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Abstract

The particle swarm optimization (PSO) algorithm is a stochastic search tech-

nique based on the social dynamics of a flock of birds. It has been estab-

lished that the performance of the PSO algorithm is sensitive to the values

assigned to its control parameters. Many studies have examined the long-term

behaviours of various PSO parameter configurations, but have failed to provide

a quantitative analysis across a variety of benchmark problems. Furthermore,

two important questions have remained unanswered. Specifically, the effects of

the balance between the values of the acceleration coefficients on the optimal

parameter regions, and whether the optimal parameters to employ are time-

dependent, warrant further investigation. This study addresses both questions

by examining the performance of a global-best PSO using 3036 different pa-

rameter configurations on a set of 22 benchmark problems. Results indicate

that the balance between the acceleration coefficients does impact the regions

of parameter space that lead to optimal performance. Additionally, this study

provides concrete evidence that, for the examined problem dimensions, larger

acceleration coefficients are preferred as the search progresses, thereby indicat-

ing that the optimal parameters are, in fact, time-dependent. Finally, this study

provides a general recommendation for the selection of PSO control parameter
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values.

Keywords: Particle swarm optimization, control parameter values,

time-dependence

1. Introduction

An effective search technique must strike a balance between exploring new

regions in the search space and exploiting known, promising regions. In the

particle swarm optimization (PSO) algorithm, exploration and exploitation can

be controlled by the values of the control parameters [1, 2, 3, 4, 5, 6]. Moreover,5

the performance of the PSO algorithm can be improved by appropriately tuning

the control parameters to the current problem [7, 8, 9, 10], given that the particle

movement patterns are influenced by the values of the control parameters [6, 8].

While there is no doubt that parameter tuning in the PSO algorithm is im-

portant, especially when more complex optimization problems are considered,10

the task of effectively tuning the parameters is computationally expensive. Pa-

rameter tuning is often an arduous manual process whereby a large number

of candidate parametrizations must be examined and analysed. While there

have been various automated parameter configuration tools proposed (for ex-

ample, the F-Race algorithm [11]), such tools have two clear drawbacks. Firstly,15

automated methods simply automate the process of parameter tuning and do

not necessarily reduce the time complexity of the parameter search. Although

various optimizations can be made, such as removing a particular parameter

configuration from consideration if enough evidence is gathered to deduce that

the configuration is poorly performing, the original argument still stands in that20

this does not necessarily reduce the overall complexity of the control parameter

tuning problem. Rather, it simply translates a manual process into an auto-

mated process. Secondly, there is an implicit, often-overlooked assumption in

a priori parameter tuning that the optimal parameter configuration does not

change over time. With an automated parameter tuning strategy (and, for that25

matter, manual tuning techniques), the tuned parameters will be statically used
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throughout the course of the search. This is likely not an optimal scenario given

that there is a well-established ideology that the best parameters change over

time. For instance, the time-varying inertia weight PSO by Shi and Eberhart

[12, 13] is premised on the idea of reducing the value of the inertia weight (de-30

scribed in Section 2) over time. Leonard and Engelbrecht [5] empirically found

that parameters well-suited for exploration were not well-suited for exploitation,

and vice versa. Moreover, heterogeneous PSO algorithms have evidenced that

the most suitable velocity update scheme to employ varies during the search

[14, 15, 16, 17].35

To alleviate the issue of time-sensitive parameter values, various self-adaptive

particle swarm optimization (SAPSO) algorithms that adapt their control pa-

rameters over time have been proposed [12, 18, 19, 20, 21, 22, 23]. While many

such adaptive schemes have been proposed, their performance has largely been

unconvincing [24, 25, 26, 27]. However, the poor performance of SAPSO algo-40

rithms can be somewhat explained by the fact that such algorithms are concur-

rently optimizing two highly inter-dependent continuous search problems. The

inter-dependence is twofold for such algorithms. On one hand, the best param-

eters to employ (i.e., the secondary search problem) are dependent upon the

current state of the primary search. On the other hand, the performance of the45

primary search is heavily dependant upon the identification of good parameters

in the secondary search. To further complicate the matter, a poor set of param-

eters will almost certainly lead to poor primary search performance. Therefore,

it is crucial that a SAPSO algorithm perform an effective parameter search. By

extension, any reduction in the complexity of the parameter search will almost50

certainly lead to an improvement in performance for SAPSO algorithms.

There has been a number of studies that have empirically examined the

performance of various PSO parameter configurations [6, 8, 9, 10, 28, 29]. How-

ever, there is no general consensus as to which parameter configurations lead

to the best performance. Most empirical studies examined a limited set of55

parameter configurations over a small number of benchmark problems and for

specific problem dimensionalities, thereby providing recommended parametriza-
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tions. Recently, Cleghorn and Engelbrecht [28] examined 1264 parameter con-

figurations over 28 benchmark problems and identified regions of the parameter

space that lead the PSO algorithm to perform worse than a random search.60

Similarly, Harrison et al. [29] empirically investigated 1012 parameter config-

urations over a set of 22 benchmark functions with the primary objective of

determining which areas of parameter space lead to good performance of the

PSO algorithm. Both of these studies have led to an enhanced understanding of

the general region in parameter space where good parameter configurations lie.65

However, neither study answered an important question, namely whether the

best parameters to employ are in fact time-dependent. Similarly, both studies

assumed that the cognitive and social control parameters (described in Section

2) have equal values. Thus, an additional, equally important question remains

unanswered: in what regions of parameter space do the best parameters reside70

when the values of these two parameters are not equal?

