
InDM2: Interactive Dynamic Multi-Objective Decision Making Using
Evolutionary Algorithms

Antonio J. Nebro a, Ana B. Ruiz b, Cristóbal Barba-González a, José García-Nieto a,*, Mariano Luque b, José F.
Aldana-Montes a
a Departamento de Lenguajes y Ciencias de la Computación, Ada Byron Research Building, University of Málaga, 29071 Málaga, Spain
b Department of Applied Economics (Mathematics), University of Málaga, Campus El Ejido, 29071 Málaga, Spain

Keywords:

Dynamic multi-objective optimization
Multiple criteria decision making
Preferences
Evolutionary algorithms
jMetalSP

A B S T R A C T

Dynamic optimization problems involving two or more conflicting objectives appear in many real-world sce-
narios, and more cases are expected to appear in the near future with the increasing interest in the analysis of
streaming data sources in the context of Big Data applications. However, approaches combining dynamic multi-
objective optimization with preference articulation are still scarce. In this paper, we propose a new dynamic
multi-objective optimization algorithm called InDM2 that allows the preferences of the decision maker (DM)
to be incorporated into the search process. When solving a dynamic multi-objective optimization problem with
InDM2, the DM can not only express her/his preferences by means of one or more reference points (which define
the desired region of interest), but these points can be also modified interactively. InDM2 is enhanced with meth-
ods to graphically display the different approximations of the region of interest obtained during the optimization
process. In this way, the DM is able to inspect and change, in optimization time, the desired region of interest
according to the information displayed. We describe the main features of InDM2 and detail how it is imple-
mented. Its performance is illustrated using both synthetic and real-world dynamic multi-objective optimization
problems.

1. Introduction

Multi-objective optimization with evolutionary algorithms and other
metaheuristics has been an active research field over the last 20 years,
as these techniques have shown their effectiveness to solve real-world
problems in many fields [1,2]. Although most work has considered
static multi-objective optimization problems (MOPs), there is a growing
interest in MOPs that change somehow over time, i.e., dynamic MOPs
or DMOPs [3]. A number of proposals of multi-objective optimiza-
tion metaheuristics for solving DMOPs have recently been proposed
[4–9].

Some examples of DMOPs are problems associated with the plan-
ning of routes in logistics (e.g., vehicle routing problem - VRP), which
take into account real-traffic information that can lead to variations in
some links due to congestions or accidents, or problems related to the
packaging of goods for delivery, in which orders are continuously arriv-
ing. In the first example, typical objectives to optimize are the time and

* Corresponding author.
E-mail addresses: antonio@lcc.uma.es (A.J. Nebro), abruiz@uma.es (A.B. Ruiz), cbarba@lcc.uma.es (C. Barba-González), jnieto@lcc.uma.es (J. García-Nieto), mluque@uma.es

the distance, while in the second the optimization goals are usually to
reduce the number of bins and to balance the loads.

When dealing with DMOPs, whenever there exist changes in
the environment that affect the solutions of the problem (i.e., the
Pareto set, the Pareto front, or both), hence in the fitness land-
scape, the optimization algorithm must react to adapt the search
to the new features of problem [10]. This means that a dynamic
multi-objective optimization metaheuristic must be able to detect
when the problem changes and to apply a strategy to cope with the
changes.

Although the main goal of multi-objective optimization metaheuris-
tics is to find a set of non-dominated solutions with the features of
convergence and diversity with respect to the Pareto front of the prob-
lem at hands, the final aim when solving any MOP (static or dynamic)
is to identify the Pareto optimal solution that best suits the expectations
of the decision maker (DM). To this end, a Pareto front approximation
can be of great help, since it gives information about the problem itself

(M. Luque), jfam@lcc.uma.es (J. F. Aldana-Montes).

https://doi.org/10.1016/j.swevo.2018.02.004
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/swevo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2018.02.004&domain=pdf
mailto: antonio@lcc.uma.es
mailto: abruiz@uma.es
mailto: cbarba@lcc.uma.es
mailto: jnieto@lcc.uma.es
mailto: mluque@uma.es
mailto: jfam@lcc.uma.es
https://doi.org/10.1016/j.swevo.2018.02.004

(i.e., the ranges of the objective functions and the conflict degree among
them). However, selecting the most preferred Pareto optimal solution,
analyzing and comparing a large number of solutions at the same time
may be cognitively demanding for the DM, especially in the presence of
many objectives. Indeed, it may be computationally expensive to gener-
ate a large number of solutions approximating the whole Pareto front,
particularly when dealing with real-life problems, which may even be a
wasted effort if the DM is interested in just a subset of solutions located
in a particular region.

One possibility to alleviate these problems is to incorporate some
information about the preferences of the DM into the multi-objective
optimization metaheuristic in order to progressively focus the search
process onto the subset of solutions which correspond to these prefer-
ences (known as the region of interest). Thus, rather than approximating
the whole Pareto front, the main idea is to approximate only the region
of interest.

Whereas handling preferences has been widely studied and applied
for static MOPs under the research field of Multiple Criteria Decision
Making (MCDM) [11,12], it has barely been explored in dynamic multi-
objective optimization. As stated in Ref. [13], few studies have been
conducted in the field of dynamic multi-objective optimization regard-
ing approaches that introduce decision-making or preference informa-
tion into the search process. This means more research is required
to develop metaheuristics for dynamic multi-objective optimization
that can efficiently handle preferential information. However, in a
context where the Pareto front can change over time, specifying the
preferences which determine the region of interest can be difficult
due to the fact that the problem itself is constantly changing. Thus,
a multi-objective optimization metaheuristic aimed at dealing with
DMOPs and preferences should simultaneously pay particular atten-
tion to these two features: (1) visualization, to provide the DM with
a graphical picture of the Pareto front approximations that are being
found over time; and (2) interactivity, to allow the DM to specify
new information to redefine his/her preferences (i.e., to indicate a
new region of interest) according to the knowledge (s)he gains while
interacting with the solution process. In this paper, we propose InDM2
(Interactive Dynamic Multi-Objective Decision Making using Evolution-
ary Algorithms), a new algorithmic proposal that fulfills these require-
ments.

InDM2 is the result of our experience in two fields: dynamic multi-
objective optimization and MCDM. We are the developers of jMetalSP
[14], a Java-based software system for dynamic multi-objective opti-
mization with metaheuristics, which combines the jMetal framework
[15,16] and the Apache Spark cluster computing system [17]. jMetalSP
provides a platform that facilitates the implementation of DMOPs and
the development of dynamic multi-objective optimization algorithms
thanks to the reusing of the components and resources included in
jMetal. The architecture of jMetalSP enables streaming data sources
to be easily incorporated, whose analysis often leads to changes in a
DMOP, and to add software components that receive the Pareto front
approximations that the algorithms produce.

In addition, we have a strong background in MCDM and we are
the designers of WASF-GA [18], a preference-based evolutionary multi-
objective optimization algorithm for solving (static) MOPs. This algo-
rithm allows the preferences of the DM to be incorporated into the
optimization process, which are expressed using the reference point
preferential scheme [19]. A reference point is formed by desirable aspi-
ration values that the DM would like to reach for each of the objective
functions. Internally, in WASF-GA, the reference point determines the
region of interest to be approximated. From a practical point of view,
the approximation set is generated by projecting the reference point
onto the Pareto front using a set of evenly distributed projection direc-
tions.

Our proposal is to embed a reference point-based multi-objective
optimization evolutionary algorithm into InDM2, in order to delegate
the solution process of the DMOP to it. In particular, we have con-

sidered a dynamic version of two reference point-based evolutionary
algorithms: the aforementioned WASF-GA and R-NSGA-II [20]. The R-
NSGA-II algorithm considers as preferential information one or several
reference points and modifies the crowding distance and the niching
operator of NSGA-II [21] to emphasize solutions close to the reference
point(s) given by the DM during the solution process.

