switch off the two others.

Figure 1 on the bottom shows the consumption for the two algorithms: the
first-fit consolidation where all VMs are moved to host 1, and the balancing
consolidation where VMs are uniformly distributed between host 1 and host 2.
Our experimental results provide the energy overhead due to the migrations
and the power consumption of the hosts after the re-configuration. Despite
the numerous approaches based on the first-fit algorithm in the literature [2],
the balancing consolidation performs better on this example. Indeed, it saves
12% of the energy with respects to the first-fit consolidation for the migration
operations, and the final consumption of the two hosts is less by 4.5% with this
configuration. In particular, this example clearly highlights that identical VMs
are not equal in terms of energy consumption.

This paper argues that VM management systems must be aware of the en-
ergy consumption of different operations (such as VM allocation, VM start up
and VM migration) and must have an accurate energy model of their physical
hosts depending on their configuration (i.e. number of hosted VMs) in order to
be truly energy-efficient. More details about these experiments are provided in
Section 6.
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Figure 1: Energy overhead depends on the consolidation algorithm.

1.2. Experimental evaluation

This paper targets online applications hosted by web servers on Cloud in-
frastructures and represented here by the TPC-W benchmark [4] for evaluation
purposes (Section 5). TPC-W is a transactional web benchmark simulating a
Web-based shop for searching, browsing and ordering books. We have validated
the proposed energy model through two use-case scenarios using OpenStack as
the Infrastructure-as-a-Service Cloud layer. In the first scenario, the system
has a workload peak which produces an increasing number of VMs allocated on
the physical host. In the second scenario, migrations and VMs starts-up occur
in a system with several hosts. In both cases, the model is able to predict the
involved energy consumption with an average relative error lower than 10%, and
thus to adapt the system accordingly.

The applicability of the model is studied over a realistic scenario (Section 6).
In particular, we study overcommit situations where a server hosts more VMs
than it should with respect to its physical capacities and the virtual resource
specifications of the hosted VMs. Although this behavior is not often studied
in literature, it is frequent on Cloud infrastructures [5, 6]. The model is trained
over a simple scenario and then applied to a more complex scenario on which it
is used to evaluate the energy-efficiency of three consolidation algorithms. We
hereby demonstrate the ability of the model to provide valuable results for a
what-if analysis. Experiments on a real platform exhibit an average relative
error lower than 10%. The advantages and drawbacks of our model are further
discussed in Section 7.

1.3. Contributions

In summary, this paper makes the following key contributions: (1) we pro-
vide an experimental study of the energy consumption of VM management
operations under realistic workload conditions including overcommit situations,
(2) we propose an energy model for physical host consumption, (3) we evaluate
the accuracy of this model via experimentation on a real system deploying web
applications, and (4) we show its applicability and how it can significantly help
Cloud management systems to take truly energy-efficient decisions.

The rest of the paper is organized as follows. Section 2 introduces the re-
lated work. Experimental measurements are presented in Section 3. Section 4
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describes the model for energy consumption estimation. Section 5 presents re-
sults in model estimation. The model calibration methodology is described in
Section 6. Section 7 discusses the present work, and Section 8 concludes and
presents future directions.

2. Related work

Energy models have mainly been studied in the context of a single host, a
single virtual machine or an entire cluster [7]. The virtualization proposes to
improve resource utilization through dividing one physical server into multiple
isolated virtual machines. Resources sharing makes complex to leverage experi-
ences from previous efforts on energy estimation in single host [8, 9, 10, 11, 12,
13] and on energy estimation in cluster models for data centers [14, 15].

In virtualized environments, we distinguish previous models to estimate
power consumption of a single VM and previous models to estimate power
overhead during live-migration. In the rest of this section, we discuss research
in both directions.

2.1. Energy-efficient VM management techniques

On the one hand, heuristic-based methods for VM allocation take practical
decisions to satisfy immediate goals, such as maximizing the number of idle
hosts [16, 17, 18], minimizing the number of VM migrations [19], or determining
the most energy-efficient available host for each new VM [20, 21]. However,
solutions derived from heuristics are not guaranteed to be optimal in the long
term, especially in heterogeneous environments [22]. Therefore, it is unclear
which heuristic will guarantee the most energy-efficient system. On the other
hand, although live-migration leads to almost no performance degradation, it is
not energy-free. While for the hosts, the migration cost mainly depend on the
VM size and network bandwidth [23, 24], the sequential aspect of multiple VMs
migration has also an impact [25], and widely-used Cloud software platforms,
like OpenStack [26] for instance, perform multiple migrations in a sequential
way. These points enlighten the necessity of accurate energy models of VM
management operations for applying the adequate energy-efficient technique.

