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A B S T R A C T

Data gathered in the real world normally contains noise, either stemming from inaccurate experimental mea-
surements or introduced by human errors. Our work deals with classification data where the attribute values
were accurately measured, but the categories may have been mislabeled by the human in several sample points,
resulting in unreliable training data. Genetic Programming (GP) compares favorably with the Classification and
Regression Trees (CART) method, but it is still highly affected by these errors. Despite consistently achieving
high accuracy in both training and test sets, many classification errors are found in a later validation phase,
revealing a previously hidden overfitting to the erroneous data. Furthermore, the evolved models frequently
output raw values that are far from the expected range. To improve the behavior of the evolved models, we
extend the original training set with additional sample points where the class label is unknown, and devise a
simple way for GP to use this additional information and learn in a semi-supervised manner. The results are
surprisingly good. In the presence of the exact same mislabeling errors, the additional unlabeled data allowed
GP to evolve models that achieved high accuracy also in the validation phase. This is a brand new approach to
semi-supervised learning that opens an array of possibilities for making the most of the abundance of unlabeled
data available today, in a simple and inexpensive way.

1. Introduction

This article tells a story. This story takes place in the realm of satel-
lite imagery. It is a story of classification methods yielding unusually
bad results, the search for the causes of such odd behavior, the discov-
ery of human errors in the labeling of the data, and finally, the devel-
opment of a method to overcome them. Why not simply eliminating
the errors and redoing the work, in order to achieve the typical good
results on this kind of application? Because noisy labels are very com-
mon [1–4] and usually go unnoticed, as the results seldom reveal, or
even suggest, that something is wrong with the data. And even when
they do, it may not be viable to go back and clean the data, and repeat
the whole process. So we have to assume the data contains errors, and
we have to develop learning methods that can still provide useful and
reliable models under these conditions. One can state that Genetic Pro-
gramming (GP) [5,6] is one of the most resilient learning methods, able
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to cope with noisy and faulty data, and still provide good results. But
as the story will tell, even GP can be highly deceived by a very small
percentage of data mislabeling.

The next section is dedicated to reviewing previous and related work
on the subjects of data errors and semi-supervised learning. Section 3
describes the problem tackled and the data used in this study, including
a description of the errors. Section 4 describes the workings and param-
eterizations of the two methods used in the beginning of our work,
Classification and Regression Trees, and Genetic Programming, while
Section 5 specifies the procedures used to assess their performance.
Section 6 introduces the new semi-supervised GP method, explaining
the differences to standard GP, and Section 7 reports all the results
obtained with all the methods. Section 8 discusses these results at
length, exploring the reasons for the success of the semi-supervised GP
method. Finally, Section 9 summarizes the contributions of this work,
and raises many additional related questions.
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2. Previous and related work

This section reviews the literature related to both themes addressed
by this work: data errors and semi-supervised learning. Inside each
theme we begin by addressing work published in the context of the
wide machine learning field, followed by work in the context of Evo-
lutionary Algorithms (EAs) and more specifically GP, and finally work
related to remote sensing. We do not attempt at performing an exhaus-
tive review of all the work published on such wide research themes,
but instead we overview the amount and type of work that has been
done in different specific themes, in particular the ones more related to
our own work, providing pointers to more thorough surveys whenever
possible.

2.1. Data errors

The objective of many learning systems is to construct a model of
the world which is completely consistent with observations, based on
the assumption that the data available is error-free [7]. However, this
is seldom the case. According to [7] the many sources of errors may be
external or internal. External errors are objective, like random errors
(normally called noise) and systematic errors. Random errors are intro-
duced by the inherent unpredictability of the world being observed,
or during the transmission of the observations to the learning system.
Systematic errors are more predictable, arising for instance from a prob-
lem in the device collecting data, like an instrument that is poorly cal-
ibrated. Internal errors are subjective and depend mostly on the inter-
pretation of the data. Transversal to this classification is the concept of
outlier, i.e., an observation that appears to deviate markedly from other
observations in a sample. The importance of outliers in statistical data
and machine learning can be inferred by the very large amount of liter-
ature dealing with the subject. Interesting surveys can be found in [8]
and [9].

Strategies for learning with imperfect data can focus on data cleans-
ing, i.e., identifying and repairing the errors, or on developing and using
learning systems that are able to cope with them. Data mining with
noisy data is considered in [10], where the authors survey other related
works and propose their own error-aware method based on using noise
knowledge to rectify the model built from corrupted data. According to
this work, data cleansing is a limited procedure that can only be applied
to certain error types from certain data sources, may lead to information
loss, and constitutes in itself a potential source of additional errors.

Nevertheless, data cleansing has played a critical role in ensuring
data quality, particularly with the advent of big data, where errors
in data are extremely frequent. Many data cleansing algorithms have
been translated into tools to detect and to possibly repair certain classes
of errors such as outliers, duplicates, missing values, and violations of
integrity constraints [11]. In [12], various views of data cleansing were
surveyed and reviewed and a brief overview of existing data cleans-
ing tools was given. A general framework of the data cleansing process
was presented, as well as a set of general methods that can be used to
address the problem. Other works followed the same path, like [13,14].
Some methods were specifically developed for big data, like [15,16].
Since different types of errors may coexist in the same data set, it is
often appropriate to run more than one kind of tool. In [11], a system-
atic analysis of the existing data cleansing tools was performed, aimed
at understanding whether these tools are robust enough to capture most
errors in real-world data sets and what is the best strategy to run mul-
tiple tools to optimize the error detection effort.

Oblivious to all the efforts in cleaning data, and the problems that
erroneous data may cause to learning systems, many machine learn-
ing methods are in fact equipped to perform reasonably well in model-
ing data with inaccuracies, as they rely on soft computing techniques
to produce inexact but robust solutions. Artificial Neural Networks
(ANNs), Support Vector Machines (SVMs) and Genetic Programming
(GP) are some of them. In classification problems, these methods can

deal not only with errors in the features, but also with errors in the
labels, precisely the type addressed in our work.

An excellent review of different types of label noise and their conse-
quences, as well as different algorithms that consider label noise, was
published some years ago [17]. Among the large body of work that is
reviewed, semi-supervised learning appears as one of the main noise-
tolerant approaches, and a number of works on remote sensing are
among the target applications. Other work not covered in this review
deals with noisy labels in image annotation [18], data factorization
[19], labelling pixels in aereal images [20], multiple kernel learning
[21] and sentiment detection in Twitter [22].

In [23] a theoretical study on risk minimization bounds is performed
on the problem of binary classification in the presence of erroneous
labels, and the results are applied in developing noise-tolerant ver-
sions of SVM and weighted logistic regression. Other applied theoretical
works are presented in [24,25], where the authors develop and analyse
an improved logistic regression classifier that is robust to label noise.
More recently, [26] studies the conditions in which a consistent classi-
fication is possible with label noise, [27] studies the use of importance
reweighting to achieve an optimal classifier in the presence of noisy
labels, and [28] shows that loss factorization can be directly applied on
learning with poorly labeled data.