InDM2 incorporates a strategy that enables the DM to interactively
update the reference point when solving a DMOP, if desired. Also, it
offers a mechanism to visualize “on the fly” the approximations of the
region of interest that are being generated throughout the solution pro-
cess. Additionally, we have implemented InDM2 with jMetalSP, so all
the features of this framework are incorporated in the proposed algo-
rithm, including the possibility of using Big Data technologies, such as
Apache Spark. This allows, for example, access to data stored in HDFS
(the Hadoop file system [22]) so as to use all the computing power of
Hadoop clusters.

The main contributions of this paper can be summarized as follows:

• We present a novel algorithm, InDM2, which combines dynamic
multi-objective optimization, multiple criteria decision making and
interactivity. A key feature in InDM2 is the mechanism to visualize,
in optimization time, the approximations of the region of interest
that are being generated throughout the solution process, together
with the reference point driving these approximations.

• Two reference point-based evolutionary multi-objective optimiza-
tion algorithms are incorporated inside InDM2 to handle the prefer-
ence information interactively. However, any other reference point-
based evolutionary algorithms can be used in InDM2 as the opti-
mization solver.

• The architecture of InDM2 allows the incorporation of strategies for
reacting to changes in both the problem and the reference point.

• The proposed approach is implemented in the jMetalSP framework,
so it can be used in the context of Big Data optimization by taking
advantage of the features of distributed streaming data processing
of Apache Spark.

• The implementation of InDM2 is open-source, so it is freely available
in the jMetaSP repository at GitHub1.

• The performance of InDM2 is validated with three FDA benchmark
DMOPs [10] and with a real-world problem, which is a dynamic
version of a bi-objective Traveling Salesman Problem (TSP) [23]
based on real traffic data provided by the New York City Department
of Traffic.

The rest of this paper is structured as follows. Section 2 explains
the main background concepts and presents a review of related work in
the specialized literature. In Section 3, the InMD2 algorithm is detailed.
Section 4 describes the experimental use cases carried out in terms of
validation. Finally, concluding remarks and future lines of research are
presented in Section 5.

2. Background concepts

In order to make this paper more self-contained, this section
describes the main background concepts concerning dynamic multi-
objective optimization and preference handling. A review of the related
works in the specialized literature is also provided. In addition, the
preference-based multi-objective optimization evolutionary algorithms
considered (WASF-GA and R-NSGA-II) and the jMetalSP framework are
briefly described.

2.1. Concepts and notation

A dynamic multi-objective optimization problem (DMOP) is a time-
dependent problem that can be formulated as follows:

1 https://github.com/jMetal/jMetalSP.

https://github.com/jMetal/jMetalSP

minimize {f1(𝐱, t),… , fk(𝐱, t)}

subject to 𝐱 ∈ St , (1)

where t ∈ ℝ is the time variable (t ≥ 0), fi ∶ St ⊆ ℝn → ℝ, for i = 1, …, k
(k ≥ 2), are the objective functions to be minimized simultaneously over
the dynamic feasible set St in the decision space ℝn, which is formed
by solutions or decision vectors 𝐱 = (x1,… , xn)T . In the objective space
ℝk, the solutions are objective vectors 𝐟 (𝐱, t) = (f1(𝐱, t),… , fk(𝐱, t))T , for
x ∈ St , belonging to the feasible objective region Zt = f(St).

Similarly to static multi-objective optimization, let us briefly define
some basic concepts. Because of the degree of conflict between the
objective functions, it is very unlikely, if not impossible, to find a single
solution where all of them can reach their individual optima. For this
reason, the so-called Pareto optimal solutions focus the interest. In these
solutions, no objective function can be improved without deteriorating,
at least, one of the others. For a time value t, a solution x ∈ St is said
to be Pareto optimal if and only if there is no other x′ ∈ St such that
f i(x′, t) ≤ f i(x, t) for all i = 1,…, k and f j(x′, t) < f j(x, t) for at least one
index j. In the objective space, the corresponding objective vector f(x,
t) is referred to as a Pareto optimal objective vector. The set of all Pareto
optimal solutions in t is called the Pareto set in t, denoted by Et , and
the set of all Pareto optimal objective vectors in t is called the Pareto
front in t, denoted by f(Et). Additionally, given z, z′∈ Zt , we say that
z dominates z′ if and only if zi ≤ z′i for all i = 1,…, k and zj < z′j for at
least one index j. A non-dominated set refers to a set of solutions whose
objective vectors are not dominated by any other of the solutions in that
set.

Given a t value, the nadir objective vector 𝐳nad
t = (znad

t,1 ,… , znad
t,k)T

and the ideal objective vector 𝐳⋆t = (z⋆t,1,… , z⋆t,k)
T provide upper and

lower bounds for the objective function values in the Pareto set Et .
Respectively, their components are given by znad

t,i = max𝐱∈Et
fi(𝐱, t) and

z⋆t,i = min𝐱∈Et
fi(𝐱, t) (i = 1,… , k). While the ideal objective vector can

be easily obtained, the nadir objective vector is complicated to calcu-
late because the set Et is usually unknown and different approaches are
used to estimate it [24,25].

2.2. Preferences in multi-objective optimization

A very common way to express preferences consists of specifying
desirable objective function values, which constitute the components of
a so-called reference point. This concept was introduced in Ref. [19] for
static MOPs, although it can be easily adapted to DMOPs.

Given a t value, a reference point is given by 𝐪t = (qt,1,… , qt,k)T ,
where qt, i is an aspiration level for the objective function f i(·, t) pro-
vided by the DM, for all i = 1,…, k. Usually, qt is said to be achiev-
able for problem (1) if 𝐪t ∈ Zt +ℝk

+ (where ℝk
+ = {𝐲 ∈ ℝk ∣ yi ≥ 0 for i =

1,… , k}), that is, if either qt ∈ Zt or if qt is dominated by a Pareto
optimal objective vector in Zt . Otherwise, the reference point is said to
be unachievable, that is, not all of its aspiration levels can be achieved
simultaneously (in some situations, a reference point is unachievable
because some components cannot be achieved, although some others
can be attained).

Using a reference point for a t value, an achievement scalarizing
function (ASF) [19] can be formulated and minimized to find the
Pareto optimal solution that best satisfies the expectations of the DM
at the instant t. For a reference point qt and a vector of weights
𝜇t = (𝜇t,1 ,… , 𝜇t,k)T , with 𝜇t, i > 0 (i = 1,…, k), we can consider the ASF
proposed in Ref. [19] given by:

s(𝐪t , 𝐟 (𝐱, t),𝝁t) = max
i=1,…,k

{
𝜇t,i(fi(𝐱, t) − qt,i)

}
+ 𝜌

k∑
i=1

𝜇t,i(fi(𝐱, t) − qt,i), (2)

which must be minimized over St :

minimize s(𝐪t , 𝐟 (𝐱, t),𝝁t)

subject to 𝐱 ∈ St . (3)

The optimal solution of (3) is always a Pareto optimal solution of (1)
and that any (properly2) Pareto optimal solution of (1) can be obtained
by solving problem (3) and varying the reference point and/or the
weight vector [11]. The so-called augmentation coefficient 𝜌, which
must have a small real positive value, is used to ensure that the solu-
tion of (3) is Pareto optimal, and not weakly Pareto optimal3. Note
that the optimal solution of (3) does not only depend on the reference
point considered, but also on the vector of weights used. Furthermore,
for the same reference point, Pareto optimal solutions generated using
different weights are actually different [26–29].

2.3. Related work

In Ref. [13], a revision of key challenges and future trends in
dynamic multi-objective optimization is presented, where the authors
mention decision-making as one of the future research lines. They cite
only three papers [30–32] that incorporate decision-making or pref-
erences of the DM into a dynamic multi-objective optimization con-
text. Recently [33], has suggested using a set of reference points in
NSGA-II-DE [34] for tracking the changing Pareto front of DMOPs,
but the reference points are not used in a preferential way in this
proposal.

