ISCTE 2 1UL
REPOSITORIO

INSTITUTO UNIVERSITARIO DE LISBOA

Repositério ISCTE-IUL

Deposited in Repositdrio ISCTE-IUL:
2019-03-14

Deposited version:
Post-print

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Gomes, J., Oliveira, S. M. & Christensen, A. L. (2018). An approach to evolve and exploit repertoires
of general robot behaviours. Swarm and Evolutionary Computation. 43, 265-283

Further information on publisher's website:
10.1016/j.swev0.2018.06.009

Publisher's copyright statement:

This is the peer reviewed version of the following article: Gomes, J., Oliveira, S. M. & Christensen, A.
L. (2018). An approach to evolve and exploit repertoires of general robot behaviours. Swarm and
Evolutionary Computation. 43, 265-283, which has been published in final form at
https://dx.doi.org/10.1016/j.swevo.2018.06.009. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
¢ a link is made to the metadata record in the Repository
o the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Servicos de Informagdo e Documentagdo, Instituto Universitario de Lisboa (ISCTE-IUL)
Av. das Forgas Armadas, Edificio II, 1649-026 Lisboa Portugal
Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1016/j.swevo.2018.06.009

Accepted Manuscript P -

An approach to evolve and exploit repertoires of general robot behaviours

Jorge Gomes, Sancho Moura Oliveira, Anders Lyhne Christensen

PII: S2210-6502(17)30855-6
DOI: 10.1016/j.swevo.2018.06.009
Reference: SWEVO 420

To appearin: Swarm and Evolutionary Computation BASE DATA

Received Date: 25 October 2017
Revised Date: 18 May 2018
Accepted Date: 20 June 2018

Please cite this article as: J. Gomes, S.M. Oliveira, A.L. Christensen, An approach to evolve and exploit
repertoires of general robot behaviours, Swarm and Evolutionary Computation BASE DATA (2018), doi:
10.1016/j.swevo.2018.06.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.swevo.2018.06.009

An Approach to Evolve and Exploit Repertoires of
General Robot Behaviours

Jorge Gomes®®f Sancho Moura Oliveira®®4, Anders Lyhne Christensen®d:¢

%BiolSI, Faculdade de Ciéncias da Universidade de Lisboa, Lisbon, Portugal
bInstituto de Telecomunicagées, Lisbon, Portugal
¢BioMachines Lab, Lisbon, Portugal
4 Instituto Universitdrio de Lisboa (ISCTE-IUL), Lisbon, Portugal
¢ Maersk McKinney Moller Institute, University of Southern Denmark, Odense, Denmark
I'Sonodot Ltd., London, United Kingdom

Abstract

Recent works in evolutionary robotics have shown the viability of evolution
driven by behavioural novelty and diversity. These evolutionary approaches
have been successfully used to generate repertoires of diverse and high-quality
behaviours, instead of driving evolution towards a single, task-specific solution.
Having repertoires of behaviours can enable new forms of robotic control, in
which high-level controllers continually decide which behaviour to execute. To
date, however, only the use of repertoires of open-loop locomotion primitives has
been studied. We propose EvoRBC-II, an approach that enables the evolution of
repertoires composed of general closed-loop behaviours, that can respond to the
robot’s sensory inputs. The evolved repertoire is then used as a basis to evolve
a transparent higher-level controller that decides when and which behaviours
of the repertoire to execute. Relying on experiments in a simulated domain,
we show that the evolved repertoires are composed of highly diverse and useful
behaviours. The same repertoire contains sufficiently diverse behaviours to solve
a wide range of tasks, and the EvoRBC-II approach can yield a performance
that is comparable to the standard tabula-rasa evolution. EvoRBC-II enables
automatic generation of hierarchical control through a two-step evolutionary
process, thus opening doors for the further exploration of the advantages that
can be brought by hierarchical control.

Keywords: Evolutionary computation; evolutionary robotics; novelty search;
behaviour repertoires; hierarchical control

*Corresponding author
Email address: jmgomes@fc.ul.pt (Jorge Gomes)

Preprint submitted to Swarm and Evolutionary Computation June 20, 2018

20

25

30

35

40

45

1. Introduction

1.1. Motivation and Background

Evolutionary robotics is the field of research that employs evolutionary com-
putation to generate robots that are adapted to their environment and task
through a process inspired by natural evolution [1]. Historically, works on evo-
lutionary robotics have mainly been focused on evolving robot controllers that
are able to solve a single well-defined task [2, 3]. More recent works have, how-
ever, shown that diversity-driven evolutionary algorithms are a valuable tool
for evolutionary robotics [4-6]. Evolutionary algorithms driven by behavioural
novelty and diversity, such as the novelty search algorithm [7] and quality di-
versity algorithms [8], work by rewarding behavioural novelty instead of scoring
solutions solely based on task performance. The behavioural novelty of a so-
lution corresponds to its behavioural difference with respect to the solutions
that have been evolved so far. Behavioural diversity based methods differ from
the more traditional approaches that promote genetic diversity [9] in the sense
that differences between candidate solutions are computed based on the actual
behaviour of the robot in the environment and not in its genotype [4].

There are several potential benefits associated with the exploration of the
behaviour space in evolutionary algorithms [5], including: (i) rewarding be-
havioural diversity can help mitigate premature convergence [7, 10, 11]; (ii) the
evolutionary process can reveal many different ways of solving the given prob-
lem [8, 12]; and (iii) evolving a large set of diverse behaviours (repertoires) can
enable new forms of control and the creation of new types of algorithms [13].

Novelty-driven algorithms have been used to evolve repertoires of robot
behaviours in a number of different domains, for instance: the evolution
of virtual walking creatures (including body plan and control policy) [12];
repertoires of morphological designs for walking soft robots [13]; repertoires
of locomotion behaviours for legged robots [14-19] and four-wheeled steering
robots [20]; repertoires of robotic arm behaviours [13, 19, 21]; repertoires of
swarm behaviours [22, 23]; and repertoires of controllers for maze-navigation
tasks [8, 17, 24]. The automatic generation of behaviour repertoires resembles
self-exploration or babbling in developmental robotics [25], in which a robot
experiments with a wide variety of motor commands, and learns the associa-
tion between those motor commands and their consequence. The use of diverse
repertoires can also be found in ensemble methods in machine learning, for in-
stance in negative correlation learning [26, 27], where multiple neural networks
in an ensemble are explicitly encouraged to behave differently from one another.

Since the advent of behaviour-based robotics [28], collections of behaviours
have been extensively used to control robots. In general, a behaviour-based
control system can be viewed as a structured network of behaviour modules,
each of which achieves and/or maintains a specific goal [29]. These collections
of behaviours are typically defined manually by the experimenter, based on a
given task that the robot should solve. The basic behaviours from these collec-
tions can then be combined either manually or automatically through learning
processes such as evolutionary algorithms [30, 31]. The automatic generation

50

55

60

65

70

75

80

85

90

of behaviour repertoires through evolution opens interesting opportunities for
new forms of robot control. Instead of relying on a monolithic controller, the
robots can be controlled by combining and selecting behaviours from the reper-
toire. Having access to a large set of behaviours allows for the choice of the
behaviour that is most adapted to the context and the current situation of the
robot. Cully et al. [14], for instance, study how a repertoire of hexapod lo-
comotion behaviours can be used to make the robot fault tolerant: when the
robot is impaired (for example, a broken leg), the controller can look for new
locomotion behaviours that can cope with that fault. In a different application,
Cully et al. [15] suggest that path planning algorithms can be used to control
the robots based on an evolved behaviour repertoire. The path planner can
choose the sequence of behaviours to execute based on the expected trajectory
of each locomotion behaviour.

These forms of control can be seen as hierarchical control, in which the
goal task (such as navigating towards the target) is decomposed into simpler
sub-tasks (for example, walking forwards, turning right) [32-34]. Duarte et
al. [35-37] have extensively studied this form of control, and developed the hi-
erarchical control synthesis approach, where control is evolved for each sub-task,
and the final controller is then evolved hierarchically in a bottom-up fashion.
Behaviour nodes that have control over the robot’s actuators are called primi-
tives, and behaviour nodes that select and activate lower-level nodes are called
arbitrators, following the terminology proposed by Lee et al. [32]. Such hier-
archical controllers resemble stacking ensemble models [38] found in machine
learning, which involve training a model (the aggregator) to estimate which
base predictors perform well on the given data. The behaviour arbitrators are
equated to the aggregator, while the behaviour primitives correspond to the
base predictors.

Hierarchical control allows for the composition of increasingly complex con-
trollers that leverage previously evolved primitives. Besides the achievement
of control for increasingly more complex tasks, hierarchical control is also as-
sociated with other potential advantages [36], namely reusability: the sub-
controllers can be used and combined to solve different tasks; and incremen-
tal transfer: the sub-controllers can be tested incrementally on real robotic
hardware, and issues related to real-robot performance can be addressed inde-
pendently from the rest of the control hierarchy.

In recent work, we proposed EvoRBC [18, 20], an evolutionary approach
that combines the novelty-driven evolution of behaviour repertoires with the hi-
erarchical control synthesis approach. EvoRBC divides the evolution of robotic
control in two main steps:

1. The evolution of a repertoire of locomotion patterns (each a vector of
parameters for the robot’s locomotor system) using a quality diversity
(QD) algorithm, for a given robot and according to a provided fitness
metric.

2. The evolution of a high-level arbitrator (a neural network) using a neuro-
evolution algorithm, for a given task, using a provided fitness function,

95

100

105

110

115

120

125

130

and leveraging the repertoire evolved in the first step.

In a controller evolved following the EvoRBC approach, the high-level ar-
bitrator receives the sensor readings from the robot, and outputs the mapping
values. The mapping values are fed to a mapping function, which selects the
corresponding low-level locomotion primitive. The locomotion parameters that
are encoded in the primitive are then applied to the actuators of the robot. This
process is repeated every control cycle during the robot’s operation. EvoRBC
abstracts the task-oriented control from the details of the robotic hardware
itself, since the low-level interactions with actuators are removed from the task-
learning process. Evolution only needs to optimise for a robot’s intention (for
instance, choose a direction and speed), and not learn how that intention should
be realised in terms of tuning and coordinating multiple low-level locomotion
parameters. EvoRBC therefore enables the evolution of task-oriented control for
robots with complex locomotor systems by providing access to a variety of pre-
viously generated locomotion behaviours. EvoRBC has been evaluated in maze
navigation tasks using a four-wheeled steering robot [20] and using a hexapod
robot [18, 20]. Compared to the traditional evolutionary robotics approach, in
which a monolithic controller is evolved, EvoRBC was able to achieve far more
effective controllers using fewer evaluations in the evolutionary process.

1.2. Research Questions and Contributions

In EvoRBC, as well as in the vast majority of works that have evolved
repertoires of robot behaviours, those behaviours are restricted to open-loop
control and locomotion primitives [14, 16, 21]. While such an approach has
its merits when the objective is to obtain controllers for robots with complex
locomotor systems, it begs the question: can we leverage these principles to
evolve repertoires of behavioural primitives that go beyond mere locomotion?
In this paper, we propose EvoRBC-II, which extends the EvoRBC approach [18]
to higher-level closed-loop behaviour primitives. Note that we use the term
open-loop to refer to controllers that do not have access to the robot’s sensor
readings, while we used closed-loop to refer to controllers that take the robot’s
current sensor readings as input. FEnabling higher-level closed-loop behaviour
primitives raises a number of challenges, which we study and address in this
paper. We pursue the following main research question, from where we derive
three supporting research questions:

Main Research Question: How can repertoires of general primitives that
rely on the robot’s sensors be evolved, and how to take advantage of such
repertoires to solve specific tasks?