This paper provides answers to both questions presented above, namely how

the best parameter values change over time and what regions of parameter space

lead to the best performance when the cognitive and social control parameters

are not equal. To this end, 3036 parameter configurations of the PSO algo-75

rithm are examined over a set of 22 benchmark problems. The performance

of each parameter configuration is captured at various points throughout the

search to give an indication of whether the best performing parameter configu-

rations remain static throughout the entire search. Moreover, the performance

is correlated with the best-known convergence criterion [30, 31] to ascertain the80

effect of particle convergence/stability on the overall performance of the PSO

algorithm.

This paper contributes to the understanding of PSO by concluding that the

balance between the social and cognitive acceleration coefficients has a signif-

icant impact on the areas in parameter space that lead to good performance.85

Moreover, this study shows that the optimal regions in parameter space shift

over time, thus providing direct evidence in support of SAPSO algorithms.

The remainder of this paper is structured as follows. Section 2 presents the
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PSO algorithm and discusses the theoretical convergence criterion used in this

study. Section 3 discusses the experimental procedures and analysis techniques90

as well as the results regarding the identification of optimal parameter regions.

Finally, concluding remarks and avenues of future work are given in Section 4.

2. Particle swarm optimization

The PSO algorithm consists of a collection of agents, referred to as particles,

where each particle represents a candidate solution to the current optimization95

problem. Each particle retains three pieces of information, namely its current

position, velocity, and its personal best found position within the search space.

Movement of particles is governed by an iterative calculation and addition of

a velocity vector to the position vector. The calculation of each particle’s ve-

locity is based on its attraction towards two promising locations in the search100

space, namely the best position found by the particle and the best position

found by any particle within the particle’s neighbourhood. The neighbourhood

of a particle refers to the other particles within the swarm from which it may

take influence. The original PSO algorithm employed one of two neighbour-

hood strategies, either a star topology where the neighbourhood is the entire105

swarm, or a ring topology where the neighbourhood consists of the immediate

neighbours when the particles are arranged in a ring [32]. The star and ring

neighbourhood topologies, commonly referred to as global-best and local-best,

respectively, have been found to exhibit no statistically significant difference in

performance when aggregated over a wide variety of benchmark functions [33].110

However, the topology must be considered as a parameter to be tuned given that

the best topology to employ is dependent upon both the optimization problem

and computational budget [33, 34]. Furthermore, it was shown by Harrison

et al. [29] that the topology employed has a noticeable influence on the regions

in parameter space that lead to good performance.115

For the purposes of this study, a global-best topology is employed. The

velocity is then calculated for particle i according to the inertia weight model
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of [12] as

vij(t+ 1) = ωvij(t) + c1r1ij(t)(yij(t)− xij(t))

+ c2r2ij(t)(ŷj(t)− xij(t))
(1)

where vij(t) and xij(t) are the velocity and position in dimension j at time t,

respectively. The inertia weight is given by ω while c1 and c2 represent the cogni-

tive and social acceleration coefficients, respectively. The stochastic component

of the algorithm is provided by the random constants, r1ij(t), r2ij(t) ∼ U(0, 1).

Finally, yij(t) and ŷj(t) denote the personal and neighbourhood best positions

in dimension j, respectively. Particle positions are then updated according to

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1). (2)

2.1. Convergence of particle swarm optimization

There has been a significant amount of research effort devoted to the the-

oretical study of PSO convergence [2, 3, 30, 31, 35, 36, 37, 38]. Specifically,

researchers have been interested in the regions of parameter space that lead

to convergent behaviour for the PSO algorithm. Given the stochastic nature

of the PSO algorithm, various assumptions have been made to assist in the

derivation of the convergent region. One such assumption is known as the stag-

nation assumption, which makes the simplifying assumption that the personal

and neighbourhood best positions are fixed and do not move throughout the

search. However, the various assumptions employed by these theoretical stud-

ies have proven to be limiting, and therefore many of these purely theoretical

studies do not capture the true convergent region [39]. Empirical simulations

(without any simplifying assumptions) by Cleghorn and Engelbrecht [39] have

shown that, of the various convergence criteria, the criterion

c1 + c2 <
24(1− ω2)

7− 5ω
, (3)

as proposed by Poli and Broomhead [30] and Poli [31], is the most accurate in

practice. The region defined by Equation (3) is illustrated in Figure 1, where
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parameter values that lie within the parabolic region are theoretically conver-

gent. Note that convergence, in this context, does not necessary imply that120

the swarm has converged to a single point. Rather, convergence is defined to be

order-2 stability such that the limit of the variance of particle movements is zero

[31]. While the region defined by Equation (3) was derived using the stagna-

tion assumption, Bonyadi and Michalewicz [40] have shown that an equivalent

criterion can be derived without the stagnation assumption.125
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Figure 1: Visualization of Poli’s theoretically defined region for convergent behaviour of PSO

parameters.