It is evident that some ideas of interactive MCDM methods for MOPs
[26,35–37], as well as concepts of preference-based evolutionary multi-
objective optimization algorithms, can be used to determine an effi-
cient way to incorporate preferences interactively in dynamic multi-
objective optimization. In fact, each iteration of a classical interac-
tive method for static multi-objective optimization can be considered
as a DMOP, in which the only change at each instant t is the new
preferential information provided by the DM. However, while the DM
can easily learn about a static MOP at each iteration of an interac-
tive method, it is more difficult for the DM to cope with an interac-
tive decision-making process for solving a DMOP given that the prob-
lem itself is changing over all the time. In addition, another challenge
to be met when handling preferences in DMOP is the definition of
an approach that can approximate the region of interest, taking into
account the changes that this region experiments over time, even if
the preferential information has not been modified. Finally, it is also
worth mentioning that the algorithm must react not only when a com-
ponent of the DMOP changes but also when the DM elicits new prefer-
ences.

2.4. Brief descriptions of WASF-GA and R-NSGA-II

As mentioned, WASF-GA (the Weighting Achievement Scalarizing
Function Genetic Algorithm) [18] is a preference-based evolutionary algo-
rithm, which considers a reference point q as preferential information.
It approximates the region of interest of the Pareto front defined by q
which, in accordance with [18], is determined as follows. When q is
achievable, the region of interest is the subset of Pareto optimal objec-
tive vectors that dominate it. However, if q is unachievable, the region
of interest is formed by the Pareto optimal objective vectors which are
dominated by it; in this case, solutions lying in this region are likely to
be more appealing for the DM than the ones outside it because, in them,
although the objective function values differ from the aspiration levels
as little as possible, none of them are improved. The solutions outside
this region may improve some of the aspiration levels (but not all of
them), at the expense of a sacrifice in the rest of them, which may not
be so attractive for the DM.

2 Properly Pareto optimal solutions are Pareto optimal solutions with bounded trade-offs
between the objectives.

3 A solution x ∈ St is weakly Pareto optimal if there does not exist another x′ ∈ St such
that f i(x′, t) < f i(x, t), for all i = 1,…, k.

To approximate the region of interest in WASF-GA, a sample of N𝜇
weight vectors in (0, 1)k are considered and, at each generation, the
solutions which minimize the ASF given in (2) for the reference point
q and each of the weight vectors are emphasized. In general terms, at
each generation of WASF-GA, parents and offspring are classified into
several fronts according to the values that each individual takes for (2).
To be more precise, the first front is formed by those solutions reaching
the lowest value of (2) for each of the N𝜇 weight vectors. The second
front is constituted by the individuals with the next lowest value of
(2) for each of the N𝜇 weight vectors, and so on until every individual
has been classified. Afterwards, the population for the next generation
is formed by the solutions in the lowest level fronts. To some extent,
these solutions can be considered as the best individuals at the current
generation for minimizing the ASF (2) with respect to the N𝜇 weight
vectors used. In practice, the use of this ASF in WASF-GA implies that
the reference point is projected onto the Pareto front at each generation,
taking into account the N𝜇 weight vectors [11]. Thus, to preserve diver-
sity, these weight vectors are generated so that they define evenly dis-
tributed projection directions in the objective space. For more details,
see Ref. [18].

In the case of R-NSGA-II (the Reference-Point-Based NSGA-II algo-
rithm) [20], it is also a reference point-based evolutionary algorithm
which modifies NSGA-II in the way the individuals of the last non-
dominated front are selected to be passed to the new population. The
DM gives one or several reference points and the crowding distance
used in NSGA-II is replaced by a preference distance, which equally
emphasizes solutions whose objective vectors are close to any of the
given reference points with respect to the Euclidean distance. Addition-
ally, the niching operator is updated to control the distribution of the
emphasized solutions and, by means of a parameter, very close solu-
tions are assured to be represented by just one of them.

2.5. The jMetalSP framework

jMetalSP is a Java-based multi-objective optimization framework
aimed at solving dynamic multi-objective Big Data optimization prob-
lems [14]. The motivation of developing this software platform has to
do with the fact that many DMOPs are found in areas such as eco-
nomics, engineering, computer science, logistics, etc., and these fields
are also the source of Big Data applications, so it seems clear that Big
Data variants of DMOPs will be common in the near future.

With these ideas in mind, jMetalSP combines the jMetal multi-
objective optimization framework with Apache Spark. The former pro-
vides a large number of state-of-the-art metaheuristics, while the latter
has a series of features that are useful in Big Data applications. These
include a high level parallel programming model, streaming data pro-
cessing from different sources, access to diverse data sources (HDFS,
Cassandra, HBase, etc.), and machine learning algorithms. jMetalSP
has an object-oriented architecture that allows dynamic versions of the
algorithms included in jMetal to be developed and DMOPs to be imple-
mented, which change as a consequence of the analysis of data arriving
from streaming sources. We have used this feature to create a dynamic
version of the WASF-GA and the R-NSGA-II algorithms, constituting the
basis of our proposal.

The skeleton of a jMetalSP application is shown in Code Snippet 1.
We can observe that an application is composed of a number of ele-
ments. The streaming runtime is the underlying streaming engine,
which may currently be Apache Spark or Java threads. Then, the prob-
lem and the algorithm must be included. After that, one or more stream-
ing data source entities can be incorporated, each of them able to
receive data in streaming, to analyze them and, as a result, to mod-
ify the problem. Finally, a number of algorithm data consumers can be
indicated. These entities receive the Pareto front approximations that
are computed by the algorithm and then the consumers can for e.g.,
store them in files, display the fronts in the screen, perform an analy-
sis, etc. Once the application has been configured, it can be executed.

Code Snippet 1
Skeleton of a jMetalSP application.

jMetalSPApplication application;

application

. setStreamingRuntime()

. setProblem(new DynamicProblem())

. setAlgorithm(new DynamicAlgorithm())

. addStreamingDataSource(new DataSource1)

. addStreamingDataSource(new DataSource2)

. addAlgorithmDataConsumer(new DataConsumer1())

. addAlgorithmDataConsumer(new DataConsumer2())

. addAlgorithmDataConsumer(new DataConsumer3())

. run();

3. Description of InDM2

InDM2 is an algorithm intended to solve DMOPs, which allows
the DM to interactively specify the desired region of interest to
be approximated by means of a reference point. To achieve this
goal, a set of requirements that are enumerated hereafter must be
satisfied.

The main component of InDM2 is a preference-based dynamic multi-
objective optimization metaheuristic, which is the optimization engine.
Our approach is based on dynamic versions of the WASF-GA and R-
NSGA-II algorithms, which have been implemented in jMetalSP as fol-
lows.

The object-oriented architecture of jMetalSP allows reusing
the template for evolutionary algorithms provided by jMetal (see
Code Snippet 2), which has a run() method that closely mimics the
pseudo-code of a generic evolutionary algorithm. The implementa-
tions of the dynamic versions of WASF-GA and R-NSGA-II follow this
template, and thus developing InDM2 from WASF-GA and R-NSGA-II
merely requires having to redefine two methods. Firstly, the behavior
of the isStoppingConditionReached() method must be adapted,
because instead of just terminating the algorithm, this method must
make the approximation of the region of interest found available to
the algorithm data consumers, and the underlying optimization algo-
rithm (based on WASF-GA or R-NSGA-II) has to start again. Secondly,
at the end of each iteration, the updateProgress() method typically
increases an evaluation counter.

In InDM2, it additionally checks whether the problem and/or the
reference point(s) have been modified and, in this case, a restart
strategy is applied. The restart strategies proposed are explained
bellow.