Among the most recent work, a few studies deal with the identifi-
cation and correction of noisy labels. In [29] a novel L1-optimization
based sparse learning model is used to explicitly detect noisy labels,
while [30] does it via a mutual consistency check using a Parzen win-
dow classifier. In [31] the unreliable labels are improved using a text
label refinement algorithm, while in [32] the noisy labels are recov-
ered as the classifier is built, using a Least-Squares SVM. In [33], the
approach of repeated labeling is used in order to improve label qual-
ity, including a selective approach based on both labeling and model
uncertainty.

A large and diverse body of work has also been published in the
past few years focusing on using noisy labels in such varied applica-
tions as the detection of malicious network traffic [34], classification of
historical notary acts [35], and time-series segmentation [36].

Noisy labels are also tackled with deep learning approaches. The
notion of consistency is used in [37] to improve the predictions of a
deep ANN when the labeling is missing or is subjective. Deep learning
is also used in other works like [38–40]. A number of approaches rely
on active learning techniques [41–44].

Compared to the huge effort that was dedicated to the detection
and repairing of data errors by the larger machine learning community,
the amount of work involving EAs, in particular GP, for these tasks is
rather limited. Indeed, to the best of our knowledge, no paper specif-
ically dealing with GP has ever tackled these issues directly. On the
other hand, it is quite a common trend to use GP as a feature extrac-
tion process and, among the several advantages of this approach, it is
typical to show that GP is resistent to data errors, and is often able to
generate features that are more robust, more insightful and less prone
to errors than the ones contained in the original data. The quality of a
set of features can be quantified by using a machine learning method
to generate a data model based on those features (and thus the fitness
of the evolved features is given by the performance of this method),
or by using other criteria that do not depend on any machine learning
method. For instance, in [45] a measure based on information gain was
employed as fitness function.

Another trend is to incorporate techniques into GP that improve its
generalization ability. This was done in [46], where symbolic regres-
sion problems were solved by using new measures of fitness based
on statistical learning theory, like for instance Akaike Information Cri-
terium, Bayesian Information Criterium and Structural Risk Minimiza-
tion, based on the Vapnik-Chervonenkis (VC) theory. The authors show
the advantages of this type of approach and a better ability of GP to
deal with noisy data.
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Finally, the GP community recently focused on the relationship
between overfitting, the size of the individuals and their functional
complexity. An observation that is common to several contributions,
e.g., [47–49], is that the functional complexity of the solutions has a
much clearer impact on overfitting than the size of the individuals.
The fact that functionally simpler solutions have better generalization
ability than complex ones could be a direct consequence of the higher
robustness of simple solutions to errors in data, as discussed in [49].
Under this perspective, fostering the survival of simple solutions in GP
populations by integrating measures of functional complexity in the fit-
ness function, like the ones defined in [48], can be a method to implic-
itly deal with errors in data. Indeed, the GP community tends to ignore
the available data cleansing tools, instead focusing on methods that can
implicitly deal with the errors.

In the remote sensing community there is also a wide recognition of
the problem of errors in the data and their effect on the accuracy of land
cover classifications (e.g., [1–4]). Most remote sensing problems involve
classification, binary or multiclass, in land cover or land use classes.
Remote sensing data is normally accurate, so the work published on
data errors is primarily focused on mislabeling errors on the reference
set, or generally speaking, label noise. The widespread usage of the
term “ground truth” to denote the reference set has been criticized in
[2], for implying the data are a gold standard reference. As mentioned
before, remote sensing work is cited in the [17] review. For an example
of recent work see [4].

2.2. Semi-supervised learning

Semi-supervised learning uses both labeled and unlabeled data to
perform the learning task. This approach to learning has recently grown
as a promising direction in machine learning research, because of its
relevance to many practical problems where is it expensive to produce
labeled data (e.g., when human expertise is required) and at the same
time it is easy and cheap to produce unlabeled or weak-labeled data
(e.g., in crowdsourcing). A rather complete overview of semi-supervised
learning is offered in [50], including a brief history of semi-supervised
learning, a taxonomy for semi-supervised learning methods, a detailed
analysis of many of those methods, a detailed discussion on the pros and
cons/risks of learning from semi-supervised data sets and the discussion
of a set of benchmarks. Another wide set of benchmark data sets for
semi-supervised learning can be found in [51]. On the other hand, a
critical view of semi-supervised learning is given in [52].

Normally, semi-supervised learning is used on datasets with a large
amount of unlabeled data and only a small quantity of labeled data.
Self-labeled techniques are used for enlarging the labeled data set, by
labeling previously unlabeled observations using models built on the
labeled data. For a rather complete survey of self-labeled techniques,
the reader is referred to [53].

Evolutionary Algorithms have often been used for semi-supervised
learning, and Genetic Algorithms (GAs) are for sure the most com-
monly used flavor of EAs. The first contribution probably dates back
to [54], where a semi-supervised clustering algorithm was proposed.
The approach allowed unlabeled data with no known class to be used
to improve classification accuracy. The objective function took into
account both the cluster dispersion of the input attributes and a mea-
sure of cluster impurity based on the class labels. In a similar vein, some
years later a novel semi-supervised clustering algorithm was proposed
in [55], in which data were clustered using an unsupervised learn-
ing technique, biased towards producing clusters as pure as possible
in terms of class distribution.

A different approach was presented in [56], where an EA suited
to learn interpretable fuzzy if-then classification rules from partially
labeled data was proposed. Interestingly, the feasibility of the approach
was demonstrated also using real-world image analysis and remote
sensing applications that, although different, clearly share the same
nature as our own application. A few years later, an ensemble learning

approach based on EAs was proposed in [57] to tackle semi-supervised
learning problems, and the authors showed how the iterative nature
of EAs can be, in itself, beneficial to iteratively increase the number
of labeled observations. As such, this method can be seen as an evolu-
tionary self-labeled technique. In the same year [58] GAs were used as
a part of a wider machine learning system, to optimize the objective
function of a standard semi-supervised SVM (S3VM).

In [59] semi-supervised learning was used to improve an interactive
GA-based system. More specifically, a surrogate model built with an
improved semi-supervised learning method was employed to evaluate a
part of the individuals, in order to alleviate the work of the user in per-
forming the evaluation. The effectiveness of the proposed method was
assessed on the design of sunglass lenses, a typically rather complex
optimization problem. In [60] a GA was applied for regression func-
tion semi-supervised learning. Based on a few labeled examples and the
agreement among the views on the unlabeled examples, the error of
the algorithm was optimized, striving after minimal regularized risk,
reporting excellent performance on the test problems used.

Recently, the authors of [61] pointed out that traditional semi-
supervised learning tentatively labels the unlabeled data on the basis
of the smoothness assumption that neighboring points should have
the same label. They also observe that when this assumption is vio-
lated, unlabeled points are mislabeled, injecting noise into the classi-
fier. Therefore, they present an alternative approach called cluster-then-
label (CTL), which partitions all the data points (labeled and unlabeled)
into clusters and creates a classifier by using those clusters.

Also other kinds of biological and nature inspired algorithms were
used for semi-supervised learning. For instance, in [62] an Artificial
Immune System (AIS) was used to determine which data is better to
labeled in order to get high quality data. Also, Particle Swarm Opti-
mization (PSO) was used for semi-supervised learning in [63]. The
semi-supervised PSO simultaneously used limited labeled data and large
amounts of unlabeled data to find a collection of prototypes (or cen-
troids) that were considered to precisely represent the patterns of the
whole data.