3. Optimal parameter regions

To identify the regions of parameter space that lead to good performance, a

total of 3036 parameter configurations were examined on a set of 22 benchmark

problems, as summarized in Table 1. All of the benchmark functions were eval-

uated in 30 dimensions. Further descriptions of the benchmark functions can be130

found in Appendix A. Each experiment made use of synchronous updates [41]

and ran for 5000 iterations with a swarm size of 30. Experiments were repeated
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30 times using the global best (star) topology. To prevent invalid attractors,

personal best positions were only updated if the new position was both feasible

and had a better objective function value than the previous personal best posi-135

tion. Particles were initialized uniformly within the feasible region, with initial

velocities of zero [42].

Experiments were grouped into three categories based on the ratio between

the cognitive and social control parameter values to ascertain the effects of im-

balanced acceleration coefficients. The experiments were labelled ‘equal’, where

c1 = c2, ‘cognitive’, where c1 = 3c2, and ‘social’, where c2 = 3c1. For each exper-

iment type, the parameter configurations were constructed as sampled points,

(C,w), taken every 0.1 units within the ranges

C ∈ [0.1, 4.4] and ω ∈ [−1.1, 1.1].

Note that while negative inertia weights are not traditionally employed in the

PSO algorithm, recent results have shown that negative inertia weights can

lead to stable behaviour and thus are not necessarily unreasonable [40, 43].140

The values assigned to the control parameters c1 and c2 were then calculated

based on the type of experiment. The control parameter values were taken

as c1 = c2 = C
2 for experiments labelled ‘equal’, c1 = 3C

4 and c2 = C
4 for

experiments labelled ‘cognitive’, and c1 = C
4 and c2 = 3C

4 for experiments

labelled ‘social’. For the cognitive and social experiments, a multiplier value145

of three was chosen to provide an environment where either the cognitive or

social acceleration coefficient would dominate the other without resorting to a

cognitive-only or social-only model. Each experiment group thus consisted of

1012 parameter configurations, leading to a combined total of 3036 parameter

configurations examined in this study.150

3.1. Statistical analysis

Results were analysed using the following statistical analysis procedure. For

each benchmark problem, a Kruskal-Wallis test was performed to first deter-

mine if any significant differences existed among the fitness values obtained by
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Table 1: Characteristics of the benchmark functions. ‘Equation’ specifies the equation number

of the function (see Appendix A). ‘Modality’ specifies the modality (‘U’ for unimodal, ‘M’ for

multimodal). ‘Separability’ denotes the separability (‘S’ for separable, ‘NS’ for non-separable).

Function Name Equation Modality Separability

f1 Absolute Value (A.1) U S

f2 Ackley (A.2) M NS

f3 Alpine (A.3) M S

f4 Egg Holder (A.4) M NS

f5 Elliptic (A.5) U S

f6 Griewank (A.6) M NS

f7 HyperEllipsoid (A.7) U S

f8 Michalewicz (A.8) M S

f9 Norwegian (A.9) M NS

f10 Quadric (A.10) U NS

f11 Quartic (A.11) U S

f12 Rastrigin (A.12) M S

f13 Rosenbrock (A.13) M NS

f14 Salomon (A.14) M NS

f15 Schaffer 6 (A.15) M NS

f16 Schwefel 1.2 (A.16) U NS

f17 Schwefel 2.21 (A.17) U S

f18 Schwefel 2.22 (A.18) U S

f19 Shubert (A.19) M NS

f20 Spherical (A.20) U S

f21 Step (A.21) M S

f22 Vincent (A.22) M S
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using each of the parameter configurations. If the Kruskal-Wallis test indicated155

that a significant difference existed, pairwise Mann-Whitney U tests were then

performed to identify the individual differences. When the Mann-Whitney U

test indicated that a difference in performance existed, the median fitness val-

ues were used to assign wins and losses; the parameter configuration that lead

to better performance was awarded a win, while the inferior configuration was160

awarded a loss. Finally, the parameter configurations were ranked based on

the difference between the number of wins and losses. In this context, a lower

rank corresponds to superior performance. Both the Kruskal-Wallis and Mann-

Whitney U tests were performed at a confidence level of 0.05.

3.2. Results and discussion165

This section presents the results of the experiments described in Section 3.

Firstly, the overall performance of the parameter configurations is examined,

followed by an examination of the time-dependence.

3.2.1. Overall Performance

Figure 2 depicts the overall rank of each parameter configuration for each170

experiment after 5000 iterations. While each of the experiments depicts a ten-

dency for parameters near the boundary of the convergent region to perform

best, there are observable differences regarding where the best parameters lie.

Such observations are reinforced by Figure 3, which visualizes the 100 best pa-

rameter configurations by overall rank after 5000 iterations for each experiment175

type. For the cognitive experiments, a majority of the best parameter configu-

rations are clustered along the upper boundary. However, there is also a notable

cluster of points along the lower boundary. For the social experiments, the best

parameters are clustered very strongly around the apex, with a slight prefer-

ence for positive values of ω. For the equal experiments, the best parameters are180

mostly clustered around the apex, with a slightly more pronounced preference

for positive values of ω than the social configurations.