Supporting Question 1: How can the evolution of general-purpose primi-
tives, that can be used in a wide range of situations and tasks, be pro-
moted?

Supporting Question 2: How can the behaviour of general-purpose closed-
loop primitives be characterised?

135

140

145

150

155

160

165

170

Supporting Question 3: How can a repertoire of closed-loop primitives be
leveraged to evolve solutions for specific tasks?

Supporting Question 1 concerns how to meaningfully evaluate the primitives
during the repertoire evolution. In order for the primitives to be useful, they
need to display robust behaviours, so as arbitrator evolution can reliably build
on them. Previous work has been focused on the evolution of repertoires of
locomotion primitives [15, 17, 18], where this problem is not present, as the
primitives do not rely on sensor values and are always evaluated in the same
conditions.

Supporting Question 2 concerns the characterisation of behaviour, an es-
sential step for diversity-driven evolution. While in repertoires of locomotion
behaviours this tends to be trivial — the displacement of the robot is used as be-
haviour characterisation [39], characterising general robot behaviour and inter-
actions with the environment tends to be more challenging [8, 40]. An adequate
behaviour characterisation is essential to evolve a diverse repertoire. Such di-
versity is valuable as it potentially enables the reusability of previously evolved
repertoires of behaviours to rapidly solve new tasks.

Supporting Question 3 addresses the challenges in evolving a top-level arbi-
trator that must be able to find suitable primitives in the repertoire, and switch
among them as needed during task execution. Since the primitives themselves
can be quite capable, the top-level arbitrator should be able to take maximum
advantage of those capabilities.

We explore these and other intertwined questions in this paper, and thor-
oughly evaluate the proposed approaches in nine simulated robotic tasks, based
on canonical evolutionary robotics problems. This paper is organised as follows:
the EvoRBC-II approach is described in Section 2. In Section 3, we describe
the experimental setup that is used to assess the proposed approach. We eval-
uate EvoRBC-II in Section 4, including an analysis of the evolved repertoires
and arbitrators, and comparisons with competing approaches. Our findings are
summarised and discussed in Section 5, and we end with the main conclusions
and future perspectives in Section 6.

2. Methods

The main contribution of this paper is EvoRBC-II, an extension of EvoRBC
that enables the evolution and usage of repertoires of closed-loop behaviour
primitives. As an example, while a primitive in the previously proposed
EvoRBC approach [20] is restricted to open-loop locomotion, and thus encodes
behaviours such as “to turn to the right, apply 100% power to the left wheel and
50% to the right wheel”, a primitive in EvoRBC-II has access to the robot’s
sensory information, and can thus display behaviours such as “go to the nearest
target while avoiding obstacles”. Figure 1 summarises the two main steps of
EvoRBC-II, which will be presented in detail in the following sections.

175

180

185

190

195

Repertoire evolution

Random
set of
environments

Repertoire
generation with

Repertoire of

. eneral
° novelty-driven ?imitives
Behaw_our_ neuroevolution p
characterisation
function

Task
environment

Evolution of
decision-tree
arbitrator
with genetic
programming

High-level
arbitrator

Task
fitness function

Figure 1: Evolution of control using the EvoRBC-II approach, showing the main inputs that
must be provided by the experimenter (in gray), and the outputs of each step (in blue). Note
that the same repertoire can potentially be used to evolve arbitrators for a broad range of
different tasks.

2.1. Repertoire Evolution

The first stage of EvoRBC-II is the evolution of a diverse repertoire of general
primitives. The process is illustrated in Figure 2 and described in Algorithm 1.

2.1.1. Nowvelty Search

We rely on the novelty search algorithm [7] to generate a set of diverse
primitives. Novelty search is an evolutionary approach in which individuals are
rewarded for being behaviourally novel. The novelty of a primitive is computed
by comparing its behaviour with the behaviour of the other individuals in the
current population, and the individuals in an archive (Algorithm 1, step 11).
The archive is composed of individuals evolved during the evolutionary run
(steps 13—14): the most novel individuals from the population are added to the
archive every generation, and the least novel individuals are removed from the
archive if it has reached a predefined capacity. In Sections 2.1.2 and 2.1.3, we
describe in detail how the behaviour of each primitive is obtained.

Once the novelty search-based evolutionary process has terminated, the
archive becomes the repertoire of primitives. The repertoire is therefore a repre-
sentative sample of the individuals evolved during the evolutionary process. In
our study, each primitive is a neural network, and the evolutionary process is im-
plemented using the NEAT neuroevolution algorithm [41]. NEAT evolves both
the weights and the topologies of the networks, meaning that the experimenter
does not have to specify the neural network architecture. The neural networks
evolved by NEAT are initialised with a minimal structure (inputs connected to
outputs), and grow new nodes and connections as needed. The combination
of NEAT and novelty search has been used with success in a large number of
previous works, see for instance [7, 42].

Evaluation

Primitive 1

—s, P> a—>
—s, P> a,—

Primitive 1

Novelty

Search EA 2! € €y
30 u £ .\v o
[] []
° £ ° B
atl HF I
b, = b, & b,

Glelal-[a]

Average Behaviour Characterisation B(i)

Figure 2: The primitives are neural networks with n inputs, one for each sensor (s1..,), and
m outputs, one for each actuator (ai..,,). Each primitive is evaluated in s simulations, corre-
sponding to different randomly generated environments (e, ,). During each simulation, the
behaviour of the primitive is characterised according to the provided behaviour characteri-
sation (see Section 2.1.3). The results from all simulations (bi..,) are aggregated to obtain
the average behaviour characterisation B(i), a vector of length k, where k corresponds to the
number of behaviour features comprising the characterisation. This behaviour characterisa-
tion is returned to the novelty search algorithm, where it is used to compute the novelty score
of the primitive.

Algorithm 1 Repertoire generation with novelty search.

1:

e e e
gk @O

16:
17:

Let S be the maximum size of the archive, and s the number of individuals added
per generation.
Let E be a set of randomly generated environments.
A+ 0 > Archive
P + RandomInitialPopulation() > Population
for each generation do
for each individual i € P do
for each environment e € F do
b. + Evaluate(i,e) > Simulate 4 in the environment e

B(i) < GeometricMedian({b. : e € E}) > Combine the multiple observations

for each individual i € P do
7; < ComputeNovelty(B(i), {B(a):a € A} U{B(x):z € P Az #i})

> Compute novelty based on the archive and the other individuals in P

A + AU SelectMostNovel(P,s) > Add the s most novel individuals to A

while |A| > S do > The archive exceeds its capacity

A+ A\ SelectLeastNovel(A, 1) > Remove the least novel individual

P < Breed(P) based on the scores 7 > Breed next generation
return A

200

205

210

215

220

225

230

235

240

The original EvoRBC approach [20], as well as a number of other works
that have generated repertoires of robot behaviours [13, 15], rely on the MAP-
Elites algorithm for the repertoire generation [13]. MAP-Elites discretises the
behaviour space, and aims to obtain a high-quality primitive in each of the
resulting behaviour bins. In EvoRBC-II, we do not use MAP-Elites, but instead
we have adopted the standard novelty search algorithm, to avoid having to
specify the behaviour grid, which can become challenging when dealing with
many behaviour dimensions. Moreover, previous work has shown that novelty
search can achieve a performance comparable to MAP-Elites, with respect to
the exploration of the behaviour space [8, 24]. Recently, new approaches for
repertoire generation have been proposed, that overcome some of the MAP-
Elites limitations [17, 19], which could be promising alternatives to the novelty
search algorithm used in this paper.

2.1.2. Primitive Evaluation

The evaluation of each primitive (Algorithm 1, step 8) has the objective
of characterising its general behaviour, that is, what a primitive does when
placed in an arbitrary environment. To this end, each primitive is evaluated in
a large number of independent trials (100 in our experiments), each simulating
the robot in a randomly generated environment. In each simulation, the robot
operates for a fixed amount of time executing the primitive, and the behaviour
of the robot while running in the environment is characterised (see Section 2.1.3
for a discussion of the behaviour characterisation).

The behaviour characterisations obtained in all simulations are then aggre-
gated to obtain the average behaviour characterisation, that should be repre-
sentative of the primitive’s typical behaviour. The average behaviour charac-
terisation places the primitive in the behaviour space, and is used to compute
the novelty score. We resort to the geometric median, a robust estimator of
location [43], to determine the average characterisation from the multiple char-
acterisations obtained in the different simulations. The geometric median is the
equivalent of the median for multi-dimensional spaces, being robust to a large
number of outliers (breakdown point of 50%). A robust average is useful in this
application because of the stochasticity in the environments used for evaluation,
which can lead to aberrant and unrepresentative behaviours (for example, an en-
vironment in which, by chance, the robot starts trapped in a corner, surrounded
by obstacles).

2.1.8. Behaviour Characterisation

In novelty-driven evolution, the behaviour characterisation is acknowledged
as being one of the most fundamental decisions, as it directly influences the di-
rection of the evolutionary process [5]. Previous work has shown that behaviour
characterisations are the most useful when they are aligned with the objectives
of the task at hand. This alignment corresponds to the degree to which finding
novelty tends also to lead to higher fitness solutions [8]. In the repertoire gen-
eration phase of EvoRBC-II, however, there is no task or objective, and there
is thus no notion of alignment.

245

250

255

260

265

270

275

280

The behaviour characterisation used for the repertoire generation should in-
stead capture how the robot interacts with the elements of the environment, with
as little experimenter bias as possible. The behaviour characterisation should
promote the discovery of the robot’s behavioural possibilities, without biasing
the search towards any specific types of behaviours. This type of behaviour
characterisations are known as generic or task-agnostic characterisations, in the
sense that they are not devised based on a specific task objective. Some generic
characterisations that have been proposed in previous work, and that can be
considered for the repertoire evolution, include:

State count: Count the number of times each sensory-effector state is observed
in the robot during simulation [44]. The states can be obtained by dis-
cretisation of continuous sensor and effector values [45].

Sensor-effector trajectory: Measure the sensor and effectors values over a
simulation [44]. The sensor-effector states can also be averaged over a
time window [45].

SPIRIT: Stochastic Policy Induction for Relating Inter-task Trajectories.
Each element in the behaviour vector represents the probability of the
agent taking a particular action in a particular sensory state [46].

SDBC: Systematically Derived Behaviour Characterisations. The characteri-
sation is automatically extracted given a formal description of the envi-
ronment elements. It measures the spatial distances between the different
elements of the environment, and the state of the agent or agents over
time [47].

In this study, we rely on SDBC for its relative simplicity: it tends to pro-
duce behaviour characterisations with fewer dimensions than the other generic
characterisations; and the behaviour characterisations are easily interpretable
by the experimenter [47], which facilitates the analysis of the results.

