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On The Use of Two Reference Points in
Decomposition Based Multiobjective Evolutionary

Algorithms
Zhenkun Wang, Qingfu Zhang, Hui Li, Hisao Ishibuchi and Licheng Jiao

Abstract

Decomposition based multiobjective evolutionary algorithms approximate the Pareto front of a multiobjective optimization
problem by optimizing a set of subproblems in a collaborative manner. Often, each subproblem is associated with a direction
vector and a reference point. The settings of these parameters have a very critical impact on convergence and diversity of
the algorithm. Some work has been done to study how to set and adjust direction vectors to enhance algorithm performance
for particular problems. In contrast, little effort has been made to study how to use reference points for controlling diversity in
decomposition based algorithms. In this paper, we first study the impact of the reference point setting on selection in decomposition
based algorithms. To balance the diversity and convergence, a new variant of the multiobjective evolutionary algorithm based on
decomposition with both the ideal point and the nadir point is then proposed. This new variant also employs an improved
global replacement strategy for performance enhancement. Comparison of our proposed algorithm with some other state-of-the-
art algorithms is conducted on a set of multiobjective test problems. Experimental results show that our proposed algorithm is
promising.

Index Terms

Multiobjective optimization, decomposition, reference points, test instance

I. INTRODUCTION

Recently decomposition based multiobjective evolutionary algorithms (MOEA/D) have received much attention [1]–[5].
These algorithms decompose a multiobjective optimization problem (MOP) into a number of simple subproblems and optimize
them in a collaborative manner. How to decompose a MOP is a major issue in the design of a MOEA/D algorithm.

In principle, any decomposition approach can be used for decomposing a MOP. Although some decomposition approaches
generate a set of multiobjective subproblems [6], most approaches are single-objective decomposition which this paper focuses
on. These approaches divide a MOP into a number of single-objective optimization subproblems. The objective function in each
subproblem is defined by aggregating all the objectives in the MOP in question into a scalar objective by some parameters such
as a direction vector and reference points [3], [7]–[9]. The optimal solutions of these subproblems will be sought by MOEA/D.
Hopefully, all the obtained (nearly) optimal solutions collectively approximate the Pareto front of the MOP. The distribution
of the obtained solutions, which is critical to the approximation quality, can often be determined by the used aggregation
method, the setting of direction vectors and reference points. Some efforts have been made to study how to dynamically adjust
aggregation functions [10], [11] and direction vectors [12]–[14] for obtaining solutions with a desirable distribution on the
Pareto front. However, little work has been done on the effect of referent points in aggregation functions on the distribution
of the final optimal solutions.

The setting of reference points in aggregation functions plays a key role in the performance of MOEA/D. Actually, different
types of reference points could have different impacts on the search behaviors of MOEA/D. Most MOEA/D variants adopt
the ideal point as its reference point. The use of the ideal point would be effective when the population’s diversity is easy to
maintain as argued in [15]. In contrast, a utopian point is helpful for approximating the PF boundary. In [16], a set of reference
points uniformly distributed along the convex hull of PF are employed in MOEA/D for ensuring good diversity. Moreover,
some attempts on the use of the nadir point in MOEA/D can be found in [17], [18]. In [18], the reference point changes from
the ideal point to the nadir point if fewer solutions are obtained in the boundary regions than in the middle region of the
PF after several generations. Very recently, both the utopian point and a generalized nadir point were suggested to be used
simultaneously as the reference points in [19].
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In this paper, we first investigate the difference between the ideal point and the nadir point on their impacts on the algorithm
performance and show that they can complement each other. Then we propose a new variant of MOEA/D using both the ideal
point and nadir points. A new global replacement strategy (GR) [20] is designed and used in the proposed MOEA/D variant to
achieve this purpose. The proposed algorithm is referred to as the MOEA/D-MR (MOEA/D with multiple reference points).
Several state-of-the-art MOEAs are compared with MOEA/D-MR on our constructed test problems.

This paper is organized as follows. In Section II, we show some basic definitions in multiobjective optimization. In Section III,
we explain the motivation for using both the ideal point and the nadir points in the MOEA/D. The proposed algorithm MOEA/D-
MR is explained in detail in Section IV. Performance comparison results are reported in Section V. This paper is concluded
in Sections VI where some future research directions are also suggested.

II. BACKGROUND

A. Basic Definitions

A MOP can be defined as follows:

minimize F (x) = (f1(x), · · · , fm(x))T

subject to x ∈ Ω
(1)

where x = (x1, . . . , xn)
T ∈ Rn is a vector of decision variables, Ω is the feasible search region, and F : Ω → Rm is an

objective vector consisting of m objective functions, i.e., f i(x), i = 1, . . . ,m. If Ω is a closed and connected region in Rn

and all objectives are continuous functions of x, then the MOP in (1) is called a continuous MOP.
In the following, some basic definitions in multiobjective optimization are given.

• Let x, y ∈ Ω, x is said to dominate y, denoted by x ≺ y, if and only if f i(x) ≤ fi(y) for all i ∈ I = {1, · · · ,m}, and
fj(x) < fj(y) for at least one index j ∈ I .

• Let x∗ ∈ Ω, it is called Pareto optimal if there does not exist x ∈ Ω satisfying x ≺ x∗.
• The set of all Pareto optimal solutions in the decision space is called the Pareto set (PS), which can be defined as follows:

PS = {x∗ ∈ Ω| � ∃x ∈ Ω such that x ≺ x∗}
The Pareto front (PF) is the set of the images of all solutions in the PS in the objective space, i.e., PF = {F (x)|x ∈ PS}.

• A point z id = (zid1 , . . . , zidm)T is called the ideal point if z idi = infx∈Ω fi(x), i = 1, . . . ,m.
• A point zna = (zna1 , . . . , znam )T is called the nadir point if zna

i = supx∈PS fi(x), i = 1, . . . ,m.

B. Tchebycheff Decomposition

The weighted Tchebycheff approach is used for decomposition in this paper. As shown in Fig. 1, it defines a subproblem
as follows:

minimize g(x|w, z∗) = max
1≤i≤m

{wi|fi(x)− z∗i |}
subject to x ∈ Ω

(2)

where

• w = (w1, · · · , wm)T is the weight vector with wi ≥ 0, i = 1, . . . ,m and
∑m

i=1 wi = 1.
• z∗ = (z∗1 , . . . , z

∗
m)T is the reference point.
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Fig. 1. Illustration of the Tchebycheff decomposition approach



As shown in Fig. 1, we can define a direction line which goes through the reference point and the optimal solution of
subproblem (2). It can be represented as:

z = φv + z∗ (3)

where φ is the scale coefficient and v = (v1, · · · , vm)T is called the direction vector. v is as follows [9], [12]:

vk =
1
wk∑m
i=1

1
wi

, k = 1, . . . ,m (4)

In practice, wi is changed to 10−6 if wi = 0. The intersection between the direction line and the PF is the optimal solution
of subproblem (2).