Among the different types of EAs, GP was also used with success
for semi-supervised learning. For instance, in [64] a semi-supervised
GP system called Active Learning GP (AGP) was proposed, instanti-
ated for the data deduplication problem (a data compression technique
for eliminating duplicate copies of repeating data), and used on semi-
supervised benchmarks. In [65] a semi-supervised transductive GP algo-
rithm, called KGP, was proposed for classification. KGP is transduc-
tive (instead of inductive), i.e., it requires only a training data set with
labeled and unlabeled examples, which should represent the complete
data domain. The effectiveness of KGP was demonstrated on a wide set
of test problems. Finally, a novel evolutionary approach was proposed
in [66], which can be applied to supervised, semi-supervised and unsu-
pervised learning tasks. The method, Grammatical Evolution Machine
Learning (GEML), adapts machine learning concepts from decision tree
learning and clustering methods, and integrates these into a Grammat-
ical Evolution framework. The authors state that the framework gener-
ates human readable solutions, which explain the mechanics behind the
classification decisions, offering a significant advantage over existing
paradigms for unsupervised and semi-supervised learning. Even though
[64–66] all deal with overfitting, and we can assume that the data
errors are outliers that the models should not (over)fit, to the best of our
knowledge no work has been published yet that is explicitly devoted to
the use of GP in a semi-supervised manner for dealing with data errors.

However, a method called Backwarding for controlling overfitting
has been used in [67] that may well be the most similar to our cur-
rent work, although the authors never mention erroneous labels or
semi-supervised learning. During the evolutionary process, Backward-
ing keeps track of the best solution on the training set (as usually done),
and it also keeps track of the best solution on the training set that is also
the best solution on an independent validation set. In the beginning
of the evolution it is expected that both best-on-training and best-on-
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Fig. 1. Landsat 8 OLI image (left) used in this study. Map of Brazil with the location of the study area and the distribution of the administrative regions (right), where the tilted black
square shows the position of the image.

validation are the same and updated frequently, but when overfitting
starts occurring the best-on-validation is not updated because the fitness
on the validation set does not improve. When the evolution stops (based
on any stopping criteria), the algorithm returns the best-on-validation
solution, not the best-on-training, thus backwarding to a generation
prior to the occurrence of overfitting. This is a slightly better way of
implementing early stopping (better in the sense that the search does
not stop at the earliest sign of overfitting, which may be premature)
and it allowed the authors to report improved results on additional
unseen data in a remote sensing application. However, when classify-
ing real images the results were still not good, and the blame was put
on the lack of sufficient validation data. Therefore, they have used a
much larger, unlabeled, validation set, and relaxed the definition of
‘better fitness on the validation set’ to simply keeping the highest num-
ber of points within the expected range of results. This led to drastically
improved results, but the authors do not mention the possibility that it
was the extended validation set and relaxed fitness calculation, and not
the backwarding, that allowed such feat.

In remote sensing there is a vast literature about semi-supervised
learning, in particular for classification tasks. A review of some methods
is presented in [68]. Some methods used for dealing with noisy labels
had already been mentioned in the [17] review. Among the most recent
work on semi-supervised learning in remote sensing, SVM is regarded
as the state of the art [69], on which many variants have been proposed
(e.g., [70–74]). A selection of recent non-SVM based methods include
a combination of multinomial logistic regression with k-nearest neigh-
bor [75], a co-training approach introduced by the Tracking-Learning-
Detection framework [76] and, of course, deep learning [77].

3. The problem and the data

Every year, large areas of tropical savannas and woodlands burn
due to natural conditions and land management practices induced by
human activities. Given the high level of green house gas emissions
produced by biomass burning, there is the need to define historic fire
regimes so that prospective emission reduction management strategies
can be well informed and their results measured, reported, and veri-
fied. Thus, it is important to develop tools for accurately and frequently
mapping burned areas over large extents. Satellite data from high reso-
lution sensors Landsat TM (Thematic Mapper), ETM+ (Enhanced The-

matic Mapper Plus) and OLI (Operational Land Imager) are a valuable
source of information and have been widely used in the development
of automated and semi-automated methods to detect burned areas (e.g.,
[78–81]).

In this work, a Landsat 8 OLI image over Brazil was selected, cor-
responding to Path/Row 225/64 and freely downloaded from GLOVIS
archive of the U.S. Geological Survey (USGS) Earth Resources Observa-
tion and Science (EROS) Center.1 It corresponds to an area located in
eastern Amazonian, which lies south of the Amazon River and is drier
than the central and western parts of the Amazon, with annual rainfall
between 1500 mm and 2000 mm and average temperatures ranging
from 23 ◦C to 30 ◦C. Forest types range from lowland Amazon forest
(tall trees of up to 40 m in height) in the north through submontane
dense and open forests in the south. This region is subject to frequent
and extensive fires. The image was acquired on February 28, 2015,
thus ensuring the presence of recently burned areas. The image con-
tains more than 40 million pixels, where approximately 2.5 million are
burned, representing an estimated total burned area of approximately
0.6%. Fig. 1 shows the image (left) and its geographical location (right).

A Landsat OLI image consists of nine different bands,2 of which
band 8 is a panchromatic band (of low spectral resolution, covering
most of the visible range) and band 9 is a cirrus band (used only for
cloud detection). Therefore, we have used only the first seven bands,
covering Ultra Blue, Blue, Green, Red, Near Infrared (NIR) and two dif-
ferent Shortwave Infrared (SWIR) spectral ranges. The image was geo-
metrically corrected to UTM-Zone 22 South, Datum WGS84 for a spatial
resolution of 30 m. Visual inspection of the combination of bands 7, 5
and 4 allows depicting burned areas very clearly [82]. This is the com-
bination used for displaying the image in Fig. 1 and also the detail in
Fig. 5a.

For training and testing the methods presented here, a data set was
assembled from this image. A human expert manually collected several
sample points, or observations, from different burned and unburned
areas. An effort was made in order to obtain a balanced data set, in
order to cover not only the different non-burned land cover types, but
also a large diversity of burn scars, as they do not all have the same

1 http://glovis.usgs.gov/.
2 https://landsat.usgs.gov/how-does-landsat-8-differ-previous-landsat-satellites.
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Fig. 2. Matrix of scatter plots of the reference data, each plot showing the relationship between two of the seven bands. Black dots represent burned pixels, light green represents
non-burned, and the larger red markers represent the 20 erroneously labeled pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

spectral characteristics. Each observation corresponds to one pixel of
the image, and consists of the observed DN (Digital Number) values
for the seven bands (seven explanatory variables) and the correspond-
ing target value, or class label, 1 (burned) or 0 (unburned) (dependent
variable). In total, 4872 pixels were collected and labeled by the human
expert, 2053 corresponding to class 1 (burned) and 2819 correspond-
ing to class 0 (unburned). We call this data set the reference set, or
reference data.

Later it was discovered that some of the 4872 pixels were misla-
beled. An area of green forest was erroneously labeled by the human
expert as class 1 (burned), affecting a total of 20 pixels. This small
number of pixels represents less than 0.5% of the total amount of obser-
vations in the reference set.