However, defining an accurate energy consumption model for VMs is still
an open challenge [22]. This is mainly because the energy consumption de-
pends on multiple factors: the workload, the hardware, the host configuration,
the VM characteristics, etc. Furthermore, determining the suitable parameters
which describe the inherent properties is crucial to enforce the model. Previous
work [27, 28, 29, 30, 31, 32] has focused on models based on factors, such as
the server hardware, the Cloud software stack (such as the hypervisor and the
management software) or the VMs resources (such as CPU, memory, disc and
cache). However, the impact of the host configuration has been slightly studied.
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2.2. Energy model for VM management operations

This paper presents directions for a comprehensive energy-estimation tool
assuming that the VM management system performs actions sequentially, as it
is often the case in current Cloud software platforms [26]. This means that if
the system receives two requests (e.g. a VM creation and a VM migration), it
waits for the first one to finish before executing the other one. Our model is
built over a wide set of experiments aiming at observing variations according
to VMs management operations, host configuration and workload application.
This experimental study (Section 3) provides helpful information claiming for
an energy model based on VMs management operations and hosts configuration.
The proposed model (Section 4) takes into account the host configuration, and
in particular the number of already running VMs on this host.

In [33], the authors study the energy consumption according to the number
of VMs allocated in a single host and to the number of virtual CPU. Similarly to
our motivating example (Section 1.1), they show that the energy consumption
depends on the previous configuration of the host. However, in their experi-
ments, the number of virtual cores is never greater that the number of physical
cores. So, they do not explore overcommit situations, which are frequent in
Cloud platforms [5, 6], although not studied in literature from an energy point
of view. In this paper, we explore host configurations with CPU overcommit,
and we show that the proposed model works for these overcommit situations.

2.3. VM power models

In [31], the authors propose a linear power model in terms of CPU utilization,
memory (last level cache misses) and disk, with a linear regression to learn model
parameters. Authors achieve a total power error on the host of 1.6 Watts to 4.8
Watts.

Another linear model is presented by Bohra and Chaudhary in [27] consid-
ering CPU, memory, disk and cache. The principal component analysis obtains
a high correlation between CPU and cache; and between disk and DRAM. This
fact motivates the utilization of two regression models to estimate model pa-
rameters. The results show that the model is able to predict energy power with
an average mean error of 7%.

In [32], Krishnan et al. present a linear model considering CPU and memory.
They indicate the importance in energy consumption of the utilization of the
cache levels and memory level parallelism. The evaluation shows that VM power
is estimated within 7% of the measured value.

Gaussian mixture models are proposed in [30] to estimate power consump-
tion based on architecture metrics (such as IPC, cache, memory usage, among
other performance monitored counters). In the training phase, a set of Gaus-
sian mixture models that represent different architecture interactions and power
levels are obtained. An average prediction error of less than 10% is achieved.

Another linear model based on CPU utilization, memory and disk is pro-
posed in [28]. This model is learned according to the dynamic voltage frequency
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(using the DVFS technique). For the evaluation, up to 10 virtual CPUs are al-
located in servers with 2 cores. The results exhibit an average error lower than
5%.

Based on the major power consumer which is the CPU for a server, a process-
level power estimation is presented in [29]. A polynomial regression is applied
to estimate the power consumed by the CPU in terms of the frequency and the
unhalted cycles for each active process and core. The average estimation error
achieved is below 10%.

In the previous work, we observe three main characteristics. Firstly, pre-
sented models assumes that a VM always consumes the same amount of energy
if the VM performs similar work (e.g. similar utilization of CPU, memory and
cache). Thus, these contributions assume that energy consumption of a VM
is independent of the number of hosted VMs in the hosts. Secondly, the total
number of virtual cores used the running VMs is at most the number of physi-
cal cores (except in [28]). However, in real Cloud platforms, over-provisioning is
common for users, leading Cloud providers to resort to over-commitment [5, 6].
Hosting more virtual cores than the number of physical ones can consequently
affect the assumption that energy consumption of a VM is independent of the
number of hosted VMs on the server. Thirdly, most of the previous work is eval-
uated through benchmarks specifically designed to stress CPU, memory and/or
I/O. However, in real environments, resources do not reach such high utilization
levels, mainly to guarantee performance and quality of service. Only work pre-
sented in [29] employs for their evaluation SPEC JBB 2013 [34], a benchmark
which emulates a supermarket company.

2.4. Live-migration power models

Previous analysis about energy overhead during live-migration shows differ-
ences in the energy consumption for source and destination hosts [35, 11, 36].