2.2. Arbitrator Evolution

After having evolved a repertoire of general primitives, arbitrators can be
synthesised for specific tasks. The arbitrator is a high-level controller that re-
ceives the robot’s sensory readings and determines which behaviour primitive
should be used to control the robot at each moment, see Figure 3 and Algo-
rithm 2. The robot’s sensor values are then fed to the selected primitive, which
in turn outputs the values that are used to control the actuators of the robot.
This cycle is repeated every control step, meaning that the arbitrator can switch
to a new primitive every control cycle.

In the study presented in this paper, the arbitrator is a decision tree in-
duced with genetic programming, in which the splits are based on the sensor
values [32, 48]. The classes in the decision tree correspond to primitives chosen
from the repertoire. This type of arbitrator contrasts with the neural-based arbi-
trators proposed in the original EvoRBC [18]. There are several motivations for

285

290

295

Arbitrator

S1

Figure 3: Execution cycle of a complete controller following the EvoRBC-II approach. (1) The
robot’s sensor values are fed to the high-level decision tree arbitrator. (2) The decision tree
outputs one primitive. (3) The sensor values are fed to the selected primitive, outputting (4)
the actuator values for the robot. (5) The actuator values are applied to the robot. This cycle
repeats for every control step.

Algorithm 2 Control cycle of the robot following the EvoRBC-II approach.

1: procedure CONTROLSTEP(a, S) > Arbitrator a, sensor values s
2 s’ + Normalise(s) > Normalise the sensor values
3: p < Execute(a,s’) > Run arbitrator a with the inputs s’
4 e < Execute(p,s’) > Execute primitive p with the inputs s’
5 ApplyToActuators(e) > Actuate the robot

doing so [48]: (i) as each primitive is individually more capable, few primitives
should be enough for solving most tasks, (i) the arbitrator can make decisions
based on only some of the sensors; (iii) the arbitrator becomes transparent and
understandable by the experimenter, contrasting with neural networks that are
mostly opaque; (iv) the arbitrator becomes mostly unaffected by the number of
dimensions in the repertoire behaviour space and a potential lack of continuity;
and (v) the controllers are faster to execute and have a smaller memory foot-
print, as there is no need for lookups in the repertoire during task execution,
and only the primitives that are in the decision tree need to be stored.

The decision trees are evolved using tree-based strongly-typed genetic pro-
gramming [49, 50], using the functions proposed by Gomes et al.[48]. There are
two data types in the trees: P, a primitive of the repertoire; and C', a real value
in the same range as the sensor values [—1,1]. The return type of the tree is P,
a primitive. The following functions have been defined to express the decision
trees:

Constant-Terminal: & — C. Ephemeral random constant (ERC) terminal

10

300

305

310

315

320

325

330

335

that encodes a single real value, which it returns. The value can be mod-
ified by Gaussian mutation during evolution.

Primitive-Terminal: @ — P. ERC terminal that encodes one primitive of
the repertoire, which it returns. The primitive can be changed during evo-
lution through multivariate Gaussian mutations on the behaviour charac-
terisation vector of that primitive. The new primitive is the closest one in
the repertoire with respect to the mutated vector.

If-Sensor-Lower-i: (C, P, P) — P. If the current value of sensor i is lower
than C, the function returns the first P, else it returns the second P. Note
that a P can be other If-Sensor-Lower-* functions.

The concrete implementation of the genetic programming algorithm for our
experiments, along with its parameters, is further detailed in Section 3.4.

3. Experimental Setup

In order to assess the versatility and reusability of the evolved repertoires,
and the potential of the EvoRBC-II approach, we defined an experimental en-
vironment that allowed us to implement a broad range of tasks. In this section,
we describe the experimental setup used to assess the EvoRBC-II approach.

3.1. Environment

The experiments are conducted in a 2D simulated environment modeled
in the MASON simulator [51]. The environment, with size 150x150 cm and
bounded by impassable walls, see Figure 4, can contain the following elements:

Obstacles: Non-overlapping impassable rectangular shapes with sizes ranging
from 10x10 to 30x30 cm.

POIs: Points of Interest. Point-sized, non-collidable objects that can be sensed
by the robots. Three types of POI are considered: (i) Static, POIs remain
at their respective locations during the entire simulation; (ii) Dynamic,
POIs can move inside the environment, even over obstacles; and (iii) Per-
ishable, POls are static and disappear when a robot moves over them.

Robot: A differential-drive robot represented by a circular shape with a diam-
eter of 8cm. The robot is equipped with two types of sensors (depicted
in Figure 4): (i) Obstacle sensors, six ray-based sensors that return the
distance to the nearest intersection with an obstacle or wall (if any); and
(ii) POI sensors, eight cone-based sensors, evenly distributed around the
robot, each returning the distance to the closest POI in the respective
circular sector (if any). The movement of the robot is controlled by two
actuators that dictate the left wheel and right wheel speed, respectively.
See Table 1 for additional parameters.

11

Table 1: Experimental parameters.

Parameter Value Parameter Value

Robot and simulation common parameters

Environment size 150x150 cm

Obstacle sensor angles 0°,£45°, Obstacle sensor range 25cm
+90°,180° POI sensors 8 cones

POI sensor range 100 cm Max. wheel speed +10cm/s

Max. wheel acceleration ~ +10cm/s> Wheel axle length 8cm

Max. turning speed ~ 14.3°/s Control cycle 10 steps/s

Repertoire generation — Novelty Search
Novelty k-nearest 15 Add archive criterion novelty
Archive growth 25 inds/gen Maximum archive size 1000

General repertoire evolution — NEAT

Population size 500 Generations 500
Target species count 10 Recurrency allowed no
Survival threshold 20% Crossover probability 20%
Mutation prob. 25% Add link prob. 5%
Add node prob. 3% Mutate bias prob. 30%
Evaluation samples 100

Tabula rasa evolution — NEAT
Population size 200 Generations 1000
Target species count 5 Recurrency allowed yes
Evaluation samples 10 Evaluation simulation time 50s

(Remaining parameters are the same as above)

Arbitrator evolution — GP

Population size 2000 Generations 100
Initialisation PTC2 [52] Init. max size 10
Subtree crossover prob. 50% Point mutation prob. 20%
ERC mutation prob. 30%
Node selection terminal 50% Node selection non-term. 50%
Crossover /mutation tries 10 Max tree depth 17
Max tree size 00 Tournament size 7
Constant ERC range [-1,1] Constant ERC mut. o 0.2
Primitive ERC range [0,1] Primitive ERC mut. o 0.1
Locomotion repertoire evolution — MAP-Elites
Iterations 500 Batch size 1000
Initial batch size 10000 Gene range [0,1]
Gene mutation prob. 50% Genome size 2
Mutation o 0.1 Mutation type Gaussian
Evaluation time 2s Bin size 1x1cm
Behaviour char. Displacement Fitness metric Circular

The source code used for all the experiments and analysis described in this paper can be
found at https://github.com/jorgemcgomes/mase/releases/tag/swevo_revision.

12

https://github.com/jorgemcgomes/mase/releases/tag/swevo_revision

340

345

Obstacle ray
sehsors (6)

POI cone |
sensors (8) POIs |

Obstacles

Walls

Figure 4: An example of an environment with walls, five obstacles, and five POIs. The blue
lines depict the range of the robot’s four POI sensors, and the thick black lines depict the
range and angle of the three obstacle sensors.

3.2. Ewaluation Tasks

Based on the environment described in Section 3.1, we defined a total of
nine single-robot evaluation tasks, inspired by the tasks commonly found in
evolutionary robotics studies [2, 3]. We chose a diverse set of tasks that could
be defined using the environment elements described in Section 3.1, and solved
by the specified robot. A brief description of the tasks and the respective fitness
functions is presented next, and key environment parameters can be found in
Table 2.

Foraging. Foraging task in an open environment, with IV perishable POIs placed
randomly in the environment. The objective is for the robot to collect as many
POIs as possible during a simulation. The fitness function corresponds to the
number of POIs collected (n):

Fp =n/N (1)

Foraging-O. Same as the Foraging task, but with obstacles placed randomly in
the environment.

Phototaxis. In this task, a single static POI is randomly placed in the environ-
ment, and the objective is for the robot to reach it as quickly as possible. The
task ends when the robot reaches the static POI (time ¢) or the allowed time
(T') elapses. The fitness function rewards getting closer to the POI (with d;
being the final distance from the robot to the POI, and D the environment’s

13

Table 2: Key environment parameters for the nine evaluation tasks, and environment param-
eters used for the repertoire generation (last line). POI speed is given relative to the robot’s
maximum speed.

Task # Obs. Obs. side (cm) # POI POI type POI speed Time (s)
Foraging 0 — 15 Perishable 0 50
Foraging-O 5 [15,30] 15 Perishable 0 50
Phototaxis 0 - 1 Static 0 50
Phototaxis-O 5 [15,30] 1 Static 0 50
Exploration 5 20 0 - - 100
Maze 25 [10,20] 0 - - 50
Avoidance 0 - 15 Dynamic 25% 50
Prey [1,5] [15,30] 1 Dynamic 75% 50
Tracking 5 [15,30] 1 Dynamic 50% 50
Repertoire [1,10] [10,30] [1,10] Static 0 50

diagonal length), or reaching the POI as quickly as possible:

Fpy, = 2
P05 (d;/D)/2 otherwise @)

{1 —(t/T)/2 POI reached
Phototazxis-O. Same as the Phototaxis task, but with obstacles placed randomly
in the environment.

Ezploration. In an environment with randomly placed obstacles, the objective
is for the robot to explore as much of the environment as possible within the
given time. The environment is divided into a regular grid with C' cells of size
30x30cm to quantify the explored space. The fitness function corresponds to
the number of cells visited by the robot (c):

Fg =¢/C (3)

Maze. The robot starts in the centre of the environment, with several obsta-
cles randomly placed around it, and must reach the environment’s boundaries
without colliding with obstacles. The task ends if the robot collides with an
obstacle, reaches the boundaries, or the allowed time (T') elapses. The fitness
function rewards the robot for reaching the boundaries as quickly as possible
(time t), or getting closer to them (d. — final distance from the centre):

: (4)
d./D otherwise

{1 — (¢/T)/2 robot escaped
Fyn =

Avoidance. A number of dynamic POIs are placed in the environment, and the
robot must maintain a safety distance (25cm) from all POIs. Each dynamic
POI moves in a straight line, with a speed of 25% of the robot’s maximum
speed, and takes a new random direction whenever the environment boundaries

14

350

355

360

365

370

are reached. The fitness reward is inversely proportional to the amount of time
(t.) the robot is close (less than 25 cm) to one or more POIs:

Fy=1—t,/T (5)

Prey. In this task, one dynamic POI is always moving towards the robot at 75%
the robot’s maximum speed, in an environment with randomly placed obstacles.
The robot must avoid the dynamic POI. If the POI gets near the robot, the
simulation ends. The fitness function rewards the robot for surviving as long as
possible (¢):

Fp=t/T, (6)

Tracking. One dynamic POI with random movement (similar to the movement
in the Avoidance task), with a speed of 50% of the robot’s maximum speed,
is placed in an environment with obstacles. The robot must stay as close as
possible to the POI during the simulation:

Fr=1-Fp (7)

3.3. Behaviour Characterisation

The behaviour characterisation used for repertoire generation was devised
according to the SDBC [47] methodology, as discussed in Section 2.1.3. The
characterisation is composed of a total of seven behaviour features, systemati-
cally extracted based on the defined environment:

Mean distance of the robot to the walls. (1 = 26.3,0 = 15.9)

Mean distance of the robot to all obstacles. (i = 55.0,0 = 18.2)

Mean distance of the robot to the closest obstacle. (u = 24.8,0 = 21.9)
Mean distance of the robot to all POIs. (u = 66.4,0 = 20.0)

Mean distance of the robot to the closest POIL. (u = 34.2,0 = 24.1)
Robot’s mean linear speed. (= 0,0 =1)

Robot’s mean turn speed. (u = 0,0 = 14.3°)

IR T A a

The behaviour features are scaled based on the mean (u) and standard de-
viation (o) of the feature values, as proposed by [47]. The rationale is that all
features should have similar ranges, so that all features have a similar weight in
the behaviour distance calculation. The p and o values for each feature were
computed a priori based on a large number of randomly generated environments.