III. MOTIVATIONS

In MOEA/D, the optimal solutions of the subproblems collectively approximate the PF. Thus, it is desirable that these
optimal solutions are distributed uniformly along the PF. If a direction line and the PF intersect, the optimal solution of the
corresponding subproblem is the intersection point as discussed in Section II. Otherwise, its optimal solution should be in
the boundary of the PF. Very often, we have no good prior knowledge of the PF shape and position, it is impossible to set
these direction lines properly in advance. Therefore, a fixed setting of direction lines may not efficiently solve the problem. A
popular and commonly used approach for dealing with this issue in the literature is to dynamically adjust the direction vectors
so that the resultant optimal solutions can approximate the PF well [12]–[14], [21], [22]. However, adjusting or resetting all the
direction vectors at the same time is not always an easy task. Moreover, multiobjective search with adaptive direction vectors
is less efficient than the case of fixed direction vectors with respect to the convergence to the Pareto front as discussed in [23].
In this paper, we argue that a good distribution of the optimal solutions can be obtained by appropriately specifying a single
or multiple reference points.
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Fig. 2. Pareto optimal points obtained by the search with the ideal point zid and the nadir point zna respectively for the convex and concave PFs.
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Fig. 3. Direction lines of subproblems defined using zid and the inverted triangular shaped PF.

In the following, we illustrate our idea using the following two examples:

• In the case of a convex PF, the optimal solutions of subproblems are shown in Fig. 2(a) and Fig. 2(b), where z id and zna

are used as reference points respectively. In Fig. 2(a), it is clear that the density of solutions in the central part is much
larger than that near the boundaries. In Fig. 2(b), the opposite situation can be observed. In the case of a concave PF, the
optimal solutions of subproblems with z id are plotted in Fig. 2(c) while those with zna are in Fig. 2(d). It is obvious that
the optimization of subproblems defined by z na will find more solutions in the central part. Since the final population



f1

f2

f3

zid

(a) zid

f1

f2

f3

zna

(b) zna

Fig. 4. Distribution of direction lines of subproblems defined using zid and zna in the three-objective space.

distributions by using z id and zna are complementary, their simultaneous use as the reference points in MOEA/D is likely
to improve its performance to approximate both convex and concave PFs.

• MOEA/D with zid does not perform well on a MOP with an inverted triangular shaped PF as reported in [24], [25].
As shown in Fig. 3 ( [24], [25]), many direction lines do not intersect with the PF (i.e., the shaded area) whereas they
are uniformly distributed in the simplex. This may lead to an undesirable situation where many subproblems can only
find the solutions on the boundary of the PF. It can be observed from Fig. 4 ( [25]), on one hand, the direction lines
of subproblems passing z id are uniformly distributed along the triangular shaped PF. On the other hand, the z na based
subproblems’ direction lines have a even distribution on the converted triangular shaped PF. Therefore, MOEA/D with
both z id and zna can handle the problem of mismatch in Fig. 3 in a very simple manner.

IV. MOEA/D-MR

Based on the discussion in the previous section, we propose to use two sets of subproblems simultaneously in MOEA/D, i.e.,
S = S1∪S2. Subproblems in S1 use zid as the reference point, while subproblems in S 2 adopts zna as the reference point. The
proposed algorithm is called MOEA/D-MR, and its pseudo-code is presented in Algorithm 1. Its some important components,
such as initialization (line 3 of Algorithm 1), reproduction (line 5 to line 14 of Algorithm 1), update and replacement (line 17
to line 19 of Algorithm 1) are further illustrated in the following.

Algorithm 1: MOEA/D-MR

1 Input: MOP, a stopping criterion, N , Tm, Tr, δ;
2 Output: P e;
3 Generate the direction vectors V = V 1 + V 2 = {v1, · · · , vN} for S1 and S2. Work out the neighborhood relations

between direction vectors within V 1 and V 2 respectively. Initialize the population P ← {x1, · · · , xN}, zid and zna;
4 Set P e ← ∅;
5 while the stopping criterion is not satisfied do
6 Q← ∅;
7 for i← 1 to N do
8 if rand < δ then
9 E ← B(i);

10 else
11 E ← {1, . . . , N};
12 end
13 Set xr1 ← xi and randomly select r2 and r3 from E, then generate a new solution x̄i by applying the

reproduction operators on them, and Q← Q ∪ {x̄ i};
14 end
15 Evaluate the function values of each solution in Q;
16 R← P ∪Q;
17 Update zid and zna;
18 P ← GR (R, V, Tr, z

id, zna);
19 Update P e with P ;
20 end



A. Initialization

In MOEA/D-MR, we use two subproblem sets of the same size for simplicity, each set has N
2 subproblems. The direction

vectors of subproblems can be represented as V = V 1 + V 2 = {v1, · · · , vN}. V 1 = {v1, · · · , vN
2 } is the direction vector set

corresponding to S1, and V 2 = {vN
2 +1, · · · , vN} is the direction vector set of S2.

In MOEA/D-MR, the generation of two sets of direction vectors are the same, i.e., V 1 = V 2. Direction vectors in V 1 and
V 2 are uniformly sampled from the (m− 1)-dimensional unit simplex. That is, for every v ∈ V 1 and V 2, each of its elements
takes a value from { 0

H , 1
H , · · · , HH } under the condition

∑m
i=1 vi = 1. H is a user-defined integer. Then the weight vector of

each subproblem can be calculated by using Eq. (4).
The neighborhood relationships between subproblems are obtained within each subproblem set by computing the Euclidean

distances between their corresponding direction vectors. For one subproblem in S 1 or S2, its neighborhood is composed by
T subproblems from the same subproblems set, whose direction vectors are closest to its own direction vector in terms of
Euclidean distance. As suggested in [26], [27], two neighborhoods, the mating neighborhood and the replacement neighborhood
are used in this paper. The former neighborhood is adopted for the mating parents selection and the latter one is used for
determining the replacement range, Tm and Tr are their sizes, respectively.

The initial population P = {x1, · · · , xN} is randomly sampled from the decision space. A randomly generated solution x i

is randomly assigned to a subproblem s i. To initialize z id and zna, we first find all the nondominated solutions in P and let
them form P nd, then set zidi = min{fi(x)|x ∈ P nd} and znai = max{fi(x)|x ∈ P nd}, for all i ∈ {1, · · · ,m}.