Examining Figure 2, it is also apparent that the regions leading to the worst
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performance are significantly different among the various configurations. For

each of the experiment types, it is clear that there is a tendency for parameters185

that lie outside the convergent region to perform worse than those within the

region. However, the exact areas that lead to the absolute worst performance

are notably different. For the cognitive experiments, the worst parameters are

mostly dependent upon the value of ω. That is, configurations where |ω| ≈ 1

(albeit more prominently with ω ≈ −1) tend to perform the worst, largely ir-190

respective of the values of c1 and c2. For the social configurations, the worst

performance is scattered throughout the extreme ends of the examined param-

eter space. Examining the equal configurations, the worst performance is again

clustered around the extreme ends of the examined parameter space. However,

it is noted that, for parameter configurations that lie outside the convergent195

region, there is a definite correlation between distance to the convergent region

and performance. Specifically, it is clear that performance degradation is pro-

portional to the distance from the convergent region. It is also noted that, for

each experiment type, there is a cluster within the convergent region that leads

to relatively poor performance.200

Table 2 provides a summary of the fitness attained by the best performing

parameter configuration for each benchmark problem. In the event of a tie, the

parameter configuration that lead to the lowest median fitness was selected. In

the cases of f21 and f22, no definitive best configuration could be chosen given

that there were multiple parameter configurations that always lead to the op-205

timal fitness being attained. For f21, there were 69 configurations that always

lead to the optimal fitness while there were three such parameter configurations

for f22. From Table 2, it is clear that the best parameter values to employ are

problem specific. Furthermore, there is no clear configuration type that outper-

formed the others. However, when the best configurations are correlated with210

modality, a few observations can be made. For seven of the functions, six of

which were unimodal, an equal configuration lead to the best performance. For

five of the functions, all of which were multimodal, a cognitive configuration

lead to the best performance. For eight of the functions, five of which were mul-
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(a) Cognitive configurations.
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(b) Social configurations.
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(c) Equal configurations.

Figure 2: Overall rank after 5000 iterations based on experiment type.

timodal, a social configuration lead to the best performance. In other words,215

the best performance was attained for six out of nine unimodal problems when

c1 = c2 and in no instance did a cognitive configuration lead to the best per-

formance on a unimodal problem. In contrast, parameter configurations that

had c1 = c2 attained the best performance on only one multimodal problem

whereas the cognitive and social configurations each lead to the best perfor-220

mance on five multimodal problems. A further observation regarding Table 2

was made when the best parameters were correlated with the convergence cri-

terion given in Equation (3). For five of the benchmark problems, all of which

were multimodal, the best parameter configuration violated the convergence

criterion. However, it should be noted that violating the convergence criterion225

does not necessarily imply divergence, but rather that convergence cannot be

guaranteed.
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Table 2: Summary of the fitness attained by the best parameter configuration for each bench-

mark function. A * indicates that multiple parameter configurations were found that always

lead to the optimal fitness.

Function ω c1 c2 Median Average Standard Deviation

f1 0.4 2.000 2.000 3.17E-048 2.94E-042 1.24E-0.041

f2 0.7 2.550 0.850 6.66E-015 5.01E-002 2.74E-001

f3 0.7 2.625 0.875 1.07E-014 1.69E-014 3.15E-014

f4 -0.1 0.875 2.625 -1.57E+004 -1.59E+004 1.25E+003

f5 0.4 1.950 1.950 2.76E-100 9.64E-094 3.81E-093

f6 0.5 0.975 2.925 3.70E-003 1.01E-002 1.81E-002

f7 0.4 1.950 1.950 9.96E-105 1.13E-099 5.99E-099

f8 -0.5 1.500 0.500 -2.70E+001 -2.69E+001 8.34E-001

f9 0.6 1.850 1.850 -7.85E-001 -7.88E-001 6.88E-003

f10 0.5 1.750 1.750 6.69E-014 2.12E-013 5.46E-013

f11 0.5 1.750 1.750 1.11E-179 7.52E-170 0.00E+000

f12 -0.1 0.900 2.700 1.39E+001 1.51E+001 7.93E+000

f13 0.8 0.500 1.500 2.47E+000 3.47E+000 3.55E+000

f14 0.8 2.025 0.675 3.00E-001 3.20E-001 5.51E-002

f15 0.1 0.950 2.850 4.51E+000 4.56E+000 6.36E-001

f16 0.2 0.900 2.700 2.60E-014 3.10E-013 8.45E-013

f17 0.0 0.850 2.550 1.02E-007 1.41E-007 1.57E-007

f18 0.4 2.000 2.000 8.21E-048 9.40E-036 5.15E-035

f19 0.8 2.025 0.675 -1.89E+034 -2.02E+034 9.27E+033

f20 0.4 1.950 1.950 1.31E-106 1.08E-100 5.82E-100

f21 * * * 0.00E+000 0.00E+000 0.00E+000

f22 * * * -3.00E+001 -3.00E+001 0.00E+000
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(b) Social configurations.
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(c) Equal configurations.

Figure 3: 100 best parameter configurations after 5000 iterations by overall rank.

Table 3 presents the 10 best parameter configurations determined by aggre-

gate rank across all benchmark problems. Of the best 10 parameter configu-

rations, four have c1 = c2 while six are social; none of the best 10 parameter230

configurations were cognitive. In fact, the best cognitive configuration had a

rank of 19. Moreover, of the best 100 parameter configurations, 54 were cate-

gorized as social, 36 were categorized as equal, while only nine were cognitive

configurations. This result is not surprising given that the strength of the PSO

algorithm lies in its social aspect. Three of the best 10 configurations employed235

a negative inertia weight, indicating a preference to switch directions rather

than resist directional changes. Despite the convergent region defined by Equa-

tion (3) containing negative inertia weight values, they are rarely, if ever, used

in practice. However, these results suggest that negative inertia weights may

not necessarily be detrimental to the search process. A further two of the best240
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Table 3: The 10 best parameter configurations by overall rank across all benchmark problems.