3.4. FEvolutionary Setup

Evolution of Repertoires of General Behaviours. For the repertoire generation,
each primitive is evaluated in a total of 100 randomly generated environments,
with the parameters shown in Table 2 (Repertoire).! It should be noted that all
primitives are evaluated in the same set of environments in all generations. We

IExamples of environments that were used for evaluation can be seen in Figures 4 and 7.

15

375

380

385

390

395

400

405

410

use the NEAT neuroevolution algorithm [41] driven by pure novelty search [7],
as described in Section 2.1.1. The parameters of the evolutionary algorithm
are shown in Table 1. The repertoire of primitives is simply the content of the
novelty search archive after the last generation. This means that the generated
repertoires always have a number of primitives equal to the maximum archive
size, 1000 individuals.

Evolution of the Task-oriented Arbitrator. The strongly-typed GP is imple-
mented in the ECJ framework [53]. The population is initialised with the PTC2
method [52], breeding is performed based on tournament selection, and each new
tree is bred through one of three possible genetic operators, chosen randomly:
Koza-style subtree crossover [54], point mutation [54], and Ephemeral Random
Constant mutation (mutates all ERC nodes in the randomly chosen subtree).
To limit bloat, evolved trees are pruned after every fitness evaluation to re-
move all the Primitive-Terminal nodes that were never executed during the
simulations, as proposed by Iba et al. [55]. All parameters are listed in Table 1.

Tabula-rasa evolution. Tabula-rasa evolution, the traditional evolutionary
robotics approach [3, 6], is used as comparison to EvoRBC-II. In tabula-rasa,
the controller receives the sensory readings from the robot and outputs the ac-
tuator values. The controllers are neural networks evolved with fitness-driven
NEAT [41], which has been used with considerable success in a large number of
previous evolutionary robotics studies [4]. The parameters are listed in Table 1.

4. Results

4.1. Repertoire Diversity

We begin by analysing the evolved repertoires and the primitives contained in
them. We first analyse whether the final repertoire captures the entire diversity
of evolved behaviours, that is, whether the behaviour space covered by the
repertoire matches the behaviour space covered by the entire evolutionary run.
As discussed in Section 2.1, the repertoire should be general and cover as much
of the behaviour space as possible, so that the top-level arbitrator has a wide
diversity of behaviours to choose from, and the same repertoire can be used
in a wide array of tasks. To establish a baseline, we additionally compare the
evolved repertoire with a repertoire composed of randomly generated primitives.
This repertoire is composed of 1000 fully connected Multi-Layer Perceptrons,
with a random number of hidden neurons ranging from zero to ten, and random
connection weights. This means the networks have a complexity similar to those
that can be found in the evolved repertoires.

Figure 5 shows all the primitives evolved up to a certain generation in a
given evolutionary run, in comparison with the final repertoire, and a randomly
generated repertoire. As described in Section 2.1, the evolved repertoire corre-
sponds to the novelty archive at the end of the evolutionary run. For the sake
of visualising the behaviour space, the seven behaviour features were reduced
to two using Robust Principal Component Analysis [56]. All the behaviour

16

415

420

425

Gen 1

0.8+

0.6

0.4+

0.2+

Gen 100 Gen 250 Gen 500

PC2

NS-Evolved repertoire

0.8+

0.6

0.4+

0.2+

00 02 04 06 08 1000 02 04 06 08 1.0
PC1

Figure 5: Behaviour space covered in one evolutionary run of the repertoire generation process,
by all primitives evolved up to a given generation (Gen #), the final repertoire, and a repertoire
composed of randomly generated neural networks. The behaviour space is reduced to two
dimensions using RPCA [56]. Each dot corresponds to one primitive, located according to the
two first principal components.

data from all evolutionary runs and randomly-generated repertoires was used
to calculate the principal components, with the two first principal components
accounting for 75% of the variance in the data. In Figure 6, we show the be-
haviour characterisations that can be found in each behaviour region.

The results from Figure 5 show that the repertoire is representative of all
primitives evolved during the evolutionary run (Gen 500 in Figure 5). Around
250 generations were needed to fully cover the reachable behaviour space, which
suggests that the chosen number of generations for the repertoire generation
(500) was sufficient. The results also show that novelty search is an effective ex-
ploration technique, achieving a substantially wider diversity of primitives than
the randomly generated repertoire. The visual inspection of the primitives in
the repertoire confirms the diversity measured by the behaviour characterisa-
tion, see Figure 7. For instance, some primitives navigate towards a POI and
stay close to it (a), others visit multiple POIs (b), stay close to obstacles (c),
try to get away from everything (d), roam around the environment (e), or move

17

430

435

440

445

0.8+
Feature
0.6 Walls-Dist
- Obstacle-Mean-Dist
Y - Obstacle-Closest-Dist
O . .
a - Object-Mean-Dist
0.4+ - Object-Closest-Dist
Linear-Speed
Turn-Speed
0.2
0.00 0.25 0.50 0.75 1.00

Figure 6: Behaviour characterisations that can be found in different regions of the behaviour
space. Each circular sector corresponds to a behaviour feature. The bigger the radius of the
segment, the higher the feature value, and vice-versa. The letters indicate the position in
behaviour space of the primitives shown in Figure 7.

away from POIs (f). Overall, the analysis of the repertoire reveals that the
evolutionary process was able to evolve a highly diverse set of controllers, with
clearly distinguishable behaviours.

4.2. Repertoire Quality and Versatility

We evaluate the primitives of each repertoire in the tasks presented in Sec-
tion 3.2 to assess the quality and potential of the repertoire primitives. We
evolved 30 repertoires with novelty search, and randomly generated another 30
repertoires. For each repertoire, we then evaluated all the primitives in the nine
tasks, thus obtaining a fitness measure of how well each primitive performs in
the given task. Note that there is no arbitrator involved yet: each primitive
is used to control the robot in the given task from the start to the end of the
simulation. The results are shown in Figure 8.

The best controllers evolved by tabula-rasa (TR) are able to achieve signif-
icantly higher fitness scores than the primitives in the NS-evolved repertoires
(NS) (p < 0.001, Mann-Whitney)?. This result was expected, given that tabula-
rasa evolves controllers specifically for solving each of the tasks, while in the NS
setup we are using previously-evolved general primitives to attempt to solve
specific tasks. Nevertheless, it is noteworthy that, in some tasks, such as Photo-
taxis, Avoidance, or Exploration, the fitness achieved by the highest-performing

2Throughout the paper, we use the Mann-Whitney U test (nonparametric) for comparing
two independent samples, and the Kruskal-Wallis H test (nonparametric) for comparing more
than two samples. The p values are adjusted using the Holm-Bonferroni method when multiple
comparisons are made. The significance level is set to p = 0.05.

18

450

455

460

465

Figure 7: Robot trajectories described by six different primitives, in one randomly generated
environment. The robot is depicted in red, and the POIs are shown in blue. The squares
represent the initial position of the robot, and the filled circle its final position.

primitive in each of those tasks is relatively close to the fitness achieved by
tabula-rasa.

In the case of Phototaxis, for instance, a fitness of 0.83 (TR) means that the
robot reached the POIL, and took on average 17s to do so, while a fitness of 0.73
(NS) means that it took on average 27s. In the case of Avoidance, a fitness of
0.58 (TR) means that the robot managed to avoid dynamic POIs during 58%
of the time, while a fitness of 0.51 (NS) means that it avoided POIs during 51%
of the time. In the case of Exploration, a fitness of 0.72 (TR) means that the
robot visited on average 18/25 regions, while a fitness of 0.61 (NS) means that it
visited on average 15/25 regions. These relatively small differences, mean that
the robot controlled by a single primitive was able to solve some tasks reasonably
well, although not with the same level of performance as the controllers evolved
by tabula-rasa.

The results in Figure 8 additionally show that the evolved repertoires contain
primitives that yield significantly higher fitness scores in all tasks (p < 0.001),
when compared to repertoires composed of randomly generated primitives. This
confirms that the wider diversity discovered by novelty search, as seen in Sec-
tion 4.1, translates into a larger number of potentially useful primitives.

To gain insight over the composition of the evolved repertoires, we measured
the fitness achieved by each primitive of each repertoire in each task. We then

19

470

475

480

Foraging Foraging-O Phototaxis Phototaxis—O Exploration
0.4
0.3

0.2

Maze Avoidance Prey Tracking

0.4 1
) II
0.0 |

Fitness in task

0.0 I 0.00 II 0.0+ II

Setup - Tabula-rasa - NS-evolved repertoire - Random-MLP repertoire - Baseline

Figure 8: Highest fitness scores achieved by tabula-rasa, by the repertoires evolved with nov-
elty search, and by the repertoires composed of randomly-generated networks. The baseline
corresponds to the fitness obtained on average by a randomly generated neural network con-
troller.

averaged the fitness scores achieved by the primitives in each behavior region,
taking into account all the primitives in the 30 NS-evolved repertoires. The
results are shown in Figure 9. First, it is possible to observe that most of the
regions of the repertoire contain primitives that perform relatively well in some
task. This shows that a large part of the repertoires is composed of potentially
useful primitives. Second, the primitives that work best for some task tend to be
focused around a certain behaviour region, which suggests that the behaviour
space is moderately continuous, and there is a real and consequential diversity
of primitives. Third, the best-performing primitives for each task are aligned
with our intuition of how each task should be solved. For instance, for solving
the Phototaxis(-O), Foraging(-O), and Tracking tasks, the best primitives are
from a behaviour region characterised by low distance to POIs (see Figure 6,
left); for the Avoidance and Prey tasks the best primitives belong to a region
characterised by high distance to POIs (right); for the Exploration and Maze
tasks, the primitives that perform best belong to a central region characterised
by low turn speeds.® This suggests that the behaviour characterisation is ade-

3The minimum value of turn-speed corresponds to turning sharply to the left, and the
maximum value corresponds to turning sharply to the right. Low turn-speeds thus correspond
to the intermediate values. The same logic applies to the linear-speed, where the minimum is
moving backwards, the maximum is moving forwards, and the intermediate values represent
low speeds.