It is important to mention that a deeper investigation of the data
revealed other problematic pixels that are considered by the human
experts a potential source of confusion to the learning algorithms. In

particular, one of the burned areas from which pixels where collected
corresponds to understory burns which produce mixed pixels contain-
ing various degrees of green and burned signals. All the observations
from this area were correctly labeled as class 1 (burned), but in another
context some of them could have been labeled differently. Nonetheless,
even if these problematic pixels were also to be considered erroneous
(which they are not), the total amount of errors would still amount to
only 1% of the reference data.

Fig. 2 shows a 7 × 7 matrix of scatter plots of the reference data,
each plot showing the relationship between two of the seven bands.
The pixels labeled as burned are represented in black, while the non-
burned are represented in light green. The 20 erroneously labeled pixels
are represented with larger red markers (×) in order to be seen. The
figure brings no surprises, showing a high correlation between some of
the bands, and the spectral diversity of both burned and non-burned
classes. It also suggests that the task of distinguishing burned from non-
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Fig. 3. Boxplots of original DNs (Digital Numbers) as delivered (left) and values obtained after stretching and scaling (right), on each of the Landsat OLI sensor bands.

burned should not be a difficult one, and reveals why the erroneous
pixels can be a confounding factor for the classifiers, as these 20 points
are mostly detached from the burned pixels, appearing much closer to
the non-burned ones.

The Landsat OLI sensor records 12-bit values, which translates into
4096 potential grey levels for each band. However, the images are deliv-
ered as 16-bit values, scaled to 55000 grey levels.3 Looking at the
values in the reference set, one can observe that most values are con-
centrated on a very narrow interval, in particular for bands 1–4 (see
Fig. 3, left). For this reason, the values of each band were subject to
a linear stretching and scaling into the interval [0 1]. The input lim-
its for the stretching were the minimum and maximum values of each
band, excluding the outliers, which means that in the end the outliers
fall outside the interval [0 1] (see Fig. 3, right).

Finally, the reference set was randomly split into training and test
sets. This split was performed 30 times, each time obtaining a different
partition, always using 70% of the observations for training (totaling
3411 pixels), and the remaining 30% for testing (totaling 1461 pixels).
The reason for using the test set is to detect overfitting in case it occurs
(more on this in Section 8.1). The reason for using 30 different parti-
tions is to ensure that the studied methods produce consistent results
across different data sets.

4. Methods - CART and GP

This section briefly describes the two methods used in the first part
of the work: CART and GP. CART (Classification And Regression Trees)
[83] has been a popular method in remote sensing applications for a
long time now (e.g., [84–87]), providing models in the form of sim-
ple interpretable rules. For example, it has been applied successfully to
remote sensing data for burned area mapping in Africa (e.g., [88–90]).
GP is still mostly unknown outside (and sometimes even inside!) the
machine learning community, despite its success in many real world
applications [6,91]. Nevertheless, it is being used in a growing number
of remote sensing applications (e.g., [92–98]), including the identifica-
tion of burned areas in satellite imagery [99].

3 https://landsat.usgs.gov/landsat-8.

4.1. Classification and Regression Trees

Classification trees are a non-parametric, non-linear rule based clas-
sifier that generates classification rules through an induction procedure
described in [83]. They are based on a hierarchical decision scheme
where the feature space is subject to a binary recursive partitioning
that successively splits the data. In the Classification and Regression
Tree (CART) algorithm [83], heuristic techniques are used to achieve
an inverted tree type structure, starting in a root node with all the data,
and generating descendent nodes with a series of splitting decisions (if-
then rules) until terminals are reached.

Single tree classifiers are developed using the Gini index criteria
for node splitting [83] and assuming equal class prior probabilities for
burned areas. Equal classification error costs for burned and unburned
classes are assumed, and terminal tree nodes are required to contain a
minimum of 20 observations. Linear combinations of the variables are
employed to deal more effectively with data patterns [83]. The selection
of the best tree size (optimal tree), to avoid overfitting the training data,
was performed using the technique cost-complexity pruning based on
a test sample. This technique selects the optimal compromise between
the number of tree nodes and misclassification rate, and penalizes very
large trees [83]. The best tree is chosen based on three criteria: the best
training accuracy, the best test accuracy and the best accuracy obtained
between classes given by the variable importance. Variable importance
is the sum across all nodes in the tree of the improvement scores that
the predictor yields when it performs as a splitter [83].

4.2. Genetic Programming

Genetic Programming (GP) is the automated learning of computer
programs, using Darwinian selection and Mendelian genetics as sources
of inspiration [5,6]. Starting from an initial population of randomly
created programs representing the potential solutions to a given prob-
lem, it evaluates the fitness of each, quantifying how well the program
solves the problem. New generations of programs are iteratively created
by selecting parents based on their fitness, and breeding them using
genetic operators like crossover and mutation, where pieces of code
are swapped and modified, respectively. Because fitter individuals are
selected more often and given the chance to pass their best characteris-
tics to their offspring, the population tends to improve in quality along
successive generations. In this work, we use tree-based GP with stan-
dard subtree crossover and no mutation, a common setting [5]. From
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now on we will designate it simply as StdGP.
Regarding the remaining settings, the population is composed of 500

individuals initialized with the Ramped Half-and-Half method [5] with
depths between 2 and 6, allowed to evolve for 200 generations. Selec-
tion for breeding is performed with lexicographic tournaments [100] of
size 10. Selection for survival is non-elitist, meaning that each genera-
tion of offspring completely replaces the parent population. No maxi-
mum limit is imposed on the depth of the trees. Instead, bloat control
is ensured by the Dynamic Operator Equalisation (DynOpEq) method
[101]. The function set contains only the four basic arithmetic opera-
tors: addition, subtraction, multiplication and division, protected as in
[5]. No terminals are used besides the seven variables of the problem.

We perform the classification task by evolving a regression model
and then applying a cutoff to the raw output values, in order to inter-
pret them as class labels. Therefore, the fitness function is the usual
RMSE used for regression, with expected outputs 0 (not burned) and
1 (burned), and the accuracy is only calculated offline after applying
a cutoff of 0.5. The best model is chosen based on training and test
accuracy. The interesting thing about the raw output values of the GP
models is that it can be interpreted as the level of certainty that GP
has in its own classification. Outputs very close to 0 or very close to 1
denote a high certainty of the respective classes, while outputs close to
0.5 denote uncertainty between both classes. On the other hand, output
values that fall very far from the [0 1] interval are undesirable, as they
reveal an unstable behavior and possible asymptotes in the model.

5. Validation procedures

The process of validation used in this work includes several pro-
cedures. The goal of the work is not to obtain statistically significant
results measured on the 30 data partitions, but to obtain a reliable
model to perform the classification. Therefore, the first procedure is
to actually choose one model among the 30 learned models, for each of
the methods tested (see 4.1 and 4.2).

The second procedure is to measure the overall accuracy and
Cohen’s Kappa values [102] obtained by the chosen models on a large
validation set. Overall accuracy is expressed as the percentage of cor-
rectly classified pixels. The Kappa coefficient is another accuracy mea-
sure, very popular with remote sensing data, as it makes some compen-
sation for chance agreement between classes. A grid of 5000 equally
spaced points is randomly placed over the image. Many of these points
fall outside the image limits (the black borders in Fig. 1, right), and the
remaining 3525 are interpreted and labeled by the same human experts
that provided the reference set, becoming the validation set. Being ran-
domly collected, these pixels are highly unbalanced between the two
classes, with only 27 of them being labeled as class 1 (burned), repre-
senting approximately 0.8% of the entire validation set. We assume that
all validation pixels are correctly labeled. None of the burned pixels of
this grid overlaps with the burned pixels of the reference set.