Code Snippet 2
run () method of class AbstractEvolutionaryAlgorithm.

public class AbstractEvolutionaryAlgorithm {

…
public void run() {

offspringPopulation;

matingPopulation;

population = createInitialPopulation();

population = evaluatePopulation(population);

initProgress();

while (!isStoppingConditionReached()) {

matingPopulation = selection(population);

offspringPopulation = reproduction(matingPopulation);

offspringPopulation = evaluatePop(offspringPopulation);

population = replacement(population, offspringPopulation);

updateProgress();

}

}

}

To allow the DM to update the reference point(s) “on the fly” while
the algorithm is running, the current implementation of InDM2 reads
the new reference point(s) from the keyboard (although other more
sophisticated methods could be used instead). This event is detected
by the updateProgress() method, as stated. To help the DM give
a new reference point according to his/her preferences, taking into
account the results obtained, we have included a graphical algorithm’s
data consumer in jMetalSP. Therefore, the approximations of the region
of interest generated by InDM2 are displayed as long as they are pro-
duced, so the DM can visualize them and change the reference point(s)
as desired.

By default, InDM2 is forever working. This means that, if the DMOP
does not change for a period of time, our algorithm will solve it again
and again, using exactly the same problem configuration. As a conse-
quence, if the algorithm converges most of the times, the same approx-
imation of the region of interest (or a very similar one, given that we
are using stochastic approaches) may be constantly displayed. This may
be confusing for the DM since change may be perceived for a period of
time. To avoid this situation, the graphical data consumer only shows
a new approximation in the case it has significantly changed in com-
parison with the previous one displayed. To check this, we calculate
the inverted generational distance quality indicator (IIGD) [38] from
the approximation of the region of interest currently generated, to the
previous one, so that the new one is only displayed if the value of this
indicator is lower than a threshold 𝜏.

All the DMOPs available in jMetalSP have a method to inquire
whether or not the problem has changed or not. Thus, InDM2 only
has to call this method at the end of each iteration (i.e., in the
updateProgress() method) to know if problem parameter has
changed.

Once a change in the problem and/or the reference point(s) has
been detected, a key point in InDM2 is the restarting approach, i.e.,
how the algorithm is restarted. We have adopted a flexible approach
consisting in defining a restarting strategy according to two other sub-
strategies: one for removing solutions from the population, and another
for filling the population with new solutions. To fill the population,
given a value N′ > 0, the strategy followed is to randomly create N′

new solutions, whereas to remove solutions, the following restarting
strategies are currently available:

• To remove the first N′ solutions.
• To remove N′ randomly chosen solutions.
• To remove the worst N′ solutions according to their crowding dis-

tance.
• To remove the worst N′ solutions according to their contribution

to the hypervolume [39] of the last approximation of the region of
interest.

It is worth mentioning that other strategies can be incorporated
(e.g., those included in Ref. [4]). Our scheme is very flexible and
enables InDM2 to use a wide range of combinations of restarting
approaches, which differ from each other in the way the algorithm
reacts to updates in the problem or to modifications in the reference
point.

For the sake of a better understanding, the pseudo-code of the
InDM2 algorithm is shown in Algorithm 1. After the initialization
phase (from line 1 to 14), the algorithm starts the infinite loop (line
15) that carries out multiple consecutive rounds of the dynamic
optimization process and the result data consumption (visualization).
Each optimization round (lines 16–25) entails a maximum number of
iterations (Gmax) in which the selected preference-based evolutionary
algorithm (i.e., WASF-GA or R-NSGA-II) is computed (line 17) and
the restarting procedures are invoked, whenever a change in the
reference point (line 18) or in the problem state (line 20) is detected.
At the end of each round, the approximation of the region of interest
found is sent to the data consumers (line 25) and the loop starts again.

Algorithm 1 Pseudocode of InDM2

1: N; // Population size
2: N′; // Number of replaced solutions
3: Gmax; // Maximum number of generations
4: c, m; // Genetic operators
5: t ← 0; // Generation counter
6: At ; // Optimization problem state
7: qt ; // Initial reference point(s)
8: P; // Preference-based evolutionary algorithm
9: 𝜑q ; // Restart strategy when the reference point changes
10: 𝜑p ; // Restart strategy when the problem changes
11: M ← {WASF-GA, R-NSGA-II};// Base optimization algorithm
12: Pt ← initializePopulation(N);
13: evaluate(Pt , At);
14: Et ← initializeParetoSet(Pt);
15: while true do
16: while t < Gmax do
17: (Pt+1, Et+1) ← compute(M, qt , c, m, Pt , At);
18: if qt+1 ≠ qt then
19: P′

t+1 ← restart(Pt+1, 𝜑q ,𝐪t+1,N′);
20: else if At+1 ≠ At then
21: P′

t+1 ← restart(Pt+1, 𝜑p ,At+1,N′);
22: end if
23: t ← t + 1;
24: end while
25: C: (Et+1, 𝜏);// Notify Pareto front approximation to data consumers
26: t ← 0;
27: end while

4. Use cases

To test the performance of InDM2 in practice, we have consid-
ered two scenarios: on the one hand, we have tested it with three
continuous synthetic DMOPs and, on the other hand, we have also
solved a bi-objective traveling salesman dynamic problem with real-
world traffic data. This way, we cover both continuous and combinato-
rial DMOPs. In this study, our aim is to illustrate how InDM2 works
in practice when interacting with a DM, so that we can show the
actual potential and benefits of our proposal from a decision-making
point of view. It is worth noting that traditional comparative tables
with performance metrics are less meaningful when we focus on the
interaction with the DM, rather than on the Pareto front approxima-
tions.

In this study, InDM2 has been run for the DMOPs mentioned and
the preferences (i.e., the reference point) have been manually changed
during the execution time. The idea is to observe how InDM2 is able
to adapt the optimization process to the changes (both in the prob-
lem configuration and in the preferences), and to show the effect of
these changes in the Pareto front approximations obtained, which must
approximate only the regions of interest associated the reference points
given.

Subsequently, the two configurations of InDM2 adopting WASF-
GA and R-NSGA-II as the optimization algorithms are referred to as
InDM2W and InDM2R, respectively.

4.1. Case use 1: synthetic continuous DMOPs

The continuous DMOPs used belong to the FDA benchmark [10].
This family of DMOPs comprises five problems with different features
depending on whether their Pareto front and/or their Pareto set change
over time. Each FDA problem has its own formulation and all of them
have a time dependence. The time t is defined according to equation
(4):

t = 1
nt

⌊
𝜎

𝜎T

⌋
, (4)

where 𝜎 is the generation counter, 𝜎T is the number of generations for
which t remains fixed and nt is the number of distinct steps in t. For
a real number a, ⌊a⌋ denotes the largest integer not greater than a. In
Ref. [10], the authors recommend to set 𝜎T = 5 and nt = 10.

Table 1
Configuration of InDM2 to solve the FDA2, FDA3 and FDA5 problems.

Parameter settings
Population Size 50/100 individuals (FDA2, FDA3/FDA5)
Selection of Parents binary tournament
Recombination simulated binary crossover (SBX)
Recombination probability 0.9
Mutation polynomial
Mutation probability 1/L (with L = number of variables)
Maximum number of evaluations 25,000
Restart policy when reference point changes Remove 100% of solutions

Create 100% of solutions randomly
Restart policy when problem changes Remove 50% of solutions (hypervolume contribution)

Create 50% of solutions randomly

Streaming sources
Time counter generator (𝜎) Frequency: 1 s

Algorithm data consumers
Chart visualizer Shows approximations and reference point
Front writer Stores the generated approximations in files

Streaming runtime
Mechanism Java threads

To show the performance of InDM2, we have focused only on three
DMOP instances of the FDA family: FDA2, FDA3 and FDA5. Their
problem formulations are given and, following the advice given in
Ref. [10], we have used 31 variables with xI = x1, |xII| = |xIII| = 15
for the three of them. The reason behind selecting these problems is
that both, their Pareto fronts and their Pareto sets change in time,
that is, they are Type II [10]. Therefore, the dynamic changes in the
Pareto front approximations caused by changes in the reference point
can be easily visualized. Furthermore FDA2, in particular, has been
used to illustrate the performance of both InDM2W and InDM2R; FDA3
has been solved with InDM2W using just one reference point, but it
has also been solved with InDM2R to show how our proposal works
when the DM gives more than one reference point at the same iter-
ation; and finally, we have used FDA5 to show the results provided
by InDM2W when solving a dynamic optimization problem with three
objectives.