20

485

490

495

ACCEPTED MANUSCRIPT

Foraging Foraging-O Phototaxis

»

Phototaxis—O Exploration Maze

::-r_ e
£ .
 p— —

Avoidance Prey Tracking

T T T T T T T T T :u T T
0.25 0.50 0.75 1.00.00 0.25 0.25 0.50 0.75 1.0

T T
050 075 1.00.00
Fitness in task (scaled) -
0

0.8 1

0.6]
0.4

0.2 4

PC2

0.00

PC1
.00 025 050 075 1.00

Figure 9: Mean fitness of the primitives in the NS-evolved repertoires, in each of the test
tasks. The behaviour space was discretised for calculating the mean fitness of the primitives
in each behaviour region.

quately capturing the primitives’ behaviour, as the characterisations are aligned
with our intuition of how each task should be solved.

4.3. Repertoire Evolution Environment

One of the inputs that the experimenter must provide in EvoRBC-II is the
set of environments used for evaluation of primitives during the repertoire gener-
ation. In this section, we study the impact of this choice, and what is the relation
between the environments used for repertoire generation, and the environment
of the tasks for which the arbitrator is evolved. Besides the environment used
in the previous experiments, referred to as Base, we evolve repertoires using five
other environments, described in Table 3.

Each environment was used to evolve 30 different repertoires in independent
evolutionary runs. Each of these repertoires was then assessed by testing the
primitives directly in the tasks, following the methodology used in Section 4.2.
The fitness scores of the best-performing primitives from the different repertoires

21

500

505

510

515

520

525

Table 3: Different environments used for repertoire generation. In all cases, 100 environments
with randomly generated positions for obstacles, POIs, and the robot, are used to evaluate
each primitive.

Environment # Obstacles Obs. side (cm) # POI POI type Time (s)

Base [1,10] [10,30] [1,10] Static 50
Fixed 5 [10,30] 5 Static 50
Few [1,5] [10,30] [1,5] Static 50
No-obstacles 0 - [1,10] Static 50
No-POls [1,10] [10,30] 0 - 50
Only-walls 0 - 0 - 50

are presented in Figure 10. The results show that the choice of evolution envi-
ronments has a significant impact in all tasks (p < 0.001, Kruskal-Wallis test),
except in Phototaxis (p = 0.11). The Base environment yields fitness scores
similar to the Fized and No-Obstacles environments across all tasks (Mann-
Whitney test, p < 0.05). The Few environment yields significantly lower fitness
scores in three tasks, and higher fitness scores in one task (Tracking). The No-
POIs and the Only-walls environments consistently and significantly yield the
worse results, except in the Phototaxis task and also the Exploration task in
the case of No-POls.

The significant performance drop observed with No-POIs and Only-walls is
understandable, given that seven out of nine tasks require the interaction with
POIs. The primitives in these repertoires are not adapted to process POI sen-
sory information, and can therefore display erratic behaviour when acting in
environments with POIs. Although six out of nine tasks have obstacles, the
No-Obstacles environment actually yields relatively good fitness scores. This
can potentially be explained by the fact that the robot’s sensors make no dis-
tinction between obstacles and the walls that bound the environment. Since all
environments have walls, the primitives in the repertoire are likely adapted to
deal with that sensory information. The fact that Fized (fixed number of ob-
stacles and objects) and Few yielded a performance similar to Base is ascribed
to the fact that all elements, as well as the robot, are initially placed in random
positions. This alone appears to be enough to expose the robot to a sufficiently
wide range of scenarios.

These results show that it is important that the environment used for reper-
toire generation contains the elements that the robot might face in solving the
tasks. That way, the primitives can be adapted to deal with such sensory in-
formation. Other than that, our results suggest that the environment used for
the evolution of the repertoire is moderately robust to changes in its parameters
and configuration.

4.4. Arbitrator Evolution

In this section, we assess the performance of the complete EvoRBC-II ap-
proach in solving the evaluation tasks presented in Section 3.2. We evaluate

22

530

535

540

545

550

Foraging Foraging-O Phototaxis Phototaxis—O Exploration

0.4 0.5 0.6
0.6 0.4
0 o2 0.4
0.4 03 ‘
0. : 02
0.1 o - 02
0. . 0.1
0.0 0.0 0.0 0.0 0.0

Avoidance Prey Tracking

w

N

N

0

Maze
0.5

0.4 0.6 0.4
0.3

03 0.4
. 0.2 0.2

0.2
0.1 0.1
0.0 0.0 0.0 0.0

Highest fitness in task
N

0

N

- Base - Few - No-POls

Repertoire evo. environment
P - Fixed - No-obstacles - Only-walls

Figure 10: Fitness scores achieved in each task, using repertoires evolved in the different
environments.

EvoRBC-ITI using ten different repertoires evolved with novelty search (see Sec-
tion 4.1), and compare it with the fitness scores obtained by using the primitives
from those repertoires directly in the tasks (as done in Section 4.2), and with the
traditional tabula-rasa evolutionary approach. For EvoRBC-II, a total of 100
evolutionary runs were conducted for each task (10 repertoires x 10 arbitrator
evolution runs), while for tabula-rasa a total of 30 evolutionary runs was con-
ducted per task. For a fair comparison, the arbitrator evolution in EvoRBC-II
and tabula-rasa were allowed the same total number of individual evaluations
in each evolutionary run, see Table 1. Note that an absolutely fair comparison
is hard to achieve, as EvoRBC-II uses additional resources for the repertoire
evolution, but the same repertoire can be used to solve many tasks, and the
repertoire evolution uses a significantly different evolutionary setup. The re-
sults of the fitness scores achieved in each task are presented in Figure 11.
Comparing EvoRBC-II with the primitives from the repertoires, EvoRBC-
IT achieves significantly superior fitness scores in all tasks (Mann-Whitney,
p < 0.001). This shows that the combination of multiple primitives was always
preferable to any single primitive in the repertoire, and that the evolutionary
process was capable of selecting from the repertoire the most suitable primi-
tives for solving each task. Comparing EvoRBC-II with tabula-rasa, EvoRBC-II
achieves slightly inferior fitness scores (around 5% less) across all tasks, except
in the Maze task where the difference is more pronounced. In the Foraging-O
task, for instance, the different in fitness scores between tabula-rasa (TR) and
EvoRBC-II means that the controllers evolved by TR were able to capture on av-

23

555

560

565

570

Foraging Foraging-O Phototaxis Phototaxis—O Exploration

0.8
0.6
0.4
M-k

Maze Avoidance Prey Tracking

Highest fitness achieved

- OOIIII 0.00 IIII OoIIII

Setup - Tabula-rasa - EvoRBC-II - NS-evolved repertoire - Baseline

Figure 11: Mean of the highest fitness scores achieved in each run, for each evaluation task.
The fitness scores are scaled to [0, 1], according to the minimum and maximum fitness scores
ever observed for each task.

erage 0.4 more items (6.2/15 vs 5.8/15); in Phototaxis-O, the controllers evolved
by TR reached the POI five seconds earlier on average (33/50s vs 38/50s); in
the Prey task, the controllers evolved by TR survived on average four seconds
longer (43/50s vs 39/505s); and in the Exploration task, the controllers evolved
by TR visited on average one region more (18/25 vs 17/25).

These results show that the EvoRBC-II approach is highly versatile:
EvoRBC-II was able to achieve relatively good fitness scores in all tasks, and
the results suggest that the repertoires contained the necessary primitives to
reasonably solve all of the tasks. The fact that EvoRBC-II did not outperform
tabula-rasa with respect to fitness scores is justified by the simplicity of the
tasks: none of the tasks is particularly challenging nor deceptive, and hence
the tabula-rasa approach can rapidly converge to good solutions in any of the
tasks. As discussed in Section 3.2, these nine tasks are used to study the versa-
tility of the EvoRBC-II approach, not its capability of outperforming competing
evolutionary approaches with respect to fitness scores.

4.5. Arbitrator’s Behaviour and Repertoire Usage

We analysed the highest-fitness controllers evolved in each evolutionary run,
for each task, in order to understand how the EvoRBC-II controllers are solving
the task. For each task, we simulated each of these controllers in 10 simulation
runs, and recorded the primitives that were selected during the task execution.
The results in Figure 12 show the primitives that were used for solving each
task, averaged over all the evolutionary runs of EvoRBC-II for each task.

24

575

580

585

Foraging Foraging-O Phototaxis

Phototaxis-O Exploration Maze

Avoidance Prey Tracking

Density - -
5

10 15 20

Figure 12: Primitives that were used for solving each task, mapped according to their be-
haviour characterisation. Higher density means that primitives from that region were selected
more often. The behaviour space is reduced to two dimensions using RPCA. See Figure 6 for
an example of behaviour characterisations that can be found in each region.

As Figure 12 shows, the arbitrators evolved for different tasks tend to use
primitives from different regions of the repertoire. For instance, for solving the
Phototaxis and Phototaxis-O tasks, the arbitrators tend to use primitives char-
acterised by very low distance to POIs (see Figure 6 for the correspondence
between the regions in 2D space and the behaviour characterisations). For the
Prey task, on the other hand, they rely on primitives characterised by large
distances to POIs. For Ezploration, the arbitrators use primitives characterised
by high linear speeds and some distance to obstacles. Additionally, it should
be noted that most of the regions of the repertoire were used by some task.
Comparing these results with the results shown in Figure 9, where we analysed
the fitness of each individual primitive in the tasks, we can see that the arbi-
trator tends to select primitives that perform relatively well in the task. This
observation confirms that the evolutionary process of the arbitrator is taking
advantage of the primitives available in the repertoire, selecting and combining

25

590

595

600

605

610

Table 4: Usage of the repertoire by the highest-fitness arbitrators evolved in each evolutionary
run, averaged over 1000 simulations (100 evolutionary runs x 10 simulations). Tree splits:
mean number of splits in the arbitrator’s decision tree. Prims. used: mean number of different
primitives used per simulation. Prim. duration: mean number of consecutive control cycles
each primitive was selected. Most used: total time occupied by the most used primitive
in a given simulation. The standard deviation across the multiple controllers is shown in
parentheses.

Task Tree splits ~ Prims.used Prim.duration = Most used (%)
Foraging 11.8 (5.1) 65 (22) 135 (49.3) 495 (14.6)
Foraging-O 94 (6.2) 5.1 (2.1) 31.3 (63.1) 69.6 (17.5)
Phototaxis 31 (1.6) 25 (0.8) 310 (29.1) 750 (14.4)
Phototaxis-O 6.9 (36) 42 (1.6) 549 (56.6) 70.5 (14.4)
Exploration 71 (46) 47 (2.2) 891 (168.1) 794 (14.9)
Maze 89 (4.0) 50 (19) 133 (18.4) 59.7 (13.3)
Avoidance 65 (37) 43 (1.8) 354 (637) 67.0 (13.8)
Prey 32 (22) 24 (0.9) 1404 (111.1) 875 (11.3)
Tracking 95 (41) 61 (21) 172 (15.8) 59.7 (13.6)

suitable primitives for solving each task.