Overall Rank ω c1 c2 Average Rank Rank SD

1 0.1 0.950 2.850 67.955 43.951

2 -0.1 0.875 2.625 64.864 54.961

3 0.0 0.900 2.700 66.727 49.891

4 0.0 0.925 2.775 67.364 45.390

5 0.6 1.800 1.800 68.591 58.467

6 0.5 1.900 1.900 67.773 58.557

7 0.7 1.650 1.650 67.500 47.914

8 -0.2 0.800 2.400 76.227 61.082

9 -0.3 0.700 2.100 75.227 50.191

10 0.6 1.850 1.850 67.864 55.555

10 configurations employed no inertia at all (i.e., ω = 0). Given that half of the

best 10 parameter configurations employed non-positive inertia weight values,

it can be concluded that it is not always beneficial for particles to remain on

their current trajectory. However, it should be noted that all five of the param-

eter configurations that had non-positive inertia weights also were categorized245

as social configurations while four of the five configurations with positive iner-

tia weight values had equal social and cognitive coefficients. This suggests that

having a high social influence may, in part, make having a positive inertia weight

value unnecessary. Nonetheless, it is generally not recommended to employ a

negative inertia weight, especially for cognitive parameter configurations (see250

Section 3.2.2 for a further discussion of negative inertia weights).

Figure 4 shows the distribution of the values for each control parameter over

the 100 best-performing parameter configurations. From Figure 4a, it is evident

that the most frequent well-performing inertia weight is 0.7. There is a very

skewed distribution, showing a steady increase in frequency for inertia weight255

values between -0.5 and 0.7, after which the frequency declines. For the distri-

bution of the cognitive acceleration coefficient, depicted in Figure 4b, a value of
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Figure 4: Distribution of the values of the best 100 parameter configurations after 5000

iterations.

approximately 0.900 frequently leads to good performance. Furthermore, there

is a noticeable preference for cognitive acceleration coefficients between 0.7 and

1.0. Regarding the distribution of the social acceleration coefficient, larger val-260

ues are preferred, in general. The highest frequency was observed with social

coefficients of approximately 2.75. There is also a notable cluster of good per-

formance when the value of the social acceleration coefficient is between 1.6 and

2.0. These results further demonstrate that, in general, it is preferable to have a

larger value for the social coefficient than the cognitive coefficient despite these265

two parameter values being traditionally taken as equal in the literature.

Figure 5 presents the overall rank of each parameter configuration based on

modality. It is evident from Figures 5a, 5b, 5e, and 5f that the effects of modal-

ity are minimal when equal and social parameter configurations are employed.
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However, it is notable that for both social and equal parameter configurations,270

the region that leads to the best performance shifts toward the boundaries of

the convergent region when faced with multimodal problems. That is, larger

acceleration coefficients in the best parameter configurations tend to lead to

better performance on multimodal problems. Figures 5c and 5d indicate that

modality has a noticeable effect on the relative performance of cognitive param-275

eter coefficients, specifically the regions that lead to poor performance. While

the region leading to the best performance, namely the top boundary of the

convergent region, does not change significantly, the central region where poor

performance was observed (i.e., the darker region) is much larger when faced

with unimodal problems. When faced with multimodal problems, the perfor-280

mance of cognitive configurations within the convergent region tend to improve

as the acceleration coefficients increase. However, when faced with unimodal

problems, the cognitive coefficients have two notable regions leading to good

performance, namely the bottom left and top right regions of the convergent

region, indicating that either a negative inertia weight and small acceleration285

coefficients or a large inertia weight and large acceleration coefficients lead to

the best performance.

Figure 6 shows the distribution of the values for each control parameter over

the 100 best-performing parameter configurations based on modality. When

considering the inertia weight, shown in Figures 6a and 6b, it is evident that290

unimodal problems have a much smaller range in which the inertia weight can

lie while leading to good performance. Notably, multimodal problems have a

greater tolerance for negative inertia weights as evidenced by the longer left tail.

Furthermore, Figure 6a depicts a higher peak with a larger density surrounding

it, suggesting that the deviation of the best inertia weight is much smaller for295

unimodal problems. When considering the cognitive acceleration coefficient in

Figures 6c and 6d, there is a notable tendency for values between 0.5 and 1

to perform well. When faced with multimodal problems, larger values of the

cognitive coefficient are acceptable than when faced with unimodal problems, as

evidenced by the longer right tail in Figure 6d. Examining the distribution of the300
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(a) Social configurations, unimodal problems.
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(b) Social configurations, multimodal problems.
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(c) Cognitive configurations, unimodal problems.
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(d) Cognitive configurations, multimodal prob-

lems.
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(e) Equal configurations, unimodal problems.
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(f) Equal configurations, multimodal problems.

Figure 5: Overall rank after 5000 iterations based on modality.

social acceleration coefficient, shown in Figures 6e and 6f, it is evident that larger

values (i.e., between 2.5 and 3) have a tendency to perform better on unimodal

problems, while multimodal problems have a weaker dependence on the value of

the social coefficient. However, the best performance on multimodal problems
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is still obtained within the same region of [2.5, 3]. These results suggest that it305

is preferable to have larger values for the social acceleration coefficient than the

cognitive acceleration coefficient, regardless of the modality of the problem.
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Figure 6: Distribution of the values of the best 100 parameter configurations after 5000

iterations based on modality.
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Table 4: Best parameter configuration by environment type.