We have configured InDM2 with the parameter settings summa-
rized in Table 1. The population size is 50 for the FDA2 and FDA3
problems and 100 for the FDA5 instance. The stopping condition used
to report results to the data consumers is to compute a maximum of
25,000 function evaluations. The variation operators are SBX crossover
and polynomial mutation, and the selection operator is binary tourna-
ment [40]. The restarting strategy used after a change in the problem
is detected consists of: firstly, removing 50% of the solutions according
to the hypervolume contribution and, secondly, filling the population
with new randomly created solutions. The restarting strategy when a
new reference point is given is similar, but in this case all the solutions
in the population (100%) are removed.

To generate the time events that will lead to changes in the
FDA problems, we have used a simple data streaming source that
counts every second, which implies that, according to equation (4)
and the default value of 𝜎T , the problem is updated with a fre-
quency of 5 s. Additionally, we have used two algorithm data con-

sumers, one for showing the Pareto front approximations generated by
InDM2 (as previously said in Section 3) and another one to store the
approximations generated in files. In this study, where we only con-
sider a simple streaming data source, there is no advantage of using
Apache Spark, so we have considered the default thread-based run-
time.

The first problem is FDA2, which is a dynamic bi-objective problem
with Pareto fronts changing from convex to non-convex, and vice-versa,
and Pareto sets also changing over time. Its problem formulation is:

minimize f (𝐱, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(f1(𝐱I), g(𝐱II) · h(𝐱III , f1(𝐱I), g(𝐱II), t))
f1(𝐱I) = x1

g(𝐱II) = 1 +
∑

xi∈𝐱II

x2
i

h(𝐱III , f1, g, t) = 1 −
(

f1
g

)H2(t)

H2(t) = (H(t) +
∑

xi∈𝐱II

(x2
i − H(t))2)−1

H(t) = 0.75 + 0.75 sin(0.5𝜋t), t = 1
nt

⌊
𝜎

𝜎T

⌋
𝐱I = (x1) ∈ [0,1], 𝐱II , 𝐱III ∈ [−1, 1].

(5)

To have an idea of the possible aspiration reference values that each
objective can have during the search process, we have initially run
InDM2W for FDA2 using two reference points: the ideal point (0.0, 0.0)
(unachievable) and the nadir point (1.0, 1.0) (achievable). The approx-
imations produced by InDM2W for the regions of interest of both refer-
ence points are displayed in Fig. 1. In this figure, the legends “Front i”
label the approximations of the region of interest that are shown. Each
of these legends implicitly indicates in which iteration i a significant
improvement in the approximation generated was detected in compar-

Fig. 1. Approximations of the regions of interest found by InDM2W
for the FDA2 problem, using as reference points (0.0, 0.0) (left) and
(1.0, 1.0) (right).

Fig. 2. Approximations of the region of interest found by InDM2W
(left) and InDM2R (right) for the FDA2 problem, using different ref-
erence points.

ison to the previous one displayed (as explained in Section 3, a new
approximation is graphically shown only in case a significant improve-
ment has been detected with regards to the IIGD indicator).

In Fig. 1, we can observe that, when the region of interest approxi-
mated is convex, the distribution of the solutions in the approximations
found is slightly more dense in the central regions than in the extreme
ones, and they become evenly spread when the approximated region
tends to be a line or non-convex. This is due to the distribution of the
projection directions (i.e., weight vectors) internally used in WASF-GA,
which influences the distribution of the solutions found. For both refer-
ence points, InDM2W has been able to approximate the region of inter-
est (which, as it can be seen, is the complete Pareto front in both cases)
by adapting the search process to the changes in the problem configu-
ration.

Next, we have executed both InDM2W and InDM2R for FDA2 but, in
this case, we have simulated a real scenario where the DM dynamically
modifies the reference point “on the fly”, throughout the optimization
process. Fig. 2 shows the approximations found for the given reference
points along the solution process using both InDM2W (left) and InDM2R
(right).

Firstly, let us describe the interactive solution process followed using
InDM2W . Initially, assuming that the ranges of the true Pareto front of
the FDA2 problem were unknown, the DM selected (0.0, 0.0) as the first
reference point. After observing the first three approximations returned
by InDM2W at iterations 5, 9, and 15 (see the top left plot in Fig. 2),
the DM decided to give a new reference point to reduce the region of

interest approximated and set it to (0.2, 0.2). We can observe the new
approximations generated in the second plot to the left in Fig. 2. In
this plot, the former approximations generated for the initial reference
point (0.0, 0.0) are shown with solid lines, in order to be able to distin-
guish them from the new approximations found for the new reference
point (0.2, 0.2), which are shown with dotted lines. Later, the DM again
adjusted the desired region of interest by changing the reference point
twice, and (s)he gave (0.6, 0.4) as the third reference point and (0.7,
0.9) as the fourth one. Respectively, the results obtained for these two
reference points are shown in the third and fourth plots on the left in
Fig. 2.

We have repeated the same solution process for FDA2 with InDM2R
and the approximations obtained are shown in the rightmost plots in
Fig. 2. At a glance, we can observe that the approximation of the
regions of interest produced by InDM2W have a better diversity that
those generated by InDM2R. It can be seen that the solutions generated
by InDM2W always belong to the region of interest delimited by the
reference points, while some of those found by InDM2R also approxi-
mate areas out side of this region. This is a consequence of the different
search capabilities (convergence and diversity regarding the region of
interest) of WASF-GA and R-NSGA-II. This fact highlights the impact of
the preference-based evolutionary algorithm internally used in InDM2
as the optimization machine.

According to Fig. 2, we can see that three of the reference points
given in the interactive solution process are unachievable (points (0.0,
0.0), (0.2, 0.2) and (0.6, 0.4)) and one of them is achievable (point (0.7,

Fig. 3. Approximations of the region of interest found by InDM2W
(left) and InDM2R (right) for the FDA3 problem, using different ref-
erence points.

0.9)). Note that, in practice, the achievability of the reference points
used when interacting with the DM cannot be known beforehand. Only
when the algorithm generates solutions and their dominance relation-
ship with respect to the reference point used is checked, we can state if
the reference point is achievable or not. The formulation of the dynamic
bi-objective problem FDA3 is as follows:

minimize f (𝐱, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(f1(𝐱I , t), g(𝐱II , t) · h(f1(𝐱I), g(𝐱II , t)))
f1(𝐱I , t) =

∑
xi∈𝐱I

xF(t)
i

g(𝐱II , t) = 1 + G(t) +
∑

xi∈𝐱II

(xi − G(t))2

h(f1, g) = 1 −

√
f1
g

G(t) = |sin(0.5𝜋t)|, F(t) = 102 sin(0.5𝜋t)
, t = 1

nt

⌊
𝜎

𝜎T

⌋
𝐱I ∈ [0, 1], 𝐱II ∈ [−1, 1].

(6)

This problem entails convex Pareto fronts and Pareto sets that change
linearly. The f1 function regulates the spread of the solutions in the
objective space. Therefore, as analyzed in Ref. [10], when f1 changes
over time, the spread of solutions in the Pareto front approximations
also change over time.

Fig. 3 shows the approximations found by InDM2W (left) and
InDM2R (right) when solving FDA3 for different reference points. As in

the previous example, these plots illustrate the impact on the generated
approximations caused by the interactive modification of the reference
point delimiting the region of interest to be approximated.