In [37], a model based on the VM memory size, the memory transmission
rate and the memory dirtying rate is proposed. The authors not only estimate
the energy overhead during migration, but also the network traffic overhead
and the downtime. However, they assume that energy consumption is similar in
source and destination hosts. The evaluation using Xen hypervisor [38] shows
an average error below 10%.

It is shown in [23] that energy overhead during migration depends on RAM
and available bandwidth. Based on this work, the authors propose in [39] a
power model for estimating the energy overhead of live-migration for an idle
VM. The average error using KVM hypervisor [40] is lower than 10%.

In [41], the authors present a model depending on the CPU utilization (con-
sidering both hosts and the migrated VM), the VM memory utilization, the
available bandwidth and the memory dirtying rate. The evaluation is conducted
through live-migrating a VM in a host where there are already 8 running VMs.
Results using Xen hypervisor with a CPU and memory intensive workload shows
a normalized root mean square error lower than 18%. Authors expended this
work in [42] by proposing a model for network transfers achieving a normalized
root mean square error lower than 9%.
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One can notice that, in the previous work, only one VM is migrated for
the validation of the various models. However, the consolidation usually im-
plies de-allocation of all the VMs of a host. Therefore, migrations are produced
consecutively and energy overhead can be affected due to these successive mi-
grations.

3. Experimental study

We conduct an in-depth experimental analysis of VM management oper-
ations in order to understand their impact on energy consumption. The ex-
periments have been executed on Grid’5000 [43], a French test-bed designed
for experiment-driven research. We base experiments on four servers equipped
with two 6-cores Xeon E5-2630@2.3GHz processors (12 cores in total), 32 GB
of RAM, 10 Gbps Ethernet and embedding with a Nvidia Tesla M2075 GPU
accelerator. The power consumption is collected externally at each second for
each server using watt-meters provided by the SME Omegawatt1 specially for
the Grid’5000 platform. We use OpenStack Icehouse [26] to dynamically create
VMs through the KVM hypervisor [40]. VM deployment is relying on an NFS
server (Network File System) for the storage. This solution is well suited for web
servers, and has a facilitating impact on VM live-migration. The VMs are con-
figured with 4096 MB memory, 80 GB of virtual disk and 4 virtual CPUs. This
configuration is similar to Amazon EC2’s m4.xlarge instance type (4 vCPU, 16
GB of memory), although with less memory [44]. As the hosts considered in
this experimental study comprise 12 cores each, without overcommit, they can
only run three of such VMs each.

We create realistic workload by running the MySQL+Java version of TPC-
W in the VMs, as this version is representative of current Cloud applications.
TPC-W is a transactional web benchmark which simulates the activities of a
business oriented transactional web server [4]. TPC-W allows three profiles of
web traffic (called ordering, browsing and shopping). The main traffic profile
used is ordering, where the number of book’s purchases is large – this means,
large number of write operations into disk. Other TPC-W parameters are sum-
marized in Table 1. TPC-W measures the throughput in number of WIPS
(Web Interactions Per Second) that the server manages to sustain. This metric
is employed to characterize the application performance.

Summarizing, each VM has the virtual hardware described above and runs
a TPC-W server. We therefore measure two metrics: the power consumption
of each physical server, and the throughput measured in WIPS of each TPC-
W server, each one running in a single VM. Each experiment was run on the
four different servers. Following figures display the average measurement results
performed on these four servers.

We study three kinds of VM management operations: the VM allocation in
a single host (Section 3.1), the VM start up (Section 3.2) and the VM migration

1http://www.omegawatt.fr/gb/index.php
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Table 1: TPC-W configuration parameters.

Number of browsers 100
Transaction Mix Factory
Ramp-up time 600 sec
Ramp-down time 600 sec
Measurement time 1800 sec
Slow-down factor 1.0 (default)
Nb. customers 144000
Nb. items 10000
Think time multiplication 0.25
Maximum errors allowed unbounded
Maximum number of images down-
loaded at once

4

(Section 3.3) Then, we study the impact of the workload profile in Section 3.4
and the influence of the GPU accelerator in Section 3.5.

3.1. Impact of the number of VMs allocated in a host

Our first experiment evaluates how many VMs a single host can manage in
an energy-efficient way. The scenario consists in increasing the number of VMs
put on a single host. Figure 2 shows the power consumption and throughput
depending on the number of VMs running on the host. The X-axis shows the
number of VMs in the host, whereas the Y-axes present three metrics: the
power consumption in Watts (blue circles, left side), the total throughput over
all VMs in WIPS (green triangles, right side), and the power/performance ratio
in Joules/WI (Joules over number of web interactions, red squares).

Figure 2: Power consumption and throughput when varying the number of VMs in the host.