B. Reproduction

We use the same reproduction operators as in [4]. That is, the differential evolution (DE) operator and polynomial mutation
operator are employed for producing new solutions in this paper. For the each subproblem s i, B(i) consists of the indexes of
Tm neighboring subproblems. As show in the line 8 to line 13 of Algorithm 1, three mating parents x r1 , xr2 and xr3 are first
selected. Then, an intermediate solution y i = (yi1, . . . , y

i
n) is generated by:

yik =

{
xr1
k + F × (xr2

k − xr3
k ) if rand ≤ CR

xr1
k otherwise

(5)

Then, a new solution x̄i = (x̄i
1, x̄

i
2, . . . , x̄

i
n) is generated by polynomial mutation as follows:

x̄i
k =

{
yik + σk × (bk − ak) if rand ≤ pm
yik otherwise

(6)

with

σk =

{
(2× rand)

1
η+1 − 1 if rand < 0.5

1− (2− 2× rand)
1

η+1 otherwise
(7)

where CR and F are two parameters in the DE operator, the distribution index η and the mutation rate pm are control
parameters in the polynomial mutation operator. rand is a uniform random number from [0, 1]. a k and bk are the lower and
upper bounds of the k-th decision variable.

After the whole reproduction operation, the offspring population Q is evaluated (line 15 of Algorithm 1) and combined with
the parent population P to form R (line 16 of Algorithm 1).

C. Global Replacement

Before performing the replacement strategies for subproblems, the reference points, z id and zna, are updated firstly (line 17
of Algorithm 1). To do so, just as in Initialization, we first find all the nondominated solutions in R and let them form P nd,
then set zidi = min{fi(x)|x ∈ P nd} and znai = max{fi(x)|x ∈ P nd}, for all i ∈ {1, · · · ,m}.

In the following, the replacement operator is conducted to update the current solutions of subproblems with the whole
population R. To achieve this, a new GR strategy with mutual selection between solutions and subproblems is proposed in
this paper (line 18 of Algorithm 1). The proposed replacement strategy can reduce the mismatch between subproblems and
solutions, and thus improve the algorithm performance [20], [28]–[31]. Its implementation is illustrated in Algorithm 2, it
mainly works as the following steps:

• Objective Normalization (line 4 of Algorithm 2): To tackle MOPs with dissimilar PF ranges, the objective values of all
solutions in the population are normalized before the replacement in MOEA/D. For one solution x, the vector ( f̄1, . . . , f̄m)T

of its normalized objective function values is calculated by:

f̄i(x|z∗) = fi(x)− z∗i
znai − zidi

(8)

where, the setting of z∗ depends on the type of subproblems. z ∗ = zid if i = 1, . . . , N/2; otherwise, z∗ = zna.



Algorithm 2: GR (R, V, Tr, z
id, zna)

1 Input: R, V , Tr, zid and zna;
2 Output: P ;
3 P ← ∅;
4 Normalize (R);
5 π ← Associate (R, V, zid, zna, Tr);
6 for i← 1 to N do
7 if π(i) �= ∅ then
8 xj ← arg min

xk∈π(i)
{g(xk|vi, z∗)};

9 if g(xj |vi, z∗) < g(xi|vi, z∗) then
10 P ← P ∪ {xj}, V ← V \ {vi};
11 if xj ∈ R then
12 R← R \ {xj};
13 end
14 end
15 end
16 end
17 while V �= ∅ do
18 Randomly choose a direction vector v i from V ;
19 Find Tr closest solutions to vi among R;
20 xj ← arg min

xk∈Tr(i)
{g(xk|vi, z∗)};

21 if g(xj |vi, z∗) < g(xi|vi, z∗) then
22 P ← P ∪ {xj}, V ← V \ {vi}, R← R \ {xj};
23 else
24 P ← P ∪ {xi}, V ← V \ {vi};
25 end
26 end

Algorithm 3: Associate (R, V, z id, zna, Tr)

1 Input: R, V , zid, zna and Tr;
2 Output: π;
3 d← ∅, π ← ∅;
4 for each xi ∈ R do
5 for each vj ∈ V do
6 Compute dij by Eq. (9) and d(i)← d(i) ∪ dij ;
7 end
8 Sort d(i) in ascending order, and allocate xi to Tr closest direction vectors,
9 i.e., π(k)← π(k) ∪ {xi}, for every vk ∈ Tr(i); /* Tr(i) is the set of Tr direction vectors which

are closest to xi
*/;

10 end

• Assignment of Subproblems for Solutions (line 5 of Algorithm 2): The details of this process are shown in Algorithm 3.
At the end of this operation, each member of the population is associated with T r nearest subproblems. For each solution
xi and each direction vector vj , the distance between them is calculated as follows:

dij = ‖F̄ (xi|z∗)− vj
T
F̄ (xi|z∗)vj
vj

T
vj

‖ (9)

where the setting of z∗ is the same as above. Let Tr(i) is the set of Tr direction vectors which are closet to xi. For each
subproblem vk ∈ Tr(i), we update π(k)← π(k) ∪ {xi}.

• Assignment of Solutions for Subproblems (line 6 to line 16 of Algorithm 2): Since the normalization has been done all
solutions, the aggregation function of each subproblem s i ∈ S can be defined as:

g(x|wi, z∗) = max
1≤k≤m

{
wi

kf̄k(x|z∗)
}

(10)



where the setting of z∗ is also the same as above. Let xj is the best solution from π(i) in terms of Eq. (10). If x j is
better than xi, then match subproblem i with xj and remove xj from the population if xj is still its member.

After the loop, there might be some subproblems without being updated. To deal with this issue, we repeat the following
procedure (line 17 to line 26 of Algorithm 2):

• Randomly chose one subproblem from these subproblems and remove it from them. Find T r closest solutions to its
direction vectors from the population.

• Determine the best one from these solutions. If it is better than the current solution in terms of the objective function
(10), we replace the current solution with it and remove it from the population, otherwise keep the current solution.

Note that the parameter Tr has a great influence on the balance between convergence and diversity. On one hand, a hand, a
small value of Tr encourages the diversity of population. This is because any new solution can only replace the solutions in
a small neighborhood. On the other hand, a large value of T r emphasizes the convergence

D. External Population

In MOEA/D-MR, an external population (P e) is employed to store the non-dominated solutions found during the search.
If the maximum size of P e is exceeded, the overcrowded ones are removed. To do this, the k-th nearest neighbor method is
used to measure the density of each solution in P e. Its details can be found in [32].