Regarding the interaction with the DM for InDM2W , it can be seen
that the reference point was progressively adjusted from (0.0, 0.0) (the
first one used, shown in the first plot on the left in Fig. 3) to (0.5, 1.2)
(the last one given, shown in the last plot on the left in Fig. 3). Observe
that the approximations found by InDM2W have properly adapted to
the changes in the region of interest, which has progressively shrank
according to the preferences of the DM.

From a different point of view, to show the performance of InDM2
when using several reference points at the same time, we have simu-
lated the use of two reference points in the interactive solution process
of InDM2R with the FDA3 problem. Initially, the DM started with just
one reference point, namely (0.0, 0.0), and once (s)he examined the
results (first plot to the right in Fig. 3), (s)he decided to further delimit
the region of interest by giving two new reference points: (0.2, 0.5)
and (0.4, 1.0), at the same time. The new approximations found using
these two points can be seen in the second, third and fourth plots on
the right in Fig. 3. In this regard, we can observe that, as for the FDA2
problem, the solutions produced by InDM2R approximate a wider area
than the region of interest, which is due to the search capabilities of
R-NSGA-II.

Note that InDM2W has not been run for FDA3 with two refer-
ence points because the WASF-GA algorithm is not designed to con-
sider several reference points when solving MOPs. As pointed out,

Fig. 4. Approximations of the region of interest found by InDM2W
for the three-objective FDA3 problem, using as reference points (0.0,
0.0, 0.0) (left) and (0.5, 0.5, 0.5) (right).

the optimization algorithm used internally plays an important role
with respect to the performance and possibilities of InDM2. In this
case, the use of R-NSGA-II instead of WASF-GA has enabled the DM
to give two reference points to further delimit the region of interest
according to his/her preferences, although the approximations found

by InDM2R have not completely adjusted to the desired region of
interest.

Let us continue with the dynamic three-objective optimization prob-
lem FDA5. Its Pareto fronts change over time, although all of them are
convex, and its Pareto sets change linearly.

Fig. 5. Approximations of the region of interest found by
InDM2W (left) and InDM2R (right) for the dynamic TSP, using
different reference points.

minimize f (𝐱, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

The formal definition of FDA5 as a dynamic multi-objective opti-
mization problem is the following one:

(f1(𝐱, g(𝐱II , t)), … , fk(𝐱, g(𝐱II , t)))

f1(𝐱, g, t) = (1 + g(𝐱II , t))
M−1∏
i=1

cos(yi𝜋

2
)

fk(𝐱, g, t) = (1 + g(𝐱II , t))(
M−1∏
i=1

cos(yi𝜋

2
)) sin(yM−k+1𝜋

2
),

∀k = 2,… ,M − 1

fm(𝐱, g, t) = (1 + g(𝐱II , t))
M−1∏
i=1

sin(yi𝜋

2
)

where ∶
g(𝐱II , t) = G(t) +

∑
xi∈𝐱II

(xi − G(t))2,

t = 1
nt

⌊
𝜎

𝜎T

⌋
, yi = xF(t)

i , ∀i = 1,… ,M − 1

G(t) = |sin(0.5𝜋t)| , F(t) = 1 + 100sin4 (0.5𝜋t),
𝐱II = (xM ,… , xn), xi ∈ [0, 1], ∀i = 2,… , n

(7)

To easily visualize the approximations found by InDM2W for FDA5,
which belong to the three-dimensional objective space, we have used
bi-dimensional images which show the values of each pair of objec-
tives for all the solutions in the approximations (i.e. 2D projections of
each pair of objectives). This can be seen in Fig. 4, where we show
the approximations generated by InDM2W for FDA5 using (0.0, 0.0,
0.0) as the initial reference point (left) and (0.5, 0.5, 0.5) as the sec-
ond given one (right), which shrank the desired region of interest. Note
that all the approximations illustrated in Fig. 4 are constituted by non-
dominated solutions in the three-dimensional objective space, although
these bi-dimensional plots may wrongly show a domination among the
solutions represented.

4.2. Dynamic Bi-Objective traveling salesman problem

Finally, we have tested the performance of InDM2 when solving a
dynamic version of the Traveling Salesman Problem (TSP) [23] based
on real-world data. The New York City Department of Traffic provides
open real-time traffic speed data4, which gives the length of the links,
the mean speed and the mean traveling time of the cars traversing the
two end points that define the links. This enables a realistic dynamic
bi-objective optimization instance of the TSP to be defined, where the
objectives to be minimized are the travel time and the distance. The
available data are updated with a frequency of two or three times per
minute, so it can actually be considered as “almost real-time data”. This
case study is based on the problem instance described in Ref. [14],
which motivated the development of the jMetalSP framework.

To solve the resulting combinatorial dynamic bi-objective optimiza-
tion problem, the solution encoding used has been a permutation
of integer values representing the journeys. The variation operators
applied are a swap mutation operator and a partial-mapped crossover
(PMX) operator. The parameter settings used are the following: the pop-
ulation size is 100; the algorithm performs 250,000 function evalua-
tions before writing out the approximation found and re-starting; the
crossover and mutation probabilities are 0.9 and 0.2, respectively. A
directory is used as streaming data source, which is read every 10 s. As
in the former case study, we have used the thread-based runtime.

Data are gathered from the open data website of the city of New
York and incorporated to jMetalSP as a streaming data source. How-
ever, as we are interested in comparing the execution of both InDM2W

4 At the time of writing this paper, the traffic data can be obtained from https://data.
cityofnewyork.us/view/qkm5-nuaq.

and InDM2R for the same instance, we have previously acquired the
traffic data and, in our study, the problem is always updated with the
same data with the idea of always solving exactly the same dynamic
instance of the TSP with both algorithms. The updated data consist of
a code that indicates the distance or time matrices, the coordinate (row
and column) to change, and the new value.

In Fig. 5, the results retrieved by InDM2W (left) and InDM2R (right)
are shown. In both cases, we can observe how the approximations
evolve according to the changes in the region of interest, when the
DM interactively gives different reference points. (S)he started with
an unachievable reference point (7000, 400), and later set more pes-
simistic values and subsequently used the reference points (9000, 1000)
and (11000, 700), both of them achievable. In general, the solutions
obtained by both, InDM2W and InDM2R approximated the regions of
interest, but their diversities were not as high as desired. However, the
ones generated by InDM2W better fit to the desired regions. Further-
more, it can be seen that some of the solutions generated by InDM2R
are dominated by the ones found by InDM2W .

4.3. Discussion

From the use cases studied in the previous section, we can observe
that InDM2 has performed as expected, although it is worth discussing
a number of issues that have emerged after analyzing the behavior of
the algorithm.

The first issue to discuss is the way of assessing the performance of
the search capabilities of InDM2. In the literature, whenever a new
metaheuristic technique is proposed, the results obtained for a per-
formance metric after several independent runs are usually analyzed
and compared to other algorithms. For InDM2, we have not included
such study for several reasons that we now discuss. First, to the best
of our knowledge, there is no algorithm with the features of InDM2
(dynamic multi-objective optimization metaheuristic handling prefer-
ences of the DM in an interactive way), so we cannot compare it with
other proposals. It must be noted that InDM2 employs as the optimiza-
tion engine a dynamic version of the WASF-GA and the R-NSGA-II algo-
rithms, but any other metaheuristic based on the reference point pref-
erential scheme could be used instead, such as for e.g. r-NSGA-II [41].
From this point of view, a comparative performance study between sev-
eral dynamic multi-objective optimization metaheuristics based on ref-
erence points would make sense, but this analysis is beyond the scope of
this paper. Furthermore, traditional comparative tables are less mean-
ingful when we mainly focus on the interaction with the DM, and not
only on the Pareto front approximations. Finally, evaluating the perfor-
mance of dynamic multi-objective optimization algorithms is not trivial
and, although some quality indicators have been proposed [3,42], the
inclusion of preferential information in InDM2 adds a new element that
would possibly require having to define new quality indicators.