Besides this numeric validation, a visual validation is also per-
formed. The entire image is classified by each of the chosen models,
and a human expert inspects the classifications to check if they con-
form to what is plausibly expected. In reality, this procedure is nor-
mally followed by another numeric validation based on comparing the
automatic classifications with a manual classification where the expert
delineates polygons around all the burned areas that can be visually
identified. This is a lengthy global validation that was not performed
in this work, as the visual inspection of the classifications immediately
revealed a serious problem (Section 7).

Because of the revealed problem, a new GP method was developed
(described in the next section) that partially uses the large validation
set during the learning. For this reason we have built a second, much
smaller validation set, from a new grid of 250 points randomly placed
over the image. The 176 points not falling outside the image limits are
used to validate the quality of the models a second time, again through
the overall accuracy and Kappa coefficient. Four of these pixels are

labeled as class 1 (burned), representing approximately 2.3% of the
entire set. None of these burned pixels overlap with the burned pixels
of either the reference set or the first grid. This extra validation, on top
of the others, ensures that using information of the first validation set
during the learning does not artificially improve the results.

6. New method - semi-supervised GP

The new method introduced here is very similar to StdGP, except for
the fitness function. Truth be said, even the fitness function is very sim-
ilar to the one of StdGP. While StdGP uses the RMSE as fitness, the new
method also uses the RMSE as fitness. So where is the difference?! The
difference is that the new method calculates de RMSE using not only the
regular labeled data of the reference data set, but also an extended set
of unlabeled data. We naturally call this new method Semi-Supervised
GP, and from now on we will designate it simply as SSupGP.

In this work, the extended set of unlabeled data is basically what we
had most readily available, i.e., the large validation set (after removing
the labels). Using the validation set to calculate the fitness may seem
like “cheating”, however we took special care on making sure the results
are not biased by this practice (see Sections 5 and 7). Other extended
sets can be used, as unlabeled data is normally abundant and easy to
collect. For applications where this is not the case, it is useful to know
that using the validation set without the labels is allowed.

Let us denote yt as the output value obtained on the labeled obser-
vations t, with t = 1‥n, and ŷt the respective numeric class label (0 or
1). Let us also denote zu as the output value obtained on the unlabeled
observations u, with u = 1‥m. The modified RMSE is calculated as√∑n

t=1 (ŷt − yt)2 +
∑m

u=1 (̂zu − zu)2

n + m
, (1)

where ẑu is the class label (0 or 1) closest to the output zu.
It is important to say that the main motivation for this modified

RMSE fitness function was to improve the behavior of the models
obtained by GP. In this type of application, the GP models are normally
well behaved, outputting values near the interval [0 1] (for binary clas-
sification problems where the class labels are 0 and 1) both on training
and on unseen data [99]. However, in this case the models exhibited
an unusual behavior, returning an array of out-of-range values when
asked to classify unseen data. As SSupGP was being developed in order
to improve model behavior, the labeling errors were discovered. We are
not sure, but these errors are probably what caused the wild behavior in
the first place. What we know is that, by promoting a more constrained
behavior of the models, SSupGP also proved that it can cope with such
errors. Section 8 discusses the possible reasons for this.

7. Results

In this section, we first present the results obtained by both meth-
ods CART and StdGP, and then the results obtained by the new semi-
supervised method SSupGP. We finish with an additional validation of
the results obtained by all three methods.
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Fig. 4. Evolution of RMSE (left) and accuracy (right) on the training and test sets.
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7.1. Results of CART and StdGP

The first results we show are the evolution of the fitness (measured
as the RMSE between expected and predicted values, see Section 4.2)
of the best individual on the training set and the fitness of the same
individual on the test set during the StdGP learning, as well as the evo-
lution of the respective overall accuracy values (Fig. 4). The lines shown
in the plots report the median values calculated on the 30 runs. It can
be observed that training and test RMSE values are very similar during
the entire evolution, and therefore there was no reason to suspect the
presence of overfitting. In terms of accuracy the values are even more
similar. Also CART obtained results that did not reveal overfitting.

As described in Section 5, one model is chosen to represent each
method. In both CART and StdGP all the models have very similar and
very good accuracy values, both in the training sets (variance of 0.10
for CART and 0.12 for StdGP) and in the test sets (variance of 0.14

Table 1
Overall accuracy and Kappa values obtained by
the two models on a large validation set.

Method Accuracy (%) Kappa

CART 95.49 0.23
StdGP 97.58 0.37

for CART and 0.15 for StdGP), and for each method they are also very
similar in their form and readability. For this reason the choice is both
easy and difficult, and hopefully not a very influential factor on the
remainder of the work.

Despite the low RMSE and high accuracy values, the results obtained
by both of these models on the large validation set were unexpectedly
bad (Table 1). StdGP being much better than CART, it still did not reach
an acceptable Kappa value (anything below 0.4 is considered as a poor
classification [103]).

Following the procedures described in Section 5, each model was
used to classify the entire image, and its inspection revealed the reason
for the bad validation results. Both methods classified natural wood-
lands and regenerating patches (but not many agricultural fields) as
burned areas, in particular CART. Fig. 5 shows an example, where only
one large burned area should have been identified (a), and yet both
CART (b) and StdGP (c) classify other large areas as burned. In the case
of StdGP, in all validation procedures the classification is obtained by
applying a cutoff to the raw output values of the model (as described in
Section 4.2). The raw classified image, before applying the cutoff, can
be seen as a greyscale representation of the certainty of the classifica-
tion (d).

We found that many of the pixels wrongly classified as burned had
indeed low certainty values, closer to 0.5 than to any of the class labels.
However, many others, equally wrong, were showing high certainty.
But the most striking observation was the wild range of raw values

Fig. 5. Detail of the original image (a), classification by CART (b), classification by StdGP (c) and raw classified image by StdGP, before applying the cutoff (d). The burned areas appear
as dark purple patches on the image (a). In the classifications (b) and (c), white represents non-burned while black represents burned. In the raw classification (d), the greyscale goes
from low certainty (lighter) to high certainty (darker). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Overall accuracy and Kappa values obtained by
the three models on a large validation set.

Method Accuracy (%) Kappa

CART 95.49 0.23
StdGP 97.58 0.37
SSupGP 99.43 0.70

found throughout the entire classified image. Values very far from the
interval [0 1] appear much more frequently than in other similar work
we have performed in the past [99].

7.2. Results of semi-supervised SSupGP

As we were developing a method to avoid these out-of-range raw
outputs (SSupGP, see Section 6), a rechecking of the reference data
revealed mislabeling errors in a small percentage of observations (see
Section 3). For the reasons explained earlier in the introduction, we
have decided not to correct these errors. Instead, we test the perfor-
mance of SSupGP in the same faulty data. We use as unlabeled data the
large validation set without the class labels. The size of this validation
set (3525 pixels) is approximately 70% of the size of the original refer-
ence set (4872 pixels), and more than 99% of its observations belong to
class 0 (not burned).