V. EXPERIMENTAL STUDIES

A. Performance Metrics

In our experimental studies, two widely-used performance metrics, i.e., the inverted generational distance metric (IGD) and
the Hypervolume indicator (IH ) [33], [34] are adopted in assessing the performance of the compared algorithms.

1) IGD-metric [33]: Let P ∗ be a set of uniformly distributed Pareto optimal points along the PF in the objective space. Let
P be an approximate set to the PF obtained by an algorithm. The inverted generational distance from P ∗ to P is defined
as:

IGD(P ∗, P ) =

∑
v∈P∗ d(v, P )

|P ∗| (11)

where d(v, P ) is the minimum Euclidean distance between v and P . If |P ∗| is large enough, IGD(P ∗, P ) can measure
the quality of P both in convergence and in diversity. When the PFs are known in advance, we choose 500 representative
points to approximate P ∗ for all bi-objective test problems, and 1,000 for the test problems with three objectives.

2) IH -metric [35]: Let y∗ = (y∗1 , y
∗
2 , · · · , y∗m) be a reference point satisfying y∗

i ≥ maxx∈PS fi(x). The IH value of the
approximation S of PF against y∗ is the volume of the region between S and y ∗, which is computed by:

IH(S, y∗) = vol(
⋃
y∈S

[y1, y
∗
1 ]× · · · × [ym, y∗m]) (12)

where vol(·) is the Lebesgue measure. In our experiments, each component y ∗
i of the reference point is set to be zna

i +0.2.

B. Experimental Settings

To verify the efficiency of our proposed method in diversity, a set of nine new test instances formulated in Table I are
exclusively constructed. The major features of these test problems are summarized as follows:

• F1-F3 are three unimodal MOPs with linear variable linkages. The whole or part PF shapes of them are either highly
convex or highly concave. As stated in Section III, F1-F3 can cause difficulties for the decomposition based MOEAs [14],
[36].

• F4 and F5 are two unimodal MOPs with complicated PS shapes. The boundary parts of their PFs are more difficult to
approximate than other parts. F6 and F7 are two multimodal MOPs with complicated PS shapes.

• F8 and F9 are two unimodal triple-objective problems with complicated PS shapes. These two test problems have the
inverted triangle-like shapes. The similar test problems can refer to [24], [37].

We compare our proposed algorithm MOEA/D-MR with four other state-of-the-art MOEAs, i.e., NSGA-II [38], SMS-
EMOA [39], MOEA/D-DE [4] and NSGA-III [40]. NSGA-II is a popular domination based MOEA while SMS-EMOA is a
well-known indicator based MOEA. MOEA/D-DE is a representative steady-state decomposition based MOEA, which is good
at solving the MOPs with complicated PS shapes. NSGA-III is an extension of NSGA-II for dealing with many-objective
optimization, which maintains the diversity of population via decomposition. The detailed parameter settings are summarized
as follows:

1) The setting of population size: N is set to 200 for the bi-objective test problems and 600 for the ones with three objectives.
In MOEA/D-MR, the two subsets S1 and S2 have the same size, i.e., N/2.



TABLE I
TEST INSTANCES

Instance n Variable domains Objective functions Characteristics

F1 x1 ∈ [0, 1], f1 = 1− cos(0.5πx1) +
2

|J1|Σj∈J1
|yj |0.7 Dissimilar PF ranges,

30 xi ∈ [−1, 1], f2 = 10− 10sin(0.5πx1) +
2

|J2|Σj∈J2
|yj |0.7 convex PF,

2 � i ≤ n yj = xj − 0.9sin( jπ
n
), j ∈ 2, · · · , n. linear PS, unimodal,

where J1={j|j is odd and 2 ≤ j ≤ n} and J2={j|j is even and 2 ≤ j ≤ n} separability

F2 30 x1 ∈ [0, 1], f1 = x1 + 2
|J1|Σj∈J1

|yj +
sin(πyj)

π
| Convex PF,

xi ∈ [−1, 1], f2 =

⎧⎨
⎩ 1− 19x1 + 2

|J2|Σj∈J2
|yj +

sin(πyj )

π
| if x1 ≤ 0.005

1
19

− x
19

+ 2
|J2|Σj∈J2

|yj + sin(πyj)

π
| otherwise

piecewise linear PF,

2 � i ≤ n yj = xj − 0.9sin( jπ
n
), j ∈ 2, · · · , n. linear PS, unimodal,

where J1 and J2 are the same with as those of F1. separability
F3 30 x1 ∈ [0, 1], f1 = x1 + 2

|J1|
∑

j∈J1
(1 − e−|yj|) Convex PF,

xi ∈ [−1, 1], f2 =

{
1− 8x4

1 + 2
|J2|

∑
j∈J2

(1 − e−|yj|) if x1 ≤ 0.5

8(1 − x1)4 + 2
|J2|

∑
j∈J2

(1− e−|yj|) otherwise
concave PF,

2 � i ≤ n yj = xj − 0.9sin( jπ
n
), j ∈ 2, · · · , n. Mixed PF, linear PS,

where J1 and J2 are the same with as those of F1. unimodal, separability
F4 30 x1 ∈ [0, 1], f1 = x1 + 2

|J1|
∑

j∈J1
(y)2 Convex PF,

xi ∈ [−1, 1], f2 = 1−√
x1 + 2

|J2|
∑

j∈J2
(y)2 nonlinear PS,

2 � i ≤ n yj =

{
xj − 1.8|x1 − 0.55|cos(5πx1 + jπ

n
) j ∈ J1

xj − 1.8|x1 − 0.55|sin(5πx1 + jπ
n
) j ∈ J2

unimodal,

where J1 and J2 are the same with as those of F1. nonseparability
F5 30 x1 ∈ [0, 1], f1 = x1 + 2

|J1|
∑

j∈J1
(y)2 Convex PF,

xi ∈ [−1, 1], f2 = 1−√
x1 + 2

|J2|
∑

j∈J2
(y)2 nonlinear PS,

2 � i ≤ n yj =

{
xj − [0.75t2cos(16πx1 + 4jπ

n
) + 1.4|t|]cos(4πx1 + jπ

n
) j ∈ J1

xj − [0.75t2cos(16πx1 + 4jπ
n

) + 1.4|t|]sin(4πx1 + jπ
n
) j ∈ J2

nonseparability,

where J1 and J2 are the same with as those of F1 and t = x1 − 0.55. unimodal
F6 30 x1 ∈ [0, 1], f1 = x1 + 0.02