From an overall perspective, and in accordance with our study, we
can conclude that the use of WASF-GA in InDM2 has led to approxima-
tions with more evenly spread solutions in comparison with those gen-
erated when using R-NSGA-II. In some cases, InDM2W solutions domi-
nated InDM2R solutions. However, InDM2W can only handle a unique
reference point as preferential information (given that WASF-GA does
so), while InDM2R has allowed the DM to indicate more than one ref-
erence point in the same iteration (thanks to the characteristics of R-
NSGA-II), and this can be helpful for a DM in several situations. This
highlights that the internal optimization solver used in InDM2 condi-
tions the capability of our proposal for using just one or several refer-
ence points at the same time.

We have designed InDM2 to be flexible enough to include different
restarting strategies when changes in the problem and/or in the ref-
erence point are detected, but choosing the right schemes is an open
issue that requires further research. The selection of the most appropri-
ate strategies is problem-dependent and they may be more complicated
to choose in case of real-world problems whose Pareto fronts are usu-

https://data.cityofnewyork.us/view/qkm5-nuaq
https://data.cityofnewyork.us/view/qkm5-nuaq

ally unknown beforehand. Thus, performing a preliminary configura-
tion study seems to be necessary for each problem so as to have some
pointers as to the best strategies to be adopted.

It is worth mentioning that the frequency of change of the refer-
ence point is up to the DM. At any moment, the DM may or may not
change it, according to his/her desires. As in any interactive method,
the preferences of the DM evolve while (s)he actually interacts with the
method and learns about the problem itself. The DM takes an active
part in the solution process: (s)he iteratively sees information about the
solutions available and expresses, fine-tunes and changes his/her pref-
erence information. With this, the DM can learn about what kinds of
solutions are attainable (i.e. what kinds of trade-offs exist among the
objectives), and (s)he can then adjust his/her own preferences based on
insight gained about the problem.

During the interactive solution process followed in InDM2, the DM
can analyze the approximations obtained for the current reference point
and, after a few seconds, (s)he can provide a new reference point if
(s)he feels that the results generated are not appealing enough, until
converging to the desired region of Pareto optimal solutions.

The bi-objective problems we have used to illustrate the working
of InDM2 have allowed us to validate our proposal. For visualizing the
results obtained for the three-objective problem, we have made use of
2D projections of each pair of objectives. This is an initial proposal
for graphically presenting the results to the DM in order to ease the
study and analysis of the solutions found in DMOPs with more than
two objectives, but further research must be done in this vein and so
improving the visualization features is ongoing work. Note that helping
the DM to fine-tune her/his preferences in a context where the problem
itself is changing over time is not an easy task, especially in the presence
of a high number of objectives.

An important feature of InDM2 has to do with its implementation
on top of the jMetalSP framework. For the studies we have conducted
in this paper, we have used a simple streaming source that returns the
value of a counter, so we have not used Apache Spark. However, using
this cluster computing system is transparent to InDM2 and the potential
use of the Spark streaming engine is available, and would enable us to
incorporate many data sources by using providers, such as sockets, files
in a directory, Kafka, Flume or Kinesis5. A consequence of using Spark
is the advantage of working with Big Data technologies, which allows
us to run InDM2 in Hadoop clusters and to access huge amounts of data
stored in HDFS. In this sense, it is worth mentioning that the streaming
features of Spark can perform tasks (i.e. the analysis of the received
data) in parallel in a transparent way.

Finally, we would like to highlight that any future feature of jMet-
alSP will be automatically available in InDM2. In addition, as jMetalSP
is an open-source project, the source code of InDM2 is also available for
those researchers interested in using it. This gives us the possibility of
receiving feedback about bugs, improvements and contributions.

5. Conclusions

We have presented InDM2, an interactive multi-objective optimiza-
tion metaheuristic for solving dynamic multi-objective optimization
problems. It enables the DM to interactively change the region of inter-
est that (s)he desires to approximate by giving and updating a reference
point containing her/his preferences. Our proposal incorporates a ref-
erence point-based evolutionary algorithm as a component, currently
including the WASF-GA and R-NSGA-II algorithms, which indeed allow
the reference points to be changed during the optimization process. To
assist the DM, the approximations obtained by the algorithm are shown
in a graphical window. A key component of InDM2 is that its inter-
nal design allows specifying which different restarting strategies are to

5 http://spark.apache.org/docs/latest/streaming-programming-guide.html.

be applied when changes in the reference point and/or in the problem
configuration are detected, making it more versatile.

InDM2 has been described in detail and its working procedure has
been analyzed by solving three continuous DMOPs and a dynamic ver-
sion of the combinatorial bi-objective optimization traveling salesman
problem, built using real-world traffic data from New York City. The
reported figures have shown how our algorithm behaves when the prob-
lem and the reference points change. We have given an idea of the full
potential of InDM2, as a dynamic algorithm handling preferences inter-
actively, which has been able to generate approximation adjusting to
the given preferences (i.e., the region of interest), in real time, while
the problem also changes at the same time. We have also discussed a
number of open issues related to our proposal.

A lack of real-world applications is still an open issue to illustrate
how new algorithms perform, especially for DMOPs in which t changes
at a high rate. Thus, apart from the future research lines indicated in
Section 4.3, we are interested in studying the performance of InDM2
when solving more complex real-world DMOPs using preferences and
interactively changing them by a DM.

Acknowledgments

This work is partially funded by Grants TIN2017-86049-R, TIN2014-
58304 and ECO2014-56397-P (Ministerio de Ciencia e Innovación),
and P11-TIC-7529 and P12-TIC-1519 (Plan Andaluz I+D+I). Cristóbal
Barba-González is supported by Grant BES-2015-072209 (Spanish Min-
istry of Economy and Competitiveness). Ana B. Ruiz and José García-
Nieto are recipient of a Post-Doctoral fellowship of “Captación de Tal-
ento para la Investigación” at Universidad de Málaga.

References

[1] K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, Wiley,
Chichester, 2001.

[2] C.A.C. Coello, G.B. Lamont, D.A.V. Veldhuizen, Evolutionary Algorithms for
Solving Multi-objective Problems, second ed., Springer, New York, 2007.

[3] C. Raquel, X. Yao, Dynamic multi-objective optimization: a survey of the
state-of-the-art, in: S. Yang, X. Yao (Eds.), Evolutionary Computation for Dynamic
Optimization Problems, Springer, 2013, pp. 85–106.

[4] S. Jiang, S. Yang, A steady-state and generational evolutionary algorithm for
dynamic multiobjective optimization, IEEE Trans. Evol. Comput. 21 (2017) 65–82.

[5] X. Chen, D. Zhang, X. Zeng, A stable matching-based selection and memory
enhanced MOEA/D for evolutionary dynamic multiobjective optimization, in:
Proceeding of the International Conference on Tools with Artificial Intelligence,
2015, pp. 478–485.

[6] Y. Jin, C. Yang, J. Ding, T. Chai, Reference point based prediction for evolutionary
dynamic multiobjective optimization, in: Proceeding of the IEEE Congress on
Evolutionary Computation, 2016, pp. 3769–3776.

[7] A. Muruganantham, K.C. Tan, P. Vadakkepat, Evolutionary dynamic
multiobjective optimization via kalman filter prediction, IEEE Transactions on
Cybernetics 46 (2016) 2862–2873.

[8] M.G. Martinez-Penaloza, E. Mezura-Montes, Immune generalized differential
evolution for dynamic multiobjective optimization problems, in: Proceedings of
the IEEE Congress on Evolutionary Computation, 2015, pp. 1918–1925.

[9] Y. Wu, Y. Jin, X. Liu, A directed search strategy for evolutionary dynamic
multiobjective optimization, Soft Computing 19 (2015) 3221–3235.

[10] M. Farina, K. Deb, P. Amato, Dynamic multiobjective optimization problems: test
cases, approximations, and applications, IEEE Trans. Evol. Comput. 8 (2004)
425–442.

[11] K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers,
Boston, 1999.