As with the previous methods, one model was chosen among the
ones evolved by SSupGP, and put through the validation procedures
described in Section 5. The improvement of the results is astounding.
As shown in the last row of Table 2 (we keep the previous values for
comparison), on the large validation set the overall accuracy is close
to 100% for SSupGP, but the main difference is the Kappa coefficient,
that now is in the range 0.61–0.75 and therefore is considered to be
good [103]. Furthermore, the visual inspection of the classified image
revealed that the SSupGP model was not deceived by the errors in the
data (see Fig. 6).

7.3. Extra validation

The visual inspection of the classified image is by itself a confir-
mation that SSupGP is obtaining good results overall, and not just on
the pixels of the training, test, and validation sets. However, to clear
any concerns regarding the admissibility of using the unlabeled vali-
dation pixels to help the learning, we perform an extra validation of

Table 3
Overall accuracy and Kappa values obtained by
the three models on the extra small validation
set.

Method Accuracy (%) Kappa

CART 94.88 0.38
StdGP 97.72 0.59
SSupGP 99.43 0.85

the three models on the second validation set described in Section 5.
The size of this extra validation set (176 pixels) is approximately 5%
of the size of the first validation set (3525 pixels), and almost 98% of
its observations belong to class 0 (not burned). The results are shown
in Table 3 for all the methods, revealing more or less the same over-
all accuracy (exactly the same for SSupGP), and higher Kappa, than
the ones obtained in the first validation set. According to the suggested
ranges for the Kappa coefficient [103], CART produces a poor classifi-
cation (<0.40) also on this set, StdGP produces a moderate classifica-
tion (0.41–0.60) and SSupGP produces an almost perfect classification
(>0.81). However, more important than these absolute values is the fact
that the relative quality of each method, observed on the first validation
set, is maintained on this extra validation set, which suggests that using
the unlabeled validation data for learning does not bias the results of
SSupGP.

8. Discussion

We begin this section with a discussion on the concept of overfitting,
and its detection in different learning scenarios. Then we analyse the
learning dynamics of both StdGP and SSupGP, in particular the effect
of the labeling errors in the evolution of RMSE and accuracy, and the
output values and their distance to class labels. We identify key differ-
ences between them, and finally take a closer look at the fitness function
of SSupGP, discussing its implications and proposing an explanation for
the success of this method.

8.1. On the concept of overfitting

Far from surveying all the different meanings and usages given to
the concept of overfitting in the scientific literature, we do however
provide a short briefing on how we use it in this work, and how different
it may be from other works, in order to avoid misinterpretations during
the discussion of the results. First of all, overfitting is a broad concept

Fig. 6. Detail of the original image (a) and classification by SSupGP (b). The burned areas appear as dark purple patches on the image. In the classification, white represents non-burned
while black represents burned. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Overall accuracy and Kappa values obtained by CART and StdGP on both validation sets after
learning with the error-free reference set.

Method Large validation set Method Small validation set

Accuracy (%) Kappa Accuracy (%) Kappa

CART 99.82 0.87 CART 99.43 0.85
StdGP 99.77 0.85 StdGP 99.43 0.85

that in some contexts simply means unnecessary complexity, excessive
fine tuning of a model to the data, even if this model does not need to
generalize to other data, and even if the learning process is completely
unsupervised. In such contexts, overfitting is simply the violation of
the principle of Occam’s razor, and assuming all the data is perfectly
correct, the culprit is the learning algorithm. However, in our work this
is not what we mean by overfitting.

In our work, overfitting is always linked to a supervised learning
process, and always linked to either noise or outliers in the data, regard-
less of noisy observations being considered outliers or not, and regard-
less of the outliers being gross errors or simply exceptional (but true)
observations. Overfitting is not equivalent to lack of generalization abil-
ity. True, when there is overfitting, there is no generalization ability,
but not being able to generalize may simply mean there is not enough
data to build a model. Overfitting implies that something was learned
that should not have been learned, because learning it has resulted in a
biased model that fails to explain similar but unseen data.

Particularly on this paper, due to the characteristics of our data, we
do not focus on noise, but only on gross errors. One can argue that
the learning algorithms are not overfitting, but simply fitting the data
they were given, and that the origin of the problem is, instead, in the
process of building the reference data. Nevertheless, these errors are
outliers and they should not be learned. Therefore, we can state that the
learning algorithms are indeed overfitting, and we make no distinction
of whether the problem derives from the building of the data or from
the learning process.

8.2. On the detection of overfitting

The main lesson to retain from the results section is that overfitting
is not such a straightforward phenomenon to detect, and the present
work illustrates this very well. Let us summarize the process adopted in
this work: one reference data set is provided; this set is randomly split
into training and test sets, several times, precisely to ensure that 1) the
possible occurrence of overfitting does not go undetected and 2) the
results are consistent across many independent executions of the learn-
ing method on different partitions of the data. Consistently low RMSE
and high accuracy values indicate good learning, and the similarity of
values measured on the training and test sets indicate good generaliza-
tion. Still, overfitting was present, hidden, and it was only discovered
during the validation of the models on a new data set.

There was nothing wrong with the process described in the previ-
ous paragraph. The training and test sets were drawn from the same
distribution, as they should be, because they came from the same refer-
ence set. The problem is, same reference set, same errors. The models
that perform well on the training data are the ones that learned the
erroneous pixels, so they will perform equally well on the equally erro-
neous test data. The fact that these models (over)fit the errors is only
detected on a new data set from a different source. This was the case in
the present work, but there are two other possible scenarios.

The first alternative scenario is the test data coming from a different
source and, unlike the training data, being free from labeling errors. In
this case, the models that perform better on the (erroneous) training
data will have a worse fitness on the (clean) test data, thus revealing
overfitting. The second alternative scenario is tricky: the training data
being free from errors, with only the test data containing erroneous

data. Just like in the previous case, the models that perform better on
the (clean) training data will have a worse fitness on the (erroneous)
test data, thus revealing overfitting. Only this time there is no overfit-
ting! At most, there may be some amount of true overfitting, but not in
the amount suggested by the differences in the fitness measured on the
training and test sets.

In summary, we have four different scenarios and possible out-
comes: 1) clean training and test data: overfitting detected if and only if
it is present; 2) erroneous training and test data (the present case): hid-
den overfitting not detected; 3) erroneous training data, clean test data:
true overfitting correctly detected; 4) clean training data, erroneous test
data: non-existent overfitting falsely detected.

It is not so obvious that case 3 above (erroneous training data, clean
test data) would actually return overfitted models. We believe it would
greatly depend on the amount and magnitude of the errors, as discussed
in [3,104]. In the case of a very low percentage of errors, a robust
method could be able to learn the general pattern of the training data
without overfitting the errors (and therefore would obtain better fitness
on the clean test set than on the erroneous training set4 ). However, this
is not what happened in our problem. Despite a very low percentage of
errors, overfitting did occur in both CART and StdGP, even if mostly
hidden. And yet, using exactly the same faulty data sets, SSupGP was
able to learn the general pattern as if the errors were not there. In the
remainder of this section we explore the reasons why.