The figures show that the power consumption and VM throughput increase
up to 11 VMs per host, but increasing is linear up to 8 VM. If we keep increasing
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Table 2: Average power consumption per VM.

Nb. of VMs 1 2 4 6 8 9 10
Power per
VM (W)

67.5 40.3 26.1 21.1 20.9 19.8 18.9

the number of VMs, then the consumed power starts decreasing from 11 VMs
and throughput also drops at 11 VMs. The optimal power/throughput ratio is
obtained using 9-10 VMs per host.

If focusing only on throughput, the most efficient configuration is the one
ensuring linear scalability: so 8 VMs per host at maximum. However, main-
taining a maximum of 8 VMs per host is not the most power-efficient case. For
example, a system with 1 host with 10 VMs spends less power (219.84 W) than
a system with 2 hosts: one with 8 VMs and another with 2 VMs, (335.76 W)
saving 52.73% of power. This relationship between power and throughput cor-
responds to the red line in Figure 2, and shows that placing either 9 or 10 VMs
per host is more power-efficient than keeping 8.

Regarding power consumption in details, Figure 3 presents a synthetic view
of the power consumption distribution using box-plot. Classically, the box-plot
has a box and a whisker plot for each case. The box extends from the 25th
to 75th percentile with a red line at the median. The whiskers extends from
the box, and points outside the whiskers are considered outliers. Distances
from whiskers to box are a factor of 1.5 of the interquartile range (box height).
Finally, outliers are plotted individually.

In the power distribution, Pearson correlation2 coefficient (0.97) with the
number of VMs in [1, 10] shows a strong linear correlation between the number
of VMs and the power consumption. A special case occurs for 6 VMs: where
the 75th percentile (top on the box) is lower than the regression line. A dotted
line is employed for the end of the linear regression because of the particular
unstable behavior of servers when heavily over-committed.

As we said, previous work assumes that the power consumption is a linear
function in the number of VMs. Concretely, the assumption on the power of
the host is Phost = Pidle +

∑
v∈VMs Pv, where Pidle is the idle power of the

host and Pv is the power of the VM v. In our case, the idle power is 95.92W
(measured independently) and all the VMs perform the same work having the
same consumption before saturation (less than 9 VMs). However, in Table 2,
we show the average power value for one VM, Pv, and hereby evidencing that
the power consumed in one VM depends on the number of running VMs on the
host.

From this first experiment, we can draw several conclusions. Firstly, in
order to achieve energy-efficiency, allowing small degradation of the throughput
can generate important power savings, as it has already been noticed in [22].

2http://mathworld.wolfram.com/CorrelationCoefficient.html
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Figure 3: Details on power consumption by increasing the number of VMs in the host.
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Secondly, power consumption is significantly impacted by the host configuration
(i.e. the number of running VMs).

3.2. Impact of VM start up

We now investigate the power consumption overhead and throughput degra-
dation during a VM creation. Figure 4 shows an example of VM creation on a
host already running one VM. After 1200 seconds, a new VM is created. VM
start-up finishes when TPC-W starts to run (in this example it takes 28 seconds).
As expected, the throughput does not increase during the creation. However,
starting a new VM causes a spike in power consumption (with consumption
peak greater than 180W, representing an increase of about 15% compared to
the original consumption).

Figure 4: Example of VM start-up: power consumption and host throughput.

After this example, we provide a general study in Figure 5 representing
average power consumption and throughput variation during a VM creation.
The left side (blue colors) corresponds to the total power consumption, while
the right side (green colors) represents the average throughput (WIPS) across
all the VMs. Power consumption bars (respectively throughput bars) are split in
two: first, the power consumption (respectively throughput) before VM start up;
and second, the power consumption (respectively throughput) observed during
VM start-up (averaged over the start-up duration).

Figure 5: Throughput and power consumption overheads upon VM start-up.
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Table 3: Average power consumption overheads upon VM start-up.

Nb. of VMs 1 3 5 7 8 9
Power overhead 5.1% 3.2% 3.1% 6.0% 3.3% 1.9%

While the power consumption is always greater during start-up, the through-
put does not suffer degradation except for 9 VMs. One can notice that degrada-
tion happens passing from 9 to 10 VMs, which confirms the previous conclusion
asserting that the 10 VMs case breaks the linear scalability.

Details about power consumption during start-up process are presented in
Figure 6. The gray line represents the linear regression over data obtained from
1 to 8 VMs before the VM start-up. We see that power increases during start-up
from 1 to 8 VMs. Moreover, power consumption overhead is smaller for 6 VMs
than for the other cases.

Figure 6: Details in power consumption overhead upon VM start-up.