[12] A. Jaszkiewicz, J. Branke, Interactive multiobjective evolutionary algorithms, in: J.
Branke, K. Deb, K. Miettinen, R. Slowinski (Eds.), Multiobjective Optimization,
Interactive and Evolutionary Approaches, Volume 5252 of Lecture Notes in
Computer Science, Springer, 2008, pp. 179–193.

[13] M. Helbig, K. Deb, A. Engelbrecht, Key challenges and future directions of
dynamic multi-objective optimisation, in: Proceeding of the IEEE Congress on
Evolutionary Computation, 2016, pp. 1256–1261.

[14] C. Barba-Gonzalez, J.M. Garcia-Nieto, A.J. Nebro, J.A. Cordero, J.J. Durillo, I.
Navas-Delgado, J.F. Aldana-Montes, jMetalSP: a Framework for Dynamic
Multi-objective Big Data Optimization, Applied Soft Computing, to appear, 2017.

[15] J.J. Durillo, A.J. Nebro, jMetal: a Java framework for multi-objective optimization,
Adv. Eng. Software 42 (2011) 760–771.

[16] A.J. Nebro, J.J. Durillo, M. Vergne, Redesigning the jMetal multi-objective
optimization framework, in: Proceedings of the Companion Publication of the
Annual Conference on Genetic and Evolutionary Computation, 2015, pp.
1093–1100.

http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref1
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref2
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref3
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref4
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref5
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref6
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref7
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref8
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref9
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref10
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref11
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref12
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref13
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref14
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref15
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref16

[17] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster
computing with working sets, in: Proceedings of the USENIX Conference on Hot
Topics in Cloud Computing, 2010, pp. 1–7.

[18] A.B. Ruiz, R. Saborido, M. Luque, A preference-based evolutionary algorithm for
multiobjective optimization: the weighting achievement scalarizing function
genetic algorithm, J. Global Optim. 62 (2015) 101–129.

[19] A.P. Wierzbicki, The use of reference objectives in multiobjective optimization, in:
G. Fandel, T. Gal (Eds.), Multiple Criteria Decision Making, Theory and
Applications, Springer, 1980, pp. 468–486.

[20] K. Deb, J. Sundar, B. Ubay, S. Chaudhuri, Reference point based multi-objective
optimization using evolutionary algorithm, Int. J. Comput. Intell. Res. 2 (2006)
273–286.

[21] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–197.

[22] T. White, Hadoop: the Definitive Guide, O’Reilly Media, Inc., 2009.
[23] C.H. Papadimitriou, The Euclidean travelling salesman problem is NP-complete,

Theor. Comput. Sci. 4 (1977) 237–244.
[24] K. Deb, K. Miettinen, Nadir point estimation using evolutionary approaches: better

accuracy and computational speed through focused search, in: M. Ehrgott, B.
Naujoks, T.J. Stewart, J. Wallenius (Eds.), Multiple Criteria Decision Making for
Sustainable Energy and Transportation Systems, Springer, 2010, pp. 339–354.

[25] K. Deb, K. Miettinen, S. Chaudhuri, Towards an estimation of nadir objective
vector using a hybrid of evolutionary and local search approaches, IEEE Trans.
Evol. Comput. 14 (2010) 821–841.

[26] M. Luque, K. Miettinen, P. Eskelinen, F. Ruiz, Incorporating preference
information in interactive reference point methods for multiobjective
optimization, Omega 37 (2009) 450–462.

[27] K. Miettinen, M.M. Mäkelä, Comparative evaluation of some interactive reference
point-based methods for multi-objective optimisation, J. Oper. Res. Soc. 50 (1999)
949–959.

[28] K. Miettinen, M.M. Mäkelä, On scalarizing functions in multiobjective
optimization, OR Spectrum 24 (2002) 193–213.

[29] F. Ruiz, M. Luque, J.M. Cabello, A classification of the weighting schemes in
reference point procedures for multiobjective programming, J. Oper. Res. Soc. 60
(2009) 544–553.

[30] K. Deb, U.B. Rao, S. Karthik, Dynamic multi-objective optimization and
decision-making using modified NSGA-II: a case study on hydro-thermal power
scheduling, in: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.),
Evolutionary Multi-criterion Optimization, Volume 4403 of Lecture Notes in
Computer Science, Springer, 2007, pp. 803–817.

[31] R. Roy, J. Mehnen, Dynamic multi-objective optimisation for machining gradient
materials, CIRP Ann. - Manuf. Technol. 57 (2008) 429–432.

[32] R. Liu, W. Zhang, L. Jiao, F. Liu, J. Ma, A sphere-dominance based preference
immune-inspired algorithm for dynamic multi-objective optimization, in:
Proceedings of the Annual Conference on Genetic and Evolutionary Computation,
2010, pp. 423–430.

[33] Y. Jin, C. Yang, J. Ding, T. Chai, Reference point based prediction for evolutionary
dynamic multiobjective optimization, in: IEEE Congress on Evolutionary
Computation, 2016, pp. 3769–3776.

[34] K. Deb, A robust evolutionary framework for multi-objective optimization, in: M.
Keijzer (Ed.), Conference on Genetic and Evolutionary Computation, 2008, pp.
633–640.

[35] M. Luque, F. Ruiz, R.E. Steuer, Modified interactive Chebyshev algorithm (MICA)
for convex multiobjective programming, Eur. J. Oper. Res. 204 (2010) 557–564.

[36] K. Miettinen, P. Eskelinen, F. Ruiz, M. Luque, NAUTILUS method: an interactive
technique in multiobjective optimization based on the nadir point, Eur. J. Oper.
Res. 206 (2010) 426–434.

[37] A.B. Ruiz, K. Sindhya, K. Miettinen, F. Ruiz, M. Luque, E-NAUTILUS: a decision
support system for complex multiobjective optimization problems based on the
NAUTILUS method, Eur. J. Oper. Res. 246 (2015) 218–231.

[38] H. Ishibuchi, H. Masuda, Y. Tanigaki, Y. Nojima, Modified Distance Calculation in
Generational Distance and Inverted Generational Distance, Springer International
Publishing, pp. 110–125.

[39] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach, IEEE Trans. Evol. Comput. 3 (1999)
257–271.

[40] K. Deb, Salient issues of multi-objective evolutionary algorithms, in: K. Deb (Ed.),
Multi-objective Optimization Using Evolutionary Algorithms, Wiley, 2001, pp.
315–445.

[41] L. Ben-Said, S. Bechikh, K. Ghedira, The r-dominance: a new dominance relation
for interactive evolutionary multicriteria decision making, IEEE Trans. Evol.
Comput. 14 (2010) 801–818.

[42] E. Tantar, A.A. Tantar, P. Bouvry, On dynamic multi-objective optimization,
classification and performance measures, in: Proceedings of the IEEE Congress of
Evolutionary Computation, 2011, pp. 2759–2766.

http://refhub.elsevier.com/S2210-6502(17)30472-8/sref17
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref18
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref19
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref20
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref21
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref22
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref23
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref24
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref25
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref26
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref27
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref28
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref29
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref30
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref31
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref32
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref33
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref34
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref35
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref36
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref37
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref39
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref40
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref41
http://refhub.elsevier.com/S2210-6502(17)30472-8/sref42

	InDM2: Interactive Dynamic Multi-Objective Decision Making Using Evolutionary Algorithms
	1. Introduction
	2. Background concepts
	2.1. Concepts and notation
	2.2. Preferences in multi-objective optimization
	2.3. Related work
	2.4. Brief descriptions of WASF-GA and R-NSGA-II
	2.5. The jMetalSP framework

	3. Description of InDM2
	4. Use cases
	4.1. Case use 1: synthetic continuous DMOPs
	4.2. Dynamic Bi-Objective traveling salesman problem
	4.3. Discussion

	5. Conclusions
	Acknowledgments
	References