Environment ω c1 c2 Average Rank Rank SD

Overall 0.1 0.950 2.850 67.955 43.951

Unimodal 0.5 1.850 1.850 20.333 18.635

Multimodal -0.1 0.875 2.625 43.846 39.497

Table 4 presents the best parameter configurations for each environment

type, as determined by aggregate rank. For unimodal problems, the best pa-

rameter configurations were within the convergent region while the overall best310

parameter configuration for multimodal problems violated the criterion provided

in Equation (3). However, it is noteworthy that the average rank was lower for

the best parameter configurations in unimodal environments, i.e., where the best

parameter configurations were theoretically convergent. Specifically, the aver-

age rank and standard deviation were much lower for unimodal environments,315

indicating that the observed best parameter configuration performed well con-

sistently across the unimodal problems. Reinforcing what was observed in Table

2, the best configuration for unimodal environments had c1 = c2, while the best

configuration for multimodal environments had a social configuration.

3.2.2. Time dependence320

To assess the dependence of the optimal parameter region on time, Figures

7 to 9 present the overall rank of each parameter configuration at various it-

erations. A key observation is that the region containing the best performing

parameter configurations shifts over time. Specifically, as time passes, there is

a noticeable preference for larger values of c1 + c2. Similarly, there is an im-325

provement in the relative performance of parameter sets that lie just outside

the convergent region but near the apex. This is evidenced by the emergence

of a greater number of light-coloured points outside the convergent region, but

still near the apex, as the number of iterations increases. This clearly indicates

that larger social and cognitive acceleration coefficients are preferred later in330
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(a) 500 Iterations.
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(b) 1000 Iterations.
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(c) 2500 Iterations.

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

ω

c
1
 + c

2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Rank

(d) 5000 Iterations.

Figure 7: Overall rank at various iterations with c1 = c2.

the search process. However, this also suggests that the dependence on the

convergence criterion is weaker as the search progresses.

To further assess the relative performance of parameters over time, Figure

10 depicts the best 100 parameter configurations (based on aggregate rank) at

various iterations for each of the configuration types. The most important ob-335

servation is that the best parameter configurations are noticeably different at

each of the examined time intervals. Specifically, there is a tendency for pa-

rameters to shift towards the right over time, implying that larger values of

the social and cognitive parameters are preferred later in the search process.

In contrast, the results suggest that the inertia weight value is less dependent340

on time in that the optimal parameter region shifts much more horizontally

than vertically. This result provides direct evidence against dynamically reduc-

ing the inertia weight over time and further confirms the findings of Harrison
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(b) 1000 Iterations.
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(c) 2500 Iterations.
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(d) 5000 Iterations.

Figure 8: Overall rank at various iterations with a social configuration.

et al. [25], where it was found that linearly decreasing inertia weight strategies

perform worse than a constant inertia weight. An additional, noteworthy ob-345

servation is that there is an inherent relationship between performance, time,

and adherence to the convergence criterion. Adherence to the convergence cri-

terion is less important as time passes; parameter configurations that violate

the convergence criterion, but still perform relatively well, are more frequent as

the search progresses. This is likely a result of the larger variances in particle350

positions resulting from parameter configurations that are near, or even outside,

the convergent region [6]. A large variance corresponds to larger particle step

sizes, which means that complete stagnation is less likely. Therefore, parameter

configurations with larger variances may be preferred later in the search due

to their prevention (or delaying) of stagnation. The observed time-dependence355

of control parameter values further emphasizes the importance of developing
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(b) 1000 Iterations.
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(c) 2500 Iterations.
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(d) 5000 Iterations.

Figure 9: Overall rank at various iterations with cognitive configurations.

efficient SAPSO algorithms.

Another observation from Figure 10 reinforces that the region containing

the best parameters is noticeably different based on the balance between the

social and cognitive parameters. For parameter configurations that are consid-360

ered social, the optimal region forms a cluster that closely resembles the apex

of the convergent region. However, when cognitive parameter configurations are

employed, the best parameter configurations form two distinct clusters. Regard-

ing the balanced parameter sets, the region containing the best configuration

is somewhat a mix of the two regions described above. For all three parameter365

schemes, there is a visible preference for positive values of the inertia weight.

This observation is least prominent for the social configuration, likely as a result

of the increased influence of the global best position. To illustrate this point,

consider a cognitive parameter configuration where the movement direction of a
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(b) Cognitive configurations.
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(c) Equal configurations.

Figure 10: 100 best parameter configurations at various iterations.

particle is most prominently influenced by its own personal best position. Thus,370

it is reasonable to assume a high degree of correlation between the direction of

subsequent particle movements. That is, if a particle is moving in one direc-

tion and finds a new personal best solution, it is likely to continue in the same

direction. Therefore, a negative inertia weight would be rather detrimental to

a cognitive parameter configuration. Conversely, a social solution takes a high375

degree of influence from the remainder of the swarm and thus is subject to have

less correlation between the direction of subsequent movements.