We have explored this phenomenon more deeply in Table 3, representing the
power overhead percentage of VM start-up. We observe a decreasing trend in
the power overhead of 1-5 and 7-9.

We clearly see that starting up a VM is not power-neutral. Hence an energy-
efficient system should guarantee a minimum lifetime after VM creation. Fur-
thermore, this minimal lifetime depends on the previous configuration on the
host.

3.3. Impact of VM migration

We now evaluate the impact on power consumption and throughput of VM
live-migration. The scenario consists of migrating a VM between two hosts
which already contain some running VMs. Under the live-migration with pre-
copy approach [45], the VM continuously runs while its memory is copied from
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source host to destination host in several runs (pre-copy phase). Requests are
processed by the VM in the source host, until the system is notified of the pre-
copy phase termination. At this point, the VM is suspended to perform the last
copy (stop-and-copy phase). Finally, requests start to be processed by the VM
in the new location.

Figure 7 presents the experimental results of a VM migration in terms of
power (top) and throughput (bottom). Throughput is equal to zero during few
seconds, waiting for the system to be informed of the new location. Power
consumption overhead is investigated in the source and in the destination hosts
separately.

Figure 7: Example of power consumption and throughput upon VM migration.

During migration, the power consumption of source host starts to decrease,
while in the destination host, it increases. Dotted lines represent the average
power consumption in source and destination hosts, before and after migration.
Interestingly, it takes about 20 seconds after the end of the migration for both
hosts to reach power consumption at levels corresponding to the number of
allocated VMs. We believe that these 20 seconds are due to the VM post-copy
algorithm. Hence, the experiment show that live-migration produces power
consumption overhead beyond the migration time.

For a deeper understanding of the impact of migration, we present a general
study where a VM is migrated after 1200 seconds. Source and destination hosts
already have a number of static (i.e. non-migrated) VMs. This means that we
distinguish three types of VMs: migrated VM (mig), static VMs in the source
host (st-src) and static VMs in the destination host (st-dst). In the following,
for the sake of clarity, we take the same number of static VMs in source and
destination host for a given experiment (st-src = st-dst).

Results are summarized in Figure 8. The X-axis represents the number
of static VMs for each host (source and destination). Fixing the number of
static VMs, we have the power consumption of the source and destination host:
in lighter blue the power consumed before migration and in darker blue the
power consumed during migration. On the throughput side, we consider three
metrics: one for the migrated VM, one for the static VMs in the source host,
and, respectively, in the destination host.

During migration, the power consumption of the destination host increases
(1.35%, 7.63%), and in the source host, it does not have a stable behavior either
(−2.96%, +0.92%).

Details about the total power consumption overhead are provided in Fig-
ure 9. The total power is the accumulated power consumed in the source and
destination hosts during migration. The gray line represents the regression line
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Figure 8: Overheads upon VM migration.

over the total power consumption before the migration. The power increment
is more significant in extreme cases (VMs per host = 1, 2, 8 and 9), while for
4 to 6 VMs per host, power does not significantly increase during migration.
As expected, the total power consumption increases during migration (0.55%,
2.69%).

Figure 9: Details in power consumption overhead upon VM migration.

As explained in the example from Figure 7, it takes time for the power
consumption in the destination host after migration to stabilize. To explore
this issue, we determine the minimum time after a migration where the average
power consumption in the destination host, on a window of 10 seconds, is less or
equal than the percentile 60% of the power consumption in source host before
the migration. The 60% threshold has been determined empirically to highlight
the time when a migration has finished. We are exploiting the fact that after
migration, the destination host allocates the same number of VMs than the
source host before the migration. These times are summarized in Table 4. We
observe a non-negligible impact on the power consumption: the time to recover
expected power consumption varies between 1 and 271 seconds depending on
the host configuration.

The throughput of non-migrated VMs is not affected by the migration, as
shown in Figure 8. However, the migrated VM has an important degradation
reducing its throughput by 21% to 29%. Although migration takes only a few
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Table 4: Time to recover expected power consumption after a VM migration.

Nb. of VMs 1 2 4 6 8 9
Delay (sec) 1.3 14.8 36.5 97.0 61.8 271.5

seconds, the impact of the resulting throughput degradation will largely depend
on the moment it happens. The average down-time varies from 2.73 to 3.30
seconds being similar to that obtained in the literature [46]. We expected the
downtime to be independent of the hosts configuration because hosts are not
saturated. However, our experimental study shows that it is not the case.

As other studies [11] have already pointed, live-migration produces energy
overhead occurring mainly in the destination host. Moreover, we have also
observed that migration produces power consumption overhead also after the
migration time. This fact is a sensitive issue in consolidation, because migrations
are often produced consecutively. Finally, we see that the power consumption
overhead depends on the number of running VMs in the hosts.