To analyse how the arbitrators perform during task execution, we extracted
a number of different metrics on how the arbitrators select and switch between
different primitives, see Table 4. The data shows that the evolved trees tend to
be relatively small in size, with the average tree size varying modestly from task
to task (Kruskal-Wallis, p < 0.0001). The arbitrators tend to use a relatively low
number of primitives, around 3-6 primitives (out of a total of 1000 primitives in
the repertoire), also with significant differences depending on the task (Kruskal-
Wallis, p < 0.0001). Note that the number of primitives used is typically smaller
than the number of tree splits, which means that the same primitive often
appears in different branches of the tree. The results also reveal that even when
a larger number of primitives is used, there is always a single primitive that
dominates the others. That is, most of the simulation tends to be spent on a
single primitive, switching momentarily to different ones as needed.

The amount of time each primitive is continuously executed varies largely
from task to task (p < 0.0001). While in some tasks (such as Foraging, Maze,
and Tracking) the arbitrator frequently switches primitive, in other tasks (such
as Exploration and Prey) each primitive is continuously executed for a long time.
Frequent switching between primitives can have different causes, for instance:
(i) there might not be any single primitive in the repertoire to control the robot
as needed in the given situation, and thus the arbitrator has to combine multiple
primitives; or (ii) the task itself requires frequent switching between significantly
different actions.

4.6. Analysis of Selected Solutions

In this section, we visually inspect some of the best arbitrators evolved by
EvoRBC-II. We selected four tasks, and for each of these, we chose one of

26

615

620

625

630

635

640

645

650

highest-fitness arbitrators with the smallest tree size*. The arbitrator trees and
the trajectories of the robot being controlled with those arbitrators are shown
in Figure 13. All four inspected arbitrators have decision trees with typical
sizes, as shown in Table 4. Note that these four depicted controllers do not
necessarily represent the entire universe of the best evolved solutions (9 tasks x
100 best-of-run solutions). For a more general and quantitative analysis, please
refer to Section 4.5.

The behaviours illustrated in Figure 13 confirm that the strategy adopted by
the arbitrator varies widely depending on the task, as the results in Section 4.5
have shown. For the Phototaxis task, for instance, a single primitive (#371)
was used from the beginning to the end. Although the decision tree has three
other primitives, these are only used in specific circumstances (when the robot
has the POI on its back, for instance). For the Phototaxis-O task, the arbitrator
used a larger number of primitives, but three primitives alone (#614, #291, and
#303) accounted for ~90% of the execution time. For the Prey task, primitive
#993 accounted for 93% of the execution time, with the two other primitives
occupying the remaining time. The Foraging task was one of the tasks where the
arbitrators switched primitives more often on average, and had the largest trees.
In the simulation shown in Figure 13d, however, primitive #574 (which appears
in four different branches) alone accounted for 56% of the simulation time, with
the remaining time being occupied approximately equally by primitives #101,
#553, and #274.

Based on our visual inspection, on both these trials and others not reported
in this paper, the solutions evolved by EvoRBC-II were qualitatively similar
the solutions evolved by tabula rasa, with respect to the intelligibility of the
robot’s movement, and perceived quality of behaviour. One notable and ex-
pected difference is that while TR-evolved behaviours tend to be smoother and
more continuous, the controllers evolved by EvoRBC-II exhibit more discrete
changes of behaviour. These discrete changes typically do not cause the be-
haviour to appear erroneous, and actually tend to make the behaviours more
intelligible. Note that in some of the illustrated trials, while the robot’s be-
haviour might appear sub-optimal, it can actually be hard to do significantly
better given the robot’s limited sensory capabilities and the random configura-
tion of the environments. For instance, in Phototaxis-O (Figure 13b), the robot
is not within range of the target at the beginning of the trial, and it thus has to
search. In the Foraging task (Figure 13d), it is practically impossible to capture
all the items in the allowed time, and it is thus likely that the evolved behaviour
purposely leaves some items behind.

4.7. Comparison with Open-Loop Primitives

In the original version of EvoRBC [18], the repertoires were composed of
open-loop locomotion primitives, contrasting with the repertoires composed of

4Among the top 10% of the best-of-run arbitrators, for each task.

27

° Y
X
©
B
[]
fhar}
o
<
o
—
©
Q
u
X
©
-t
(@]
L
o
<
o
—_
Ko
>
()
j
o
)
(PRB <o ?) (PLB <064 ?)
TN
| #230 | | #574 | | #274 | [PRB<-O.39 ?j
(@]
£
(@)]
©
_
L / N v \
—
© | #409 | (PRB<O,21 7) [PLB<-0.12'.7) | #574 |
/Y rN\
: | #230 | | #574 | | #574 | I #553 |

Figure 13: The red features depict the agent, while the blue features depict POIs. The square
indicates the initial position of the robot, and the circle its final position. The small circles
along the trajectory depict the instant the controller switched primitive. The sensor values
used in the tree splits are named as following: the first letter indicates whether it is an obstacle
sensor (O) or POI sensor (P), and the remaining letters indicate the sensor’s direction — front
(F), right-front (RF), right (R), right-back (RB), back (B), left-back (LB), left (L), or left-front
(LF).
28

655

660

665

670

675

680

&
M

l
trr, SAH
N S

RSNSNNN 15 $sssssa

*~—o—
O o " 0o

——r——-or— o— oo

&= 7 ieees

Left-right displacement (cm)
o

%, NN
. 2RSS TEEN ST
P ; : F—

Front-back displacement (cm)

Figure 14: One of the evolved repertoires, with size 315 and average fitness of 0.982. Each
locomotion primitive in the repertoire is represented by a marker, which is composed of a
small, filled circle (displacement) and a line (final orientation). The blue circle and triangle
depict the robot in its initial position and orientation. The grid corresponds to the grid used
by the MAP-Elites algorithm.

general closed-loop primitives proposed in this paper. In this section, we es-
tablish a comparison between the two approaches. It should be noted that the
original EvoRBC used a neural network as top-level arbitrator. For a more
informative and fair comparison, in this study we also use decision trees as the
arbitrator for EvoRBC, as done in [48]. This means that both EvoRBC and
EvoRBC-II use the exact same algorithm and parameters for the evolution of
the arbitrator (see Section 3.4), with the only difference residing on the type of
repertoires used.

The locomotion repertoire is evolved using the methodology described in [18].
Each locomotion primitive is a vector of length two, corresponding to the two
locomotion parameters of the robot (left and right wheel speeds). We use the
MAP-Elites algorithm [13] to evolve the repertoire (parameters in Table 1). The
behaviour space is defined as a two-dimensional space where each point (z,y)
represents the displacement of the robot after executing the primitive for a fixed
amount of time (1s). A fitness score is assigned to each primitive based on the
Circular fitness metric used in [15, 18, 20]. This metric favours the evolution of
locomotion primitives where the robot follows circular trajectories. The fitness
is calculated based on the difference between the robot’s final orientation (\)
and a desired orientation (w) for that point in space (x,y). An example of an
evolved locomotion repertoire is shown in Figure 14.

The fitness scores achieved by each approach for each task are shown in
Figure 15a. EvoRBC-II performs slightly better than EvoRBC in Phototaxis
and Avoidance, the opposite is observed in Foraging, Phototaxis-O, and Maze,
and no sigificant differences were found in the remaining tasks. In all cases,
the differences are negligible in terms of absolute fitness scores achieved. This
similarity in the fitness scores achieved contrasts with the large difference in the
primitives that compose each repertoire. To understand why this is the case,
we analysed the arbitrator trees of the best controllers of each evolutionary run,
see Figure 15b—d.

29

685

690

695

a) Fitness b) Tree splits

Taduid

A0 N\ale da“oe ?(e‘! oY\‘“g

0.8

0.6
0.4+
- I
0.0

o“ 1 oe e‘l (\Q
o(ag \(\9‘\0\0\ 0\3‘,35 o‘a\\ \\]\3 (ya“ ?‘ Q‘(\\ ?o(gg \‘\g“\%\o\\o\wgv\o(

~

N

a) Highest fitness achieved

Number of splits in arbitrator tree

c) Primitives used

7.54
50+
N ' ‘
0.0

_ “ e
o(ag \(\Q‘\o\c\ 0\’6"‘\5 o"“"‘o N\’&L (ya(\c ?‘e‘i 0\6\(\9

Task Task

[evorec-il [EvoRBC

d) Primitive duration

150 4

1004

OLLLLL.Ll

_ (\ e
o(ag \(\%0\0\ o‘a\,\\s 0‘3\‘0 “ai e ?‘e\l Qy\\‘\Q

o

o
o
o

1

Mean number of primitives used

Mean duration of each primitive (steps)

Figure 15: Comparison of EvoRBC-II (using general closed-loop primitives) with EvoRBC
(using locomotion open-loop primitives). a) Fitness achieved in each evaluation task. b)
Average size of the best decision trees (measured in terms of tree splits) evolved for solving
each task. ¢) Number of different primitives used by the best controllers during task execution.
d) Average time each primitive was kept active in the best controllers.

EvoRBC consistently produces significantly larger trees than EvoRBC-IT
(p < 0.05, except in Foraging task, Figure 15b), that use a larger number
of primitives (p < 0.001, Figure 15c), and that switches between them more
frequently (p < 0.05, except in Phototaxis and Maze tasks, Figure 15d). These
results suggest that EvoRBC is able to solve the tasks because it compensates
with more capable arbitrators. That is, the complexity shifts from the lower
level to the higher level. With EvoRBC-II, on the other hand, the top-level
arbitrator tends to remain significantly more simple, since the more complex
sensor-actuator mappings are handled by the primitives at the lower level.

It is important to note that EvoRBC and EvoRBC-II have significantly dif-
ferent purposes. EvoRBC is suited for evolving control for robots with complex
locomotor systems, while EvoRBC-II is suited for evolving higher-level hierar-
chical control. The primitives in the locomotion repertoires used by EvoRBC
would be incapable of solving a task without any arbitrator, as we have shown
possible with the EvoRBC-II repertoires (see Section 4.2). On the other hand,
EvoRBC-II could struggle when dealing with robots with complex locomotor

30

700

705

710

715

720

725

730

735

systems, as the evolution of the repertoire of general behaviours could be hin-
dered by the difficulty in moving the robot at all. A combination of the two
approaches is possible and should be studied in future work, as we discuss below
in Section 5.5.

5. Discussion

In this paper, we proposed EvoRBC-II, an approach that divides the evo-
lution of robot control into two stages: the evolution of a repertoire composed
of general closed-loop behaviours (primitives); and the evolution of a higher-
level arbitrator that during task execution dictates which primitive from the
repertoire should be used to control the robot. We relied on nine different sim-
ulated tasks, based on tasks commonly used in evolutionary robotics studies,
to assess the performance of EvoRBC-II. Each evolved repertoire was used to
evolve arbitrators for each of those nine tasks. We compared EvoRBC-II with
the traditional direct evolution (tabula-rasa), and also studied the capability of
the primitives from the repertoires to solve the tasks directly, without any ar-
bitrator. In this section, we discuss the main findings of our study, and outline
directions for future work.