8.3. The effect of labeling errors in supervised and semi-supervised learning

First things first, we clear any doubts on whether the 20 erroneously
labeled pixels, which represent less than 0.5% of the reference data,
are indeed the culprit of the high misclassification errors shown in the
results section. To this end, we correct the labels of these 20 pixels and
perform a couple of sample runs with both CART and StdGP. Table 4
shows the results obtained by both methods on the two validation sets,
with models learned with the error-free reference set. We immediately
see the excellent accuracy and Kappa values that we were expecting in
the first place. On the large validation set CART is able to outperform
StdGP, and on the small validation set the results are the same for both
methods.

In order to understand why the mislabeling errors undermine the
success of supervised learning while the semi-supervised approach is
apparently immune to them, we study the learning dynamics of both
StdGP and SSupGP, performing separate measurements on the cor-
rect (correctly labeled) and erroneous (erroneously labeled) pixels, thus
highlighting how differently the errors affect each of the learning meth-
ods.

Fig. 7 shows the evolution of the RMSE and overall accuracy dur-
ing the StdGP evolution, for the correct and erroneous pixels separately
(for this analysis we have put training and test data all together, since
their RMSE are very similar - see Fig. 4 on Section 7). The figure shows
boxplots for every 10th generation, from 0 to 200, calculated on the 30
runs. An extra line is also drawn to highlight the median. It is immedi-
ately obvious that the erroneous pixels are much more difficult to learn.

4 In fact, many times we have observed such behavior in the past (in work not related
to satellite imagery), but never thought of pointing the finger at the training data.
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Fig. 7. Evolution of RMSE (left) and overall accuracy (right) during the StdGP evolution, for the correct and erroneous data separately. In the left plot there are four not shown “correct”
outliers in generations 50–100 with approximate values 9, 16, 24 and 238, and 25 not shown “erroneous” outliers spread along all generations with values between 1 and 134.
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Fig. 8. Evolution of RMSE (left) and overall accuracy (right) during the SSupGP evolution, for the correct and erroneous data separately. In the left plot there are 17 not shown “correct”
outliers in generations 50–200 with values between 1 and 479, and only one not shown “erroneous” outlier in generation 0 with approximate value 1.2.

Their median RMSE is much higher than the RMSE of the correct pix-
els, and even increases at some points of the evolution. Furthermore,
there is a high variability of behavior among different runs, resulting
in many outliers with high values that are not shown in the plot. In
terms of the accuracy, the differences observed between correct and
erroneous pixels are even more striking, with the correct pixels quickly
reaching accuracy values close to 100% while the erroneous ones rise
unevenly from 0% to around 75%.

Fig. 8 also shows the evolution of the RMSE and overall accuracy for
the correct and erroneous pixels separately, but this time for SSupGP.
The differences between correct and erroneous pixels are even larger
than previously observed for StdGP. From the beginning of the run, the
RMSE on the erroneous pixels simply does not decrease. On the con-
trary, as the RMSE on the correct pixels decreases, the RMSE on the
erroneous ones tends to slightly increase. In terms of accuracy, once
again the correct pixels quickly reach values close to 100%, but unlike
StdGP, in SSupGP the erroneous pixels maintain a stubborn absolute
0% accuracy throughout the entire evolution (except for the shown out-
liers). It is clear that SSupGP does not learn the errors. Why?

8.4. Output values and distance to class labels

As mentioned earlier (Section 6), the main motivation for the
SSupGP method was to avoid “wild” models whose output values fall
very far from the interval [0 1], rewarding the well-behaved models
that return values close to either 0 or 1. The secondary effect of this

method turned out to be the apparent (and desirable) inability to learn
the erroneous data. But what about the primary, the intended effect, of
avoiding wild output values?

The purpose of the next two figures, in particular the comparison
between them, is to observe whether SSupGP actually behaves substan-
tially better than StdGP in terms of the “wildness” of its raw output val-
ues. Fig. 9 shows the dispersion of output values returned by all the 30
StdGP models for all the 30 sets of training (left) and test (right) data.
All the models are relatively well behaved in the training data, with all
output values inside the interval [-0.5 1.5] except for 18 (loosely called)
outliers that fall in the interval [1.5 2]. Since this counting includes the
output values of all 30 models, this represents less than one outlier per
model. On the test data the dispersion of values was slightly higher,
with 8 values falling in the interval [1.5 2], 7 other values falling in
the interval [2127] (not shown in the plot), 4 values in the interval
[−1 −0.5] and 4 other values in the interval [−2 −1] (not shown in the
plot), therefore a total of 24 outliers, which also represents less than
one outlier per model. Fig. 10 shows the dispersion of output values
returned by all the 30 SSupGP models for all the 30 sets of training
(left) and test (right) data. Curiously enough, SSupGP did not exactly
show a more constrained behavior than StdGP. In the training data
there were 10 values falling in the interval [1.5 2] and 3 others in the
interval [2 2.5] (not shown in the plot), totaling 13 outliers (5 less than
StdGP). In the test data there were 15 values in [1.5 2], 3 values in
[2 25] (not shown in the plot) and a wild value of 32920 (not shown in
the plot), plus 3 values in [−1 −0.5] and 2 values in [−7 −1] (not shown
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Fig. 9. Dispersion of output values returned by all the 30 StdGP models for all the 30 sets of training (left) and test (right) data. Some points are not shown in the test data, with values
127, 21.68, 11.67, 9.09, 5.29, 2.08, 2.04, −1.08, −1.23, −1.65 and −1.82.

Fig. 10. Dispersion of output values returned by all the 30 SSupGP models for all the 30 sets of training (left) and test (right) data. Some points are not shown in the training data, with
values 2.48, 2.40 and 2.24, and in the test data with values 32920, 24.23, 11.48, 2.39, −4.04 and −6.43.

in the plot), totaling 24 outliers (the same as StdGP). Apart from these
slight differences, for SSupGP the range of values around 0 appears to
be narrower than for StdGP. Although these are very small differences
in behavior, they seem to be enough to produce a large difference in the
range of the output values produced when classifying an entire image.
However, it is still not clear how this difference affects the correctness
of the classifications.

Fig. 11 shows the relationship between the distance to the (closest)
class label and the accuracy of the classifications, presented as boxplots
built with the values returned by the 30 models of StdGP (left) and
SSupGP (right) on the reference set (training and test). The x axes are
labeled in an unconventional manner: instead of completely specifying
each interval below each box, they show only the interval endpoints
between the boxes. The distances between 0 and 0.5 are grouped into
5 consecutive slots, all the same length. The distances larger than 0.5
are grouped differently, as they contain much fewer points. A distance
larger than 0.5 means that either the output value is outside the interval
[−0.5 1.5], or it is inside the interval and the classification is wrong.
We have observed that for both StdGP and SSupGP there are no dis-
tances in the interval [23], and therefore we have grouped distances
between 0.5 and 2 in one slot, and distances higher than 3 in another
slot. The boxplots show that, for both StdGP and SSupGP, for distances
until 0.5 the accuracy drops as the distance increases, from a median of
almost 100% until as low as 60–65%. This was the expected behavior,

already observed in similar studies [99]. However, for larger distances
the behavior is different. For distances in the interval [0.5 2] the accu-
racy is again close or equal to 100%. This means that most of these clas-
sifications are correct, despite the output values of the models falling
outside the [-0.5 1.5] interval. For distances higher than 3, the median
accuracy is still maximum in StdGP, but only 25% in SSupGP. However,
the medians in this last slot are calculated with very few points and
therefore should not be used to derive any conclusions. What we can
say is that StdGP and SSupGP once again exhibit very similar behavior
in terms of output values produced by the models, and that the correct-
ness of the classifications does not seem to be negatively affected by the
presence of wild output values.