3.4. Impact of workload profile

We now evaluate the impact of the client behavior as it is influencing the
workload on the servers. As previously stated, TPC-W allows to simulate three
different profiles by varying the ratio of browse to buy transactions: shopping,
browsing and ordering.

Figure 10 shows a scenario where the number of VMs put on the same
host increases for the TPC-W profiles ordering and browsing. While the X-
axis represents the number of VMs in the same host, the Y-axes represent two
metrics: the average power consumption in Watts (blue colors, left side) and
the average throughput in WIPS (green colors, right side).

Figure 10: Power consumption and throughput according to workload profiles.

We observe that throughput is equal for the two profiles between 1 and 9
VMs. From 10 VMs however, ordering workload starts to degrade, reaching
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saturation at 11 VMs. On the other hand, placing fewer that 13 VMs with
browsing workload has no negative impact on the throughput. This behavior –
faster host saturation with ordering workload than with browsing workload –
was expected, because for ordering, more writes to the disk are performed.

In terms of power consumption, it is larger under ordering than under brows-
ing, while both have the same throughout. The difference is greater as the
number of VMs is increasing. Moreover, under ordering the power consumption
slope changes at 6 VMs, while under browsing the slope break happens at 8
VMs.

3.5. Impact of GPU accelerator

In the previous experiment, all the servers are equipped with an Nvidia
Tesla M2075 GPU accelerator. GPU accelerator is designed to use a graphics
processing unit (GPU) with a CPU in order to accelerate scientific, analytics,
engineering, consumer, and enterprise applications [47].

We investigate the impact of having a GPU accelerator embedded on servers
– although we are not using it. Figure 11 presents the results increasing the
number of VMs in the host for servers with the GPU accelerator and servers
without it (same hardware configuration). As in the previous figures, the X-
axis represents the number of VMs in the same host, the Y-axes represent
two metrics: the average power consumption in Watts (blue, left side) and the
average throughput in WIPS (green, right side).

Figure 11: Power consumption and throughput according to GPU accelerator.

As expected, having an unused GPU accelerator does not improve perfor-
mance. However, even if the GPU accelerator is not used, the power consump-
tion of servers with GPU accelerator is 22% larger than without it. This scenario
highlights that power is wasted if unsuitable servers are used to allocate VMs
that do not exploit all the hardware capabilities.
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Table 5: Model parameters in a host h running m VMs.

VM
operation

Model parameter

Variable Description

- P (m) Power consumption of a host with m VMs (W)

start up
Estart(m) Energy consumption (J)
Tstart(m) Time duration (sec)

migration
Esrc(m) Energy consumption in source (J)
Edst(m) Energy consumption in destination (J)
Tmig(m) Time duration (sec)

4. Modeling energy

Next to the experimental facts studied in the previous section, we formalize
an energy model for the VMs management operations. The model is additive,
this means that the energy consumption of each VM operation (start up and
migration) is added to achieve the total energy consumption for a time period.

At every time t, the system can start a VM management operation. The
energy consumption of the hosts depends on this choice. Lets E(t, h) the re-
configuration energy cost in the host h, that is the energy overhead during the
whole VM operation concerning host h; and t the reconfiguration time meaning
the time to apply the changes. Noting that while start up and migration im-
ply energy overhead during a interval time; if the systems keeps the same VM
placement, the energy consumption corresponds just to one second (assuming
we need to provide energy consumption each second).

From results of Section 3, we know that the reconfiguration energy cost
depends on the previous state of the host. Therefore, in Table 5, we define the
model parameters according to the number of running VMs and the associated
VM operation .

Given m the number of VMs in a host h previous to the reconfiguration, the
reconfiguration energy cost takes the following values:



Neither VM start up nor migration begins at time t in h:
E(t, h) = 0

A VM start up begins at time t in host h:
E(t, h) = Estart(m)

A VM migration begins at time t implying host h:

E(t, h) = Esrc(m)
if h is the source host and has
m + 1 VMs at t

E(t, h) = Edst(m)
if h is the destination host and
has m VMs at t
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An illustrative example is provided on Figure 12 for the VM start up case.
The model has to learn the different parameters, namely P (m), P (m + 1),
Estart(m) and Tstart(m).

Figure 12: Power consumption when starting a VM.