|J1|
∑

j∈J1
(100y2 − cos(10πyj) + 1) Convex PF,

xi ∈ [−1, 1], f2 = 1−√
x1 + 0.02

|J2|
∑

j∈J2
(100y2 − cos(10πyj) + 1) nonlinear PS,

2 � i ≤ n yj = xj − 0.9sin(2πx1 + jπ
n
), j ∈ 2, · · · , n. nonseparability,

where J1 and J2 are the same with as those of F1. multimodal

F7 30 x1 ∈ [0, 1], f1 = x1 + 0.05
|J1| (100

∑
j∈J1

y2 −∏
j∈J1

cos(
20πyj√

j
) + 1) Convex PF,

xi ∈ [−1, 1], f2 = 1−√
x1 + 0.05

|J2| (100
∑

j∈J2
y2 −∏

j∈J2
cos(

20πyj√
j

) + 1) nonlinear PS,

2 � i ≤ n yj = xj − 0.9sin(2πx1 + jπ
n
), j ∈ 2, · · · , n. nonseparability,

where J1 and J2 are the same with as those of F1. multimodal
F8 10 x1, x2 ∈ [0, 1], f1 = 1− x1x2 +

∑n
j=3 y

2
j Linear PF,

xi ∈ [−1, 1], f2 = 1− x1 + x1x2 +
∑n

j=3 y
2
j nonlinear PS,

3 � i ≤ n f3 = x1 +
∑n

j=3 y
2
j nonseparability,

yj = xj − 0.9
∏

2
k=1sin(2πxk + jπ

n
), j ∈ 3, · · · , n. unimodal

F9 10 x1, x2 ∈ [0, 1], f1 = 1− cos(πx1
2

)cos(πx2
2

) + 0.01
∑n

j=3 (100y
2
j − cos(4πyj) + 1) Convex PF,

xi ∈ [−1, 1], f2 = 1− cos(πx1
2

)sin(πx2
2

) + 0.01
∑n

j=3 (100y
2
j − cos(4πyj) + 1) nonlinear PS,

3 � i ≤ n f3 = 1− sin(πx1
2

) + 0.01
∑n

j=3 (100y
2
j − cos(4πyj) + 1) nonseparability,

yj = xj − 0.9
∏

2
k=1sin(2πxk + jπ

n
), j ∈ 3, · · · , n. multimodal

2) Number of runs and stopping condition: Each algorithm is run 30 times independently for each test problem. In each run,
the maximal number of function evaluations is set to 150, 000 for terminating every algorithm.

3) Control parameters in reproduction operators: As suggested in [4], the crossover rate CR and the scaling factor F in the
DE operator are set to 1.0 and 0.5 respectively. In SBX, the crossover probability p c is set to 1.0, and the distribution
index ec is set to 20. In polynomial mutation [41], the mutation rate pm is set to 1/n while the distribution index ηm is
set to 20.

4) The neighborhood sizes: In MOEA/D-DE, the mating neighborhood size Tm is set to 0.1 × N . In MOEA/D-MR, two
mating neighborhood sizes, Tm1and Tm2, are set to 0.05×N . In both MOEA/D variants, the replacement neighborhood
size Tr is set to 5 for F1-F7 and 10 for F8 and F9.

5) Other control parameters: In both MOEA/D-DE and MOEA/D-MR, the probability δ of selecting mating parents from the
whole population is set to 0.8. In MOEA/D-DE, the maximal number n r of solutions replaced by one offspring solutions
is limited to 2.

Other exclusive parameters of these four algorithms are the same as in [4], [38]–[40].



TABLE II
IGD-METRIC VALUES OBTAINED BY MOEA/D-MR AND FOUR OTHER ALGORITHMS ON F1-F9

IGD NSGA-II SMS-EMOA MOEA/D-DE NSGA-III MOEA/D-MR
Instance median best median best median best median best median best

F1 + 1.67E-2 1.49E-2 + 1.42E-2 1.39E-2 − 1.67E-1 1.44E-1 − 3.07E-2 2.35E-2 2.03E-2 1.85E-2
F2 + 3.00E-3 2.90E-3 + 2.40E-3 2.39E-3 − 1.12E-2 9.92E-3 − 1.17E-2 7.68E-3 3.51E-3 3.02E-3
F3 + 2.89E-3 2.54E-3 − 4.77E-3 3.86E-3 − 1.02E-2 8.29E-3 − 8.20E-3 6.31E-3 3.75E-3 3.43E-3
F4 − 3.09E-2 1.98E-2 − 3.45E-2 2.38E-2 − 4.78E-2 3.83E-2 − 6.42E-2 3.61E-2 3.85E-3 2.93E-3
F5 − 1.78E-2 1.44E-2 − 1.83E-2 1.39E-2 − 1.03E-2 5.77E-3 − 3.92E-2 2.83E-2 5.91E-3 4.06E-3
F6 − 1.04E-1 8.46E-2 − 6.06E-2 3.32E-2 − 7.58E-3 6.20E-3 − 1.20E-1 8.91E-2 3.70E-3 3.07E-3
F7 − 1.28E-1 1.10E-1 − 9.85E-2 5.23E-2 − 8.49E-3 6.13E-3 − 2.12E-1 1.04E-1 3.91E-3 3.48E-3
F8 − 8.69E-2 6.71E-2 − 5.87E-2 5.37E-2 − 4.62E-2 4.25E-2 − 8.42E-2 7.28E-2 2.82E-2 2.60E-2
F9 − 1.41E-1 1.13E-1 − 8.09E-2 7.40E-2 − 5.06E-2 4.51E-2 − 1.25E-1 1.03E-1 4.04E-2 3.39E-2

+ ,− and ≈ denote that the performance of the corresponding algorithm is significantly better than,
worse than, and similar to MOEA/D-MR respectively by Wilcoxon’s rank sum test with α = 0.05.