5.1. Repertoire Evolution

We proposed and studied the evolution of repertoires of general and closed-
loop behaviours. This contrasts with previous work (including the origi-
nal EvoRBC) that has focused on repertoires of open-loop locomotion prim-
itives [15, 17, 18]. To evolve repertoires of general primitives, we proposed an
approach where each primitive is a neural network controller that receives the
robot’s sensor values and outputs the actuator values. Each primitive is evalu-
ated by letting the robot act in the environment while executing the primitive.
A large number of randomly generated environments are used for each eval-
uation (100 environments in our experiments), in order to assess the general
behaviour of the primitive. The repertoire is evolved using the novelty search
algorithm and a generic (task-agnostic) behaviour characterisation.

Our results showed that novelty search was an effective strategy for exploring
the behaviour space, and that the evolved repertoires contained a wide diversity
of primitives. Primitives from different regions of the repertoire exhibited clearly
distinguishable behaviours. To assess the potential usefulness of the primitives
in the evolved repertoires, we evaluated the primitives from the repertoires
directly in the nine tasks, without any arbitrator involved. Our results showed
that (i) a large portion of the repertoires contained primitives that were useful
to solve some task, and (ii) for some tasks, single primitives could achieve a
fitness score close to the fitness achieved by the specialised solutions evolved by
tabula-rasa. Overall, we showed that the evolved repertoires were composed of
a wide diversity of potentially useful primitives.

31

740

745

750

755

760

765

770

775

780

5.2. Hierarchical Control

In order to leverage the evolved repertoires, we relied an approach in which
the arbitrators are decision trees, as recently proposed in [48], where the splits
are based on sensory readings, and the terminals are primitives from the reper-
toire. The decision trees are induced using genetic programming. The decision
tree arbitrators offer a number of advantages over the neural-based arbitrators
proposed in the original EvoRBC: (i) they are transparent and understandable
by the experimenter; (ii) they are only weakly affected by the dimensionality of
the repertoire; and (iii) it is easier for the arbitrator to keep a certain primitive
active for longer, which is desirable since a single primitive can have considerable
capabilities.

Our results showed that the same repertoire could be used to solve a wide
variety of tasks, nine in total, closely matching the performance of tabula-rasa
evolution in all the evaluation tasks. The evolved arbitrators relied on primitives
from different regions of the repertoire to solve different tasks, thus showing that
the arbitrators were capable of selecting suitable primitives for solving each
task. We also showed that the arbitrators were able to switch between different
primitives during task execution as needed, which ranged from keeping the same
primitive active for most of the simulation, to frequently switching between a
few primitives. The number of different primitives used by an arbitrator to
solve the task was typically low (around 3-6), and the respective decision trees
tended to be small (from 3 to 10 splits, depending on the task). All this means
that the arbitrator trees can easily be understood by the experimenter, and
the decision process can be followed, contrasting with the neural network-based
approach used in the original EvoRBC. Overall, we showed that the evolutionary
process was able to find arbitrators that were well adapted to the complexity
and specificities of each of the tasks.

The value of having hierarchical control based on higher-level primitives was
confirmed by replacing the repertoires of closed-loop primitives with repertoires
of simple open-loop locomotion primitives. The results showed that the arbi-
trators that relied on closed-loop primitives were significantly less complex than
the arbitrators that relied on locomotion primitives, and switched less often
between primitives. This confirms that the arbitrators evolved by EvoRBC-II
can rely on the primitives in the repertoire for dealing with potentially complex
sensor-actuator mappings.

5.8. Parameters and Configuration

In its current form, the following main decisions are required by to apply
the EvoRBC-II approach:

Repertoire evolution environment. Our results showed that the environments
used to evolve the primitives in the repertoire can have a significant impact
on the usefulness of those primitives, but overall, we observed a high degree
of robustness to the choice of environments. Some evaluation tasks used envi-
ronments that were never used in the repertoire evolution, and EvoRBC-II still

32

785

790

795

800

805

810

815

820

managed to solve those tasks effectively. We found that the main requirement is
that the environments used for repertoire evolution should contain all elements
that the robot will encounter while solving tasks. This way, the primitives in
the repertoire are adapted to deal with the sensory inputs they might encounter.

Behaviour characterisation. The behaviour characterisation is key in driving
the repertoire evolution. In this study, we relied on Systematically Derived
Behaviour Characterisations (SDBC), which allowed us to obtain a relatively
short behaviour characterisation (seven features), with minimal intervention or
bias from the experimenter. The behaviour characterisation was not fine-tuned
for the experiments. In future work, we will study if and how other generic
characterisations (see Section 2.1.3) are suitable for the EvoRBC-II aproach.

Evolutionary parameters. The repertoire evolution relied on the NEAT neu-
roevolution algorithm and novelty search, using default parameters, commonly
used in the literature [42]. The use of NEAT means that only the number of in-
puts (sensors) and outputs (actuators) had to be specified, without the need to
specify the neural architecture any further. Regarding the arbitrator evolution,
the genetic programming algorithm used to induce the decision-tree arbitrators
used a minimal function set (sensor-based splits, and primitive terminals). The
genetic operators and parameters were also based on previous work, with only
two noteworthy differences: (i) there is a relatively high probability of mutating
the primitive terminals (meaning replacing the primitive with a different one
from the repertoire), which is needed in order to ensure that suitable primitives
are found and placed on the trees; and (ii) the trees are pruned after evalu-
ation to remove all primitive terminals that were never executed during the
simulations, in order to control bloat and thus keep the trees intelligible.

5.4. Applicability

For tasks as simple as the one used in this study, the advantages of EvoRBC-
IT are naturally limited in terms of the fitness scores achieved in those tasks.
However, the sole fact that EvoRBC-II was able to practically solve all evalua-
tion tasks, closely matching the performance of direct evolution, is a significant
accomplishment. It is especially noteworthy that the same repertoire contained
primitives that allowed the solution of all nine evaluation tasks. Our study
highlights the versatility of the EvoRBC-II approach, and its potential to scale
to more complex problems.

As studied in previous work [35, 36], hierarchical behaviour decomposition
has the potential to offer significant advantages in evolutionary robotics:

1. Tt can allow the achievement of more complex behaviours [36], by boot-
strapping the evolutionary process with pre-existing behaviour primitives.

2. The primitives can be forced to meet certain criteria, and as the arbitrators
can only use the available primitives, the robot controller will also likely
meet those criteria. For instance, the primitives can be optimised for
energy efficiency, safety of operation, transferability, and so on.

33

825

830

835

840

845

850

855

860

865

3. One particular instance of this capability is enabling incremental trans-
fer. Behaviour decomposition can facilitate the transfer of evolved
control to real robots, one of the biggest challenges in evolutionary
robotics [3, 57, 58]. The primitives from the repertoire can be assessed in
the real robots independently, and the repertoire can be filtered based on
the transferability of the primitives. If the primitives are able to transfer
successfully, the same will likely be observed in the hierarchical controller
that uses those primitives [59].

4. Hierarchical control allows for behaviour reuse, meaning that previously
evolved controllers can potentially be reused to rapidly solve new tasks or
face new challenges [14, 59]. We have shown, for instance, that by using
only a single primitive from the repertoire, we could achieve relatively high
fitness scores in some tasks.

5. Hierarchical controllers can be more intelligible and understandable by the
experimenter [36, 59]. Such transparency is highly beneficial for use cases
where the experimenter wants to modify or verify the robot’s behaviour.

EvoRBC-II is an approach that allows for these advantages to be explored,
while mitigating the main disadvantage of hierarchical decomposition: the need
to manually decompose the behaviour into suitable sub-tasks [36].

5.5. Future Work

The promising results obtained with EvoRBC-II open up interesting avenues
of research and further development. As mentioned in the previous section, the
evolution of the repertoire could additionally have the objective of generating
robust primitives, that is, primitives that would likely transfer successfully from
simulation to the real robots. This could be accomplished by using Novelty
Search with Local Competition (NSLC) or MAP-Elites instead of pure novelty
search [19], with the fitness objective being the robustness or transferability of
the primitive [15].

While we obtained relatively good results with decision trees as arbitrators,
the use of neural networks for the arbitrator should not be disregarded. As
we show in [48], there are several different arbitrator architectures that can be
considered, and we have obtained good results in the past when using neural
networks for arbitrating among locomotion behaviours [18]. Alternative arbi-
trators and alternative methods for synthesising arbitrators can potentially be
better suited for different kinds of sensory inputs (high-dimensional input from
camera sensors, for instance), and should thus be studied further.

For robots with complex locomotor systems, the evolution of a repertoire
of locomotion primitives, as done by Duarte et al. [18], could be a first step
before the generation of repertoires of general behaviours. This would intro-
duce an additional layer of hierarchical control: (i) a repertoire of locomotion
primitives would be evolved for the given robot; (ii) a repertoire of general
closed-loop behaviours would be evolved using the locomotion repertoire; and
(iii) the arbitrator evolved for solving the given task could use behaviours from

both repertoires. A similar architecture has been recently proposed by Cully et
al. [60].

34

870

875

880

885

890

895

900

905

6. Conclusion

We proposed EvoRBC-II, an evolutionary approach that divides the evolu-
tionary process into two steps: the evolution of a repertoire of general behaviour
primitives, and the evolution of a higher-level arbitrator for a specific task, that
switches between primitives of the given repertoire. Our contribution is twofold:
first, we studied for the first time how to evolve repertoires of general-purpose
behaviours, that can respond to the robot’s sensory inputs. We showed that
such repertoires can be obtained by relying on generic (task-agnostic) behaviour
characterisations, and by evaluating each individual in a large number of ran-
domly generated environments, which help assess the general robot behaviour.
Second, we proposed an approach, based on EvoRBC [18], that allows for these
repertoires of general behaviours to be leveraged by the top-level arbitrator to
solve specific robotics tasks. We proposed a new architecture for the arbitrator:
decision trees where the splits are based on sensory readings and the terminals
are primitives from the repertoire.

Our results show that the evolved repertoires are highly diverse and contain
many potentially useful behaviours. The behaviours contained in the repertoires
were sufficient to solve all the nine evaluation tasks, with a performance close
to that of tabula-rasa evolution. We could see that different regions of the
behaviour space were used to solve different tasks, which showed that the evolved
arbitrators could find and select suitable primitives in the repertoire, thus taking
full advantage of the repertoire. The proposed approach opens doors for the
further exploration of the advantages associated with hierarchical control, in
particular with respect to transferability of controllers to real robots, and the
rapid solution of new tasks by reusing previously evolved components.

Acknowledgments

This work was supported by Fundacao para a Ciéncia e Tecnologia, Por-
tugal, with grant UID/MULTI/04046/2013 (BioISI centre grant), and grant
UID/EEA /50008/2013 (awarded to Instituto de Telecomunicagoes). This work
used the EGI infrastructure with the support of NCG-INGRID-PT (Portugal)
and BIFI (Spain).

References

[1] F. Silva, L. Correia, A. L. Christensen, Evolutionary robotics, Scholarpedia
11 (7) (2016) 33333.

[2] A. L. Nelson, G. J. Barlow, L. Doitsidis, Fitness functions in evolutionary
robotics: A survey and analysis, Robotics and Autonomous Systems 57 (4)
(2009) 345-370.

[3] F. Silva, M. Duarte, L. Correia, S. M. Oliveira, A. L. Christensen, Open
issues in evolutionary robotics, Evolutionary Computation 24 (2) (2016)
205-236.