Performing a deeper exploration of the closeness of the output val-
ues to class labels, Fig. 12 shows boxplots of the maximum and mini-
mum output values obtained during the evolution of the 30 models of
StdGP (left) and SSupGP (right) for every 10th generation between 0
and 200. Extra lines highlight the evolution of the median values. Cor-
rect and erroneous pixels are treated separately. For the correct pixels,
the behavior of StdGP and SSupGP is similar. In the first 10 genera-
tions the initial output values drift farther apart from each other, and
then quickly stabilize for the rest of the evolution, around values that
are slightly higher than 1 (for the maximum) and slightly lower than 0
(for the minimum). For the erroneous pixels the behavior is different,
as expected. As StdGP learns part of them, the maximum output values
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Fig. 11. Distance of the output values to the (closest) class label versus the accuracy of the classifications. Boxplots obtained with the values returned by the 30 models of StdGP (left)
and SSupGP (right) on all the data (training and test) of the reference set. The unconventional x axes specify only the interval endpoints.
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Fig. 12. Evolution of minimum and maximum output values obtained by the StdGP (left) and SSupGP (right) models, on the correct and erroneous data separately. For both StdGP and
SSupGP there are additional outliers not shown in the plot, with values as low as −36 (StdGP) and −19 (SSupGP), and as high as 16586 (StdGP) and 33318 (SSupGP).

approximate the ones of the correct pixels, while the minimum output
values remain slightly higher than 0 (therefore higher than the mini-
mum output values of the correct pixels). On the contrary, with SSupGP
the maximum and minimum values of the erroneous pixels remain very
close to 0 during the entire evolution (and also higher than the min-
imum values of the correct pixels), as these pixels actually belong to
class 0. Besides this obvious difference between StdGP and SSupGP,
SSupGP tends to concentrate its values in narrower ranges and produce
a lower number of outliers than StdGP. This was expected, and Figs. 9
and 10 had already partially revealed it. However, it is still a modest
result that does not explain why SSupGP is so much better than StdGP.

8.5. The fitness function

At this point, we must assume that the general behavior of the mod-
els, in terms of output values and their distance to the class labels, is
not related to the ability or inability to learn the erroneous data. We
now look closely at the implications of the fitness function introduced
by SSupGP, the modified RMSE (described in Section 6), with the goal
of explaining why this fitness function does not lead the evolution into
learning the erroneous data.

The first idea that comes to mind is that, by adding data to the calcu-
lation of the RMSE, the errors in the reference set are being diluted. This
is only partially true. As the additional pixels do not contain any labels,
they are not doing anything to contradict the erroneous information

provided by the reference set. As far as labeled samples go, both StdGP
and SSupGP are given the exact same percentage of errors. However,
adding the unlabeled pixels to the calculation of the RMSE introduces
a new way to improve fitness, which is minimizing the distance to any
class label. As specified before (Section 7) the additional data repre-
sents around 70% of the amount of observations in the reference set.
Considering that in each run 30% of the observations are taken for the
test set, this means that the amount of training data is roughly the same
as the amount of additional unlabeled data. Therefore, minimizing the
distance to any class label becomes as important, and as influential to
fitness, as minimizing the distance to a specific class label. It is well
known that GP chooses the easiest way to improve fitness. In this case,
we believe that the easiest way is to reduce the RMSE on the correct
(and unlabeled) pixels, instead of forcefully learning a few pixels that
obviously contradict the evolved models. Fig. 13 is an histogram of the
shortest distances (0–0.1) to the class labels, calculated on the refer-
ence (labeled) data only, using the output values of all the 30 models
evolved by each method. The unconventional x axes specify only the
interval endpoints (as in Fig. 11). It clearly shows that the shortest dis-
tances are more frequent in the SSupGP models. In fact, more than half
(52%) of the values returned by SSupGP models are closer than 0.02
from a class label (correct or incorrect), against only 38% of the values
returned by StdGP.

We seem to have found the explanation for the success of SSupGP.
Yet, one question still remains. If SSupGP improves fitness by minimiz-
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ing the distances to class labels, why is it that StdGP does not do the
same? The answer is, it does. Looking at Fig. 7 (right), one can see
that for the first 30 generations the median accuracy on the erroneous
data remains 0%. But StdGP has less data to work with, less possibili-
ties of easily improving fitness without making the effort of fitting the
errors, so eventually it starts learning them. A striking observation is
that already in generation 0 the random population of initial models
finds it very difficult to fit the erroneous pixels, while easily fitting
most of the correct ones. This observation is valid for both StdGP and
SSupGP, and may have deep implications in future work (see Section 9).

9. Conclusions and future work

The story of this paper was very simple. Unusually bad results were
obtained by two different methods, CART and GP, on a simple classifi-
cation problem. A deeper look into the reference data used for learning
revealed a small percentage of labeling errors, exposing and explain-
ing a problem of hidden overfitting. At the same time, a modified fit-
ness function was used in the GP method in order to promote a more
constrained behavior of the evolved models, in terms of their range
of raw output values. This new approach used extra unlabeled data,
together with the original reference data, in a semi-supervised manner.
The modified fitness function measures the error in the same way for
both labeled and unlabeled data, but for the unlabeled points the class
label is assumed to be the one closest to the raw output value. The
models evolved with semi-supervised learning exhibited a very similar
behavior to standard GP, and yet they did not learn the errors, com-
pletely avoiding overfitting.

This is the end of the story, but not the end of the work. This study
has raised more questions than the ones it answered. The success of
this semi-supervised GP approach is reasonably explained, but would
it still hold if this classification problem was not so easy to solve? Or
if the labeling errors affected more than just a tiny percentage of the
reference data? In the absence of any errors, will this approach harm
the learning process? This is a very important point, as we may not
know beforehand if the reference data contains errors or not. We need
to know if we should always use the semi-supervised method, in case
of doubt.

If we do not possess extra data to implement this method, can we use
synthetic data built on the same characteristics as the reference data?
Can we even use the exact same reference data, as extra unlabeled data?
This would be a kind of regularization. How much unlabeled data do
we need in order to make the method work? And how much labeled
data? Can a method be instructed to request more (labeled or unla-
beled) data during the learning process, in case the models are not con-
sidered robust enough? This would enter the field of active learning.
Can a method be instructed to request confirmation of the labels, in
doubtful cases? Should the method simply discard the doubtful cases,
assuming the labels are unreliable? Or should the method assume the
existence of (and try to make the most of) fuzzy labels? Can we develop
new fuzzy-supervised learning methods, where each label of the refer-
ence data has a confidence level attached? This confidence level could
be either given by the human supervisor (in cases where there is no
certainty, but only an educated guess) or resulting from a reasonable
doubt regarding the given label, due to difficulties in learning (like in
the present work). Would a well-thought method like this work better
or worse than our very simple method, that simply relies on accepting
what the evolving models see as more plausible?

Adding to the list of questions, can we expect this approach to be
successful also in multiclass classification problems? Also when coupled
with non-standard GP systems? Can it be adapted to regression prob-
lems? And finally, can we use the knowledge gained from this work in
improving other machine learning methods?
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