TABLE III
IH -METRIC VALUES OBTAINED BY MOEA/D-MR AND FOUR OTHER ALGORITHMS ON F1-F9

IH NSGA-II SMS-EMOA MOEA/D-DE NSGA-III MOEA/D-MR
Instance median best median best median best median best median best

F1 + 10.0550 10.0585 + 10.0754 10.0755 − 9.7898 9.8370 + 10.0566 10.0612 9.9727 9.9876
F2 + 1.3891 1.3892 + 1.3895 1.3895 − 1.3794 1.3815 ≈ 1.3864 1.3882 1.3858 1.3869
F3 + 0.9370 0.9373 + 0.9384 0.9384 − 0.9258 0.9279 + 0.9369 0.9373 0.9332 0.9344
F4 − 1.0134 1.0447 − 0.9969 1.0564 − 0.9468 0.9691 − 0.9457 0.9979 1.0972 1.1003
F5 − 1.0454 1.0599 − 1.0630 1.0746 − 1.0625 1.0864 − 0.9898 1.0325 1.0873 1.0978
F6 − 0.9512 0.9772 − 1.0109 1.0433 − 1.0870 1.0917 − 0.8982 0.9386 1.0995 1.1008
F7 − 0.9100 0.9275 − 0.9289 1.0146 − 1.0829 1.0927 − 0.7870 0.9234 1.0989 1.0998
F8 − 0.4318 0.4672 − 0.4816 0.4882 − 0.5095 0.5148 − 0.4204 0.4539 0.5373 0.5411
F9 − 0.9057 0.9405 − 0.9261 0.9405 − 1.0220 1.0290 − 0.8991 0.9298 1.0568 1.0608

+ ,− and ≈ denote that the performance of the corresponding algorithm is significantly better than,
worse than, and similar to MOEA/D-MR respectively by Wilcoxon’s rank sum test with α = 0.05.

C. Experimental Results

The quantitative results on the IGD-metric values and the IH -metric values obtained by five algorithms on F1-F9 are presented
in Table II and Table III respectively. From the IGD-metric values and the Wilcoxon’s rank sum tests [42] in Table II, it is
evident that MOEA/D-MR significantly outperforms other four MOEAs on F4-F9 in minimizing IGD-metric values. Moreover,
MOEA/D-MR is only slightly worse than NSGA-II on F3. For F1-F2, although MOEA/D-MR is not as good as NSGA-II and
SMS-EMOA, it still performs better than MOEA/D-DE and NSGA-III. From the results in Table III, it is clear that MOEA/D-
MR has better performance than other four algorithms on the majority of test problems. On F4-F9, MOEA/D-MR performs
best among five algorithms. On F1-F3, MOEA/D-MR cannot beat NSGA-II, SMS-EMOA and NSGA-III in achieving better
IH -metric values. However, it should be pointed out that MOEA/D-MR performs much better than MOEA/D-DE on F1-F3
according to the IH -metric values and the Wilcoxon’s rank sum tests. This indicates that MOEA/D-MR has better ability than
MOEA/D-DE for handling the MOPs with highly convex PFs.

Apart from the quantitative results on two indicators, the PF graphical plotting is used to visualize the diversity of the final
solutions. Fig. 5 shows the distributions of the final populations with the median IGD-metric values found by five algorithms
in 30 runs on F1-F3. It can be observed in Fig 5(a) that MOEA/D-DE is the only MOEA that fails to approximate the whole
PF of F1 well. Precisely speaking, MOEA/D-DE can not find a good approximation along the left part of the PF. Moreover,
the reason that both NSGA-III and MOEA/D-MR are superior to MOEA/D-DE is due to the fact that both of them adopt
objective normalization for dealing with dissimilar objective ranges. In Fig 5(b), it is easy to see that NSGA-II, SMS-EMOA
and MOEA/D-MR can obtain a set of solutions with satisfactory distribution along the PF of F2. In contrast, both NSGA-III
and MOEA/D-DE find fewer solutions on the boundary parts of the PF. As shown in Fig 5(c), NSGA-III, SMS-EMOA and
MOEA/D-DE are unable to approximate the boundary parts of the PF of F3, while other two MOEAs can approximate the
whole PF well. To compare the convergence speed of five algorithms, the mean IGD values obtained by them on F1-F3 at
different generations are shown in Fig 6. It can be observed that NAGA-II, SMS-EMOA and MOEA/D-MR converge faster than
MOEA/D-DE and NSGA-III. Among three decomposition based algorithms, MOEA/D-MR performs best while MOEA/D-DE
performs worst.

On F4 and F5, the final solutions with the median IGD-metric values obtained by five algorithms in 30 runs are plotted in
Fig. 7 and Fig. 8. It is evident that MOEA/D-MR obtains the best approximation of the PFs on these two problems. NSGA-II,
SMS-EMOA and NSGA-III can only find the middle part of the PFs. MOEA/D-DE is unable to approximate the boundary
parts well. In Fig. 9, the evolution of the mean IGD-metric values found by five algorithms is plotted. These results clearly
show that MOEA/D-MR is superior to all others in convergence towards the PFs of F4 and F5 with complicated PS shapes.
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Fig. 5. Plots of the final solutions with the median IGD-metric values found by MOEA/D-MR and four other MOEAs in 30 runs in the objective space on
F1-F3.
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Fig. 6. Evolution of the mean IGD-metric values of MOEA/D-MR and four other MOEAs on F1-F3 during the evolutionary process.

On F6 and F7, the final solutions found by five algorithms in their median runs are shown in Fig. 10 and Fig. 11. Obviously,
MOEA/D-MR approximates the whole PFs well while MOEA/D-DE performs slightly worse in approximating the boundary
parts of their PFs. In contrast, other three algorithms perform very badly on these two problems. NSGA-II and NSGA-III
can only find several solutions close to the PFs while SMS-EMOA fail to approximate the whole PF well. Fig. 12 shows the
evolution of the mean IGD values of the populations obtained by five algorithms. It can be observed that MOEA/D-MR and
MOEA/D-DE perform remarkably better than three other algorithms on F6 and F7. Compared with the results on F4 and F5,
MOEA/D-MR is more advantageous than other MOEAs when dealing multimodal MOPs like F6 and F7.