Figures 11 to 13 show the distribution of the 100 control parameter values

that lead to the best performance at various time intervals. Considering the dis-

tribution of the inertia weight values, shown in Figure 11, there is little change380

in the distribution after 1000 iterations, suggesting that the best inertia weight

values to employ are within the range [0.4, 0.8] but do not, in general, change as
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the search progresses. This provides further evidence to suggest that decreasing

inertia weight strategies are suboptimal. For each of the iterations examined,

the most frequent well-performing cognitive control parameter values, shown385

in Figure 12, are within the range of [0.5, 1.0]. However, the value of the cog-

nitive control parameter that most frequently leads to the best performance

shows a slight increase as the search progresses. After 500 iterations, cognitive

acceleration values near 0.8 occur most frequently in the 100 best parameter

configurations, while the most frequent well-performing cognitive acceleration390

coefficient increases to approximately 0.9 after 5000 iterations. The distribu-

tion of the best-performing social acceleration coefficients, shown in Figure 13,

depicts a similar trend to the cognitive acceleration coefficient. After 500 iter-

ations, values of the social acceleration coefficient that are approximately 2.6

lead to good performance most frequently, while a social acceleration value of395

approximately 2.8 tends to most frequently lead to good performance after 5000

iterations. In general, the best performance is observed when a social acceler-

ation coefficient within the range of [2.5, 3.0] is employed, further suggesting

that parameter configurations favouring the social influence tend to perform

better than those that favour a cognitive influence. Based on these results,400

a general guideline for selecting PSO control parameter values, which should

lead to reasonable performance regardless of the number of iterations, is to set

ω ∈ [0.4, 0.8], c1 ∈ [0.5, 1.0], and c2 ∈ [2.5, 3.0].

4. Conclusions

This work provided an empirical investigation into the relative performance405

of PSO parameter configurations. The overall objective was to identify the re-

gions of parameter space that lead to the best performance. Specifically, two

important questions regarding the parametrization of a global-best PSO were

addressed in this study. Firstly, the question of where the optimal parameter

configurations reside when the respective values of the acceleration coefficients410

were different was examined. Secondly, this study examined the question of
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Figure 11: Distribution of the inertia weight values of the best 100 parameter configurations

at various iterations.

whether the optimal parameters to employ are dependent on time. To investi-

gate these questions, a total of 3036 parameter configurations were examined

on a set of 22 benchmark functions. The modality of the benchmark problems

was examined to ascertain whether the optimal regions of parameter space were415

dependent on the modality of the problem. Furthermore, the results were corre-

lated with the best-known convergence criterion to determine whether particle
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Figure 12: Distribution of the cognitive acceleration values of the best 100 parameter config-

urations at various iterations.

convergence/stability had any effect on the performance of the PSO algorithm.

To address the first question, the experiments were divided into three cat-

egories based on the ratio between the social and cognitive acceleration coeffi-420

cients (i.e., equal, larger social, and larger cognitive). The results indicated that

the regions leading to the best performance were notably different among each

of the different types of parameter configurations. That is, the balance between
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Figure 13: Distribution of the social acceleration values of the best 100 parameter configura-

tions at various iterations.

social and cognitive coefficients does have a significant effect on the regions of

parameter space that lead to optimal performance. To address the second ques-425

tion, the performance of the parameter configurations was captured at various

points throughout the search. Results indicated that the optimal values for

the acceleration coefficients increase as the search progresses, irrespective of the

balance between the social and cognitive coefficients. Specifically, this indicates
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that the optimal parameters are, in fact, time-dependent, thereby providing430

further justification for SAPSO algorithms that can alter the values of their

control parameters over time. Despite the observed dependence on time, a gen-

eral recommendation for selecting values for the PSO control parameters is to

set ω ∈ [0.4, 0.8], c1 ∈ [0.5, 1.0], and c2 ∈ [2.5, 3.0].

An immediate avenue of future work lies in the development of new SAPSO435

algorithms that leverage the information found in this study. Given that this

study only examined the modality of the benchmark problems, another avenue

of future work is to ascertain the relationship between various landscape char-

acteristics and performance. Landscape analysis may provide further valuable

information that can be used in the design of PSO algorithms that adapt to440

their environment.

5. Acknowledgements

This work is based on the research supported by the National Research

Foundation (NRF) of South Africa (Grant Number 46712). The opinions, find-

ings and conclusions or recommendations expressed in this article is that of the445

author(s) alone, and not that of the NRF. The NRF accepts no liability what-

soever in this regard. This work was also supported by the Natural Sciences

and Engineering Research Council of Canada (NSERC).

References

References450

[1] T. Beielstein, Tuning PSO parameters through sensitivity analysis, Tech.

Rep., Universitat Dortmund, 2002.

[2] I. C. Trelea, The particle swarm optimization algorithm: convergence anal-

ysis and parameter selection, Information Processing Letters 85 (6) (2003)

317–325.455

29



[3] F. van den Bergh, A. P. Engelbrecht, A study of particle swarm optimiza-

tion particle trajectories, Information Sciences 176 (8) (2006) 937–971.

[4] D. Bratton, J. Kennedy, Defining a Standard for Particle Swarm Opti-

mization, in: 2007 IEEE Swarm Intelligence Symposium, IEEE, 120–127,

2007.460

[5] B. J. Leonard, A. P. Engelbrecht, On the optimality of particle swarm

parameters in dynamic environments, in: 2013 IEEE Congress on Evolu-

tionary Computation, IEEE, 1564–1569, 2013.

[6] M. Bonyadi, Z. Michalewicz, Impacts of coefficients on movement patterns

in the particle swarm optimization algorithm, IEEE Transactions on Evo-465

lutionary Computation 21 (3) (2016) 1–1.