Finally, the energy consumption of a host during a time period I (during
which the number of VMs does not change) is the sum of reconfiguration energy
costs during this period plus its regular energy consumed by its m VMs:∑

t∈I
E(t, h) + P (m) × I

Parameters described in Table 5 are learned from a set of experiences by
linear regression. In the following two sections, we present two realistic scenar-
ios, and we validate our model in both cases. In Section 5, model parameters
are learned from the experimental study previously presented. However, in a
real environment, it is rarely feasible to perform the experimental scenarios of
Section 3 to this end. So, in Section 6, we learn the model parameters from a
single scenario on a running system in order to provide a practical method for
instantiating our model in a realistic environment.

5. Experimental results about model validation

In this section, we validate the model by a set of experiments. These ex-
periments are also designed to show potential use cases of the model. As we
have seen in the motivation example (Section 1), the proposed model aims at
easing the decision process for energy-efficient VM management systems. The
estimation of the energy consumption for the different options offered by the
system gives information to conduct a “what-if” analysis.

Experimental setup. We conduct experiments with the settings already
described in Section 3 with the ordering profile workload.

5.1. First use-case: VM allocation

An efficient VM allocation depends on the energy consumed by the host and
on the throughput produced by the VMs. We have seen in Section 3.1 that a
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small throughput degradation can achieve a high energy savings. In this case,
we use the model to estimate the energy consumption of hosts in order to decide
for the most suitable VM allocation.

(a) Throughput pattern for the first use-case

(b) Different VMs placements for the first use-case

Figure 13: Number of VMs required and throughput produced in a real execution.

We mimic a system having a workload peak which requires a variable number
of VMs. Figure 13a shows the number of VMs required and the throughput
produced in a real execution.

The 10 VMs required by the workload can be allocated in one host or can
use two hosts. We exploit results from Section 3.1, to evaluate the four VMs
placements described in Figure 13b. We have observed that throughput scales
linearly until 7 VMs in the same host. Hence, to maintain linear throughput, the
next 3 VMs are placed in another host (in the top of the figure). On the other
hand, placing 10 VMs in the same host exhibits the largest energy savings with
some throughput degradation (in the bottom of the figure). As intermediate
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placement, between having linear throughput and having the largest energy
savings, we propose two hybrid placements (in the middle of the figure).

We assume that the exact moments to start up and delete the VMs are
known. This is not a major constraint in model validation, because the model’s
goal is to predict energy consumption of VM management operations and not
predicting the actual workload.

Figure 14 presents the results over 10 repetitions. For each possible place-
ment, the figure shows the box plot of the relative error between the value
estimated by the model and the real value. The model estimates the energy
with a relative error lower than 4% (with average 1.50%). This experiment
demonstrates the ability of the proposed model to accurately estimate the en-
ergy consumption of systems with peak loads.
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Figure 14: Relative error in the first use-case is lower than 4%.

5.2. Second use-case: starts and migrations together

VMs start-ups and migrations can happen together in the system and the
model must be able to fit well also during concurrent operations.

For each host, every 300 seconds one VM management operation starts ac-
cording to the scenario displayed on Figure 15. For example, for the host 1
allocating 1 initial VM: firstly, a VM starts at 300 seconds (it has 2 VMs); then
a VM is received from server 2 at 600 seconds (it has 3 VMs); and finally, an-
other VM migrated from server 3 arrives at 900 seconds (it has 4 VMs). The
experiment finishes at 1200 seconds.

Figure 16 presents the results over 10 repetitions. For each host, the figure
shows the box plot of the relative error between the value estimated by the
model and the real value. The model estimates the energy with a relative error
lower than 7% (2.46% on average). This experiment shows that our model
correctly grasps the energy consumption of Cloud systems where VM start-up
and migrations happen together.

From the achieved results, we show that the proposed model performs well
and is able to accurately estimate the energy consumption of VM management
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Figure 15: Start-up and migration events together in the second use-case.

Figure 16: Relative error in the second use-case is lower than 7%.
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operations, even when different operations occur at the same time. In all cases,
the obtained relative error between estimated and real values are below the 7%
line, which is considered as a reasonable accuracy in literature (Section 2).

6. Learning model parameters in a real system

As shown in [11], the instantiation of an energy model is not only influenced
by CPU usage, it is application dependent. This means that the estimation of
model parameters must be done with the application which is intended to run
on the system. In this section, we study how to learn energy parameters for
VM consolidation model from previous information. We present how to learn
the model parameters from a realistic training scenario and we employ another
test scenario to evaluate the model accuracy over the same application.

Training scenario To learn the model, we start with three hosts allocating
eight VMs as shown in Figure 17. Consolidation consists in migrating VMs
running on hosts 2 and 3 to host 1. This means, after consolidation hosts 2 and
3 will be completely free. From this scenario, we infer the average duration and
power consumption of migration in source and destination hosts.

Figure 17: Training scenario for consolidation.