35

910

915

920

925

930

935

940

945

[4]

[17]

J.-B. Mouret, S. Doncieux, Encouraging behavioral diversity in evolution-
ary robotics: An empirical study, Evolutionary Computation 20 (1) (2012)
91-133.

S. Doncieux, J.-B. Mouret, Beyond black-box optimization: a review of
selective pressures for evolutionary robotics, Evolutionary Intelligence 7 (2)
(2014) 71-93.

S. Doncieux, N. Bredeche, J.-B. Mouret, A. E. G. Eiben, Evolutionary
robotics: What, why, and where to, Frontiers in Robotics and AI 2 (2015)
4.

J. Lehman, K. O. Stanley, Abandoning objectives: Evolution through the
search for novelty alone, Evolutionary Computation 19 (2) (2011) 189-223.

J. K. Pugh, L. B. Soros, K. O. Stanley, Quality diversity: A new frontier
for evolutionary computation, Frontiers in Robotics and AI 3 (2016) 1-40.

B. Sareni, L. Krahenbuhl, Fitness sharing and niching methods revisited,
IEEE Transactions on Evolutionary computation 2 (3) (1998) 97-106.

J. Lehman, K. O. Stanley, R. Miikkulainen, Effective diversity maintenance
in deceptive domains, in: Genetic and Evolutionary Computation Confer-
ence (GECCO), ACM Press, 2013, pp. 215-222.

J. Gomes, P. Mariano, A. L. Christensen, Novelty-driven cooperative co-
evolution, Evolutionary Computation 25 (2) (2017) 275-307.

J. Lehman, K. O. Stanley, Evolving a diversity of virtual creatures through
novelty search and local competition, in: Genetic and Evolutionary Com-
putation Conference (GECCO), ACM Press, 2011, pp. 211-218.

J. Mouret, J. Clune, llluminating search spaces by mapping elites, CoRR
abs/1504.04909.
URL http://arxiv.org/abs/1504.04909

A. Cully, J. Clune, D. Tarapore, J.-B. Mouret, Robots that can adapt like
animals, Nature 521 (7553) (2015) 503-507.

A. Cully, J.-B. Mouret, Evolving a behavioral repertoire for a walking robot,
Evolutionary Computation 24 (1) (2016) 59-88.

K. Chatzilygeroudis, A. Cully, J.-B. Mouret, Towards semi-episodic learn-
ing for robot damage recovery, in: Workshop on AI for Long-Term Auton-
omy at the IEEE International Conference on Robotics and Automation
(ICRA), 2016.

V. Vassiliades, K. Chatzilygeroudis, J. B. Mouret, Using centroidal Voronoi
tessellations to scale up the multi-dimensional archive of phenotypic elites
algorithm, IEEE Transactions on Evolutionary ComputationIn press.

36

http://arxiv.org/abs/1504.04909
http://arxiv.org/abs/1504.04909

950

955

960

965

970

975

980

[18]

[19]

[20]

[23]

[24]

[25]

[28]
[29]

[30]

M. Duarte, J. Gomes, S. M. Oliveira, A. L. Christensen, Evolution of
repertoire-based control for robots with complex locomotor systems, IEEE
Transactions on Evolutionary ComputationIn press.

A. Cully, Y. Demiris, Quality and diversity optimization: A unifying mod-
ular framework, IEEE Transactions on Evolutionary Computation.

M. Duarte, J. Gomes, S. M. Oliveira, A. L. Christensen, Evorbc: Evolu-
tionary repertoire-based control for robots with arbitrary locomotion com-
plexity, in: Genetic and Evolutionary Computation Conference (GECCO),
ACM Press, 2016, pp. 93-100.

S. Kim, S. Doncieux, Learning highly diverse robot throwing movements
through quality diversity search, in: Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion (GECCO), ACM Press, 2017,
pp. 1177-1178.

S. A. Engebraten, J. Moen, O. Yakimenko, K. Glette, Evolving a repertoire
of controllers for a multi-function swarm, in: International Conference on
the Applications of Evolutionary Computation, Springer, 2018, pp. 734—
749.

D. S. Brown, R. Turner, O. Hennigh, S. Loscalzo, Discovery and exploration
of novel swarm behaviors given limited robot capabilities, in: Distributed
Autonomous Robotic Systems, Springer, 2018, pp. 447-460.

V. Vassiliades, K. Chatzilygeroudis, J.-B. Mouret, Comparing multimodal
optimization and illumination, in: Genetic and Evolutionary Computation
Conference (GECCO) Companion, ACM Press, 2017, pp. 97-98.

Y. Demiris, A. Dearden, From motor babbling to hierarchical learning by
imitation: a robot developmental pathway, in: International Workshop on
Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems.

Y. Liu, X. Yao, T. Higuchi, Evolutionary ensembles with negative cor-
relation learning, IEEE Transactions on Evolutionary Computation 4 (4)
(2000) 380-387.

X. Yao, M. M. Islam, Evolving artificial neural network ensembles, IEEE
Computational Intelligence Magazine 3 (1) (2008) 31-42.

R. C. Arkin, Behavior-based Robotics, 1st Edition, MIT Press, 1998.

M. J. Matari¢, Behavior-based robotics as a tool for synthesis of artificial
behavior and analysis of natural behavior, Trends in cognitive sciences 2 (3)
(1998) 82-86.

S. Luke, C. Hohn, J. Farris, G. Jackson, J. Hendler, Co-evolving soccer
softbot team coordination with genetic programming, in: Robot Soccer
World Cup, Springer, 1997, pp. 398-411.

37

985

990

995

1000

1005

1010

1015

1020

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

B. G. Woolley, G. L. Peterson, Genetic evolution of hierarchical behavior
structures, in: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ACM, 2007, pp. 1731-1738.

W.-P. Lee, J. Hallam, H. H. Lund, Applying genetic programming to evolve
behavior primitives and arbitrators for mobile robots, in: IEEE Interna-
tional Conference on Evolutionary Computation, IEEE, 1997, pp. 501-506.

W.-P. Lee, Evolving complex robot behaviors, Information Sciences 121 (1)
(1999) 1-25.

T. Larsen, S. T. Hansen, Evolving composite robot behaviour-a modular
architecture, in: Proceedings of the Fifth International Workshop on Robot
Motion and Control (RoMoCo), IEEE Press, 2005, pp. 271-276.

M. Duarte, S. Oliveira, A. L. Christensen, Hierarchical evolution of robotic
controllers for complex tasks, in: Development and Learning and Epigenetic
Robotics (ICDL), 2012 IEEE International Conference on, IEEE Press,
2012, pp. 1-6.

M. Duarte, S. M. Oliveira, A. L. Christensen, Evolution of hybrid robotic
controllers for complex tasks, Journal of Intelligent & Robotic Systems
78 (3) (2015) 463-484.

M. Duarte, Engineering evolutionary control for real-world robotic systems,
Ph.D. thesis, University Institute of Lisbon (ISCTE-IUL) (2016).

Y. Ren, L. Zhang, P. N. Suganthan, Ensemble classification and regression-
recent developments, applications and future directions, IEEE Computa-
tional intelligence magazine 11 (1) (2016) 41-53.

A. Cully, J.-B. Mouret, Behavioral repertoire learning in robotics, in: Ge-
netic and Evolutionary Computation Conference (GECCO), ACM Press,
2013, pp. 175-182.

S. Doncieux, J.-B. Mouret, Behavioral diversity with multiple behavioral
distances, in: IEEE Congress on Evolutionary Computation (CEC), IEEE
Press, 2013, pp. 1427-1434.

K. Stanley, R. Miikkulainen, Evolving neural networks through augmenting
topologies, Evolutionary Computation 10 (2) (2002) 99-127.

J. Gomes, P. Mariano, A. L. Christensen, Devising effective novelty search
algorithms: A comprehensive empirical study, in: Genetic and Evolution-
ary Computation Conference (GECCO), ACM Press, 2015, pp. 943-950.

A. Beck, S. Sabach, Weiszfeld’s method: Old and new results, Journal of
Optimization Theory and Applications 164 (1) (2015) 1-40.

38

1025

1030

1035

1040

1045

1050

1055

[44]

S. Doncieux, J.-B. Mouret, Behavioral diversity measures for evolutionary
robotics, in: IEEE Congress on Evolutionary Computation (CEC), IEEE
Press, 2010, pp. 1-8.

J. Gomes, A. L. Christensen, Generic behaviour similarity measures for
evolutionary swarm robotics, in: Genetic and Evolutionary Computation

Conference (GECCO), ACM Press, 2013, pp. 199-206.

E. Meyerson, J. Lehman, R. Miikkulainen, Learning behavior character-
izations for novelty search, in: Genetic and Evolutionary Computation
Conference (GECCO), ACM Press, 2016, pp. 149-156.

J. Gomes, P. Mariano, A. L. Christensen, Systematic derivation of be-
haviour characterisations in evolutionary robotics, in: International Con-
ference on the Synthesis and Simulation of Living Systems (ALife), MIT
Press, 2014, pp. 212-219.

J. Gomes, A. L. Christensen, Comparing approaches for evolving high-
level robot control based on behaviour repertoires, in: IEEE Congress on
Evolutionary Computation (CEC), IEEE Press, 2018, in press.

D. J. Montana, Strongly typed genetic programming, Evolutionary com-
putation 3 (2) (1995) 199-230.

J. R. Koza, Concept formation and decision tree induction using the genetic
programming paradigm, in: International Conference on Parallel Problem
Solving from Nature, Springer, 1990, pp. 124-128.

S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, G. Balan, Mason: A
multiagent simulation environment, Simulation 81 (7) (2005) 517-527.

S. Luke, Two fast tree-creation algorithms for genetic programming, IEEE
Transactions on Evolutionary Computation 4 (3) (2000) 274-283.

D. R. White, Software review: the ecj toolkit, Genetic Programming and
Evolvable Machines 13 (1) (2012) 65-67.

J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection, Vol. 1, MIT press, 1992.

H. Iba, M. Terao, Controlling effective introns for multi-agent learning by
genetic programming, in: Conference on Genetic and Evolutionary Com-
putation (GECCO), Morgan Kaufmann, 2000, pp. 419-426.

M. Hubert, P. J. Rousseeuw, K. Vanden Branden, ROBPCA: a new ap-
proach to robust principal component analysis, Technometrics 47 (1) (2005)
64-79.

N. Jakobi, Evolutionary robotics and the radical envelope-of-noise hypoth-
esis, Adaptive Behavior 6 (2) (1997) 325-368.

39

[58] S. Koos, J.-B. Mouret, S. Doncieux, The transferability approach: Crossing
the reality gap in evolutionary robotics, IEEE Transactions on Evolutionary
1060 Computation 17 (1) (2013) 122-145.

[59] M. Duarte, J. Gomes, V. Costa, S. M. Oliveira, A. L. Christensen, Hybrid
control for a real swarm robotics system in an intruder detection task, in:
European Conference on the Applications of Evolutionary Computation
(EvoApps), Springer, 2016, pp. 213-230.

s [60] A. Cully, Y. Demiris, Hierarchical behavioral repertoires with unsuper-
vised descriptors, in: Conference on Genetic and Evolutionary Computa-
tion (GECCO), ACM Press, 2018, in press.

40