[7] A. Carlisle, G. Dozier, An Off-The-Shelf PSO, in: Proceedings of the Work-

shop on Particle Swarm Optimization, vol. 1, 1–6, 2001.

[8] F. V. D. Bergh, An Analysis of Particle Swarm Optimizers, Ph.D. thesis,

University of Pretoria, 2001.470

[9] M. Jiang, Y. Luo, S. Yang, Stochastic convergence analysis and parameter

selection of the standard particle swarm optimization algorithm, Informa-

tion Processing Letters 102 (1) (2007) 8–16.

[10] Q. Liu, Order-2 Stability Analysis of Particle Swarm Optimization, Evolu-

tionary Computation 23 (2) (2015) 187–216.475
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Appendix A. Benchmark problems

This appendix provides both the equation and feasible domain for each

benchmark problem used in this work.

f1, the absolute value function, defined as

f1(~x) =

nx∑
j=1

|xj | (A.1)

with each xj ∈ [−100, 100].

f2, the ackley function, defined as

f2(~x) = −20e−0.2
√

1
n

∑nx
j=1 x

2
j − e

1
n

∑nx
j=1 cos(2πxj) + 20 + e (A.2)

with each xj ∈ [−32.768, 32.768].580

f3, the alpine function, defined as

f3(~x) =

nx∑
j=1

|xj sin(xj) + 0.1xj | (A.3)

with each xj ∈ [−10, 10].
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f4, the egg holder function, defined as

f4(~x) =

nx−1∑
j=1

(
−(xj+1 + 47) sin

(√
|xj+1 + xj/2 + 47|

)
+ sin

(√
|xj − (xj+1 + 47)|

)
(−xj)

)
(A.4)

with each xj ∈ [−512, 512].

f5, the elliptic function, defined as

f5(~x) =

nx∑
j=1

(106)
j−1

nx−1 (A.5)

with each xj ∈ [−100, 100].

f6, the griewank function, defined as

f6(~x) = 1 +
1

4000

nx∑
j=1

x2
j −

nx∏
j=1

cos

(
xj√
j

)
(A.6)

with each xj ∈ [−600, 600].

f7, the hyperellipsoid function, defined as

f7(~x) =

nx∑
j=1

jx2
j (A.7)

with each xj ∈ [−5.12, 5.12].585

f8, the michalewicz function, defined as

f8(~x) = −
nx∑
j=1

sin(xj)

(
sin

(
jx2
j

π

))2m

(A.8)

with each xj ∈ [0, π] and m = 10.

f9, the norwegian function, defined as

f9(~x) =

nx∏
j=1

(
cos(πx3

j )

(
99 + xj

100

))
(A.9)

with each xj ∈ [−1.1, 1.1].

35



f10, the quadric function, defined as

f10(~x) =

nx∑
i=1

 i∑
j=1

xj

2

(A.10)

with each xj ∈ [−100, 100].

f11, the quartic function, defined as

f11(~x) =

nx∑
j=1

jx4
j (A.11)

with each xj ∈ [−1.28, 1.28].

f12, the rastrigin function, defined as

f12(~x) = 10nx +

nx∑
j=1

(x2
j − 10 cos(2πxj)) (A.12)

with each xj ∈ [−5.12, 5.12].590

f13, the rosenbrock function, defined as

f13(~x) =

nx−1∑
j=1

(
100(xj+1 − x2

j ) + (xj − 1)2
)

(A.13)

with each xj ∈ [−30, 30].

f14, the saloman function, defined as

f14(~x) = − cos

2π

nx∑
j=1

x2
j

+ 0.1

√√√√ nx∑
j=1

x2
j + 1 (A.14)

with each xj ∈ [−100, 100].

f15, the generalized schaffer 6 function, also known as the pathological function,

defined as

f15(~x) =

nx∑
j=1

(
0.5 +

sin2(100x2
j + x2

j+1)− 0.5

1 + 0.001(x2
j − 2xjxj+1 + x2

j+1)2

)
(A.15)

with each xj ∈ [−100, 100].
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f16, the schwefel 1.2 function, defined as

f16(~x) =

nx∑
i=1

 i∑
j=1

xj

2

(A.16)

with each xj ∈ [−100, 100].

f17, the schwefel 2.21 function, defined as

f17(~x) = max
j
{|xj |, 1 ≤ j ≤ nx} (A.17)

with each xj ∈ [−100, 100].595

f18, the schwefel 2.22 function, defined as

f18(~x) =

nx∑
j=1

|xj |+
nx∏
j=1

|xj | (A.18)

with each xj ∈ [−10, 10].

f19, the shubert function, defined as

f19(~x) =

nx∏
j=1

(
5∑
i=1

(i cos((i+ 1)xj + i))

)
(A.19)

with each xj ∈ [−10, 10].

f20, the spherical function, defined as

f20(~x) =

nx∑
j=1

x2
j (A.20)

with each xj ∈ [−5.12, 5.12].

f21, the step function, defined as

f21(~x) =

nx∑
j=1

(bxj + 0.5c)2 (A.21)

with each xj ∈ [−100, 100].

f22, the vincent function, defined as

f22(~x) = −

1 +

nx∑
j=1

sin(10
√
xj)

 (A.22)

with each xj ∈ [0.25, 10].600
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