Test scenario In the training scenario, there are not much more choices
about how to perform consolidations. However, in a system with more hosts,
the number of possible options to perform consolidation (and thus consolidation
algorithms) is typically higher – especially if hosts are heterogeneous. As we
have seen in the motivation example (Section 1), each algorithm takes different
migration choices implying different power consumption values.

In the test scenario, we have four hosts with twelve VMs overall as shown in
Figure 18 on the top. In order to have two provisioned hosts after consolidation,
algorithms move VMs from hosts 3 and 4 to hosts 1 and 2. Figure 18 on the
bottom shows the final configurations for three consolidation algorithms called
first-fit, balancing and hybrid.

Results The training set runs 5 times and the test set runs 15 times in order
to obtain statistically meaningful results. Figure 19 shows the relative error in
the energy estimation over the test set. For each consolidation algorithm, the
figure shows the box plot of the relative error between the energy estimated by
the model and the real consumption.

The average error is always lower than 10%. However, some error points are
greater than 10%. Table 6 shows the percent of experiments having an error
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Figure 18: Test scenario for consolidation.
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Figure 19: Average relative error is lower than 10% in test scenario.
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Table 6: Percent of runs having a relative error greater than 10% in test scenario.

First-fit Balancing Hybrid
consolidation consolidation consolidation

17.24% 2.74% 14.71%

greater than 10%. This case occurs when the time actually spent in migration
is larger than the estimated time. Although the power consumption of the
migration is correctly estimated, increasing the time spent in migration produces
a larger error.

7. Discussion

We have proposed an experiment-driven model to estimate the energy con-
sumption associated to VM management operations. This model provides re-
liable and accurate energy consumption estimates required by energy-efficient
VM management frameworks.

The proposed model is intended for online applications hosted by web servers
where levels of resources utilization are fairly stable. For this reason, our model
do not consider performance monitoring counters. In addition, the model does
not cover the energy consumption on the network during migration, as done
in [42] for instance. However, if one wants to build a complex model targeting
different workloads and network consumption, it must be designed based on the
principles settled in our model. On top of this solid basis, the next refinement
of our model will consist in taking into account VM sizes.

In the experimental facts, energy consumption is confronted to through-
put to better understand the energy-performance trade-off. Nevertheless, the
presented model only addresses energy aspects. After the experimental inves-
tigations presented here, we believe an analogous model can be designed for
performance, and it will be the target of a future work.

In addition to the “what-if” analysis enabled by the proposed model, the
energy consumption dependence on the VM management operations shows a
potential to increase energy savings in Cloud platforms. Energy savings could
come from the opportunity to exchange resource-level and application-level in-
formation. While Infrastructure-as-a-Service (IaaS) energy-savings approaches
actually provide energy savings, they can only base their decision on low-level
metrics such as CPU usage, memory, I/O etc. However, these infrastructure-
level metrics are insufficient to give enough insight on the behavior of appli-
cations that generate the workload. Instead of treating applications as black
boxes, we argue that significant energy savings could result from allowing the
consolidation algorithms to access application-level knowledge available at the
Platform-as-a-Service (PaaS) level of the Cloud stack. For example, only the
PaaS layer can know if the workload is expected to decrease in the next few min-
utes, thus provoking the halt of some existing VMs. Making this information
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available in the consolidation system would allow to avoid costly and unnec-
essary actions such as migrating a VM while the PaaS plans to stop it soon.
Such energy-related decisions could be taken by the IaaS using our model to
perform the “what-if” analysis including PaaS information, and could thus lead
to cooperative energy saving strategies for Cloud platforms.

8. Conclusions

In this paper, we investigated the energy consumption associated to VM
management operations such as VM placement, VM start up and VM migration.
Firstly, we studied, through an extensive set of experiments, the performance
and energy consumption, the impact of the different operations and the role of
the number of running VMs on the considered hosts. Secondly, we propose a
model for estimating the energy consumption with an average error lower than
10% for transactional web applications allowing overcommit situations. Such
an average error is similar to the one obtained in literature for estimating the
energy consumption of a Cloud server [31, 27, 32, 30, 28, 29] and the energy
consumption of VM migration [37, 39, 42]. Unlike previous work, this model
shows the relation between the energy consumption induced by a single VM
and server configuration in terms of hosted VMs. In addition, to the best of our
knowledge, our energy model for VM management systems is the first to work in
the case of overcommit situations, that are frequent in real Cloud environment.

As future work, we will extend the evaluation to a wide range of applica-
tions, such as data intensive applications. Furthermore, we will introduce the
throughput behavior in the model to estimate the throughput-energy trade-off
providing a whole picture of the system.
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