F8 and F9 are two three-objective problems with inverted triangle-like PF shapes. Fig. 13 and Fig. 14 plot the final solutions
with the median IGD-metric values obtained by different algorithms. It is easy to see that both NSGA-II and NSGA-III find
several points near the PFs. The solutions obtained by SMS-EMOA and MOEA/D-DE are unevenly distributed along the PFs
(Fig. 3 explains the MOEA/D-DE results). In contrast, the solutions found by MOEA/D-MR cover the whole PFs very well.
Fig. 15 shows the evolution of the mean IGD values obtained by five algorithms. Again, MOEA/D-MR outperforms four other
algorithms on F8 and F9.
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Fig. 7. Plots of the final solutions with the median IGD-metric values found by MOEA/D-MR and four other MOEAs in 30 runs in the objective space (the
top row) and the x1 − x2 − x3 space (the bottom row) on F4.
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Fig. 8. Plots of the final solutions with the median IGD-metric values found by MOEA/D-MR and four other MOEAs in 30 runs in the objective space (the
top row) and the x1 − x2 − x3 space (the bottom row) on F5.
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Fig. 9. Evolution of the mean IGD-metric values of MOEA/D-MR and four other MOEAs on F4 and F5 during the evolutionary process.
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Fig. 10. Plots of the final solutions with the median IGD-metric values found by MOEA/D-MR and four other MOEAs in 30 runs in the objective space
(the top row) and the x1 − x2 − x3 space (the bottom row) on F6.
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Fig. 11. Plots of the final solutions with the median IGD-metric values found by MOEA/D-MR and four other MOEAs in 30 runs in the objective space
(the top row) and the x1 − x2 − x3 space (the bottom row) on F7.
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Fig. 12. Evolution of the mean IGD-metric values of MOEA/D-MR and four other MOEAs on F6 and F7 during the evolutionary process.
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Fig. 13. Plots of the final solutions with the median IGD-metric values found by MOEA/D-MR and four other MOEAs in 30 runs in the objective space
(the top row) and the x1 − x2 − x3 space (the bottom row) on F8.
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Fig. 14. Plots of the final solutions with the median IGD-metric values found by MOEA/D-MR and four other MOEAs in 30 runs in the objective space
(the top row) and the x1 − x2 − x3 space (the bottom row) on F9.
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Fig. 15. Evolution of the mean IGD-metric values of MOEA/D-MR and four other MOEAs on F8 and F9 during the evolutionary process.



TABLE IV
PERFORMANCE COMPARISONS OF MOEA/D-MR AND ITS TWO VARIANTS

IGD IH
MOEA/D-MR Variant-ideal Variant-nadir MOEA/D-MR Variant-ideal Variant-nadir

Instance median best median best median best median best median best median best
F1 2.03E-2 1.85E-2 2.35E-2 1.99E-2 1.84E-2 1.77E-2 9.9727 9.9876 9.9937 10.0165 9.9768 9.9843
F2 3.51E-3 3.02E-3 4.11E-3 3.51E-3 3.10E-3 2.93E-3 1.3858 1.3869 1.3864 1.3871 1.3863 1.3870
F3 3.75E-3 3.43E-3 4.68E-3 3.63E-3 4.56E-3 3.66E-3 0.9332 0.9344 0.9330 0.9345 0.9310 0.9329
F4 3.85E-3 2.93E-3 1.77E-2 3.89E-3 4.86E-2 2.52E-2 1.0972 1.1003 1.0324 1.0967 0.9824 1.0640
F5 5.91E-3 4.06E-3 7.60E-3 5.32E-3 2.99E-2 1.64E-2 1.0873 1.0978 1.0653 1.0876 1.0148 1.0714
F6 3.70E-3 3.07E-3 5.29E-3 3.60E-3 8.68E-2 2.04E-2 1.0995 1.1008 1.0895 1.0968 1.0086 1.0644
F7 3.91E-3 3.48E-3 7.55E-3 3.42E-3 8.93E-2 2.25E-2 1.0989 1.0998 1.0840 1.0978 0.9815 1.0483
F8 2.82E-2 2.60E-2 3.50E-2 3.06E-2 4.46E-2 2.67E-2 0.5373 0.5411 0.5303 0.5394 0.5152 0.5305
F9 4.04E-2 3.39E-2 4.89E-2 3.93E-2 1.46E-1 1.04E-1 1.0568 1.0608 1.0420 1.0505 1.0061 1.0342

TABLE V
MEAN VALUE RANKS AND STATISTICAL SIGNIFICANCE TESTS RESULTS OF MOEA/D-MR AND ITS TWO VARIANTS

IGD IH
Instance MOEA/D-MR Variant-ideal Variant-nadir MOEA/D-MR Variant-ideal Variant-nadir

F1 2 3− 1+ 3 1+ 2+
F2 2 3− 1+ 3 1+ 2+
F3 1 3− 2− 1 2≈ 3−
F4 1 2− 3− 1 2− 3−
F5 1 2− 3− 1 2− 3−
F6 1 2− 3− 1 2− 3−
F7 1 2− 3− 1 2− 3−
F8 1 2− 3− 1 2− 3−
F9 1 2− 3− 1 2− 3−
+ ,− and ≈ denote that the performance of the corresponding algorithm is significantly better than,
worse than, and similar to MOEA/D-MR respectively by Wilcoxon’s rank sum test with α = 0.05.

D. Multiple Reference Points vs Single Reference Point

To further demonstrate the effectiveness on the use of multiple reference points in MOEA/D, we compare MOEA/D-MR
with its two variants: Variant-ideal and Variant-nadir, which only use z id and zna as its reference point, respectively. The
parameters settings in both variants are the same as in MOEA/D-MR described in Section V-B. The experimental results on
the IGD-metric and the IH -metric are given in Table IV and Table V. It is evident that MOEA/D-MR significantly outperforms
both Variant-ideal and Variant-nadir.

• On F3-F9, MOEA/D-MR performs remarkably better than two variants in terms of the median of the IGD-metric values
and the IH -metric values. As for the results in the best run with the minimal IGD-metric values or the IH -metric values
on F3-F9, MOEA/D-MR are also better than other two variants except F3 and F7. On F3, MOEA/D-MR has the best
IGD value and the second best IH value. On F7, MOEA/D-MR has the second best IGD value and the best IH value.
The the Wilcoxon¡¯s rank sum tests in Table V also demonstrates that MOEA/D-MR is significantly better than its two
variants on F3-F9.

• On F1 and F2, the performances of three algorithms are similar. Variant-nadir achieves the best IGD values while Variant-
ideal gains the best IH values. MOEA/D-MR is slightly worse than them in terms of IH metric values. But it still can
yield the second best IGD results.

Overall, the performance of MOEA/D-MR is remarkably better than its two variants. From these results, we can conclude
that the use of multiple reference points can improve the performance of MOEA/D with single reference point.

E. MOEA/D-MR With the PBI Decomposition

Apart from the Tchebycheff approach, the PBI decomposition can also serve in MOEA/D-MR. With the normalization of
Eq. (8), the subproblem defined by the PBI decomposition can be formulated as follows:

minimize g(x|w, z∗) = d1 + θd2
subject to x ∈ Ω

(13)

where
d1 = F̄ (x|z∗)Tw/||w||, d2 = ||F̄ (x|z∗)− d1

w

||w|| ||.

z∗ can be either z id or zna. When z∗ is set to be zid, Eq. (13) is the same as the original PBI decomposition [3]. In [17],
z∗ is set to zna. In this case, Eq. (13) is called the IPBI decomposition. θ is a penalty parameter. It should be noted that the



TABLE VI
IGD-METRIC VALUES OBTAINED BY MOEA/D-MR AND ITS FOUR PBI VARIANTS ON F1-F9

IGD MOEA/D-MR MOEA/D-MR-PBI-0 MOEA/D-MR-PBI-5 MOEA/D-MR-PBI-20 MOEA/D-MR-PBI-100
Instance median best median best median best median best median best

F1 2.03E-2 1.85E-2 − 1.57 7.64E-1 − 8.32E-2 4.15E-2 − 2.91E-2 2.41E-2 − 3.68E-2 2.71E-2
F2 3.51E-3 3.02E-3 − 2.49E-1 2.09E-1 − 1.43E-1 9.19E-2 − 1.44E-1 1.14E-1 − 1.00E-1 8.51E-3
F3 3.75E-3 3.43E-3 − 1.09E-1 8.60E-2 − 2.07E-2 1.83E-2 − 1.01E-2 6.63E-3 − 6.66E-3 4.71E-3
F4 3.85E-3 2.93E-3 − 2.24E-1 1.51E-1 − 5.59E-2 3.07E-2 − 3.64E-2 1.33E-2 − 3.56E-2 1.56E-2
F5 5.91E-3 4.06E-3 − 1.88E-1 1.18E-1 − 2.50E-2 1.07E-2 − 1.69E-2 8.42E-3 − 1.89E-2 9.32E-3
F6 3.70E-3 3.07E-3 − 1.84E-1 9.65E-2 − 3.79E-2 1.31E-2 − 1.23E-2 5.62E-3 − 1.38E-2 6.68E-3
F7 3.91E-3 3.48E-3 − 3.14E-1 1.57E-1 − 4.99E-2 7.23E-3 − 2.08E-2 6.34E-3 − 3.47E-2 6.60E-3
F8 2.82E-2 2.60E-2 − 1.66E-1 8.59E-2 − 8.47E-2 5.37E-2 − 7.34E-2 4.96E-2 − 6.62E-2 4.71E-2
F9 4.04E-2 3.39E-2 − 2.85E-1 2.07E-1 − 2.32E-1 1.58E-1 − 2.31E-1 1.41E-1 − 2.01E-1 1.18E-1

+ ,− and ≈ denote that the performance of the corresponding algorithm is significantly better than,
worse than, and similar to MOEA/D-MR respectively by Wilcoxon’s rank sum test with α = 0.05.

TABLE VII
IH -METRIC VALUES OBTAINED BY MOEA/D-MR AND ITS FOUR PBI VARIANTS ON F1-F9

IGD MOEA/D-MR MOEA/D-MR-PBI-0 MOEA/D-MR-PBI-5 MOEA/D-MR-PBI-20 MOEA/D-MR-PBI-100
Instance median best median best median best median best median best

F1 9.9727 9.9876 − 8.0156 8.7567 − 9.9016 9.9333 − 9.9672 9.9874 − 9.9640 9.9854
F2 1.3858 1.3869 − 1.3348 1.3505 − 1.3584 1.3612 − 1.3581 1.3634 − 1.3612 1.3816
F3 0.9331 0.9344 − 0.8244 0.8463 − 0.9269 0.9289 − 0.9302 0.9320 − 0.9298 0.9323
F4 1.0972 1.1003 − 0.7485 0.8119 − 0.9626 1.0528 − 0.9977 1.0793 − 0.9981 1.0697
F5 1.0873 1.0978 − 0.7716 0.8367 − 1.0254 1.0680 − 1.0402 1.0790 − 1.0294 1.0780
F6 1.0995 1.1008 − 0.8225 0.9223 − 1.0214 1.0633 − 1.0734 1.0892 − 1.0700 1.0851
F7 1.0989 1.0998 − 0.6666 0.9050 − 1.0183 1.0844 − 1.0474 1.0928 − 1.0328 1.0888
F8 0.5373 0.5411 − 0.3316 0.4051 − 0.4391 0.4977 − 0.4591 0.5009 − 0.4650 0.5093
F9 1.0568 1.0608 − 0.7204 0.8128 − 0.8268 0.8704 − 0.8274 0.9030 − 0.8534 0.9314

+ ,− and ≈ denote that the performance of the corresponding algorithm is significantly better than,
worse than, and similar to MOEA/D-MR respectively by Wilcoxon’s rank sum test with α = 0.05.

definitions of w and v for each subproblem is different from those in Eq. (4). Actually, both vectors are the same in the PBI
decomposition, i.e., w = v.

Since the performance of the PBI decomposition based algorithm is sensitive to the values of θ as pointed out in [43],
we test four PBI versions of MOEA/D-MR with different θ values, MOEA/D-MR-PBI-0, MOEA/D-MR-PBI-5, MOEA/D-
MR-PBI-20 and MOEA/D-MR-PBI-100, and their θ values are set to be 0, 5, 20 and 100, respectively. The IGD and I H

comparison results of MOEA/D-MR and its four PBI versions are shown in Table VI and Table VII, respectively. It is clear
that all the PBI decomposition variants are worse than the Tchebycheff decomposition one on all nine test problems. These
results also illustrate that a larger θ value can make MOEA/D-MR-PBI performs better on F1-F9. The main reason is that
some subproblems in MOEA/D-MR-PBI will have the same optimal solution, and a larger θ value can reduce this overlap.
Although the PBI decomposition works not as well as the Tchebycheff decomposition in MOEA/D-MR on F1-F9, it is able
to solve MOPs with other characteristics [17], [25].

VI. CONCLUSION

In this paper, we studied and analyzed the possible benefits of MOEA/D with two reference points. We observed and argued
that the ideal point and the nadir point can complement each other. A new MOEA/D version denoted as MOEA/D-MR, which
uses both the ideal point and the nadir point as the reference points, was designed. MOEA/D-MR was compared with four other
state-of-the-art MOEAs on a set of newly designed difficult test problems. The comparison results showed that our proposed
MOEA/D-MR works well and is competitive.

Actually, there are still some challenging and promising research directions on MOEA/D with multiple reference points.

• Use of global and local reference points: It may be useful on many-objective optimization. Global reference points can
help to give a global picture of the PF and local ones can help to refine the search for some areas preferred by the decision
maker. In general, the use of multiple reference points (i.e., more than two) is an interesting future research direction.

• The size of the subproblem set for each reference point: It could be adaptively adjusted for improving the algorithm
performance.

• The search effort: Reference points can used to guide how to distribute the search effort.
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